JP2017135865A - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP2017135865A
JP2017135865A JP2016013990A JP2016013990A JP2017135865A JP 2017135865 A JP2017135865 A JP 2017135865A JP 2016013990 A JP2016013990 A JP 2016013990A JP 2016013990 A JP2016013990 A JP 2016013990A JP 2017135865 A JP2017135865 A JP 2017135865A
Authority
JP
Japan
Prior art keywords
power
power storage
storage unit
monitoring control
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016013990A
Other languages
Japanese (ja)
Other versions
JP6648539B2 (en
Inventor
田代 洋一郎
Yoichiro Tashiro
洋一郎 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2016013990A priority Critical patent/JP6648539B2/en
Publication of JP2017135865A publication Critical patent/JP2017135865A/en
Application granted granted Critical
Publication of JP6648539B2 publication Critical patent/JP6648539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To gain an electric power for monitoring control and protection control without loss of charge/discharge by a power storage part, and to lighten the power consumption for monitoring control of the power storage part and system protection control.SOLUTION: A power supply device 13 supplies a power for driving auxiliary devices 19a and 19b of a system and a power for operating a monitoring controller 23 to the auxiliary devices 19a and 19b and the monitoring controller 23. The monitoring controller 23 monitors and controls the whole system including a power storage part 11. The monitoring controller converts an AC power of a power system 15 into a DC power, and charges the power storage part 11 with the DC power through a power conversion device 21 when a quantity of power used by a load 14 connected between the power storage part 11 with a storage battery 18 and the power system 15 is small, or when having accepted a charge instruction, or according to an operation mode of an operation schedule of the power storage part. Also, the monitoring controller converts a DC power of the power storage part 11 into an AC power, and discharges the AC power to the load 14 when the load is large, or when having accepted a discharge instruction, or according to an operation mode of the operation schedule of the power storage part.SELECTED DRAWING: Figure 1

Description

本発明は、電力系統に接続され運用される電力貯蔵システムに関する。   The present invention relates to a power storage system that is connected to and operated by an electric power system.

電力貯蔵システムは、発電事業者、再生可能エネルギー発電事業者、送配電事業者、需要家などに配置され、発電事業者において時間的に変動する需要のピークに対応して電力を供給するために用いたり、再生可能エネルギー発電事業者において再生可能エネルギー発電の平滑化に用いたり、送配電事業者において電力系統網での電力品質の向上(周波数調整や電圧調整)などに用いたり、需要家において需要家内の電力の負荷平準化に用いたりしている。   Power storage systems are installed in power generation companies, renewable energy power generation companies, power transmission / distribution companies, customers, etc., to supply power in response to the peak demand that fluctuates over time in power generation companies. Used by renewable energy generators for smoothing of renewable energy generation, used by transmission / distribution operators for power quality improvement (frequency adjustment and voltage adjustment) in the power grid, etc. It is used for load leveling of electric power in customers.

リチウムイオン二次電池は、内部抵抗が小さく、大電流での充放電による電圧変動と温度上昇が少ない特性があり、EV(Electric Vehicle)などの移動体のみならず、大型の電力貯蔵システム(Energy Storage System, ESS)にも適用されている。リチウムイオン二次電池は、他の二次電池に比べてエネルギー密度が高く、電解液として有機溶媒を使用しているため高温で発火する危険性がある。このため、リチウムイオン二次電池を適用した電力貯蔵貯システムにおいては、リチウムイオン二次電池の安全性の確保のために監視制御を行っている。このリチウムイオン二次電池の監視制御にかかる消費電力は意外と大きく、電力貯蔵システムでは無視できないレベルになっている。   Lithium-ion rechargeable batteries have low internal resistance and low voltage fluctuation and temperature rise due to charging / discharging at large currents. Not only mobile objects such as EVs (Electric Vehicles) but also large power storage systems (Energy Storage System, ESS). A lithium ion secondary battery has a higher energy density than other secondary batteries, and uses an organic solvent as an electrolytic solution, so there is a risk of ignition at high temperatures. For this reason, in the power storage and storage system to which the lithium ion secondary battery is applied, monitoring control is performed to ensure the safety of the lithium ion secondary battery. The power consumption for the monitoring control of the lithium ion secondary battery is unexpectedly large, and is at a level that cannot be ignored by the power storage system.

ここで、リチウムイオン二次電池の監視制御のための電力消費を軽減するものとして、制御回路により蓄電セルを常時監視してその異常発生を検知すると、不可逆表示手段を動作させて不可逆的かつ視認可能な状態変化を起こし、その後は蓄電セルの電力消費を伴わずに異常発生の事実を表示し続けるようにしたものがある(例えば、特許文献1参照)。   Here, to reduce the power consumption for monitoring and controlling the lithium ion secondary battery, when the storage cell is constantly monitored by the control circuit and the occurrence of the abnormality is detected, the irreversible display means is operated to make it irreversible and visually recognized. There is one that causes a possible state change and then continues to display the fact of occurrence of abnormality without accompanying power consumption of the storage cell (see, for example, Patent Document 1).

また、二次電池の電流が規定値以下のときには監視回路がスリープモードに設定され、マイクロコンピュータが低速作動して内部消費電力を小さくし、バッテリーパックが充電器に接続されているときは第1スリープモードとし、バッテリーパックが充電器に接続されていないときは、測定間隔が最も長い第2のスリープモードとし、内部消費電力を抑制するようにしたものがある(例えば、特許文献2参照)。   The monitoring circuit is set to the sleep mode when the current of the secondary battery is below the specified value, the microcomputer operates at a low speed to reduce the internal power consumption, and the first when the battery pack is connected to the charger. When the sleep mode is set and the battery pack is not connected to the charger, the second sleep mode with the longest measurement interval is set to suppress internal power consumption (for example, see Patent Document 2).

特開2009−199950号公報JP 2009-199950 A 特開平11−283677号公報JP-A-11-283777

しかし、特許文献1のものは、蓄電セルの異常発生の表示には電力を消費しないが、リチウムイオン二次電池の監視制御のための演算は継続して行うものであり、監視制御装置は監視制御のために消費電力を必要とするものである。   However, although the thing of patent document 1 does not consume electric power for the display of abnormality occurrence of an electrical storage cell, the calculation for the monitoring control of a lithium ion secondary battery is performed continuously, and a monitoring control apparatus monitors It requires power consumption for control.

特許文献2のものは、二次電池の電流が規定値以下のときにはマイクロコンピュータが低速作動して内部消費電力を小さくするものであるが、携帯型の電子機器の二次電池であり、監視制御装置には常に二次電池から電力が供給されており、監視制御装置に供給される電力は、二次電池を介した電力であることから、その二次電池への充放電に要するロスが発生している。   Patent Document 2 discloses a secondary battery for a portable electronic device, in which the microcomputer operates at a low speed when the current of the secondary battery is equal to or lower than a specified value to reduce internal power consumption. Since the device is always supplied with power from the secondary battery, and the power supplied to the monitoring and control device is through the secondary battery, there is a loss required to charge and discharge the secondary battery. doing.

一方、電力貯蔵システムでは蓄電部の二次電池が大型であるので、監視制御にかかる監視制御装置の消費電力に加え、二次電池の冷却や加熱、電力変換装置の冷却などのシステムの保護制御のための消費電力も必要となる。例えば、リチウムイオン二次電池の充電時は多くは吸熱特性であり、放電時は発熱特性であるので、二次電池の運転モードにより二次電池の冷却や加熱が必要となる。また、電力変換装置の冷却が必要となり、保護制御装置の制御電源も必要となる。   On the other hand, since the secondary battery of the power storage unit is large in the power storage system, in addition to the power consumption of the monitoring control device for monitoring control, system protection control such as cooling and heating of the secondary battery, cooling of the power conversion device, etc. Power consumption is also required. For example, most of the lithium-ion secondary battery has an endothermic characteristic during charging and a heat-generating characteristic at the time of discharging. Therefore, the secondary battery needs to be cooled or heated depending on the operation mode of the secondary battery. In addition, the power conversion device needs to be cooled, and a control power supply for the protection control device is also required.

本発明の目的は、蓄電部の充放電ロスをなくして監視制御及び保護制御のための電力を得ることができ、しかも蓄電部の監視制御及びシステムの保護制御のための消費電力を軽減できる電力貯蔵システムを提供することである。   An object of the present invention is to obtain power for monitoring control and protection control without charge / discharge loss of the power storage unit, and to reduce power consumption for monitoring control and system protection control of the power storage unit It is to provide a storage system.

請求項1の発明に係る電力貯蔵システムは、複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、電力系統と前記蓄電部との間に接続された負荷と、前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電地を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備えたことを特徴とする。   The power storage system according to the invention of claim 1 includes a power storage unit having a storage battery in which a plurality of lithium ion battery cells are stacked, a load connected between a power system and the power storage unit, It has a determined operation schedule, inputs the power consumption of the load, a charge command or discharge command for the power storage unit from the outside, and based on the operation schedule, the charge command or discharge command, the power consumption of the load A monitoring control device that controls the power storage location and performs monitoring control of the entire system including the power storage unit, and operates according to a command from the monitoring control device, and there is a charge command when the power consumption of the load is small Or when the operation mode of the operation schedule of the power storage unit converts the AC power of the power system into DC power and charges the power storage unit, and uses the load A power conversion device that converts the DC power of the power storage unit into AC power and discharges it to the load according to the operation mode of the operation schedule of the power storage unit when the power is large or when there is a discharge command; And a power supply device that supplies power for driving the machine and power for operating the monitoring control device to the auxiliary device and the monitoring control device.

