JP2017141607A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2017141607A
JP2017141607A JP2016024067A JP2016024067A JP2017141607A JP 2017141607 A JP2017141607 A JP 2017141607A JP 2016024067 A JP2016024067 A JP 2016024067A JP 2016024067 A JP2016024067 A JP 2016024067A JP 2017141607 A JP2017141607 A JP 2017141607A
Authority
JP
Japan
Prior art keywords
casing
ground
region
ground improvement
improvement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016024067A
Other languages
Japanese (ja)
Inventor
上村 一義
Kazuyoshi Kamimura
一義 上村
雅也 河田
Masaya Kawada
雅也 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2016024067A priority Critical patent/JP2017141607A/en
Publication of JP2017141607A publication Critical patent/JP2017141607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground improvement method that enables ground improvement to be efficiently performed even for hard ground.SOLUTION: In a ground improvement method, an all-casing step, in which a fluidized replacement material becoming harder than natural ground after hardening is placed in a casing, is repeated by an all-casing method. The replacement materials in mutually adjacent areas, in which the all-casing step is performed, are connected to each other so that a plurality of rows of the replacement materials extended in a predetermined direction can be juxtaposed.SELECTED DRAWING: Figure 2

Description

本発明は、地盤改良方法に関し、特に、硬質な地盤をさらに改良する場合に好適なものである。   The present invention relates to a ground improvement method, and is particularly suitable for further improving a hard ground.

N値(標準貫入試験値)が例えば10以下とされる軟弱地盤上に構造物を建築する際、構造物の耐震性向上等を目的として地盤改良を行うことがある。このような軟弱地盤の地盤改良を行う工法の一つとして、高圧噴射攪拌工法が知られている。下記特許文献1には当該方法が記載されている。高圧噴射攪拌工法は、地盤に貫入した噴射管の噴射口から、エアー、固化材を含む高圧流体ジェットを噴射して地盤を切削しつつ攪拌する工程と、噴射管を上昇させる工程とを行うことにより地盤改良体を形成するものである。   When building a structure on soft ground where the N value (standard penetration test value) is, for example, 10 or less, the ground may be improved for the purpose of improving the earthquake resistance of the structure. As one of methods for improving the ground of such soft ground, a high-pressure jet stirring method is known. Patent Document 1 below describes the method. The high-pressure jet agitation method performs a step of jetting a high-pressure fluid jet containing air and a solidified material from an injection port of an injection pipe penetrating into the ground to stir while cutting the ground, and a step of raising the injection pipe To form a ground improvement body.

特開2015−161165号公報Japanese Patent Laying-Open No. 2015-161165

ところで、近年、高度な安全性を求められる超高規格用途の建造物を設置するため、N値が50以上の砂質土やN値が10以上の粘性土等の硬質な地盤に対して、さらに固い地盤となるように地盤改良をしたいという要請がある。しかも、建造物の種類によっては、広範な地盤を改良しなければならない場合がある。しかし、N値が50以上の砂質土やN値が10以上の粘性土等の硬質な地盤に対して上記高圧噴射攪拌工法を行っても、高圧流体ジェットが広がりにくく非効率となる。従って、N値が50以上の砂質土やN値が10以上の粘性土等の広範な地盤を効率的に改良することは困難であった。   By the way, in recent years, in order to install ultra-high-standard-use buildings that require a high level of safety, for hard ground such as sandy soil with an N value of 50 or more, or viscous soil with an N value of 10 or more, There is a request to improve the ground so that it becomes even harder. Moreover, depending on the type of building, it may be necessary to improve a wide range of ground. However, even if the high-pressure jet stirring method is applied to hard ground such as sandy soil having an N value of 50 or more or viscous soil having an N value of 10 or more, the high-pressure fluid jet hardly spreads and becomes inefficient. Accordingly, it has been difficult to efficiently improve a wide range of ground such as sandy soil having an N value of 50 or more and viscous soil having an N value of 10 or more.

そこで、本発明は、硬質な地盤であっても、効率良く地盤改良を行うことができる地盤改良方法を提供しようとするものである。   Therefore, the present invention intends to provide a ground improvement method capable of improving ground efficiently even on hard ground.

かかる課題を解決するため、本発明の地盤改良方法は、オールケーシング工法により、硬化後に原地盤よりも硬質となる流動化された置換材をケーシング内に打設するオールケーシング工程を繰り返し、互いに隣り合う前記オールケーシング工程が行われる領域における前記置換材を互いに結合させることで所定の方向に延在する前記置換材の列を複数並列させることを特徴とするものである。   In order to solve such a problem, the ground improvement method of the present invention repeats an all casing process in which a fluidized replacement material that becomes harder than the original ground after curing is placed in a casing by an all casing construction method, and the above-described adjacent casings are adjacent to each other. A plurality of rows of the replacement materials extending in a predetermined direction are juxtaposed by joining the replacement materials in a region where the all casing process is performed.

オールケーシング工法は、ケーシングを回転や揺動をさせて押込みながらケーシング内の土砂をハンマーグラブ等で排土することで掘削し、所定の深さの地盤に達した後、必要に応じて孔底の処理を行い、その後、トレミー管によりコンクリート等の置換材を打設しながらケーシングおよびトレミー管を引き抜く工法である。その結果、ケーシング内の土砂と置換材とが置換される。なお、必要に応じて、置換材内に鉄筋かごやH鋼等が埋め込まれる。このオールケーシング工法は、主に杭や山留壁の造成に用いられる工法であり、地盤改良に用いられることが無かった。これは、従前の地盤改良が上記のように軟弱な地盤に対して行われるものであり、N値の高い地盤に対して行われることが無かったことに起因すると考えられる。   In the all-casing method, excavation is performed by discharging the earth and sand in the casing with a hammer grab while pushing the casing by rotating or swinging it, and after reaching the ground of a predetermined depth, This is a method of performing the treatment, and then pulling out the casing and the tremy tube while placing a replacement material such as concrete with the tremy tube. As a result, the earth and sand in the casing and the replacement material are replaced. In addition, a reinforcing steel cage, H steel, etc. are embedded in a substitution material as needed. This all casing method is a method mainly used for the construction of piles and mountain retaining walls, and has not been used for ground improvement. This is considered to be because the conventional ground improvement is performed on the soft ground as described above and has not been performed on the ground having a high N value.

