JP2002320339A - Discharging method of battery pack, discharge circuit thereof and accumulator - Google Patents

Discharging method of battery pack, discharge circuit thereof and accumulator

Info

Publication number
JP2002320339A
JP2002320339A JP2001122251A JP2001122251A JP2002320339A JP 2002320339 A JP2002320339 A JP 2002320339A JP 2001122251 A JP2001122251 A JP 2001122251A JP 2001122251 A JP2001122251 A JP 2001122251A JP 2002320339 A JP2002320339 A JP 2002320339A
Authority
JP
Japan
Prior art keywords
voltage
battery
voltage difference
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001122251A
Other languages
Japanese (ja)
Other versions
JP3526277B2 (en
Inventor
Toyokazu Okawa
豊和 大川
Katsutoshi Shinohara
克利 篠原
Michiko Sakairi
美千子 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001122251A priority Critical patent/JP3526277B2/en
Publication of JP2002320339A publication Critical patent/JP2002320339A/en
Application granted granted Critical
Publication of JP3526277B2 publication Critical patent/JP3526277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain difference among residual charge rates of single batteries in a battery pack, enable discharge while a battery pack voltage is ensured, and restrain temperature rise of the battery pack independent of operation. SOLUTION: Voltage difference is obtained by detecting a voltage of each single battery in a state of discharge. When the obtained is at least a previously set reference value or exceeds it, single batteries on a low voltage side generating the voltage difference are disconnected. In the state that the voltage difference between single batteries is restrained, the battery pack is discharged. A cooling fan is connected with a thermoelectric element whose heat generating surface is fixed to the battery pack or a case of the battery pack, and driven by produced power of the thermoelectric element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車,電動
カート等の移動体機器、ビデオカメラ,パソコン等の携
帯機器、停電時のバックアップ機器、またはセキュリテ
イ機器等の電源として使われ非水電解液二次電池等から
成る組電池技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte used as a power source for mobile devices such as electric vehicles and electric carts, portable devices such as video cameras and personal computers, backup devices in the event of a power failure, and security devices. The present invention relates to an assembled battery technology including a secondary battery and the like.

【0002】[0002]

【従来の技術】例えば非水電解液二次電池は、充電、放
電時それぞれに制限電圧値を有するため、該制限電圧値
を超えて充電や放電を行うと、電池の性能劣化や破壊が
起こる。このため、一般に高い電圧管理精度を要求され
ている非水電解液二次電池の場合は、電池電圧を監視し
ながら充電や放電が行う。しかし、複数の単電池を直列
接続した組電池の場合、全ての単電池を流れる電流や充
放電の時間が同じであったとしても、充放電サイクルの
増加に伴う単電池間の特性ばらつきの増大により、各単
電池の残存充電率(State Of Charge)(以下、SOCと
称し、完全充電状態を100%、完全放電状態を0%と
した%値で示す。)に差が生じ、結果的に各単電池間の
電圧差が増大する。このような組電池では、充電の場合
には、電圧の高い単電池が過充電状態となったり、ま
た、放電の場合には、電圧の低い単電池が早期に放電終
止電圧に到達してしまい、組電池としての放電性能が低
下したり、サイクル寿命が減少したりする。これを回避
するための技術としては、例えば特開平8−11574
8号公報には、充電時に単電池間の充電量のばらつきを
削減すべく、電池電圧の高い単電池のみにつき充電電流
の一部または全部を迂回させ、各単電池間で充電量を揃
えるようにした技術が記載され、また、特開平7−23
9734号公報には、複数の単電池を、スイッチによ
り、充電時と放電時とで切り換えて使用する技術が記載
されている。
2. Description of the Related Art For example, a non-aqueous electrolyte secondary battery has a limiting voltage value at the time of charging and discharging, respectively. Therefore, if charging or discharging is performed beyond the limiting voltage value, the performance of the battery is deteriorated or destroyed. . Therefore, in the case of a non-aqueous electrolyte secondary battery that generally requires high voltage management accuracy, charging and discharging are performed while monitoring the battery voltage. However, in the case of an assembled battery in which a plurality of cells are connected in series, even if the current flowing through all the cells and the charging / discharging time are the same, the variation in characteristics among the cells due to the increase in the charging / discharging cycle increases. As a result, a difference occurs in the remaining charge rate (State Of Charge) (hereinafter referred to as SOC, which is represented by a percentage value where the fully charged state is 100% and the fully discharged state is 0%) of each unit cell. The voltage difference between each cell increases. In such an assembled battery, when charging, a single cell with a high voltage becomes overcharged, and when discharging, a single cell with a low voltage reaches the discharge end voltage early. In addition, the discharge performance of the battery pack is reduced, and the cycle life is reduced. As a technique for avoiding this, for example, JP-A-8-11574
In order to reduce the variation in the amount of charge between cells during charging, Japanese Patent Publication No. 8 (1995) -187 discloses that a part or all of the charge current is bypassed only for cells having a high battery voltage so that the amount of charge is uniform among the cells. And Japanese Patent Application Laid-Open No. 7-23
Japanese Patent Application Laid-Open No. 9734 discloses a technique in which a plurality of cells are switched between charging and discharging by a switch.