請求項2の発明に係る電力貯蔵システムは、請求項1の発明において、前記監視制御部は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード、前記蓄電部から前記負荷に電力を放電する放電モードであるときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の充放電動作の開始を待っている待機モード、前記蓄電部の充放電動作が停止している停止モードであるときは、前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする。   The power storage system according to a second aspect of the present invention is the power storage system according to the first aspect, wherein the monitoring control unit is configured such that an operation mode of the power storage unit is a charge mode in which the power storage unit is charged with power from the power system, and the power storage unit Standby mode in which the calculation processing interval for the monitoring control is shortened and / or the number of monitoring control targets is increased and the charging / discharging operation of the power storage unit is awaited when the discharge mode is to discharge power to the load from When the charging / discharging operation of the power storage unit is stopped, the calculation processing interval for the monitoring control is increased and / or the number of monitoring control targets is reduced.

請求項3の発明に係る電力貯蔵システムは、請求項1の発明において、前記監視制御部は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードであり、前記蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の電池電圧又は電池電流の変化又は電池温度の変化が小さいときは前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする。   The power storage system according to a third aspect of the present invention is the power storage system according to the first aspect, wherein the monitoring control unit is configured such that an operation mode of the power storage unit is a charge mode in which the power storage unit is charged with power from the power system or the power storage unit. When the battery voltage of the power storage unit, the battery current, or the battery temperature is large, the calculation processing interval for the monitoring control is shortened and / or monitored. The number of control objects is increased, and when the change in battery voltage or battery current of the power storage unit or the change in battery temperature is small, the calculation processing interval for the monitoring control is increased and / or the number of monitoring control objects is reduced. To do.

請求項4の発明に係る電力貯蔵システムは、請求項1の発明において、前記監視制御部は、前記蓄電部の運転モードが前記蓄電部の充放電動作の開始を待っている待機モード又は前記蓄電部の充放電動作が停止している停止モードとなったときは、一定時間経ってから前記監視制御のための演算間隔を長く及び/又は監視制御対象を少なくし、前記待機モード又は前記停止モード中であるときは、予め定めた運転スケジュールの運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードとなる以前に先行的に前記監視制御のための演算間隔を短く及び/又は監視制御対象を多くすることを特徴とする。   The power storage system according to a fourth aspect of the present invention is the power storage system according to the first aspect, wherein the monitoring control unit is configured to wait for the operation mode of the power storage unit to wait for the start of charge / discharge operation of the power storage unit or the power storage system. When the charging / discharging operation of the unit is stopped, the calculation interval for the monitoring control is increased and / or the number of monitoring control objects is reduced after a certain time, and the standby mode or the stop mode When the operation mode of the predetermined operation schedule is in advance before the power storage unit is charged with power from the power system or the discharge mode is discharged from the power storage unit to the load. The calculation interval for the monitoring control is shortened and / or the number of monitoring control objects is increased.

請求項5の発明に係る電力貯蔵システムは、請求項1乃至4のいずれか1項の発明において、前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御部は、前記運転スケジュールの運転モードが前記蓄電部から前記電力系統に電力を放電する放電モード又は前記蓄電部に前記電力系統から電力を充電する充電モードとなる以前に先行的に前記空調設備を駆動し、前記蓄電部の運転モードが前記放電モード又は前記充電モードとなったときに前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする。   The power storage system according to a fifth aspect of the present invention is the power storage system according to any one of the first to fourth aspects, wherein the auxiliary device is an air conditioning facility that maintains a temperature of the power storage unit and the power conversion device at a predetermined temperature. The monitoring control unit precedes the operation mode of the operation schedule before becoming a discharge mode for discharging power from the power storage unit to the power system or a charge mode for charging power from the power system to the power storage unit. The air conditioner is driven, and the temperature of the power storage unit is controlled so that the temperature of the power storage unit becomes a predetermined temperature when the operation mode of the power storage unit becomes the discharge mode or the charge mode. .

請求項6の発明に係る電力貯蔵システムは、請求項1乃至4のいずれか1項の発明において、前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御部は、前記蓄電部に前記電力系統から電力を放電する放電モードの終了後あるいは前記蓄電部に前記電力系統から電力を充電する充電モードの終了後に前記空調設備を駆動し、前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする   A power storage system according to a sixth aspect of the present invention is the air storage system according to any one of the first to fourth aspects, wherein the auxiliary device is an air conditioning facility that maintains the temperature of the power storage unit and the power converter at a predetermined temperature. The monitoring control unit drives the air conditioning equipment after completion of a discharge mode for discharging power from the power system to the power storage unit or after completion of a charge mode for charging power from the power system to the power storage unit, The temperature of the power storage unit is controlled so that the temperature of the power storage unit becomes a predetermined temperature.

請求項1の発明によれば、蓄電部からではなく独立に設けた電源装置から、システムの補機を駆動するための電力及び監視制御装置を動作させるための電力を補機及び監視制御装置に供給するので、蓄電部の充放電ロスをなくして監視制御及び保護制御のための電力を得ることができる。   According to the first aspect of the present invention, the power for driving the auxiliary equipment of the system and the power for operating the monitoring control apparatus are supplied to the auxiliary equipment and the monitoring control apparatus from the power supply device provided independently from the power storage unit. Since power is supplied, power for monitoring control and protection control can be obtained without charge / discharge loss of the power storage unit.

請求項2の発明によれば、蓄電部に高信頼性の保護監視が要求される充放電モードには監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、そうでない待機停止モードのときは監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくするので、監視制御のための消費電力を軽減できる。   According to the invention of claim 2, in the charge / discharge mode in which the power storage unit requires highly reliable protection monitoring, the calculation processing interval for monitoring control is shortened and / or the number of monitoring control objects is increased, and the standby is not performed In the stop mode, the calculation processing interval for monitoring control is increased and / or the number of monitoring control objects is reduced, so that power consumption for monitoring control can be reduced.

請求項3の発明によれば、蓄電部に高信頼性の保護監視が要求される充放電モード中において、蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは、監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、そうでないときは監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくするので、監視制御のための消費電力を軽減できる。   According to the invention of claim 3, in the charge / discharge mode in which highly reliable protection monitoring is required for the power storage unit, when the battery voltage change or battery current change or battery temperature change of the power storage unit is large, Since the arithmetic processing interval for monitoring control is shortened and / or the number of monitoring control objects is increased, and when not so, the arithmetic processing interval for monitoring control is increased and / or the number of monitoring control objects is decreased. Power consumption can be reduced.

請求項4の発明によれば、待機停止モードとなったときは一定時間経ってから監視制御のための演算間隔を長く及び/又は監視制御対象を少なくするので監視制御の安全性を高めることができ、予め定めた運転スケジュールの運転モードが充放電モードとなる以前に先行的に監視制御のための演算間隔を短く及び/又は監視制御対象を多くするので、事前に高信頼性の保護監視に備えることができる。   According to the fourth aspect of the present invention, when the standby mode is set, the operation interval for monitoring control is increased and / or the number of monitoring control objects is reduced after a certain period of time, so that the safety of monitoring control can be improved. Yes, because the operation interval for the monitoring control is shortened in advance and / or the number of monitoring control objects is increased before the operation mode of the predetermined operation schedule becomes the charge / discharge mode. Can be provided.

請求項5の発明によれば、監視制御部は運転スケジュールの運転モードが充放電モードとなる以前に先行的に補機である空調設備を駆動し、蓄電部の運転モードが充放電モードとなったときに蓄電部の温度が所定温度になるように蓄電部を先行的に温度制御するので、蓄電池の吸熱や発熱による温度変化を容易に吸収できる。   According to the invention of claim 5, the monitoring control unit drives the air conditioning equipment that is an auxiliary machine before the operation mode of the operation schedule becomes the charge / discharge mode, and the operation mode of the power storage unit becomes the charge / discharge mode. Since the temperature of the power storage unit is controlled in advance so that the temperature of the power storage unit becomes a predetermined temperature at the time, the temperature change due to heat absorption or heat generation of the storage battery can be easily absorbed.

請求項6の発明によれば、監視制御部は充放電モードの終了後に空調設備を駆動し、蓄電部の温度が所定温度になるように蓄電部を温度制御するので、監視制御部は蓄電部の充放電中に電源装置から電力を消費することがなく、全体として監視制御のための消費電力を軽減できる。   According to the invention of claim 6, the monitoring control unit drives the air conditioning equipment after the end of the charge / discharge mode and controls the temperature of the power storage unit so that the temperature of the power storage unit becomes a predetermined temperature. As a whole, power consumption for monitoring control can be reduced without consuming power from the power supply device during charging / discharging.