上記のようにオールケーシング工法は、主に杭や山留壁の造成に用いられる工法であるため岩盤等の障害物に対しても削孔や除去が可能とされる。従って、従来では地盤改良する必要が無いとされていたN値が50以上の砂質土やN値が10以上の粘性土といった硬質な地盤であっても、掘削して置換材で埋め戻すことが可能である。このため本発明の地盤改良方法によれば、オールケーシング工法を用いるオールケーシング工程を繰り返し、互いに結合した複数の置換材から成る列が複数並列することで、硬質な地盤であっても広範に改良することができる。しかも、地盤の固さによらずケーシング内の地盤を置換することができるため、上記のような硬質な地盤に対して、高圧噴射攪拌工法等の他の工法と比べて効率的である。この様に、置換材を結合させるためには、例えば、オールケーシング工程が行われる領域の一部を重ねることで置換材同士を互いに結合させたり、互いに隣り合うオールケーシング工程が行われる領域を互いに接するよう当該オールケーシング工程行うことで置換材同士を接するよう結合させればよい。   As described above, the all-casing method is a method mainly used for the construction of piles and mountain retaining walls, so that it is possible to drill or remove obstacles such as rocks. Therefore, even if it is hard ground such as sandy soil with an N value of 50 or more or viscous soil with an N value of 10 or more, which was previously considered not necessary to improve the ground, it is excavated and backfilled with a replacement material. Is possible. Therefore, according to the ground improvement method of the present invention, the all casing process using the all casing method is repeated, and a plurality of rows made of a plurality of replacement materials connected to each other are arranged in parallel, so that even a hard ground can be improved extensively. Can do. Moreover, since the ground in the casing can be replaced regardless of the hardness of the ground, it is more efficient than the other methods such as the high-pressure jet stirring method for the hard ground as described above. In this way, in order to bond the replacement materials, for example, the replacement materials may be bonded to each other by overlapping a part of the area where the all casing process is performed, or the areas where the adjacent all casing processes are performed are in contact with each other. What is necessary is just to couple | bond so that substitution material may contact | connect by performing the said all casing process.

なお、原地盤よりも硬質となる流動化された置換材は、例えば、硬化後にN値が50以上といった硬質な粘性土とみなされる材料である。このような材料で置換されることにより、原地盤が粘性土の場合は地盤の強度を増加させ、原地盤が砂質土の場合はそれに加えて液状化の可能性を低減させることができる。   The fluidized replacement material that is harder than the original ground is, for example, a material that is regarded as hard clayey soil having an N value of 50 or more after curing. By replacing with such a material, the strength of the ground can be increased when the original ground is cohesive soil, and the possibility of liquefaction can be reduced in addition to that when the original ground is sandy soil.

以上のように、本発明の地盤改良方法によれば、硬質な地盤であっても、効率良く地盤改良を行うことができる。   As described above, according to the ground improvement method of the present invention, ground improvement can be performed efficiently even on hard ground.

また、上記地盤改良方法において、互いに隣り合う前記列を互いに結合させることが好ましい。このように、並列する置換材の列同士が互いに結合することで、より強固な地盤とすることができる。   In the ground improvement method, it is preferable that the columns adjacent to each other are coupled to each other. Thus, it can be set as a firmer ground because the row | line | columns of the substitute material in parallel couple | bond together.

この場合、上記地盤改良方法において、互いに隣り合う前記オールケーシング工程が行われる領域の一部を互いに重ねることで互いに隣り合う前記置換材を結合させることが好ましい。   In this case, in the ground improvement method, it is preferable that the replacement materials adjacent to each other are joined by overlapping a part of the region where the all casing steps adjacent to each other are performed.

この場合、互いに隣り合う置換材同士をより確実に結合させることができ、より強固な状態に地盤改良を行うことができる。   In this case, the replacement materials adjacent to each other can be more reliably bonded, and the ground can be improved in a stronger state.

またさらに、上記地盤改良方法において、互いに隣り合う前記列を隙間なく結合させることが好ましい。   Furthermore, in the ground improvement method, it is preferable that the rows adjacent to each other are joined without a gap.

置換材から成る列同士が隙間なく結合することで、地盤改良を行う領域全体が置換材で置換されることとなる。従って、より強固で高品質な地盤改良を行うことができる。   By joining the rows of replacement materials without any gaps, the entire region for ground improvement is replaced with the replacement material. Therefore, the ground can be improved more firmly and with high quality.

また、上記地盤改良方法において、互いに離間する2つの前記列が形成されるよう前記オールケーシング工程を繰り返し、当該互いに離間する2つの前記列のそれぞれに前記オールケーシング工程が行われる領域が一部重なるよう前記オールケーシング工程を更に繰り返すことが好ましい。   Further, in the ground improvement method, the all casing step is repeated so that the two rows that are separated from each other are formed, and the region where the all casing step is performed partially overlaps each of the two rows that are separated from each other. It is preferable to repeat the all casing process further.

二つの列のそれぞれにオールケーシング工程が行われる領域が一部重なるようオールケーシング工程を行うため、ケーシングにおける径方向に概ね対向する部位が当該二つの列の置換材の一部と重なる状態で、ケーシングが押し込まれることとなる。従って、ケーシングの1カ所のみが置換材と重なる場合と比べて、ケーシングが湾曲して押し込まれることを抑制することができる。   In order to perform the all-casing process so that the area where the all-casing process is performed partially overlaps each of the two rows, the casing is in a state where a portion that is substantially opposed to the radial direction in the casing overlaps a part of the replacement material of the two rows. It will be pushed in. Therefore, it can suppress that a casing curves and is pushed in compared with the case where only one place of a casing overlaps with a substitution material.

また、上記地盤改良方法において、前記オールケーシング工程が行われるそれぞれの領域の中心は三角格子の各格子点上に位置することが好ましい。   In the ground improvement method, the center of each region where the all casing process is performed is preferably located on each lattice point of a triangular lattice.

このようにそれぞれのオールケーシング工程が行われる領域が定められることで、それぞれの当該領域を最密充填状に配置することができる。従って、効率良く置換材同士を隙間なく結合させることができる。ただし、当該三角格子の各三角形は正三角形である必要が無く概ね正三角形状であればよい。   Thus, the area | region where each all casing process is performed is defined, and each said area | region can be arrange | positioned in the close-packed form. Therefore, the replacement materials can be efficiently bonded without gaps. However, each triangle of the triangular lattice does not need to be a regular triangle and may be a regular triangle.

また、上記地盤改良方法において、前記原地盤が砂質土の場合は当該原地盤のN値が50以上とされ、前記原地盤が粘性土の場合は当該原地盤のN値が10以上とされることが、本地盤改良方法を実施する上で有効である。   In the ground improvement method, when the original ground is sandy soil, the N value of the original ground is 50 or more, and when the original ground is viscous soil, the N value of the original ground is 10 or more. It is effective to implement this ground improvement method.