【0003】また、組電池は、一般に、充放電による電
池自身の発熱や、蓄電装置が直射日光の当たる場所に据
付けられたり、温度上昇の著しい倉庫内に保管された
り、蓄電装置を搭載した自動車が直射日光や地面の輻射
熱にさらされる場所に駐車されたりした場合には、蓄電
装置の内部温度が上昇し、組電池が高温雰囲気中にさら
される。一般に、組電池を高温環境下でさらされると、
充放電の有無に関わらず、内蔵する有機材料の分解反応
や、電極の性能劣化などが促進され、サイクル寿命の劣
化や、容量の低下を生ずる。また、単電池間の温度分布
にばらつきがある場合は、温度が高い単電池の劣化が早
く進み、単電池間で劣化の程度に差を生ずる。該差が生
ずると、これに起因して容量に格差が生じ、組電池の充
電時において、容量の大きい単電池は充電不足であるの
に劣化が進み、容量の小さくなった単電池は過充電状態
になってしまうというアンバランスな状態を引き起こ
す。これを防ぐため、例えば非水電解液二次電池などで
は、特に高精度の温度管理が要求され、一般には温度が
40〜50゜C以下の範囲にあるように管理される。温
度管理のための電池冷却の従来技術としては、例えば特
開平11−75327号公報に記載されたものがある。
該公報には、電池ユニット(単電池)の冷却の度合いを
パラメータに、充電完了時点における電池温度を推定
し、該電池温度から所定の限界値を超えない冷却の度合
いを導出し、これを基準に送風ファン等により電池ユニ
ット(単電池)を強制冷却する技術が記載され、具体例
として、電池の環境温度をセンサーで検知し、商用電源
または電池の放電電力で送風ファン駆動して電池を強制
空冷する構成が記載されている。
[0003] Further, in general, an assembled battery is installed in a place where the battery itself generates heat due to charging and discharging, or where the power storage device is exposed to direct sunlight, is stored in a warehouse where the temperature rises remarkably, or is mounted on a vehicle equipped with a power storage device. If the vehicle is parked in a location exposed to direct sunlight or radiant heat from the ground, the internal temperature of the power storage device increases, and the battery pack is exposed to a high-temperature atmosphere. Generally, when a battery pack is exposed to a high temperature environment,
Regardless of the presence or absence of charge / discharge, the decomposition reaction of the built-in organic material and the performance deterioration of the electrode are promoted, and the cycle life is deteriorated and the capacity is reduced. In addition, when there is a variation in the temperature distribution between the single cells, the deterioration of the single cell having a high temperature proceeds quickly, and a difference occurs in the degree of deterioration between the single cells. When this difference occurs, a difference in capacity occurs due to this, and when charging the assembled battery, the cells having a large capacity are deteriorated while being insufficiently charged, and the cells having a small capacity are overcharged. It causes an unbalanced state of becoming a state. In order to prevent this, for example, a non-aqueous electrolyte secondary battery requires particularly high-precision temperature control, and the temperature is generally controlled to be in the range of 40 to 50 ° C. or less. As a conventional technique of battery cooling for temperature control, for example, there is a technique described in JP-A-11-75327.
In this publication, the battery temperature at the time of completion of charging is estimated using the degree of cooling of the battery unit (cell) as a parameter, and the degree of cooling that does not exceed a predetermined limit value is derived from the battery temperature. Describes a technique for forcibly cooling a battery unit (single cell) using a blower fan or the like. As a specific example, a sensor detects the environmental temperature of the battery and drives the blower fan with a commercial power supply or the discharge power of the battery to forcibly forcibly charge the battery. A configuration for air cooling is described.

【0004】[0004]