本発明の実施形態に係る電力貯蔵システムの構成図。The block diagram of the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムの運転モードの一例を示すグラフ。The graph which shows an example of the operation mode of the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける蓄電部の蓄電池の電圧充電率特性の一例を示すグラフ。The graph which shows an example of the voltage charge rate characteristic of the storage battery of the electrical storage part in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例1を示すフローチャート。The flowchart which shows Example 1 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例1の他の一例を示すフローチャート。The flowchart which shows another example of Example 1 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例2を示すフローチャート。The flowchart which shows Example 2 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例2の他の一例を示すフローチャート。The flowchart which shows another example of Example 2 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3を示すフローチャート。The flowchart which shows Example 3 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3の他の一例を示すフローチャート。The flowchart which shows another example of Example 3 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3の別の他の一例を示すフローチャート。The flowchart which shows another another example of Example 3 of the arithmetic processing for the supervisory control in the supervisory control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例4の一例を示すフローチャート。The flowchart which shows an example of Example 4 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention. 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例5の一例を示すフローチャート。The flowchart which shows an example of Example 5 of the arithmetic processing for the monitoring control in the monitoring control apparatus in the electric power storage system which concerns on embodiment of this invention.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る電力貯蔵システムの構成図である。図1では、需要家において需要家内の電力の負荷平準化に用いた場合を示している。需要家においては、蓄電部11、蓄電部運転装置12、電源装置13を有し、需要家の負荷14が使用する電力の平準化を図っている。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a power storage system according to an embodiment of the present invention. In FIG. 1, the case where it uses for the load leveling of the electric power in a consumer in the consumer is shown. The consumer has a power storage unit 11, a power storage unit operation device 12, and a power supply device 13, and attempts to level the power used by the customer load 14.

需要家の負荷14は電力系統15と蓄電部11との間に遮断器16を介して接続され、通常時は受電変圧器17を介して電力系統15から電力が供給される。そして、電力系統15から負荷14に供給される電力が予め定めた第1所定電力(放電開始電力)を超えたとき(負荷14の使用電力が大きいとき)は、蓄電部11に蓄電された電力を負荷14に供給する。第1所定電力は負荷の使用電力が需要家の契約電力に近い値であり、その契約電力より少し小さい値である。また、負荷14の使用電力が予め定めた第2所定電力(蓄電開始電力)以下のとき(負荷14の使用電力が小さいとき)は、蓄電部11には電力系統15からの電力が蓄電される。第2所定電力は負荷の省電力が需要家の契約電力より十分に小さい値である。例えば、蓄電部11には深夜に電力系統15からの電力が蓄電される。これにより、需要家の負荷14が使用する電力の平準化を図っている。   The customer's load 14 is connected between the power system 15 and the power storage unit 11 through a circuit breaker 16, and power is supplied from the power system 15 through a power receiving transformer 17 in normal times. When the power supplied from the power system 15 to the load 14 exceeds a predetermined first predetermined power (discharge start power) (when the power used by the load 14 is large), the power stored in the power storage unit 11 To the load 14. The first predetermined power is a value in which the power used by the load is close to the contract power of the consumer, and is slightly smaller than the contract power. Further, when the power used by the load 14 is equal to or lower than a predetermined second predetermined power (power storage start power) (when the power used by the load 14 is small), the power from the power system 15 is stored in the power storage unit 11. . The second predetermined power is a value at which the power saving of the load is sufficiently smaller than the contract power of the consumer. For example, power from the power system 15 is stored in the power storage unit 11 at midnight. Thereby, leveling of the electric power which the load 14 of a consumer uses is aimed at.

蓄電部11は、複数のリチウムイオン電池セルを積層した蓄電池18を有し、補機19aとして蓄電池18の温度を所定温度に保つための空調設備を有している。リチウムイオン電池は放電時は発熱特性であり温度が高くなり、充電時は、多くは吸熱特性であり温度が低くなるので、蓄電池18の温度を所定温度に保持し蓄電池18の劣化の進行を防止する。なお、所定温度は幅を持った温度範囲である。これは空調設備の頻繁な起動停止を防止するためである。以下の説明でも同様である。   The power storage unit 11 has a storage battery 18 in which a plurality of lithium ion battery cells are stacked, and has an air conditioner for maintaining the temperature of the storage battery 18 at a predetermined temperature as an auxiliary machine 19a. Lithium-ion batteries have a heat generation characteristic during discharge and a high temperature, and during charging many endothermic characteristics and a low temperature keep the temperature of the storage battery 18 at a predetermined temperature to prevent the deterioration of the storage battery 18 from progressing. To do. The predetermined temperature is a temperature range having a width. This is to prevent frequent start and stop of the air conditioning equipment. The same applies to the following description.

蓄電部運転装置12は、蓄電部11の充放電を制御するものである。蓄電部運転装置12は、システムを保護する保護装置20、電力を交直変換する電力変換装置21、電力変換装置21を受電変圧器17を介して電力系統15に接続する連系変圧器22、蓄電部11を含むシステム全体の監視制御を行う監視制御装置23、電力変換装置21の温度を所定温度に保つための補機19bとしての空調設備を有している。   The power storage unit operating device 12 controls charging / discharging of the power storage unit 11. The power storage unit operation device 12 includes a protection device 20 that protects the system, a power conversion device 21 that performs AC / DC conversion of power, an interconnection transformer 22 that connects the power conversion device 21 to the power system 15 via the power receiving transformer 17, The monitoring control device 23 that performs monitoring control of the entire system including the unit 11 and an air conditioning facility as an auxiliary machine 19b for keeping the temperature of the power conversion device 21 at a predetermined temperature are provided.

保護装置20は、電圧検出器24で検出された負荷14の電圧及び電流検出器25で検出された負荷14の電流を入力し、受電変圧器17から蓄電池18に至る系統に事故が発生したときは遮断器26を開放する。   The protective device 20 inputs the voltage of the load 14 detected by the voltage detector 24 and the current of the load 14 detected by the current detector 25, and when an accident occurs in the system from the power receiving transformer 17 to the storage battery 18. Opens the circuit breaker 26.

電力変換装置21は、交流電力を直流電力に直流電力を交流電力に変換する交直変換装置であり、蓄電部11に電力を充電する際に電力系統15の交流電力を直流電力に変換して蓄電部11の蓄電池18に充電する。一方、蓄電部11から電力を放電する際に蓄電部11の蓄電池18に蓄電されている直流電力を交流電力に変換して負荷14に放電する。   The power converter 21 is an AC / DC converter that converts AC power into DC power and DC power into AC power. When the power storage unit 11 is charged with power, the AC power of the power system 15 is converted into DC power and stored. The storage battery 18 of the unit 11 is charged. On the other hand, when electric power is discharged from the power storage unit 11, the DC power stored in the storage battery 18 of the power storage unit 11 is converted into AC power and discharged to the load 14.

監視制御装置23は、蓄電部11の予め定められた運転スケジュールを有する。通常時は、運転スケジュールに基づいて蓄電地18を制御するが、負荷14の使用電力に基づいて蓄電地18を制御することもある。例えば、負荷14の使用電力が大きくなったときなったとき、つまり、電力系統15から負荷14に供給される電力が予め定めた第1所定電力を超えたときは、蓄電部11に蓄電された電力を負荷14に供給する。また、負荷14の使用電力が小さくなったとき、つまり、負荷14の使用電力が予め定めた第2所定電力以下のとき、蓄電部11には電力系統15からの電力を蓄電する。   The monitoring control device 23 has a predetermined operation schedule of the power storage unit 11. In normal times, the battery 18 is controlled based on the operation schedule, but the battery 18 may be controlled based on the power used by the load 14. For example, when the power used by the load 14 becomes large, that is, when the power supplied from the power system 15 to the load 14 exceeds a predetermined first predetermined power, the power is stored in the power storage unit 11. Electric power is supplied to the load 14. Further, when the power used by the load 14 becomes small, that is, when the power used by the load 14 is equal to or lower than a predetermined second predetermined power, the power from the power system 15 is stored in the power storage unit 11.

また、外部からの蓄電部11に対する充電指令や放電指令に基づいて蓄電地18を制御することもある。外部からの充電指令や放電指令は、電力貯蔵システムの運転員から手動で入力されることもあれば、電力の負荷平準化や電力品質の向上(周波数調整や電圧調整)などの別の監視制御装置から入力されることもある。   Further, the power storage location 18 may be controlled based on a charge command or a discharge command for the power storage unit 11 from the outside. External charge commands and discharge commands may be manually input by the operator of the power storage system, or other supervisory controls such as power load leveling and power quality improvement (frequency adjustment and voltage adjustment) It may be input from the device.

また、監視制御装置23は、遮断器14、26の開閉状態、蓄電部11への電力の入出力値、蓄電部11の蓄電池18の状態量である電圧、電流、温度を入力し、蓄電部11を含むシステム全体の監視制御を行う。例えば、監視制御装置23は、予め定めた運転スケジュールの運転モードが充電モードになったときに、遮断器26が閉じていることを確認し、電力変換装置21に指令を出して充電を開始し、蓄電部11の蓄電池18が満充電(満充電の近傍の充電率上限閾値)になったとき、または、運転スケジュールで充電モードが終了となったときに電力変換装置21に指令を出して充電を終了する。一方、予め定めた運転スケジュールの運転モードが放電モードになったときは、遮断器16が閉じていることを確認し、電力変換装置21に指令を出して充電を開始し、蓄電部11の蓄電池18が完全放電(完全放電の近傍の充電率下限閾値)になったとき、または、運転スケジュールで放電モードが終了となったときに電力変換装置21に指令を出して放電を終了する。   The monitoring control device 23 inputs the open / close state of the circuit breakers 14, 26, the input / output value of power to the power storage unit 11, the voltage, current, and temperature that are the state quantities of the storage battery 18 of the power storage unit 11. 11 performs the monitoring control of the entire system including 11. For example, the monitoring control device 23 confirms that the circuit breaker 26 is closed when the operation mode of the predetermined operation schedule becomes the charging mode, and issues a command to the power conversion device 21 to start charging. When the storage battery 18 of the power storage unit 11 is fully charged (charging rate upper limit threshold in the vicinity of full charging) or when the charging mode is ended in the operation schedule, the power conversion device 21 is instructed to be charged. Exit. On the other hand, when the operation mode of the predetermined operation schedule becomes the discharge mode, it is confirmed that the circuit breaker 16 is closed, a command is issued to the power converter 21 to start charging, and the storage battery of the power storage unit 11 When 18 is completely discharged (charge rate lower limit threshold in the vicinity of complete discharge) or when the discharge mode is ended in the operation schedule, a command is issued to the power converter 21 to complete the discharge.