また、上記地盤改良方法において、前記置換材は流動化処理土であることが好ましい。流動化処理土は、除去した土砂にセメント等の固化材を所望の配合で混合して作られる埋め戻し材である。このように除去した土砂を利用するため廃土を抑制することができ、環境へ与える影響を抑えることができる。   In the ground improvement method, the replacement material is preferably fluidized soil. The fluidized soil is a backfill material made by mixing a solidified material such as cement with a desired composition into the removed earth and sand. Since the earth and sand removed in this way are used, waste soil can be suppressed and the influence on the environment can be suppressed.

以上のように、本発明によれば、硬質な地盤であっても、効率良く地盤改良を行うことができる地盤改良方法が提供される。   As described above, according to the present invention, there is provided a ground improvement method capable of efficiently improving ground even on hard ground.

本発明の実施形態に係るオールケーシング工程を示すフローチャートである。It is a flowchart which shows the all casing process which concerns on embodiment of this invention. 原地盤の一部を平面視する図である。It is a figure which planarly views a part of original ground. 図2に示す各領域に対しオールケーシング工程を行う第1段階を示す図である。It is a figure which shows the 1st step which performs an all casing process with respect to each area | region shown in FIG. 図2に示す各領域に対しオールケーシング工程を行う第2段階を示す図である。It is a figure which shows the 2nd step which performs an all casing process with respect to each area | region shown in FIG. 図2に示す各領域に対しオールケーシング工程を行う第3段階を示す図である。It is a figure which shows the 3rd step which performs an all casing process with respect to each area | region shown in FIG. 図2に示す各領域に対しオールケーシング工程を行う第4段階を示す図である。It is a figure which shows the 4th step which performs an all casing process with respect to each area | region shown in FIG. オールケーシング工程を行う領域の位置に係る変形例を示す図である。It is a figure which shows the modification which concerns on the position of the area | region which performs an all casing process.

以下、本発明に係る地盤改良方法の好適な実施形態について図面を参照しながら詳細に説明する。なお、以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。   Hereinafter, a preferred embodiment of a ground improvement method according to the present invention will be described in detail with reference to the drawings. In addition, embodiment illustrated below is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the spirit of the present invention.

[オールケーシング工程]
本工程は、オールケーシング工法を用いて、地盤の掘削や置換材の打設を行う工程である。なお、本工程では全旋回オールケーシング工法が用いられても、揺動型オールケーシング工法が用いられても良いが、一般的には全旋回オールケーシング工法が用いられる。図1は、本発明の実施形態に係るオールケーシング工法を施工する工程(以下、CD工程という場合がある。)を示すフローチャートである。図1に示すように、CD工程は、掘削機据付け/ケーシング建込み工程P1と、掘削工程P2と、スライム処理工程P3と、トレミー管建込み工程P4と、置換材打設工程P5とを備える。
[All casing process]
This step is a step of excavating the ground and placing a replacement material using the all casing method. In this step, either the all-swivel all-casing method or the swing-type all-casing method may be used, but generally the all-slewing all-casing method is used. FIG. 1 is a flowchart showing a process of constructing an all-casing method according to an embodiment of the present invention (hereinafter sometimes referred to as a CD process). As shown in FIG. 1, the CD process includes an excavator installation / casing erection process P1, an excavation process P2, a slime treatment process P3, a tremy pipe erection process P4, and a replacement material placing process P5. .

<掘削機据付け/ケーシング建込み工程P1>
本工程は掘削する位置を定め、掘削するための準備を行うための工程である。本工程では、まず、掘削機据付けに先立って、所望の位置が掘削されるように定規鉄板を配置する。定規鉄板は、予め定められた杭芯の位置を中心とした円周上に定規鉄板の円形の開口が位置するように配置される。そして、定規鉄板が配置されたところで、定規鉄板の本体ガイドに合わせて掘削機を据付ける。なお、掘削機の据付け後に、水平ジャッキ等を用いて掘削機の水平補正をすることが好ましい。
<Excavator installation / casing erection process P1>
This step is a step for determining a position for excavation and preparing for excavation. In this step, first, a ruler iron plate is arranged so that a desired position is excavated prior to excavator installation. The ruler iron plate is arranged so that a circular opening of the ruler iron plate is located on a circumference centered on a predetermined pile core position. And when a ruler iron plate is arrange | positioned, an excavator is installed according to the main body guide of a ruler iron plate. In addition, it is preferable to perform horizontal correction | amendment of an excavator using a horizontal jack etc. after installation of an excavator.

掘削機の据付けが完了した後、ケーシング建込みを行う。ケーシングの建込みは、クレーン等でケーシングを吊り上げ、掘削機内にセットすることで行われる。また、ケーシングの直径は、例えば、1000mm〜3000mmとされる。   After installation of the excavator is completed, the casing is erected. The casing is built by lifting the casing with a crane or the like and setting it in the excavator. Moreover, the diameter of a casing shall be 1000 mm-3000 mm, for example.

<掘削工程P2>
本工程は、地盤の掘削を行う工程である。本工程では、掘削機に建込まれたケーシングを回転や揺動をさせて圧入させる。そして、ケーシングを圧入させながらハンマーグラブ等を用いてケーシング内の土砂を排出する。なお、周辺地盤の崩壊を防止するため掘削面よりもケーシングの刃先を先行させることが好ましい。掘削面が所望の深さになるまでケーシングの接続、回転・揺動しながらの圧入、ケーシング内の排土を繰り返す。この所望の深さとは、例えば、地盤改良される必要が無いN値を有する硬質な地層上面までの深さとされる。こうして、所望の深さまで掘削された状態となる。
<Excavation process P2>
This step is a step of excavating the ground. In this step, the casing built in the excavator is press-fitted by rotating or swinging. And the earth and sand in a casing are discharged | emitted using a hammer grab etc., pressing a casing. In order to prevent the surrounding ground from collapsing, the cutting edge of the casing is preferably preceded by the excavation surface. Casing connection, press-fitting while rotating and swinging, and soil removal in the casing are repeated until the excavation surface reaches the desired depth. This desired depth is, for example, the depth to the upper surface of a hard formation having an N value that does not need to be improved. In this way, it will be in the state excavated to the desired depth.