【発明が解決しようとする課題】電圧管理に対する上記
従来の技術の、充電時電池電圧が目標電圧到達時に電池
を充電回路から切り離し、充電電流の全てを迂回させる
方法では、電圧が高い充電終止に近い状態においても、
電池間のSOCの差を電池間の電圧差として検出できる
ことが前提となる。図4は、定格容量の等しい非水電解
液二次電池を複数個直列接続した組電池を充電した場合
の、各電池電圧の変化及び電池間の最大の電圧差の実測
結果例である。図4では、電圧使用範囲下限が2.7
V、上限が4.2Vの単電池を8個直列接続し、そのう
ちの1個の単電池を、他の単電池の充電前に放電させる
ことにより電池電圧を他の7本より0.15V低い状態
とし、組電池を充電レート0.5Cで定電流充電を行
い、組電池電圧が4.2V×8=33.6V到達時に定電
圧充電に切換え、定格容量まで定電圧充電を続行した例
である。この結果から、充電開始時の電圧差0.2Vは
SOC換算で約5%となり、値として大きいが、全単電
池とも同一の電流及び時間で充電されるためSOC差の
変動はない。また、該電圧差0.2Vは、充電が進むに
つれて減少し、充電率100%ではほとんど0Vとな
り、充電終止電圧付近では電池電圧差によりSOCばら
つきを把握することは困難である。また、複数の電池と
スイッチを設け、放電時スイッチにより電池を切換えて
使用すれば、上記SOCによる電圧差の変化に無関係に
放電することが可能であるが、使用できる直列単電池数
が少ないため電圧が低い。このため、この技術を、電動
機等大電力が必要な放電回路として用いた場合には、電
流が増加する結果、回路の銅損、鉄損等の損失が増加
し、放電時の効率が低下するという問題が生じる。
According to the above-mentioned conventional technique for voltage management, when the battery voltage at the time of charging reaches a target voltage, the battery is disconnected from the charging circuit and all the charging current is bypassed. Even in a close state,
It is assumed that the SOC difference between batteries can be detected as a voltage difference between batteries. FIG. 4 is an example of a measurement result of a change in each battery voltage and a maximum voltage difference between batteries when a battery pack in which a plurality of nonaqueous electrolyte secondary batteries having the same rated capacity are connected in series is charged. In FIG. 4, the lower limit of the voltage use range is 2.7.
V, 8 cells with an upper limit of 4.2V are connected in series, and one of the cells is discharged before charging the other cells, so that the cell voltage is 0.15V lower than the other seven cells. In this example, the battery pack is charged at a constant current of 0.5 C at a charge rate of 0.5 C, and when the battery pack voltage reaches 4.2 V × 8 = 33.6 V, the battery is switched to the constant voltage charge. is there. From this result, the voltage difference of 0.2 V at the start of charging is about 5% in terms of SOC, which is large as a value. However, since all the cells are charged with the same current and the same time, the SOC difference does not fluctuate. Further, the voltage difference 0.2 V decreases as the charging proceeds, and becomes almost 0 V at a charging rate of 100%, and it is difficult to grasp the SOC variation due to the battery voltage difference near the charging end voltage. Further, if a plurality of batteries and a switch are provided and the batteries are switched and used by a switch at the time of discharge, the batteries can be discharged regardless of the change in the voltage difference due to the SOC, but the number of usable series cells is small. Voltage is low. For this reason, when this technology is used as a discharge circuit requiring high power such as an electric motor, as a result of an increase in current, losses such as copper loss and iron loss of the circuit increase, and the efficiency at the time of discharge decreases. The problem arises.

【0005】また、温度管理に関する上記従来技術で
は、冷却に要する駆動電力が原因で、充放電の高効率化
が阻害される。また、蓄電装置の未運転時、倉庫などに
保管され商用電源や外部負荷に接続されていない未使用
状態時には、電池の環境温度の上昇を検知しても、装置
がシステムダウンしていて商用電源の供給が遮断されて
いたり、組電池が未充電状態のため電池電源を利用でき
なかったり等の理由により、強制冷却手段を駆動するこ
とは困難である。また、装置を常時運転状態にして温度
検知手段、強制冷却手段に商用電源を供給し続けること
も消費電力低減化の点から難しい。
Further, in the above-mentioned prior art relating to temperature management, high driving efficiency required for charging and discharging is hindered due to the driving power required for cooling. In addition, when the power storage device is not operating, or is in an unused state where it is stored in a warehouse or the like and is not connected to a commercial power supply or an external load, even if a rise in the environmental temperature of the battery is detected, the system is down and the commercial power supply is down. It is difficult to drive the forced cooling means for reasons such as the supply of power is interrupted, or the battery power is not available because the assembled battery is not charged. In addition, it is difficult to keep the apparatus in an operating state and to continuously supply commercial power to the temperature detecting means and the forced cooling means from the viewpoint of reducing power consumption.

【0006】本発明の課題点は、上記従来技術の不足点
に鑑み、(1)SOC差を抑え、かつ、組電池の電圧も
確保した状態で放電できるようにすること、(2)蓄電
装置の運転有無に関わらず組電池の温度上昇を抑えられ
るようにすること、等である。本発明の目的は、上記課
題点を解決できる技術の提供にある。
SUMMARY OF THE INVENTION In view of the above-mentioned shortcomings of the prior art, the problems of the present invention are: (1) to allow the discharge while keeping the SOC difference and ensuring the voltage of the assembled battery; and (2) the power storage device. And that the temperature rise of the battery pack can be suppressed irrespective of the presence or absence of operation. An object of the present invention is to provide a technique capable of solving the above problems.

【0007】[0007]