さらには、監視制御装置23は、負荷14の使用電力が零のときや外部から蓄電部11への充電指令があるときには、電力変換装置21に指令を出して電力系統15の交流電力を直流電力に変換し蓄電部11に充電する。一方、負荷14の使用電力の大きさが大きくなったとき、つまり、負荷14の使用電力が蓄電部11の放電開始電力を超えたときや、外部から蓄電部11への放電指令があるときには、電力変換装置21に指令を出して蓄電部11の直流電力を交流電力に変換して負荷14に放電する。   Furthermore, when the power used by the load 14 is zero or when there is a charge command to the power storage unit 11 from the outside, the monitoring control device 23 issues a command to the power conversion device 21 to convert the AC power of the power system 15 to DC power. And the power storage unit 11 is charged. On the other hand, when the amount of power used by the load 14 increases, that is, when the power used by the load 14 exceeds the discharge start power of the power storage unit 11 or when there is a discharge command to the power storage unit 11 from the outside, A command is issued to the power converter 21 to convert the DC power of the power storage unit 11 into AC power and discharge the load 14.

さらに、監視制御装置23は、空調設備である補機19aを駆動し蓄電部11の蓄電池18が所定温度を保持するように制御するとともに、空調設備である補機19bを駆動し蓄電部運転装置12の電力変換装置21が所定温度を保持するように制御する。   Furthermore, the monitoring control device 23 drives the auxiliary machine 19a that is an air conditioning facility to control the storage battery 18 of the power storage unit 11 to maintain a predetermined temperature, and also drives the auxiliary machine 19b that is an air conditioning facility to drive the power storage unit operating device. The twelve power converters 21 are controlled to maintain a predetermined temperature.

電源装置13は無停電電源装置(USP)であり、電力系統15からの電力が断になった場合も、一定時間、接続されている機器に対して停電することなく電力を供給し続けるものであり、電源装置13からは、システムの補機19a、19bを駆動するための電力、保護装置20や監視制御装置23を動作させるための電力が供給される。すなわち、本発明の実施形態では、補機19a、19b、保護装置20、及び監視制御装置23への電力は、蓄電部11の蓄電池18からではなく、電源装置13から供給されるので、蓄電部11の充放電ロスをなくして監視制御及び保護制御のための電力を安定的に得ることができる。   The power supply device 13 is an uninterruptible power supply (USP), and even when power from the power system 15 is cut off, the power supply device 13 continues to supply power to the connected devices without power failure for a certain period of time. Yes, the power supply 13 supplies power for driving the auxiliary machines 19a and 19b of the system and power for operating the protection device 20 and the monitoring control device 23. That is, in the embodiment of the present invention, the power to the auxiliary machines 19a and 19b, the protection device 20, and the monitoring control device 23 is supplied from the power supply device 13 instead of the storage battery 18 of the power storage unit 11. The power for monitoring control and protection control can be stably obtained by eliminating 11 charge / discharge losses.

図2は、本発明の実施形態に係る電力貯蔵システムの運転モードの一例を示すグラフである。電力貯蔵システムの運転モードには、充電モード、放電モード、待機モード、停止モードがあり、電力貯蔵システムの蓄電部11の蓄電池18は、充電モードのときに電力を充電し、放電モードのときに電力を放電する。そして、待機モードは即座に充放電モードに移行可能な状態で待機している状態であり、停止モードは動作を停止している状態である。   FIG. 2 is a graph showing an example of an operation mode of the power storage system according to the embodiment of the present invention. The operation mode of the power storage system includes a charge mode, a discharge mode, a standby mode, and a stop mode. The storage battery 18 of the power storage unit 11 of the power storage system is charged with power when in the charge mode, and when in the discharge mode. Discharge power. The standby mode is a state in which the apparatus is waiting in a state where it can immediately shift to the charge / discharge mode, and the stop mode is a state in which the operation is stopped.

図2において、0時から7時まで充電モード、7時から10時まで停止モード、10時から18時まで放電モード、18時から20時まで待機モード、20時から24時まで充電モードである場合を示している。   In FIG. 2, the charging mode is from 0 o'clock to 7 o'clock, the stop mode is from 7 o'clock to 10 o'clock, the discharge mode is from 10 o'clock to 18 o'clock, the standby mode is from 18 o'clock to 20 o'clock, and the charging mode is from 20 o'clock to 24 o'clock Shows the case.

充電モード及び放電モードでは、蓄電部11の蓄電池18は動作状態にあるので監視制御が必要である。充電モードでは、蓄電部11の蓄電池18は吸熱特性であり温度が低くなるので、必要に応じて補機19aである空調設備を駆動して蓄電部11の蓄電池18を所定温度に保持する。リチウムイオン電池の場合は、充電の際に、電圧を高い精度で制御しないと劣化しやすく、過充電となると発熱したり発火したりするので、高信頼性の保護監視が要求される。そこで、監視制御装置23は、蓄電部11の蓄電池18の電圧、電流、温度を測定し、蓄電部11の蓄電池18を監視制御する。   In the charge mode and the discharge mode, the storage battery 18 of the power storage unit 11 is in an operating state, and thus monitoring control is necessary. In the charging mode, the storage battery 18 of the power storage unit 11 has an endothermic characteristic and the temperature is lowered. Therefore, the air conditioning equipment as the auxiliary machine 19a is driven as necessary to hold the storage battery 18 of the power storage unit 11 at a predetermined temperature. In the case of a lithium ion battery, when the voltage is not controlled with high accuracy, the battery is likely to deteriorate, and when it is overcharged, it generates heat or ignites, so that highly reliable protection monitoring is required. Therefore, the monitoring control device 23 measures the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 and monitors and controls the storage battery 18 of the power storage unit 11.

放電モードでは、蓄電部11の蓄電池18は発熱特性であり温度が高くなるので、必要に応じて補機19aである空調設備を駆動して蓄電部11の蓄電池18を所定温度に保持する。放電モードにおいても、過放電となると異常発熱に繋がり高信頼性の保護監視が要求されるので、監視制御装置23は、蓄電部11の蓄電池18の電圧、電流、温度を測定し、充電モードの場合と同様に電圧を高い精度で蓄電部11の蓄電池18を監視制御する。   In the discharge mode, the storage battery 18 of the power storage unit 11 has a heat generation characteristic and the temperature becomes high. Therefore, the air conditioning equipment as the auxiliary machine 19a is driven as necessary to hold the storage battery 18 of the power storage unit 11 at a predetermined temperature. Even in the discharge mode, overdischarge leads to abnormal heat generation and high-reliability protection monitoring is required. Therefore, the monitoring control device 23 measures the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 to check the charge mode. Similarly to the case, the voltage of the storage battery 18 of the power storage unit 11 is monitored and controlled with high accuracy.

一方、待機モード及び停止モードでは、蓄電部11の蓄電池18は不動作状態であるので、充電モードや放電モードのときのように、必ずしも電圧を高い精度で監視制御する必要はないが、蓄電部11の蓄電池18の劣化による異常発熱は監視しなければならない。   On the other hand, in the standby mode and the stop mode, since the storage battery 18 of the power storage unit 11 is in an inoperative state, it is not always necessary to monitor and control the voltage with high accuracy as in the charge mode or the discharge mode. Abnormal heat generation due to deterioration of the 11 storage batteries 18 must be monitored.

図3は、本発明の実施形態に係る電力貯蔵システムにおける蓄電部の蓄電池の電圧充電率特性の一例を示すグラフである。図3では蓄電部11の蓄電池18が一定温度である場合の電圧充電率特性の特性曲線Cを示している。図3に示すように、満充電のときは充電率は100%であり、完全放電のときは充電率は0%である。充電率100%(満充電)から充電率A1%までは、特性曲線Cの変化率が大きく、蓄電部11の蓄電池18の充電率に対する電池電圧の変化が大きい。以下、その領域を変化率大領域T1という。これに対して、充電率A1%から充電率A2%までは、特性曲線Cの変化率が小さく、充電率に対する電池電圧の変化が小さい。以下、その領域を変化率小領域T2という。   FIG. 3 is a graph showing an example of voltage charge rate characteristics of the storage battery of the power storage unit in the power storage system according to the embodiment of the present invention. FIG. 3 shows a characteristic curve C of voltage charge rate characteristics when the storage battery 18 of the power storage unit 11 is at a constant temperature. As shown in FIG. 3, the charging rate is 100% when fully charged, and the charging rate is 0% when fully discharged. From the charging rate 100% (full charge) to the charging rate A1%, the change rate of the characteristic curve C is large, and the change of the battery voltage with respect to the charging rate of the storage battery 18 of the power storage unit 11 is large. Hereinafter, this region is referred to as a large change rate region T1. On the other hand, from the charging rate A1% to the charging rate A2%, the change rate of the characteristic curve C is small, and the change of the battery voltage with respect to the charging rate is small. Hereinafter, this region is referred to as a small change rate region T2.