<スライム処理工程P3>
本工程は掘削孔底が有水の場合に行う工程であり、掘削孔底が無水の場合には本工程を行う必要はない。スライム処理は、ハンマーグラブやスライムバケツにて、スライムを排出することで行う。スライムが多い場合、掘削孔底にスライムバケツを入れ、スライム沈殿待ちを行うことが好ましい。
<Slime treatment process P3>
This step is performed when the bottom of the excavation hole is water-filled, and it is not necessary to perform this step when the bottom of the excavation hole is anhydrous. Slime treatment is performed by discharging the slime with a hammer grab or slime bucket. When there is much slime, it is preferable to put a slime bucket in the bottom of the excavation hole and wait for slime precipitation.

<トレミー管建込み工程P4>
本工程は、流動化された置換材を打設するためのトレミー管をケーシング内に建込む工程である。トレミー管は、1本の管とされても良いが、複数の管が接続されて成ることが好ましい。トレミー管の直径は、例えば、150mm〜300mmとされる。トレミー管は、先端が掘削孔底から20cm程度上方に位置するように建込むことが好ましい。
<Tremie tube installation process P4>
This step is a step of building a tremy tube for placing the fluidized replacement material in the casing. The tremy tube may be a single tube, but is preferably formed by connecting a plurality of tubes. The diameter of the tremy tube is, for example, 150 mm to 300 mm. It is preferable that the tremy tube is constructed so that the tip is positioned about 20 cm above the bottom of the excavation hole.

<置換材打設工程P5>
本工程は、原地盤よりも硬質となる流動化された置換材をケーシング内に打設する工程である。置換材の打設は、置換材をトレミー管内に流し込むことで行う。このとき打設された置換材上面の高さを管理して、ケーシング及びトレミー管を置換材の打設と共に引き抜く。なお、ケーシング先端、及び、トレミー管の先端が打設された置換材上面よりも例えば2m程度下方に位置するようにして、ケーシング及びトレミー管を引き抜く。
<Replacement material placing process P5>
This step is a step of placing a fluidized replacement material that is harder than the original ground into the casing. The replacement material is cast by pouring the replacement material into the tremy tube. At this time, the height of the upper surface of the replacement material placed is managed, and the casing and the tremy tube are pulled out together with the placement of the replacement material. In addition, the casing and the tremmy tube are pulled out so that the tip of the casing and the tip of the tremmy tube are positioned, for example, about 2 m below the upper surface of the replacement material.

原地盤よりも硬質となる流動化された置換材は、硬化後に原地盤より硬質な粘性土とみなされる材料でありそのような特性を持ったものであれば特に限定されない。置換材として、N値が50以上の非常に硬質な粘性土とみなされる材料がより好ましい。このような置換材としては、流動化処理土、モルタル等を挙げることができる。特に、流動化処理土は、除去した土砂にセメント等の固化材を所望の配合で混合して作られる埋め戻し材であるため、廃土を抑制することができるため好ましい。   The fluidized replacement material that is harder than the original ground is not particularly limited as long as it is a material that is regarded as a viscous soil that is harder than the original ground after hardening, and has such characteristics. As the replacement material, a material regarded as a very hard clay with an N value of 50 or more is more preferable. Examples of such a replacement material include fluidized soil and mortar. In particular, fluidized soil is preferable because it is a backfill material made by mixing a solidified material such as cement with a desired composition into the removed earth and sand, so that waste soil can be suppressed.

こうして、掘削孔を置換材で埋め戻すことで、1回のCD工程が完了する。この置換材で埋め戻された領域は、置換材の硬化後において、改良前の地盤よりも高いN値となる。   Thus, one CD process is completed by refilling the excavation hole with the replacement material. The region backfilled with the replacement material has an N value higher than that of the ground before the improvement after the replacement material is cured.

[オールケーシング工程を複数回行う手順]
次に、CD工程を複数回行う手順の一例について説明する。
[Procedure for performing all-casing process multiple times]
Next, an example of a procedure for performing the CD process a plurality of times will be described.

図2は、原地盤の一部を平面視する図である。図2に示す円形のそれぞれの領域は、1回のCD工程が行われる領域である。なお、図2ではA列〜D列が示されており、E列以降は省略されており、それぞれの列において領域1〜領域7が記載されており、領域8以降は省略されている。図2から明らかなように、互いに隣り合うそれぞれの領域の一部は互いに重なっており、各領域間に隙間が生じないよう、各領域の位置が定められている。本例では、それぞれの領域の中心は三角格子の各格子点上に概ね位置するように定められている。これにより、それぞれの当該領域を最密充填状に配置することができ、各領域の直径と隣り合う領域の中心間距離とが適切に定められることで、領域同士の重なりが少ない状態で、領域間に隙間が生じることを抑制することができる。従って、各領域にCD工程を行うことで、効率良く置換材同士を隙間なく結合させることができる。ただし、当該三角格子の各三角形は正三角形である必要が無く概ね正三角形状であればよい。   FIG. 2 is a plan view of a part of the original ground. Each circular area shown in FIG. 2 is an area where one CD process is performed. In FIG. 2, the A column to the D column are shown, the E column and the subsequent columns are omitted, the regions 1 to the region 7 are described in each column, and the region 8 and the subsequent columns are omitted. As is clear from FIG. 2, a part of each adjacent region overlaps each other, and the position of each region is determined so that no gap is generated between the regions. In this example, the center of each region is determined so as to be approximately located on each lattice point of the triangular lattice. Thereby, each of the regions can be arranged in a close-packed manner, and the diameter of each region and the center-to-center distance between adjacent regions are appropriately determined, so that there is little overlap between regions. It can suppress that a clearance gap arises between them. Therefore, by performing the CD process in each region, the replacement materials can be efficiently bonded without a gap. However, each triangle of the triangular lattice does not need to be a regular triangle and may be a regular triangle.

<第1段階>
図3は、図2に示す各領域に対しCD工程を行う第1段階を示す図である。まず、図3において実線で示す領域に対してCD工程を行う。つまり、一つ飛ばしの列であるA列及びC列における各領域のうち、一つ飛ばしとなる領域に対してCD工程を行う。図3の場合、A列およびC列において、領域1に対してCD工程を行い、次に領域1と所定の間隔をあけた領域3に対してCD工程を行う。このとき、領域1と領域3との間はケーシングの直径よりも小さくされる。同様にして、領域3と所定の間隔をあけた領域5に対してCD工程を行い、領域5と所定の間隔をあけた領域7に対してCD工程を行う。
<First stage>
FIG. 3 is a diagram showing a first stage in which the CD process is performed on each region shown in FIG. First, the CD process is performed on the region indicated by the solid line in FIG. That is, the CD process is performed on the region to be skipped among the regions in the rows A and C that are one skipped column. In the case of FIG. 3, the CD process is performed on the region 1 in the A column and the C column, and then the CD process is performed on the region 3 spaced apart from the region 1 by a predetermined distance. At this time, the space between the region 1 and the region 3 is made smaller than the diameter of the casing. Similarly, the CD process is performed on the area 5 spaced apart from the area 3 by a predetermined distance, and the CD process is performed on the area 7 spaced apart from the area 5 by a predetermined distance.