【課題を解決するための手段】上記課題点を解決するた
めに、本発明では、複数個の単電池を直列接続して成る
組電池の放電技術として、放電時に、各単電池の電池電
圧を検出して比較し、電圧差が所定値に達したとき、電
圧の低い単電池を直列接続状態から切り離し、その放電
電流を他に迂回させるようにする。また、電池電圧の低
い状態で動作を可能とするために、DC/DCコンバー
タの許容組電池側入力電圧を所定値以下に設定し、かつ
放電電流の迂回、または直列接続へ復帰するための電圧
差の基準値をそれぞれ設定し、単電池の組電池への直列
接続を個別に制御する。具体的には、 (1)複数個の単電池を直列接続して成る組電池の放電
方法として、放電状態で各単電池の電圧を検出し該単電
池間の電圧差を求める第1のステップと、該求めた電圧
差に基づき特定される単電池の接続を組電池から切り離
す第2のステップと、を備え、組電池内の単電池の電圧
差を抑えた状態で該組電池を放電させるようにする。 (2)複数個の単電池を直列接続して成る組電池の放電
方法として、放電状態で各単電池の電圧を検出し電圧差
を求める第1のステップと、該求めた電圧差が、予め設
定してある基準値以上または該基準値を超えるとき、該
電圧差を生じている低電圧側の単電池を組電池から切り
離す第2のステップと、該低電圧側の単電池を切り離し
た状態で組電池を放電させる第3のステップと各単電池
の電圧を検出し電圧差を求め、該切り離した単電池の電
圧差が基準値以下または基準値未満のとき、該切り離し
た単電池を再び組電池内に直列接続する第4のステップ
と、を備え、組電池内の単電池の電圧差を抑えた状態で
該組電池を放電させるようにする。 (3)上記(1)または(2)において、上記第2のス
テップにおいて組電池から切り離しが可能な単電池の個
数は、組電池の電圧変動を抑えるためのDC/DCコン
バータの許容入力電圧に基づき定められるようにする。 (4)上記(3)において、上記DC/DCコンバータ
の許容入力電圧は、単電池の許容放電終止電圧Vend
と上記切り離し後の残りの単電池数との積の電圧値に設
定されるようにする。 (5)上記(1)から(4)のいずれかにおいて、上記
単電池は、非水電解液二次電池であるようにする。 (6)複数個の単電池を直列接続した組電池の放電回路
として、単電池単位で設けられた電流迂回手段と、該電
流迂回手段をオンまたはオフ状態にするスイッチ手段
と、各単電池の電圧を検出し該単電池間の電圧差を求め
る手段と、該電圧差に基づき上記スイッチ手段を制御す
る制御手段と、を備え、上記電圧差に基づき特定される
単電池に対応した上記電流迂回手段を上記スイッチ手段
によりオン状態にして、該単電池の接続を組電池から切
り離し、組電池内の単電池の電圧差を抑えた状態で該組
電池を放電させるようにした構成とする。 (7)複数個の単電池を直列接続した組電池の放電回路
として、単電池単位で設けられた電流迂回手段と、該電
流迂回手段をオンまたはオフ状態にするスイッチ手段
と、各単電池の電圧を検出し電圧差を求める手段と、該
電圧差に基づき上記スイッチ手段を制御する制御手段
と、を備え、上記電圧差が予め設定してある基準値以上
または該基準値を超えるときは、該電圧差を生じている
低電圧側の単電池に対応した上記電流迂回手段を上記ス
イッチ手段によりオン状態にして、該低電圧側の単電池
の接続を組電池から切り離し、該切り離した単電池の電
圧差が上記基準値以下または基準値未満となったとき
は、上記スイッチ手段により上記電流迂回手段を再びオ
フ状態にし、該切り離していた単電池を再び該組電池内
に直列接続し、該組電池内の単電池の電圧差を抑えた状
態で該組電池を放電させるようにした構成とする。 (8)複数個の単電池を直列接続した組電池の放電回路
として、単電池単位で設けられた電流迂回手段と、該電
流迂回手段をオンまたはオフ状態にするスイッチ手段
と、各単電池の電圧を検出し電圧差を求める手段と、該
電圧差に基づき上記スイッチ手段を制御する制御手段
と、上記組電池の出力電圧変動を抑えて負荷側に供給す
るためのDC/DCコンバータと、を備え、上記電圧差
が予め設定してある基準値以上または該基準値を超える
とき、該電圧差を生じている低電圧側の単電池に対応し
た上記電流迂回手段を上記スイッチ手段によりオン状態
にして、該低電圧側の単電池の接続を組電池から切り離
し、組電池内の単電池の電圧差を抑えた状態で上記DC
/DCコンバータを介し放電させるようにした構成とす
る。 (9)上記(6)、(7)または(8)において、上記
単電池を、非水電解液二次電池とする。
In order to solve the above-mentioned problems, the present invention provides a technique for discharging a battery pack composed of a plurality of unit cells connected in series. Detection and comparison are performed, and when the voltage difference reaches a predetermined value, a unit cell having a low voltage is disconnected from the series connection state, and the discharge current is diverted to another. In addition, in order to enable operation in a state where the battery voltage is low, the allowable assembled battery side input voltage of the DC / DC converter is set to a predetermined value or less, and a voltage for bypassing the discharge current or returning to the series connection. The reference value of the difference is set, and the series connection of the unit cells to the assembled battery is individually controlled. Specifically, (1) a first step of detecting a voltage of each cell in a discharged state and obtaining a voltage difference between the cells as a method of discharging an assembled battery formed by connecting a plurality of cells in series. And a second step of disconnecting the connection of the unit cell specified based on the obtained voltage difference from the assembled battery, and discharging the assembled battery in a state where the voltage difference of the unit cells in the assembled battery is suppressed. To do. (2) As a method for discharging a battery pack formed by connecting a plurality of cells in series, a first step of detecting a voltage of each cell in a discharged state to obtain a voltage difference, A second step of disconnecting the cell on the low voltage side having the voltage difference from the battery pack when the voltage is equal to or more than the set reference value or exceeds the reference value, and a state where the cell on the low voltage side is disconnected In the third step of discharging the assembled battery and