変化率大領域T1では蓄電部11の蓄電池18の発熱量が大きく、変化率小領域T2では発熱量は少ない。また、前述したように過充電となると発熱したり発火したりするので、満充電の手前の充電率上限閾値AUで充電を停止し、過放電となると異常発熱に繋がるので、完全放電の手前の充電率下限閾値ALで放電を停止するのが望ましい。   The heat generation amount of the storage battery 18 of the power storage unit 11 is large in the large change rate region T1, and the heat generation amount is small in the small change rate region T2. In addition, as described above, if overcharge occurs, it generates heat or ignites, so charging is stopped at the charge rate upper limit threshold AU before full charge, and overdischarge leads to abnormal heat generation. It is desirable to stop discharging at the charging rate lower limit threshold AL.

以上の説明では、蓄電部の充電率に対する電池電圧の変化で変化率大領域T1、変化率小領域T2を判定するようにしたが、電池電流の変化で変化率大領域T1、変化率小領域T2を判定するようにしてもよいし、電池温度の変化で変化率大領域T1、変化率小領域T2を判定するようにしてもよい。   In the above description, the change rate large region T1 and the change rate small region T2 are determined by the change in the battery voltage with respect to the charging rate of the power storage unit, but the change rate large region T1 and the change rate small region are determined by the change in the battery current. T2 may be determined, or the change rate large region T1 and the change rate small region T2 may be determined by a change in battery temperature.

図4は、監視制御装置23での監視制御のための演算処理の実施例1を示すフローチャートである。前述したように、リチウムイオン電池の場合は、充電モード及び放電モードの際に、高信頼性の保護監視が要求され電圧を高い精度で制御しなければならないことから、図4(a)に示すように、監視制御装置23は、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、監視制御のための演算処理間隔を短くする(S2)。蓄電部11の蓄電池18の監視制御に当たっては、監視制御対象の状態量として、蓄電部11の蓄電池18の電圧、電流、温度を短い周期で読み取り、蓄電部11の蓄電池18の充電率や温度を監視し、また、過充電や過放電にならないように充電率が充電率上限閾値AUになると充電を停止し、充電率が充電率下限閾値ALなると放電を停止する。これにより、蓄電部11の蓄電池18の安全性を確保する。   FIG. 4 is a flowchart illustrating the first embodiment of the arithmetic processing for the supervisory control in the supervisory control device 23. As described above, in the case of a lithium ion battery, a highly reliable protection monitoring is required in the charge mode and the discharge mode, and the voltage must be controlled with high accuracy. As described above, the monitoring control device 23 determines whether or not the storage battery 18 of the power storage unit 11 of the power storage system is in the charge / discharge mode (S1). The interval is shortened (S2). In monitoring control of the storage battery 18 of the power storage unit 11, the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 are read in a short cycle as the state quantity to be monitored and controlled, and the charge rate and temperature of the storage battery 18 of the power storage unit 11 are read. Monitoring is performed, and charging is stopped when the charging rate reaches the charging rate upper limit threshold AU so as not to cause overcharging or overdischarging, and discharging is stopped when the charging rate reaches the charging rate lower limit threshold AL. Thereby, the safety | security of the storage battery 18 of the electrical storage part 11 is ensured.

一方、ステップS1の判定で充放電モードでないときは、待機モードまたは停止モード(待機停止モード)であるので、監視制御のための演算処理間隔を長くする(S3)。待機停止モードであるときは蓄電部11の蓄電池18は不動作状態であり、蓄電部11の蓄電池18の電圧を高い精度で制御したり、高信頼性の保護監視は要求されないからである。これにより、監視制御のために監視制御装置23が消費する電力を軽減できる。   On the other hand, when the charging / discharging mode is not determined in the determination of step S1, the calculation processing interval for supervisory control is lengthened because it is the standby mode or the stop mode (standby stop mode) (S3). This is because the storage battery 18 of the power storage unit 11 is in an inoperative state when in the standby stop mode, and the voltage of the storage battery 18 of the power storage unit 11 is not controlled with high accuracy, and highly reliable protection monitoring is not required. Thereby, the power consumed by the monitoring control device 23 for monitoring control can be reduced.

また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図4(b)に示すように、充放電モードのときに監視制御対象を多くし、待機停止モードのときに監視制御対象を少なくするようにすることも可能である。すなわち、ステップS1の判定で充放電モードであるときは監視制御対象を多くし(S4)、待機停止モードであるときは重要な監視制御対象を残して監視制御対象を少なくする(S5)。例えば、監視制御対象が電圧、電流、温度である場合、充放電モードであるときは、これら電圧、電流、温度すべてを監視制御対象とし、待機停止モードであるときは、例えば、温度のみを監視制御対象とすることが考えられる。これは、待機停止モードであっても蓄電池18の温度は重要な監視制御対象であるからである。   Further, instead of shortening the calculation processing interval for monitoring control in the charge / discharge mode and increasing the calculation processing interval for monitoring control in the standby stop mode, FIG. As shown, it is possible to increase the number of monitoring control targets in the charge / discharge mode and decrease the number of monitoring control targets in the standby stop mode. That is, when the charging / discharging mode is determined in step S1, the number of monitoring control targets is increased (S4), and when the standby stop mode is set, the number of monitoring control targets is decreased while leaving the important monitoring control targets (S5). For example, when the monitoring control target is voltage, current, and temperature, when in charge / discharge mode, all of these voltage, current, and temperature are monitored and controlled, and when in standby stop mode, for example, only temperature is monitored. It can be considered as a control target. This is because the temperature of the storage battery 18 is an important monitoring control target even in the standby stop mode.

また、図5に示すように、ステップS1の判定で充放電モードであるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。   Further, as shown in FIG. 5, when the charging / discharging mode is determined in step S1, the calculation processing interval for monitoring control is shortened (S2), the number of monitoring control targets is increased (S4), and the standby stop mode is set. In such a case, the calculation processing interval for monitoring control may be increased (S3) and the number of monitoring control objects may be decreased (S5).

図6は、監視制御装置23での監視制御のための演算処理の実施例2を示すフローチャートである。この実施例2は、図4に示した実施例1に対し、ステップS1の判定で充放電モードであるときに、蓄電池18の電圧、電流、温度を取得するステップS6、及び蓄電池18の電圧、電流、温度が変化率大領域であるか否を判定するステップS7を追加して設けたものである。   FIG. 6 is a flowchart illustrating the second embodiment of the arithmetic processing for the supervisory control in the supervisory control device 23. The second embodiment is different from the first embodiment shown in FIG. 4 in the step S1 in which the voltage, current, and temperature of the storage battery 18 are acquired when the charge / discharge mode is determined in step S1, and the voltage of the storage battery 18; Step S7 for determining whether the current and temperature are in the large change rate region is additionally provided.

図6(a)において、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、蓄電池18の電圧、電流、温度を取得し(S6)、蓄電池18の電圧、電流、温度は変化率大領域であるか否を判定する(S7)。ステップS7の判定で蓄電部11の蓄電池18の電圧、電流、温度が変化率大領域であるときは、監視制御のための演算処理間隔を短くする(S2)。すなわち、蓄電部11の蓄電池18の監視制御に当たっては、監視制御対象の状態量として、蓄電部11の蓄電池18の電圧、電流、温度を短い周期で読み取り、蓄電部11の蓄電池18を監視制御する。これは、変化率大領域では蓄電部11の蓄電池18の発熱量が大きく、蓄電部11の蓄電池18の電圧、電流、温度の高信頼性の保護監視が要求されるからである。また、過充電や過放電にならないように充電率が充電率上限閾値AUになると充電を停止し、充電率が充電率下限閾値ALなると放電を停止する。   6A, it is determined whether or not the storage battery 18 of the power storage unit 11 of the power storage system is in the charge / discharge mode (S1). When the storage battery 18 is in the charge / discharge mode, the voltage, current, and temperature of the storage battery 18 are determined. It is acquired (S6), and it is determined whether the voltage, current, and temperature of the storage battery 18 are in the large change rate region (S7). When the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 are in the large change rate region in the determination in step S7, the calculation processing interval for monitoring control is shortened (S2). That is, in the monitoring control of the storage battery 18 of the power storage unit 11, the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 are read in a short cycle as the state quantity to be monitored and controlled, and the storage battery 18 of the power storage unit 11 is monitored and controlled. . This is because the heat generation amount of the storage battery 18 of the power storage unit 11 is large in the large change rate region, and highly reliable protection monitoring of the voltage, current, and temperature of the storage battery 18 of the power storage unit 11 is required. Further, the charging is stopped when the charging rate reaches the charging rate upper limit threshold AU so as not to overcharge or over discharge, and the discharging is stopped when the charging rate becomes the charging rate lower limit threshold AL.