<第2段階>
図4は、図2に示す各領域に対しCD工程を行う第2段階を示す図である。なお、以下の図において、既にCD工程が行われた地盤に置換材が打設された領域は斜線で示される。
<Second stage>
FIG. 4 is a diagram showing a second stage in which the CD process is performed on each region shown in FIG. In the following drawings, the area where the replacement material is placed on the ground where the CD process has already been performed is indicated by hatching.

本段階では、A列、C列における残りの領域に対してCD工程を行う。具体的には、図4に示すように、A列、C列における実線で示す領域2、領域4、領域6のそれぞれに対してCD工程を行う。このとき、上記のように互いに隣り合うそれぞれの領域の一部が互いに重なっているため、A列、C列の残り領域に対してCD工程を行おうとすると、既に置換材が打設された領域の一部に対してもCD工程を行うことになる。従って、CD工程を行おうとする領域と隣り合う領域の置換材が硬化した後に当該空き領域にCD工程を行うことが、既に打設された置換材を崩さない観点から好ましい。具体的には、A列、C列における領域2にCD工程を行う場合、領域1、領域3の置換材が硬化した後に領域2のCD工程を行う。この状態で領域2においてケーシングを回転や揺動をさせながら地盤に圧入すると、ケーシングには、既に原地盤よりN値が高くされた領域1、領域3から強い力がかかる。しかし、領域2に対して、領域1、領域3は軸対称な位置である。従って、領域1、領域3にケーシングの一部が重なる状態で掘削工程P2を行う際に、ケーシングには軸対象となる方向から強い力がかかり、ケーシングが曲がって圧入されることを抑制することができる。   At this stage, the CD process is performed on the remaining areas in the A and C columns. Specifically, as shown in FIG. 4, the CD process is performed for each of the region 2, the region 4, and the region 6 indicated by solid lines in the A column and the C column. At this time, since a part of each of the adjacent areas overlaps with each other as described above, if the CD process is performed on the remaining areas of the A and C columns, the area where the replacement material has already been placed The CD process is also performed on a part of the CD. Therefore, it is preferable to perform the CD process on the empty area after the replacement material in the area adjacent to the area where the CD process is to be performed is cured from the viewpoint of not destroying the already placed replacement material. Specifically, when the CD process is performed on the region 2 in the A row and the C row, the CD process on the region 2 is performed after the replacement materials in the region 1 and the region 3 are cured. In this state, when the casing is press-fitted into the ground while rotating or swinging in the area 2, a strong force is applied to the casing from the areas 1 and 3 where the N value is already higher than that of the original ground. However, the region 1 and the region 3 are axisymmetric positions with respect to the region 2. Therefore, when the excavation process P2 is performed in a state where a part of the casing overlaps with the regions 1 and 3, a strong force is applied to the casing from the direction of the axis, and the casing is prevented from being bent and press-fitted. Can do.

同様にして、領域3、領域5の置換材が硬化した後に領域4のCD工程を行い、領域5、領域7の置換材が硬化した後に領域6のCD工程を行う。こうして、地盤を平面視する場合に、A列、C列は、互いに隣り合う領域の一部が重なることで地面の平面方向に沿った所定の方向に延在する置換材の列とされ、互いに離間する2つの置換材の列とされる。   Similarly, the CD process in the region 4 is performed after the replacement materials in the regions 3 and 5 are cured, and the CD process in the region 6 is performed after the replacement materials in the regions 5 and 7 are cured. In this way, when the ground is viewed in plan, the rows A and C are formed as replacement material rows extending in a predetermined direction along the plane direction of the ground by overlapping a part of adjacent regions. Two rows of replacement materials are separated from each other.

<第3段階>
図5は、図2に示す各領域に対しCD工程を行う第3段階を示す図である。本段階では、B列、D列に対してCD工程を行う。なお、以下の説明では理解の容易のため、B列について説明するが、D列に対しても同様の説明ができる。D列については、以下の説明において、A列をC列と読み替え、C列をE列と読み替えればよい。
<Third stage>
FIG. 5 is a diagram showing a third stage in which the CD process is performed on each region shown in FIG. At this stage, the CD process is performed on the B row and the D row. In the following description, the B column is described for easy understanding, but the same description can be applied to the D column. Regarding the D column, in the following description, the A column may be read as the C column, and the C column may be read as the E column.

B列に対してCD工程を行う際も、図3を用いて説明した上記手順と同様に、実線で示す一つ飛ばしとなる領域に対してCD工程を行う。具体的には、図5のB列において、領域1に対してCD工程を行い、次に領域1と所定の間隔をあけた領域3に対してCD工程を行い、領域3と所定の間隔をあけた領域5に対してCD工程を行い、領域5と所定の間隔をあけた領域7に対してCD工程を行う。このとき、CD工程を行うB列のそれぞれの領域は、当該領域と隣り合うA列の領域及びC列の領域の一部と重なっている。これらA列の領域及びC列の領域には既に置換材が打設されているため、B列の領域においてケーシングを回転や揺動をさせながら地盤に圧入すると、ケーシングにはA列、C列の領域から強い力がかかる。例えば、B列の領域1において掘削工程P2を行おうとすると、A列の領域1、領域2、及び、C列の領域1、領域2から強い力がかかる。しかし、上記のように、本例では、それぞれの領域の中心は三角格子の各格子点上に概ね位置するように定められているため、B列の各領域におけるA列、C列の各領域と重なっている部分は、B列の各領域の中心を基準として、概ね対称な位置となる。従って、B列の各領域に対してCD工程の掘削工程P2を行う際に、ケーシングにA列、C列の各領域からかかる強い力は軸対称な方向からかかる。従って、ケーシングが曲がって圧入されることを抑制することができる。   When the CD process is performed on the row B, the CD process is performed on the region to be skipped by one as indicated by the solid line, as in the above-described procedure described with reference to FIG. Specifically, in column B of FIG. 5, the CD process is performed on the region 1 and then the CD process is performed on the region 3 spaced apart from the region 1 by a predetermined distance. The CD process is performed on the opened area 5, and the CD process is performed on the area 7 spaced apart from the area 5 by a predetermined distance. At this time, each region of the B row where the CD process is performed overlaps with a portion of the region of the A row and the region of the C row adjacent to the region. Since the replacement material has already been placed in the region of the A row and the region of the C row, when the casing is pressed into the ground while rotating or swinging in the region of the B row, the A row and the C row are inserted into the casing. A strong force is applied from the area. For example, when the excavation process P2 is performed in the region 1 of the B row, a strong force is applied from the region 1 and the region 2 of the A row and the regions 1 and 2 of the C row. However, as described above, in this example, since the centers of the respective regions are determined so as to be substantially located on the respective lattice points of the triangular lattice, the respective regions of the A column and the C column in the respective regions of the B column. The portions overlapping with each other are substantially symmetrical with respect to the center of each region of the B row. Therefore, when the excavation process P2 of the CD process is performed on each area of the B row, the strong force applied to the casing from each area of the A row and the C row is applied from an axially symmetric direction. Therefore, it is possible to suppress the casing from being bent and press-fitted.