detecting the voltage of each unit cell to determine the voltage difference, when the voltage difference of the separated unit cell is equal to or less than the reference value or less than the reference value, the separated unit cell is again And a fourth step of series connection in the battery pack, wherein the battery pack is discharged while the voltage difference between the cells in the battery pack is suppressed. (3) In the above (1) or (2), the number of cells that can be separated from the assembled battery in the second step is determined by the allowable input voltage of the DC / DC converter for suppressing voltage fluctuation of the assembled battery. To be determined based on (4) In the above (3), the allowable input voltage of the DC / DC converter is the allowable discharge end voltage Vend of the unit cell.
And the number of cells remaining after the disconnection. (5) In any one of the above (1) to (4), the unit cell is a non-aqueous electrolyte secondary battery. (6) As a discharge circuit of a battery pack in which a plurality of cells are connected in series, a current diverting means provided for each cell, a switch means for turning the current diverting means on or off, and Means for detecting a voltage to obtain a voltage difference between the cells, and control means for controlling the switch means based on the voltage difference, wherein the current bypass corresponding to the cell specified based on the voltage difference is provided. The means is turned on by the switch means to disconnect the unit cell from the assembled battery, and discharge the assembled battery in a state where the voltage difference between the unit cells in the assembled battery is suppressed. (7) As a discharge circuit of a battery pack in which a plurality of unit cells are connected in series, a current bypass unit provided for each unit cell, a switch unit for turning on or off the current bypass unit, Means for detecting a voltage to obtain a voltage difference, and control means for controlling the switch means based on the voltage difference, wherein when the voltage difference is equal to or greater than a preset reference value or exceeds the reference value, The current diverting means corresponding to the low voltage side cell having the voltage difference is turned on by the switch means, and the connection of the low voltage side cell is disconnected from the assembled battery. When the voltage difference becomes equal to or less than the reference value or less than the reference value, the current bypass means is turned off again by the switch means, and the separated cells are connected in series again in the battery pack, Battery pack To at reduced voltage difference of the cells of the structure which is adapted to discharge the said set battery. (8) As a discharge circuit of an assembled battery in which a plurality of cells are connected in series, a current diverting means provided for each cell, a switch means for turning on or off the current diverting means, Means for detecting a voltage to obtain a voltage difference, control means for controlling the switch means based on the voltage difference, and DC / DC converter for suppressing output voltage fluctuation of the battery pack and supplying the output voltage to the load side. When the voltage difference is equal to or more than a preset reference value or exceeds the reference value, the current bypass means corresponding to the low-voltage unit cell causing the voltage difference is turned on by the switch means. Then, the connection of the cell on the low voltage side is disconnected from the assembled battery, and the DC voltage is reduced in a state where the voltage difference between the cells in the assembled battery is suppressed.
It is configured to discharge via a / DC converter. (9) In (6), (7) or (8), the unit cell is a non-aqueous electrolyte secondary battery.