一方、ステップS1の判定で充放電モードでないとき、及びステップS7の判定で変化率大領域でないときは、監視制御のための演算処理間隔を長くする(S3)。充放電モードでないときは待機停止モードであり、また、変化率大領域でないときは変化率小領域であり蓄電部11の蓄電池18の発熱量は少なく、必ずしも、蓄電部11の蓄電池18の電圧、電流、温度の高信頼性の保護監視を必要としないからである。これにより、監視制御のために監視制御装置23が消費する電力を軽減できる。   On the other hand, when the charge / discharge mode is not determined in step S1 and when the change rate is not large in the determination in step S7, the calculation processing interval for monitoring control is lengthened (S3). When it is not the charge / discharge mode, it is the standby stop mode, and when it is not the large change rate region, it is the small change rate region, and the amount of heat generated by the storage battery 18 of the power storage unit 11 is small. This is because highly reliable protection monitoring of current and temperature is not required. Thereby, the power consumed by the monitoring control device 23 for monitoring control can be reduced.

また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図6(b)に示すように、充放電モードのときに監視制御対象を多くし、(S4)、待機停止モードのときに監視制御対象を少なくする(S5)ようにすることも可能である。これによっても、監視制御装置23が消費する電力を軽減できる。   Further, instead of shortening the calculation processing interval for monitoring control in the charge / discharge mode and increasing the calculation processing interval for monitoring control in the standby stop mode, FIG. As shown, it is possible to increase the number of monitoring control targets in the charge / discharge mode (S4) and decrease the number of monitoring control targets in the standby stop mode (S5). Also by this, the power consumed by the monitoring control device 23 can be reduced.

また、図7に示すように、ステップS7の判定で変化率大領域であるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。   Also, as shown in FIG. 7, when the change rate is large in the determination in step S7, the calculation processing interval for monitoring control is shortened (S2), the number of monitoring control targets is increased (S4), and standby stop is performed. When in the mode, the calculation processing interval for monitoring control may be increased (S3) and the number of monitoring control targets may be decreased (S5).

次に、図8は監視制御装置23での監視制御のための演算処理の実施例3を示すフローチャートであり、図4(a)に示した実施例1に対し、運転モードが待機停止モードとなったときは一定時間経ってから監視制御のための演算間隔を長くし、また、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に先行的に監視制御のための演算間隔を短くするようにしたものである。   Next, FIG. 8 is a flowchart showing a third embodiment of arithmetic processing for supervisory control in the supervisory control device 23. Compared with the first embodiment shown in FIG. When a certain period of time elapses, the calculation interval for monitoring control is lengthened, and the calculation interval for monitoring control is set in advance before the operation mode of the storage battery 18 of the power storage unit 11 becomes the charge / discharge mode. It was designed to be shorter.

通常、電力貯蔵システムは、前述したように、予め定められた運転スケジュールで運用される。いま、図2に示した運転モードの運転スケジュールが予め定められていたとすると、蓄電部11の蓄電池18の運転モードが予め分かっているので、例えば、監視制御装置23は運転モードが充放電モードになる以前に先行的に監視制御のための演算間隔を短くすることが可能である。   Normally, the power storage system is operated according to a predetermined operation schedule as described above. Now, assuming that the operation schedule of the operation mode shown in FIG. 2 is determined in advance, the operation mode of the storage battery 18 of the power storage unit 11 is known in advance. For example, the monitoring control device 23 sets the operation mode to the charge / discharge mode. It is possible to shorten the calculation interval for supervisory control in advance before becoming.

図8において、図4(a)に示した実施例1に対し、ステップS8、ステップS9、ステップS10が追加されている。まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、監視制御のための演算処理間隔を短くする(S2)。ステップS1の判定で充放電モードでないときは、ステップS3で監視制御のための演算処理間隔を長くする前に、待機停止モードになってから一定時間経過したか否かを判定する(S8)。そして、一定時間経過しているときは監視制御のための演算処理間隔を長くする(S3)。これは、充放電モードから待機停止モードへの運転モードの切り替えの際の監視制御の安全性を確保するためである。待機停止モードになってから一定時間は、安全性のため、監視制御のための演算処理間隔を短くして監視制御を高い精度で行えるようにしておくためである。   In FIG. 8, Step S8, Step S9, and Step S10 are added to Example 1 shown in FIG. First, it is determined whether or not the storage battery 18 of the power storage unit 11 of the power storage system is in the charge / discharge mode (S1). If the storage battery 18 is in the charge / discharge mode, the calculation processing interval for monitoring control is shortened (S2). . If the charge / discharge mode is not determined in step S1, it is determined in step S3 whether or not a predetermined time has elapsed since the standby stop mode was set before increasing the calculation processing interval for monitoring control (S8). When a predetermined time has elapsed, the calculation processing interval for monitoring control is lengthened (S3). This is to ensure the safety of the monitoring control when the operation mode is switched from the charge / discharge mode to the standby stop mode. This is because, for the sake of safety, the calculation processing interval for monitoring control is shortened so that monitoring control can be performed with high accuracy for a certain period of time after entering the standby stop mode.

次に、蓄電部11の運転スケジュールから充放電モードになる時点を取得する(S9)。そして、充放電モードになる時点の所定時間前になったか否かを判定し(S10)、充放電モードになる時点の所定時間前になったときは、待機停止モードであったとしても、監視制御のための演算処理間隔を短くする(S2)。これにより、充放電モードになる前に、事前に高い制度の監視制御に備えることができる。   Next, the time when it becomes charge / discharge mode is acquired from the operation schedule of the power storage unit 11 (S9). Then, it is determined whether or not the predetermined time before the charging / discharging mode is reached (S10). When the predetermined time before the charging / discharging mode is reached, the monitoring is performed even if the standby stop mode is set. The calculation processing interval for control is shortened (S2). Thereby, before it becomes charge / discharge mode, it can prepare for the supervisory control of a high system | strain in advance.

また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図9に示すように、充放電モードのときに監視制御対象を多くし、待機停止モードのときに監視制御対象を少なくするようにすることも可能である。すなわち、ステップS1の判定で充放電モードであるときは監視制御対象を多くし(S4)、待機停止モードであるときは重要な監視制御対象を残して監視制御対象を少なくする(S5)。例えば、監視制御対象が電圧、電流、温度である場合、充放電モードであるときは、これら電圧、電流、温度すべてを監視制御対象とし、待機停止モードであるときは、例えば、温度のみを監視制御対象とすることが考えられる。これは、待機停止モードであっても蓄電池18の温度は重要な監視制御対象であるからである。   Further, instead of shortening the calculation processing interval for monitoring control in the charge / discharge mode and increasing the calculation processing interval for monitoring control in the standby stop mode, as shown in FIG. It is also possible to increase the number of monitoring control targets in the charge / discharge mode and to decrease the number of monitoring control targets in the standby stop mode. That is, when the charging / discharging mode is determined in step S1, the number of monitoring control targets is increased (S4), and when the standby stop mode is set, the number of monitoring control targets is decreased while leaving the important monitoring control targets (S5). For example, when the monitoring control target is voltage, current, and temperature, when in charge / discharge mode, all of these voltage, current, and temperature are monitored and controlled, and when in standby stop mode, for example, only temperature is monitored. It can be considered as a control target. This is because the temperature of the storage battery 18 is an important monitoring control target even in the standby stop mode.

また、図10に示すように、ステップS1の判定で充放電モードであるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。   As shown in FIG. 10, when the charging / discharging mode is determined in step S1, the calculation processing interval for monitoring control is shortened (S2), the number of monitoring control targets is increased (S4), and the standby stop mode is set. In such a case, the calculation processing interval for monitoring control may be increased (S3) and the number of monitoring control objects may be decreased (S5).

図11は、監視制御装置23での監視制御のための演算処理の実施例4を示すフローチャートであり、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に、予め蓄電部11の蓄電池18を温度制御しておくための監視制御装置23での演算処理を示すフローチャートである。   FIG. 11 is a flowchart illustrating the fourth embodiment of the arithmetic processing for monitoring control in the monitoring control device 23. Before the operation mode of the storage battery 18 of the power storage unit 11 becomes the charge / discharge mode, the power storage unit 11 It is a flowchart which shows the arithmetic processing in the monitoring control apparatus 23 for controlling the temperature of the storage battery 18.

図11において、まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは処理を終了する。これは、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に、予め蓄電部11の蓄電池18を温度制御しておくものであるから、充放電モードであるときは本処理を必要としないからである。   In FIG. 11, first, it is determined whether or not the storage battery 18 of the power storage unit 11 of the power storage system is in the charge / discharge mode (S1). This is because the storage battery 18 of the power storage unit 11 is temperature-controlled in advance before the operation mode of the storage battery 18 of the power storage unit 11 is changed to the charge / discharge mode. It is because it does not.

ステップS1の判定で充放電モードでないときは、蓄電部11の運転スケジュールから放電モードになる時点及び蓄電池18の温度を取得する(S11)。そして、蓄電部11の温度は所定温度を逸脱しているか否かを判定し(S12)、高効率に運転できる所定温度を逸脱しているときは、充放電モード時の蓄電部11の温度が所定温度になるように先行的に蓄電部11を温度制御する(S13)。   When it is not charging / discharging mode by determination of step S1, the time of becoming discharge mode and the temperature of the storage battery 18 are acquired from the driving schedule of the electrical storage part 11 (S11). Then, it is determined whether or not the temperature of the power storage unit 11 has deviated from the predetermined temperature (S12). When the temperature deviates from the predetermined temperature at which high efficiency operation can be performed, the temperature of the power storage unit 11 in the charge / discharge mode is The temperature of the power storage unit 11 is controlled in advance so as to reach a predetermined temperature (S13).