<第4段階>
図6は、図2に示す各領域に対しCD工程を行う第4段階を示す図である。本段階では、図6に示すB列、D列における残りの領域に対してCD工程を行う。具体的には、B列、D列の領域2、領域4、領域6のそれぞれに対してCD工程を行う。以下、第3段階と同様にして、D列の説明は省略する。上記のように互いに隣り合うそれぞれの領域の一部が互いに重なっているため、B列の残り領域に対してCD工程を行おうとすると、ケーシングに対して既に置換材が打設された領域から強い力がかかる。しかし、図6に示すように、B列の残りの領域は、隣り合う領域全てに対してCD工程が行われているため、CD工程を行おうとする領域の四方が置換材が打設された状態である。従って、残りの領域に対してCD工程を行う際、ケーシングには四方から強い力がかかるが、軸対称な方向から力がかかるため、ケーシングが曲がって圧入されることを抑制することができる。
<Fourth stage>
FIG. 6 is a diagram showing a fourth stage in which the CD process is performed on each region shown in FIG. At this stage, the CD process is performed on the remaining regions in the B and D columns shown in FIG. Specifically, the CD process is performed for each of the region 2, the region 4, and the region 6 in the B row and the D row. Hereinafter, as in the third stage, description of the D column is omitted. As described above, since a part of each of the adjacent areas overlaps each other, when the CD process is performed on the remaining area of the B row, it is stronger than the area where the replacement material has already been placed on the casing. It takes power. However, as shown in FIG. 6, since the CD process is performed on all the adjacent areas in the remaining area of the B row, the replacement material is placed in the four areas of the CD process area. State. Therefore, when the CD process is performed on the remaining region, a strong force is applied to the casing from four directions, but since the force is applied from an axially symmetric direction, the casing can be prevented from being bent and press-fitted.

こうしてB列の各領域に対してCD工程を行うことで、互いに隣り合う各列における領域の一部が互いに重なり、互いに隣り合う列が互いに結合した状態となる。本例の場合、上記のようにA列、B列、C列の各領域間に隙間が生じていないため、地盤改良をする領域に対して隙間なく置換材を埋め戻すことができる。こうして、地盤が改良される。   Thus, by performing the CD process on each region of the B row, a part of the region in each of the adjacent rows overlaps each other, and the adjacent rows are connected to each other. In the case of this example, as described above, there is no gap between the areas of the A row, the B row, and the C row, so that the replacement material can be backfilled without gaps in the area to be improved. Thus, the ground is improved.

[小括]
以上、説明したように、本実施形態の地盤改良方法によれば、オールケーシング工法を用いるため、従来では地盤改良する必要が無いとされていたN値が50以上の砂質土やN値が10以上の粘性土等の硬質な地盤であっても、掘削して置換材で埋め戻すことが可能である。このため、本実施形態の地盤改良方法のように、CD工程を繰り返して、互いに結合した複数の置換材から成る列を複数並列して結合させることで、硬質な地盤であっても広範に改良することができる。しかも、地盤の固さによらずケーシング内の地盤を置換することができるため、上記のような硬質な地盤に対して他の工法と比べて効率的である。
[Brief Summary]
As described above, according to the ground improvement method of the present embodiment, since the all casing construction method is used, sandy soil having an N value of 50 or more, which has conventionally been considered unnecessary to improve the ground, or an N value of 10 is used. Even the hard ground such as the viscous soil can be excavated and backfilled with a replacement material. For this reason, as in the ground improvement method of this embodiment, the CD process is repeated, and a plurality of rows made of a plurality of replacement materials joined together are connected in parallel, so that even a hard ground can be improved extensively. can do. Moreover, since the ground in the casing can be replaced regardless of the hardness of the ground, it is more efficient than the other construction methods for the hard ground as described above.

また、本実施形態では、互いに隣り合う列は隙間なく結合するものとし、地盤改良を行う領域全体が置換材で置換されるものとした。従って、本実施形態の地盤改良方法によれば、より高品質な地盤改良を行うことができる。   Moreover, in this embodiment, the row | line | column which mutually adjoins shall be couple | bonded without gap, and the whole area | region which performs ground improvement shall be replaced by a substitute material. Therefore, according to the ground improvement method of this embodiment, a higher quality ground improvement can be performed.

以上、本発明について上記実施形態を例に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although the said embodiment was demonstrated to the example about this invention, this invention is not limited to the said embodiment.

例えば、上記実施形態では、互いに隣り合う列は隙間なく結合するものとしたが、それぞれの列が互いに結合してそれぞれの列間に隙間があっても良く、また、互いに隣り合う列が互いに離間していても良い。互いに隣り合う列が互いに離間する場合、同じ列数であってもより広範な地盤を改良することができる。ただし、地盤改良後により高品質な地盤とするためには互いに隣り合う列が互いに結合する方が好ましい。互いに隣り合う列が互いに結合するが、それぞれの列間に隙間がある場合として、例えば、図2のA列の領域1、領域2とB列の領域1とで囲まれる隙間が形成されるようなことを挙げることができるこのような隙間が形成されても良いが、当該隙間が形成されない方が、上記のようにより高品質な地盤改良を行うことができる観点から好ましい。   For example, in the above-described embodiment, adjacent columns are joined without a gap. However, the rows may be joined to each other so that there is a gap between the rows, and adjacent rows are separated from each other. You may do it. When adjacent rows are separated from each other, a wider range of ground can be improved even with the same number of rows. However, in order to obtain a higher quality ground after the ground improvement, it is preferable that adjacent rows are connected to each other. Adjacent columns are connected to each other, but there is a gap between the columns. For example, a space surrounded by region 1 in region A, region 2 and region 1 in row B is formed as shown in FIG. Such a gap may be formed, but it is preferable that the gap is not formed from the viewpoint of improving the quality of the ground as described above.