【0008】また、該組電池の冷却に関する課題点を解
決するために、本発明では、 (10)組電池を備えた蓄電装置として、発熱面が上記
組電池、該組電池に直接または間接に接する部材または
筐体に装着された熱電素子と、該熱電素子に接続された
冷却ファンと、を備え、該熱電素子の生成電力により該
冷却ファンを駆動し該組電池を冷却するようにした構成
とする。 (11)上記(10)において、上記組電池を、非水電
解液二次電池から構成されるようにする。
In order to solve the problem relating to cooling of the battery pack, the present invention provides: (10) a power storage device including the battery pack, wherein the heat generating surface is directly or indirectly connected to the battery pack or the battery pack; A configuration comprising: a thermoelectric element mounted on a member or a housing in contact with the cooling element; and a cooling fan connected to the thermoelectric element, wherein the cooling fan is driven by electric power generated by the thermoelectric element to cool the battery pack. And (11) In the above (10), the assembled battery is constituted by a non-aqueous electrolyte secondary battery.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例につき、図
面を用いて説明する。図1〜図3は、本発明の実施例の
説明図である。図1は本発明の一実施例としての放電回
路の構成例、図2は図1の放電回路の動作の説明図、図
3は図1の放電回路における制御動作の説明図である。
図1において、B1〜Bnは、組電池を構成するための
非水電解液二次電池等の単電池、V1〜Vnは、該単電
池B1〜Bnそれぞれの電圧、SW1〜SWnはそれぞ
れ、該単電池B1〜Bnの接続を個別に、放電回路に対
しオン状態またはオフ状態に切換えるための切換え用ス
イッチである。該切換え用スイッチSW1〜SWnは、
電池側aが接続状態とされたとき単電池B1〜Bnの接
続を放電回路に対しオン状態とし、電流迂回回路側bが
接続状態とされたとき単電池B1〜Bnの接続を放電回
路に対しオフ状態とする。1は該切換え用スイッチSW
1〜SWnを駆動するためのスイッチ駆動回路、3は上
記単電池B1〜Bnそれぞれの電圧を検出するための電
池電圧検出回路、4はDC/DCコンバータ、2は、該
電池電圧検出回路3の出力信号に基づき上記スイッチ駆
動回路1を制御するとともに、DC/DCコンバータ4
に運転または停止の命令信号を送り、放電動作を管理す
るための制御用マイコン、5は負荷である。かかる構成
において、制御用マイコン2からの制御信号により、ス
イッチ駆動回路1が制御駆動され、切換え用スイッチS
W1〜SWnが電池側aに接続された状態、つまり全部
の単電池B1〜Bnが放電回路に接続された状態で放電
運転が開始される。かかる放電状態において、単電池B
1〜Bnの各電圧V1〜Vnを、電池電圧検出回路3で
検出し制御用マイコン2でこれを読取る。該制御用マイ
コン2は、上記DC/DCコンバータ4に放電の運転ま
たは停止の命令信号を送って該放電動作を管理するとと
もに、n個の切換え用スイッチSW1〜SWnに対応し
たn個の独立したスイッチ駆動用信号を出力するように
なっている。該切換え用スイッチSW1〜SWnとして
はn個のリレーを用いてもよいし、または、より高速な
スイッチ動作を行うべく、半導体スイッチ素子等で構成
してもよい。また本図1において、n印を付けた結線部
は、n本の独立構成の結線部を示す。スイッチ駆動回路
1に対しては、制御マイコン2から各切換え用スイッチ
SW1〜SWnに対応するアドレス信号及び該切換え用
スイッチをオン・オフさせるためのオン・オフ信号を出
力する。該スイッチ駆動回路1にアドレスデコーダ及び
上記オン・オフ信号を保持するための回路を設けた場合
には、該スイッチ駆動回路1と制御マイコン2との間の
結線数を減らすことができる。また、上記電池電圧検出
回路3に対しては、制御マイコン2から、各切換え用ス
イッチSW1〜SWnに対応したアドレス信号を出力す
る。また、上記電池電圧検出回路3にマルチプレクサを
設け、制御マイコン2より入力されたアドレスの単電池
につき、その電圧を該制御マイコン2に送ることより、
該制御マイコン2と該電池電圧検出回路3との間の結線
数を削減することができる。一方、放電用DC/DCコ
ンバータ4は、単電池の直列接続で構成された組電池か
ら入力される電圧が変動しても、これを抑え、略一定の
電圧を負荷5に供給するようにした構成を有する。該D
C/DCコンバータ4の入力電圧の下限値は、単電池1
個当たりの放電下限電圧をVendとするとき、少なく
ともVend×(n−m)以下に設定する。ここで、nは
全単電池数、mは放電時に切り離し可能な最大単電池数
を示す。該mは、組電池を構成する単電池の特性ばらつ
きの大きさ等から決まる。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are explanatory diagrams of an embodiment of the present invention. 1 is a configuration example of a discharge circuit as one embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the discharge circuit of FIG. 1, and FIG. 3 is an explanatory diagram of a control operation in the discharge circuit of FIG.
In FIG. 1, B1 to Bn are unit cells such as a non-aqueous electrolyte secondary battery for constituting a battery pack, V1 to Vn are voltages of the unit cells B1 to Bn, and SW1 to SWn are respectively This is a switch for switching the connection of the cells B1 to Bn individually to the ON state or the OFF state with respect to the discharge circuit. The changeover switches SW1 to SWn are:
When the battery side a is in the connected state, the connection of the cells B1 to Bn is turned on to the discharge circuit, and when the current bypass circuit side b is in the connected state, the connection of the cells B1 to Bn is connected to the discharge circuit. Turn off. 1 is the changeover switch SW
1 is a switch drive circuit for driving SWn; 3 is a battery voltage detection circuit for detecting the voltage of each of the cells B1 to Bn; 4 is a DC / DC converter; The switch drive circuit 1 is controlled based on the output signal, and the DC / DC converter 4
And a control microcomputer 5 for sending an operation or stop command signal to manage the discharge operation. In such a configuration, the switch drive circuit 1 is controlled and driven by a control signal from the control microcomputer 2, and the switch S
The discharge operation is started in a state where W1 to SWn are connected to the battery side a, that is, in a state where all the cells B1 to Bn are connected to the discharge circuit. In such a discharged state, the cell B
The voltages V1 to Vn of 1 to Bn are detected by the battery voltage detection circuit 3 and read by the control microcomputer 2. The control microcomputer 2 manages the discharge operation by sending a discharge operation or stop command signal to the DC / DC converter 4, and controls n independent switches corresponding to the n switches SW 1 to SWn. A switch driving signal is output. As the switches SW1 to SWn, n relays may be used, or a semiconductor switch element or the like may be used to perform higher-speed switching operation. In FIG. 1, the connection portions marked with n indicate n connection portions having an independent configuration. To the switch drive circuit 1, the control microcomputer 2 outputs an address signal corresponding to each of the switching switches SW1 to SWn and an on / off signal for turning on / off the switching switch. When the switch drive circuit 1 is provided with an address decoder and a circuit for holding the ON / OFF signal, the number of connections between the switch drive circuit 1 and the control microcomputer 2 can be reduced. The control microcomputer 2 outputs an address signal corresponding to each of the changeover switches SW1 to SWn to the battery voltage detection circuit 3. Further, a multiplexer is provided in the battery voltage detection circuit 3 and the voltage of the unit cell of the address input from the control microcomputer 2 is sent to the control microcomputer 2 to
The number of connections between the control microcomputer 2 and the battery voltage detection circuit 3 can be reduced. On the other hand, the discharging DC / DC converter 4 suppresses the fluctuation of the voltage input from the assembled battery formed by connecting the cells in series, and supplies a substantially constant voltage to the load 5. Having a configuration. The D
The lower limit of the input voltage of the C / DC converter 4 is
When the discharge lower limit voltage per unit is Vend, it is set to at least Vend × (nm) or less. Here, n indicates the number of all cells, and m indicates the maximum number of cells that can be separated during discharging. The value of m is determined by the degree of variation in characteristics of the cells constituting the assembled battery.