例えば、運転モードが放電モードになる以前においては、放電時には発熱特性であるので、蓄電池18の温度が高いときは所定温度まで冷却する。その際には、蓄電池18の温度や周囲温度を考慮して放電開始時に蓄電部11の温度が所定温度になるように冷却開始時点を決定する。逆に、運転モードが充電モードになる以前においては、充電時には吸熱特性であるので、蓄電池18の温度が低いときは所定温度まで加熱する。その際には、蓄電池18の温度や周囲温度を考慮して充電開始時に蓄電部11の温度が所定温度になるように加熱開始時点を決定する。リチウムイオン二次電池の充電時は多くは前述したように吸熱特性であるが、充電後期には発熱特性を示すことがあるので、それも考慮に入れて高効率に運転できる範囲に収まるような所定温度になるように加熱開始時点を決定する。   For example, before the operation mode is changed to the discharge mode, it has heat generation characteristics at the time of discharge, so when the temperature of the storage battery 18 is high, it is cooled to a predetermined temperature. At that time, in consideration of the temperature of the storage battery 18 and the ambient temperature, the cooling start time is determined so that the temperature of the power storage unit 11 becomes a predetermined temperature at the start of discharge. On the other hand, before the operation mode becomes the charging mode, the heat absorption characteristic is obtained at the time of charging. Therefore, when the temperature of the storage battery 18 is low, the battery 18 is heated to a predetermined temperature. At that time, in consideration of the temperature of the storage battery 18 and the ambient temperature, the heating start time is determined so that the temperature of the power storage unit 11 becomes a predetermined temperature at the start of charging. Many of the lithium-ion secondary batteries have endothermic characteristics as described above, but they may exhibit exothermic characteristics in the later stages of charging. The heating start time is determined so as to reach a predetermined temperature.

図12は、監視制御装置23での監視制御のための演算処理の実施例5を示すフローチャートであり、充放電モードの終了後に空調設備を駆動し、蓄電部の温度が所定温度になるように蓄電部を温度制御するようにしたものである。   FIG. 12 is a flowchart showing the fifth embodiment of the arithmetic processing for monitoring control in the monitoring control device 23. The air conditioning equipment is driven after the end of the charge / discharge mode so that the temperature of the power storage unit becomes a predetermined temperature. The temperature of the power storage unit is controlled.

図12において、まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードを終了したか否かを判定し(S1)、充放電モードを終了していないときは処理を終了する。これは、蓄電部11の蓄電池18の充放電モードの終了後に空調設備を駆動し、蓄電部の温度が所定温度になるように蓄電部を温度制御するものであるから、充放電モードであるときは本処理を必要としないからである。   In FIG. 12, first, it is determined whether or not the storage battery 18 of the power storage unit 11 of the power storage system has ended the charge / discharge mode (S1). When the charge / discharge mode has not ended, the process ends. This is because the air conditioning equipment is driven after the end of the charge / discharge mode of the storage battery 18 of the power storage unit 11 and the temperature of the power storage unit is controlled so that the temperature of the power storage unit becomes a predetermined temperature. This is because this processing is not required.

ステップS1の判定で充放電モードを終了したときは、蓄電池18の温度を取得する(S11)。そして、蓄電部11の温度は所定温度を逸脱しているか否かを判定し(S12)、所定温度を逸脱しているときは、蓄電部11の温度が所定温度になるように蓄電部11を温度制御する(S15)。   When the charge / discharge mode is terminated in the determination in step S1, the temperature of the storage battery 18 is acquired (S11). Then, it is determined whether or not the temperature of the power storage unit 11 deviates from the predetermined temperature (S12). When the temperature deviates from the predetermined temperature, the power storage unit 11 is set so that the temperature of the power storage unit 11 becomes the predetermined temperature. The temperature is controlled (S15).

すなわち、監視制御部23は放電モードのときは、蓄電池18の発熱は許容し、放電モードの終了後に空調設備を駆動し、蓄電部11の温度が所定温度になるように蓄電部を温度制御する。つまり、放電により蓄電池18が放熱して温度上昇した分だけ蓄電部11を冷却する。蓄電部11が放電モードであるときは、蓄電部11から負荷14に電力が供給されているときであり、電力系統15から負荷14への電力供給が制限されている。従って、蓄電部11の温度調整のための空調設備への電力供給は停止した方が需要家内の電力の負荷平準化に繋がるので、蓄電部11から負荷14に電力が供給されていないときに空調設備を駆動し蓄電部11を冷却する。   That is, the monitoring control unit 23 allows heat generation of the storage battery 18 in the discharge mode, drives the air conditioning equipment after the end of the discharge mode, and controls the temperature of the power storage unit so that the temperature of the power storage unit 11 becomes a predetermined temperature. . That is, the power storage unit 11 is cooled by an amount corresponding to the temperature rise due to the heat dissipation of the storage battery 18 due to the discharge. When the power storage unit 11 is in the discharge mode, power is supplied from the power storage unit 11 to the load 14, and power supply from the power system 15 to the load 14 is restricted. Therefore, stopping power supply to the air conditioning facility for temperature adjustment of the power storage unit 11 leads to load leveling of power in the consumer, and therefore air conditioning is performed when power is not supplied from the power storage unit 11 to the load 14. The equipment is driven to cool the power storage unit 11.

一方、充電モードのときは、蓄電池18の吸熱は許容し、充電モードの終了後に空調設備を駆動し、蓄電部11の温度が所定温度になるように蓄電部を温度制御する。つまり、充電により蓄電池18が吸熱して温度下降した分だけ蓄電部11を加熱する。蓄電部11が充電モードであるときは、電力系統15から蓄電部11に電力が供給されているときであり、蓄電部11の温度調整のための空調設備への電力供給は停止した方が需要家内の電力の負荷平準化に繋がるので、電力系統15から蓄電部11に電力が供給されていないときに空調設備を駆動し蓄電部11を加熱する。   On the other hand, in the charge mode, the heat absorption of the storage battery 18 is allowed, the air conditioning equipment is driven after the end of the charge mode, and the temperature of the power storage unit is controlled so that the temperature of the power storage unit 11 becomes a predetermined temperature. That is, the power storage unit 11 is heated by the amount of heat that the storage battery 18 has absorbed by charging and the temperature has dropped. When the power storage unit 11 is in the charging mode, power is being supplied from the power system 15 to the power storage unit 11, and the power supply to the air conditioning equipment for adjusting the temperature of the power storage unit 11 should be stopped. Since this leads to load leveling of the power in the house, the air conditioner is driven to heat the power storage unit 11 when power is not supplied from the power system 15 to the power storage unit 11.

これにより、監視制御部23は蓄電部11への充放電中に電源装置13から電力を消費することがなく、全体として監視制御のための消費電力を軽減できる。   As a result, the monitoring control unit 23 does not consume power from the power supply device 13 during charging / discharging of the power storage unit 11 and can reduce power consumption for monitoring control as a whole.

図11に示した実施例4、図12に示した実施例5を、実施例1、実施例2、実施例3に適用することも可能である。   The fourth embodiment shown in FIG. 11 and the fifth embodiment shown in FIG. 12 can be applied to the first embodiment, the second embodiment, and the third embodiment.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…蓄電部、12…蓄電部運転装置、13…電源装置、14…負荷、15…電力系統、16…遮断器、17…受電変圧器、18…蓄電池、19…補機、20…保護装置、21…電力変換装置、22…連系変圧器、23…監視制御装置、24…電圧検出器、25…電流検出器、26…遮断器 DESCRIPTION OF SYMBOLS 11 ... Power storage part, 12 ... Power storage part operation device, 13 ... Power supply device, 14 ... Load, 15 ... Electric power system, 16 ... Circuit breaker, 17 ... Power receiving transformer, 18 ... Storage battery, 19 ... Auxiliary machine, 20 ... Protection device , 21 ... Power conversion device, 22 ... Interconnection transformer, 23 ... Monitoring and control device, 24 ... Voltage detector, 25 ... Current detector, 26 ... Circuit breaker

Claims (6)