また、上記実施形態ではCD工程が行われるそれぞれの領域の中心は三角格子の各格子点上に位置するものとたが、これは必須ではない。例えば、正方格子の各格子点上にCD工程が行われるそれぞれの領域の中心が位置しても良い。ただし、領域間の隙間を効率良く無くすためには、上記のように各領域の中心は三角格子の各格子点上に位置することが好ましい。   In the above embodiment, the center of each region where the CD process is performed is positioned on each lattice point of the triangular lattice, but this is not essential. For example, the center of each region where the CD process is performed may be positioned on each lattice point of a square lattice. However, in order to efficiently eliminate the gap between the regions, it is preferable that the center of each region is located on each lattice point of the triangular lattice as described above.

また、上記実施形態では、互いに隣り合うCD工程が行われる領域の一部が互いに重ねられることで、互いに隣り合う置換材が互いに結合していた。しかし、本発明はこれに限らない。図7は、オールケーシング工程を行う領域の位置に係る変形例を示す図である。図7に示す円形のそれぞれの領域は、図2と同様に、1回のCD工程が行われる領域である。図7に示すように、本変形例では、互いに隣り合うCD工程が行われる領域が互いに接するように、各領域の位置が定められている。この様に各領域の位置が定められることで互いに隣り合う置換材同士を接するよう結合させることができる。この様に、互いに隣り合う置換材同士を接するよう結合させることで、より少ないCD工程の回数で広範な地盤を改良することができる。ただし、CD工程が行われる領域の一部が互いに重ねられることで互いに隣り合う置換材が結合される方が、より強固な地盤改良を行うことができる。なお、本変形例では、正方格子の各格子点上にCD工程が行われるそれぞれの領域の中心が位置するよう各領域の位置が定められている。ただし、本変形例のように互いに隣り合う置換材同士を接するよう結合させる場合、CD工程が行われるそれぞれの領域の中心は三角格子の各格子点上に位置するよう各領域の位置が定められても良い。また、図7に示す各領域に対してCD工程を行う場合、上記実施形態と同じ順番で各領域に対してCD工程を行うことが好ましいが、他の順番でCD工程を行っても良い。   Moreover, in the said embodiment, the replacement material adjacent to each other was couple | bonded with each other because a part of area | region where the CD process adjacent to each other was overlapped mutually. However, the present invention is not limited to this. FIG. 7 is a diagram illustrating a modification example relating to the position of the region where the all casing process is performed. Each circular area shown in FIG. 7 is an area where one CD process is performed as in FIG. As shown in FIG. 7, in the present modification, the positions of the respective regions are determined so that the regions where the adjacent CD processes are performed are in contact with each other. In this way, the positions of the respective regions are determined, so that the replacement materials adjacent to each other can be connected to each other. In this way, by combining adjacent replacement materials so as to contact each other, a wide range of ground can be improved with a smaller number of CD steps. However, a stronger ground improvement can be achieved if the adjacent replacement materials are combined by overlapping a part of the region where the CD process is performed. In this modification, the position of each region is determined so that the center of each region where the CD process is performed is positioned on each lattice point of the square lattice. However, when the adjacent replacement materials are joined so as to contact each other as in this modification, the position of each region is determined so that the center of each region where the CD process is performed is positioned on each lattice point of the triangular lattice. May be. When performing the CD process on each area shown in FIG. 7, it is preferable to perform the CD process on each area in the same order as in the above embodiment, but the CD process may be performed in another order.

また、上記実施形態では、互いに離間するA列、C列が形成されるようCD工程を繰り返し、A列、C列のそれぞれに領域が一部重なるようB列の各領域に対してCD工程を更に繰り返したが、A列、C列が完成する前にB列の領域に対してCD工程を行っても良い。また、CD工程を行う領域の順番は適宜変更することができる。   In the above embodiment, the CD process is repeated so that the A and C rows that are separated from each other are formed, and the CD process is performed for each region of the B row so that the regions partially overlap each of the A and C rows. Further, the CD process may be performed on the region of the B row before the A row and the C row are completed. In addition, the order of the areas where the CD process is performed can be changed as appropriate.

以上説明したように、本発明によれば、硬質な地盤であっても、効率良く地盤改良を行うことができる地盤改良方法が提供され、高度な安全性を求められる超高規格の建造物を設置する土地の地盤改良等の分野で利用することができる。   As described above, according to the present invention, there is provided a ground improvement method capable of improving ground efficiently even on hard ground, and an ultra-high standard building for which high safety is required. It can be used in areas such as ground improvement of the land to be installed.

1〜7・・・オールケーシング工程が行われる領域
P1・・・掘削機据付け/ケーシング建込み工程
P2・・・掘削工程
P3・・・スライム処理工程
P4・・・トレミー管建込み工程
P5・・・置換材打設工程

1-7: Area P1 where all-casing process is carried out ... Excavator installation / casing erection process P2 ... Excavation process P3 ... Slime treatment process P4 ... Tremy pipe erection process P5 ... Replacement material placement process

Claims (8)

オールケーシング工法により、硬化後に原地盤よりも硬質となる流動化された置換材をケーシング内に打設するオールケーシング工程を繰り返し、
互いに隣り合う前記オールケーシング工程が行われる領域における前記置換材を互いに結合させることで所定の方向に延在する前記置換材の列を複数並列させる
ことを特徴とする地盤改良方法。
By the all casing construction method, the all casing process in which the fluidized replacement material that becomes harder than the original ground after curing is placed in the casing is repeated.
A ground improvement method characterized in that a plurality of rows of the replacement materials extending in a predetermined direction are juxtaposed by joining the replacement materials in a region where the all casing steps adjacent to each other are performed.
互いに隣り合う前記列を互いに結合させる
ことを特徴とする請求項1に記載の地盤改良方法。
The ground improvement method according to claim 1, wherein the rows adjacent to each other are coupled to each other.
互いに隣り合う前記オールケーシング工程が行われる領域の一部を互いに重ねることで互いに隣り合う前記置換材を結合させる
ことを特徴とする請求項2に記載の地盤改良方法。
The ground improvement method according to claim 2, wherein the replacement materials adjacent to each other are joined by overlapping a part of a region where the all casing steps adjacent to each other are performed.
互いに隣り合う前記列を隙間なく結合させる
ことを特徴とする請求項3に記載の地盤改良方法。
The ground improvement method according to claim 3, wherein the rows adjacent to each other are joined without gaps.
互いに離間する2つの前記列が形成されるよう前記オールケーシング工程を繰り返し、
当該互いに離間する2つの前記列のそれぞれに前記オールケーシング工程が行われる領域が一部重なるよう前記オールケーシング工程を更に繰り返す
ことを特徴とする請求項3または4に記載の地盤改良方法。
Repeating the all casing process to form two rows spaced apart from each other;
5. The ground improvement method according to claim 3, wherein the all casing step is further repeated so that a region where the all casing step is performed partially overlaps each of the two rows that are separated from each other.
前記オールケーシング工程が行われるそれぞれの領域の中心は三角格子の各格子点上に位置する
ことを特徴とする請求項1から5のいずれか1項に記載の地盤改良方法。
The ground improvement method according to any one of claims 1 to 5, wherein the center of each region where the all casing process is performed is located on each lattice point of a triangular lattice.
前記原地盤が砂質土の場合は当該原地盤のN値が50以上とされ、前記原地盤が粘性土の場合は当該原地盤のN値が10以上とされる
ことを特徴とする請求項1から6のいずれか1項に記載の地盤改良方法。
The N value of the original ground is set to 50 or more when the original ground is sandy soil, and the N value of the original ground is set to 10 or more when the original ground is cohesive soil. The ground improvement method according to any one of 1 to 6.
前記置換材は流動化処理土である
ことを特徴とする請求項1から7のいずれか1項に記載の地盤改良方法。