【0010】図2は、図1の放電回路の動作の説明図で
ある。図2は、本発明の放電回路により組電池を放電さ
せた場合における単電池の放電特性例を示す。Baは組
電池を構成する図1のn個の単電池うち充電量が最大の
単電池、Bbは充電量が最小の単電池である。n個の単
電池B1〜Bnに設けた切換え用スイッチSW1〜SW
n全てをそれぞれ単電池側に接続し放電を開始すると、
放電開始時におけるBa、Bbの電圧は、図4でも説明
したように、ほぼ同じであるが、時間が経過し放電が進
むにつれて電圧差が大きくなる。やがて放電時間t1に
おいて単電池Baと単電池Bbの電圧差が、予め設定し
ておいた電流迂回電圧差△Voffに到達すると、単電
池Bbに設けた切換え用スイッチが電池側から電流迂回
回路側に切換えられ、該単電池Bbが組電池から接続を
解かれる。この結果、DC/DCコンバータ4に入力さ
れる組電池の電圧は単電池Bbの電圧分だけ低くなり、
所定の電力を確保するようにDC/DCコンバータ4の
入力電流が増加する。このため、結果的に電池の放電電
流が増加することになって、単電池Baを含む他の電池
の電圧降下率が増加する。このとき、接続を解かれた単
電池Bbは、放電を停止しているため電圧が徐々に回復
し、やがて時刻t2において、単電池Baとの電圧差
が、予め設定しておいた電池放電再開電圧差△Vonと
なり、単電池Bbに設けた切換え用スイッチが電流迂回
回路側から再び電池側に切換えられ、単電池Bbが組電
池内に接続復帰される。該接続復帰により該単電池Bb
は放電を再開し、やがて時刻t3において、単電池B1
〜Bnのいずれかが、予め設定された放電終止電圧Ve
ndに到達し放電を停止する。ここで、時刻t1以降に
おいて、単電池Baと単電池Bbとの電圧の差が縮まら
ない場合には、単電池Bbに設けた切換え用スイッチが
電流迂回回路側に接続されたままの状態、つまり組電池
から接続を解かれた状態のままで、該組電池の電圧がD
C/DCコンバータ4の入力側許容電圧以下となり、組
電池を構成する単電池個々の電圧がいずれもVendに
到達しない、すなわち個々の単電池それぞれが十分放電
されない状態で放電が終了することが想定される。上記
図1の構成ではこのための対策として、DC/DCコン
バータの入力側許容電圧範囲の下限を、上記のように、
Vend×(n−m)以下としているため、少なくとも
1個以上の電池をVendまで放電させることが可能で
あり、かつ、単電池間の充電量の差を電圧差として検出
し易い放電終止電圧付近において、電圧による充電量補
正を行いながら放電させることもできる。
FIG. 2 is an explanatory diagram of the operation of the discharge circuit of FIG. FIG. 2 shows an example of discharge characteristics of a unit cell when a battery pack is discharged by the discharge circuit of the present invention. Ba is a unit cell having the largest charge amount among the n unit cells in FIG. 1 that constitute the assembled battery, and Bb is a unit cell having the smallest charge amount. Switching switches SW1 to SW provided for n unit cells B1 to Bn
n is connected to each cell side and discharge starts,
The voltages of Ba and Bb at the start of the discharge are almost the same as described with reference to FIG. 4, but the voltage difference increases as time elapses and the discharge proceeds. When the voltage difference between the single cells Ba and the single cells Bb reaches the preset current bypass voltage difference ΔVoff at the discharge time t1, the changeover switch provided on the single cells Bb switches from the battery side to the current bypass circuit side. And the cell Bb is disconnected from the assembled battery. As a result, the voltage of the assembled battery input to the DC / DC converter 4 decreases by the voltage of the cell Bb,
The input current of DC / DC converter 4 increases so as to secure a predetermined power. For this reason, as a result, the discharge current of the battery increases, and the voltage drop rate of other batteries including the unit cell Ba increases. At this time, the voltage of the disconnected single cell Bb is gradually recovered because the discharging is stopped, and at time t2, the voltage difference between the single cell Bb and the single cell Ba is reduced to a predetermined value. The voltage difference becomes ΔVon, the switch for switching provided on the cell Bb is switched again from the current bypass circuit side to the battery side, and the cell Bb is connected back to the assembled battery. The cell Bb is restored by the connection restoration.
Resumes discharging, and at time t3, the cell B1
To Bn is a preset discharge end voltage Ve
nd is reached and the discharge is stopped. Here, after time t1, if the voltage difference between the single cell Ba and the single cell Bb does not decrease, the switching switch provided on the single cell Bb remains connected to the current bypass circuit side, that is, With the battery being disconnected, the voltage of the battery becomes D
It is assumed that the voltage becomes lower than the input side allowable voltage of the C / DC converter 4 and none of the individual cells constituting the assembled battery reaches Vend, that is, the discharge ends in a state where the individual cells are not sufficiently discharged. Is done. In the configuration of FIG. 1, as a measure against this, the lower limit of the input side allowable voltage range of the DC / DC converter is set as described above.
Since Vend × (nm) or less, at least one or more batteries can be discharged to Vend, and the vicinity of the discharge end voltage where it is easy to detect the difference in charge amount between cells as a voltage difference. In the above, the discharge can be performed while the charge amount is corrected by the voltage.