複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、
電力系統と前記蓄電部との間に接続された負荷と、
前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電地を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、
前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、
前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備えたことを特徴とする電力貯蔵システム。
A power storage unit having a storage battery in which a plurality of lithium ion battery cells are stacked;
A load connected between a power system and the power storage unit;
The power storage unit has a predetermined operation schedule, the power consumption of the load, a charge command or discharge command for the power storage unit from the outside is input, the operation schedule, the charge command or discharge command, the load A monitoring control device that controls the power storage location based on electric power used, and performs monitoring control of the entire system including the power storage unit;
Operates according to a command from the supervisory control device, and converts AC power of the power system into DC power when the power consumption of the load is small or when there is a charge command or according to the operation mode of the operation schedule of the power storage unit. The power storage unit is charged, and when the load uses a large amount of power or when there is a discharge command, or the operation mode of the operation schedule of the power storage unit converts the DC power of the power storage unit into AC power, the load A power converter that discharges into
A power storage system comprising: a power supply device that supplies power for driving an auxiliary machine of the system and power for operating the monitoring control device to the auxiliary device and the monitoring control device.
前記監視制御部は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード、前記蓄電部から前記負荷に電力を放電する放電モードであるときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の充放電動作の開始を待っている待機モード、前記蓄電部の充放電動作が停止している停止モードであるときは、前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする請求項1記載の電力貯蔵システム。   The monitoring control unit is configured to perform the monitoring control when the operation mode of the power storage unit is a charging mode in which the power storage unit is charged with power from the power system, or a discharge mode in which power is discharged from the power storage unit to the load. When the calculation processing interval is shortened and / or the number of monitoring control targets is increased, the standby mode waiting for the start of the charge / discharge operation of the power storage unit, and the stop mode in which the charge / discharge operation of the power storage unit is stopped The power storage system according to claim 1, wherein an arithmetic processing interval for the monitoring control is increased and / or a monitoring control target is decreased. 前記監視制御部は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードであり、前記蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の電池電圧又は電池電流の変化又は電池温度の変化が小さいときは前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする請求項1記載の電力貯蔵システム。   In the monitoring control unit, the operation mode of the power storage unit is a charge mode in which the power storage unit is charged with power from the power system or a discharge mode in which power is discharged from the power storage unit to the load, and the battery voltage of the power storage unit Change, battery current change, or battery temperature change is large, the calculation processing interval for the monitoring control is shortened and / or the number of monitoring control targets is increased, and the battery voltage or battery current change or battery of the power storage unit is increased. 2. The power storage system according to claim 1, wherein when the temperature change is small, the calculation processing interval for the monitoring control is increased and / or the number of monitoring control targets is decreased. 前記監視制御部は、前記蓄電部の運転モードが前記蓄電部の充放電動作の開始を待っている待機モード又は前記蓄電部の充放電動作が停止している停止モードとなったときは、一定時間経ってから前記監視制御のための演算間隔を長く及び/又は監視制御対象を少なくし、前記待機モード又は前記停止モード中であるときは、予め定めた運転スケジュールの運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードとなる以前に先行的に前記監視制御のための演算間隔を短く及び/又は監視制御対象を多くすることを特徴とする請求項1記載の電力貯蔵システム。   The monitoring control unit is fixed when the operation mode of the power storage unit is in a standby mode waiting for the start of charge / discharge operation of the power storage unit or a stop mode in which the charge / discharge operation of the power storage unit is stopped. When the operation interval for the monitoring control is increased and / or the number of monitoring control targets is reduced after a lapse of time, and the standby mode or the stop mode is in progress, the operation mode of a predetermined operation schedule is stored in the power storage unit. Prior to the charging mode for charging power from the power system or the discharging mode for discharging power from the power storage unit to the load, the calculation interval for the monitoring control is shortened in advance and / or the number of monitoring control targets is increased. The power storage system according to claim 1. 前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御部は、前記運転スケジュールの運転モードが前記蓄電部から前記電力系統に電力を放電する放電モード又は前記蓄電部に前記電力系統から電力を充電する充電モードとなる以前に先行的に前記空調設備を駆動し、前記蓄電部の運転モードが前記放電モード又は前記充電モードとなったときに前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする請求項1乃至4のいずれか1項に記載の電力貯蔵システム。   The auxiliary machine is an air conditioning facility that maintains a temperature of the power storage unit and the power conversion device at a predetermined temperature, and the monitoring control unit discharges power from the power storage unit to the power system in an operation mode of the operation schedule. Prior to the discharge mode or the charging mode for charging power from the power system to the power storage unit, the air conditioning equipment is driven in advance, and the operation mode of the power storage unit becomes the discharge mode or the charging mode. The power storage system according to any one of claims 1 to 4, wherein the temperature of the power storage unit is controlled so that the temperature of the power storage unit becomes a predetermined temperature. 前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御部は、前記蓄電部に前記電力系統から電力を放電する放電モードの終了後あるいは前記蓄電部に前記電力系統から電力を充電する充電モードの終了後に前記空調設備を駆動し、前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする請求項1乃至4のいずれか1項に記載の電力貯蔵システム。   The auxiliary machine is an air conditioner that keeps the temperature of the power storage unit and the power conversion device at a predetermined temperature, and the monitoring control unit is configured to discharge the power from the power system to the power storage unit after the end of the discharge mode or the The power storage unit is driven after the end of a charging mode for charging power from the power system to the power storage unit, and the temperature of the power storage unit is controlled so that the temperature of the power storage unit becomes a predetermined temperature. The electric power storage system of any one of thru | or 4.
JP2016013990A 2016-01-28 2016-01-28 Power storage system Active JP6648539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013990A JP6648539B2 (en) 2016-01-28 2016-01-28 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013990A JP6648539B2 (en) 2016-01-28 2016-01-28 Power storage system

Publications (2)

Publication Number Publication Date
JP2017135865A true JP2017135865A (en) 2017-08-03
JP6648539B2 JP6648539B2 (en) 2020-02-14

Family

ID=59505012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013990A Active JP6648539B2 (en) 2016-01-28 2016-01-28 Power storage system

Country Status (1)

Country Link
JP (1) JP6648539B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048275A (en) * 2018-09-18 2020-03-26 カシオ計算機株式会社 Charging protection circuit, charging device, electronic apparatus, and charging protection method
JP2021150988A (en) * 2020-03-16 2021-09-27 トヨタ自動車株式会社 Device and method for power management
JP2022059568A (en) * 2021-08-26 2022-04-13 東京瓦斯株式会社 Air conditioner control method and air conditioner control program
WO2024014352A1 (en) * 2022-07-12 2024-01-18 株式会社デンソー Thermal runaway sign detection device for secondary battery and thermal runaway sign detection method for secondary battery
JP7480075B2 (en) 2021-01-27 2024-05-09 京セラ株式会社 ELECTRICITY STORAGE DEVICE MANAGEMENT SYSTEM AND ELECTRICITY STORAGE DEVICE MANAGEMENT METHOD

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327386A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Cooling method of battery pack
JP2006047130A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Condition detector for lead-acid battery, and lead-acid battery equipped integrally with condition detector
JP2007336691A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Battery cooling control system for vehicle
WO2012014410A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Secondary-battery control device
JP2012130123A (en) * 2010-12-14 2012-07-05 Makita Corp Charger
US20130300194A1 (en) * 2010-11-11 2013-11-14 The Technology Partnership Plc System and method for controlling an electricity supply
JP2013251102A (en) * 2012-05-31 2013-12-12 Nissan Motor Co Ltd Battery control device
JP2015126694A (en) * 2013-12-27 2015-07-06 三菱重工業株式会社 Energy management system, power system, energy management method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327386A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Cooling method of battery pack
JP2006047130A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Condition detector for lead-acid battery, and lead-acid battery equipped integrally with condition detector
JP2007336691A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Battery cooling control system for vehicle
WO2012014410A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Secondary-battery control device
US20130300194A1 (en) * 2010-11-11 2013-11-14 The Technology Partnership Plc System and method for controlling an electricity supply
JP2012130123A (en) * 2010-12-14 2012-07-05 Makita Corp Charger
JP2013251102A (en) * 2012-05-31 2013-12-12 Nissan Motor Co Ltd Battery control device
JP2015126694A (en) * 2013-12-27 2015-07-06 三菱重工業株式会社 Energy management system, power system, energy management method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048275A (en) * 2018-09-18 2020-03-26 カシオ計算機株式会社 Charging protection circuit, charging device, electronic apparatus, and charging protection method
JP2021150988A (en) * 2020-03-16 2021-09-27 トヨタ自動車株式会社 Device and method for power management
JP7251503B2 (en) 2020-03-16 2023-04-04 トヨタ自動車株式会社 Power management device and power management method
JP7480075B2 (en) 2021-01-27 2024-05-09 京セラ株式会社 ELECTRICITY STORAGE DEVICE MANAGEMENT SYSTEM AND ELECTRICITY STORAGE DEVICE MANAGEMENT METHOD
JP2022059568A (en) * 2021-08-26 2022-04-13 東京瓦斯株式会社 Air conditioner control method and air conditioner control program
WO2024014352A1 (en) * 2022-07-12 2024-01-18 株式会社デンソー Thermal runaway sign detection device for secondary battery and thermal runaway sign detection method for secondary battery

Also Published As

Publication number Publication date
JP6648539B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
US9680303B2 (en) Power storage system and power source system
US10008862B2 (en) Power storage device, power storage system, and control method of power storage device
US10063070B2 (en) Battery active balancing system
US8217624B2 (en) Power storage system
JP5567741B2 (en) Method for monitoring battery charging process, battery system, and vehicle
JP6648539B2 (en) Power storage system
KR102052241B1 (en) System and method for battery management using Balancing battery
JP5583781B2 (en) Power management system
KR102196639B1 (en) Energy storage device using lithium battery and supercapacitor and method of output stabilizing thereof
US8310209B2 (en) Battery charger and method for charging a battery
JP5959289B2 (en) Battery system
EP2685589B1 (en) Battery pack, method of charging the same, and vehicle including the same
KR20140097286A (en) Device for balancing the charge of the elements of an electrical power battery
JP2009050085A (en) Secondary battery pack
JPWO2020080543A1 (en) Power storage system
KR20140054320A (en) Electricity storage device control system
TW201403994A (en) Multi-stage battery module charging method and device thereof
WO2019187692A1 (en) Battery pack and charging control method therefor
KR101674855B1 (en) System for protecting lithium batterie in low temperature condition
WO2012049955A1 (en) Power management system
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP2012130249A (en) Secondary battery pack
JP2013146159A (en) Charge control system and charge control method of battery pack
JP3175573U (en) Rechargeable battery management device
JP2002320339A (en) Discharging method of battery pack, discharge circuit thereof and accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150