The ground replacement method according to any one of claims 1 to 7, wherein the replacement material is fluidized soil.

JP2016024067A 2016-02-10 2016-02-10 Ground improvement method Pending JP2017141607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024067A JP2017141607A (en) 2016-02-10 2016-02-10 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024067A JP2017141607A (en) 2016-02-10 2016-02-10 Ground improvement method

Publications (1)

Publication Number Publication Date
JP2017141607A true JP2017141607A (en) 2017-08-17

Family

ID=59628362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024067A Pending JP2017141607A (en) 2016-02-10 2016-02-10 Ground improvement method

Country Status (1)

Country Link
JP (1) JP2017141607A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206119A (en) * 1986-03-05 1987-09-10 Okumura Constr Co Ltd Construction of continuous cut-off wall
JPH0657987U (en) * 1993-01-22 1994-08-12 日本車輌製造株式会社 Casing bit for all casing method
JPH0921131A (en) * 1995-07-05 1997-01-21 Kencho Kobe:Kk Construction of continuous underground hole
JP2002371588A (en) * 2001-06-19 2002-12-26 Fudo Constr Co Ltd Treated soil for structure direct bearing stratum, method of manufacturing the treated soil, and structure direct bearing stratum
JP2002371543A (en) * 2001-06-13 2002-12-26 Sumitomo Constr Co Ltd Method for purifying soil
JP2003342946A (en) * 2002-05-27 2003-12-03 Epokoramu Kiko Kk Soil improvement apparatus and soil improvement construction method
KR20060054711A (en) * 2004-11-16 2006-05-23 민경건설 주식회사 Cast in place concrete pile using vibro magnetic shovel hammer, and the construction method of this
JP2007231641A (en) * 2006-03-01 2007-09-13 Daiyo Kensetsu Kk Collapse prevention construction method for dike
JP2009228419A (en) * 2008-02-27 2009-10-08 Jfe Steel Corp Construction method for geothermal heat exchanger, hollow pipe body used in this method, and casing
JP2011122392A (en) * 2009-12-14 2011-06-23 Sanwa:Kk Method for producing and back-filling liquefied stabilized soil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206119A (en) * 1986-03-05 1987-09-10 Okumura Constr Co Ltd Construction of continuous cut-off wall
JPH0657987U (en) * 1993-01-22 1994-08-12 日本車輌製造株式会社 Casing bit for all casing method
JPH0921131A (en) * 1995-07-05 1997-01-21 Kencho Kobe:Kk Construction of continuous underground hole
JP2002371543A (en) * 2001-06-13 2002-12-26 Sumitomo Constr Co Ltd Method for purifying soil
JP2002371588A (en) * 2001-06-19 2002-12-26 Fudo Constr Co Ltd Treated soil for structure direct bearing stratum, method of manufacturing the treated soil, and structure direct bearing stratum
JP2003342946A (en) * 2002-05-27 2003-12-03 Epokoramu Kiko Kk Soil improvement apparatus and soil improvement construction method
KR20060054711A (en) * 2004-11-16 2006-05-23 민경건설 주식회사 Cast in place concrete pile using vibro magnetic shovel hammer, and the construction method of this
JP2007231641A (en) * 2006-03-01 2007-09-13 Daiyo Kensetsu Kk Collapse prevention construction method for dike
JP2009228419A (en) * 2008-02-27 2009-10-08 Jfe Steel Corp Construction method for geothermal heat exchanger, hollow pipe body used in this method, and casing
JP2011122392A (en) * 2009-12-14 2011-06-23 Sanwa:Kk Method for producing and back-filling liquefied stabilized soil

Similar Documents

Publication Publication Date Title
JP6762800B2 (en) Reinforcement method and structure of existing pile foundation
JP5762511B2 (en) Ground improvement wall construction method
KR20110041391A (en) Pile structure
JP5041838B2 (en) Pile foundation structure construction method
JP4712456B2 (en) Foundation reinforcement method
JPS60500875A (en) Method and device for constructing reinforced concrete walls underground
JP2000352296A (en) Method o constructing passage just under underground structure
CN107740419A (en) Foundation pit supporting method and raked pile
JPH10299005A (en) Footing equipped with sloped pile bundled and method of construction work
JP5075093B2 (en) Construction method and foundation structure of foundation structure in structure
JP2007308951A (en) Method of constructing outer peripheral column by inverted construction method
JP6710999B2 (en) Temporary receiving method for existing structures
JP2017141607A (en) Ground improvement method
JP2013177741A (en) Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique
JP4466418B2 (en) Soil cement wall pile, soil cement structure
CN107366290A (en) Foundation pit supporting method and raked pile
JP2014237976A (en) Construction method of tide embankment, double steel pipe, and superstructure
JP7230313B2 (en) Basement structure and construction method of basement
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
CN207193988U (en) Raked pile
JP6093458B1 (en) Construction method of subsidence structure
JP7093089B1 (en) Liner plate retaining wall root fixing member and liner plate retaining wall root fixing method
JP2009209548A (en) Foundation reinforcing construction method for existing structure
JP7014629B2 (en) Building installation structure and installation method
JP2008280803A (en) Pile foundation reinforcing construction method by additional pile

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512