【0011】図3は、図1の放電回路における制御動作
の説明図である。図3において、まず各単電池毎に設け
られた切換え用スイッチSW1〜SWnを電池側に接続
して(S1)、放電運転を開始する(S2)。次に、各単電
池B1〜Bnの電圧V1〜Vnを検出し(S3)、該電
圧V1〜Vnそれぞれと電池放電下限電圧Vendとを
比較し(S4)、少なくともいずれかの単電池の電圧がV
end以下となったら切換え用スイッチSW1〜SWn
を電流迂回回路側に接続し(S10)、放電運転を終了す
る(S11)。ここで、放電運転終了時、切換え用スイッ
チSW1〜SWn全てを電流迂回回路側に切換えるの
は、放電運転終了処理中の電池電圧降下率をできるだけ
小さくし、電池電圧がVend以下になるのを防止する
ためである。また、ステップS4において、各単電池B
1〜Bnの電圧V1〜Vnの全てがVendより高い場
合は、該電圧V1〜Vnより、最高電池電圧Vmaxと
最低電池電圧Vminとを抽出し(S5)、両電圧間の差
△Vを算出する(S6)。次に、該△Vと、予め設定して
おいた電池電流迂回電圧差△Voffを比較する(S
7)。比較の結果、該△V値が該△Voff値以上であ
れば切換え用スイッチSW1〜SWnの全てをいったん
電流迂回回路側に接続(S8)してから、Vminに相当
する単電池の切換え用スイッチを電池側に接続し(S
9)、単電池電圧V1〜Vnの検出(S3)を再び行う。
このとき、Vminに相当する電池が複数存在した場合
は、DC/DCコンバータの入力許容電圧範囲の下限V
end×(n−m)を考慮し、Vminに相当する複数の
電池より最大m個までの電池を任意に選択し、この選択
した電池に設けた切換え用スイッチをそれぞれ電流迂回
回路側に接続すればよい。また、ステップS7において
△Vが電池電流迂回電圧差△Voffより低い場合は、
△Vを予め設定しておいた放電再開電圧差△Vonと比
較し(S12)、△Vが放電再開電圧差△Von以下の場
合は、前回の処理で電流迂回回路側に接続しておいた切
換え用スイッチも含め、全部の切換え用スイッチSW1
〜SWnを電池側に接続した状態とし(S13)、電池電
圧V1〜Vnの検出(S3)を再び行う。それ以外の場
合、つまり、△Vが放電再開電圧差△Vonよりも高い
場合も全部の切換え用スイッチSW1〜SWnは電池側
に接続された状態として、電池電圧V1〜Vnの検出
(S3)を行う。
FIG. 3 is an explanatory diagram of a control operation in the discharge circuit of FIG. In FIG. 3, first, the switching switches SW1 to SWn provided for each unit cell are connected to the battery side (S1), and the discharging operation is started (S2). Next, the voltages V1 to Vn of the cells B1 to Bn are detected (S3), and the voltages V1 to Vn are compared with the battery discharge lower limit voltage Vend (S4). V
If it becomes less than end, the changeover switches SW1 to SWn
Is connected to the current bypass circuit side (S10), and the discharging operation is terminated (S11). Here, at the end of the discharge operation, all of the changeover switches SW1 to SWn are switched to the current bypass circuit side in order to minimize the battery voltage drop rate during the discharge operation end processing and prevent the battery voltage from falling below Vend. To do that. In step S4, each cell B
If all of the voltages V1 to Vn of 1 to Bn are higher than Vend, the highest battery voltage Vmax and the lowest battery voltage Vmin are extracted from the voltages V1 to Vn (S5), and the difference ΔV between the two voltages is calculated. (S6). Next, the ΔV is compared with a preset battery current bypass voltage difference ΔVoff (S
7). As a result of the comparison, if the ΔV value is equal to or greater than the ΔVoff value, all of the changeover switches SW1 to SWn are once connected to the current bypass circuit side (S8), and then the changeover switch for the cell corresponding to Vmin To the battery side (S
9) The detection of the cell voltages V1 to Vn (S3) is performed again.
At this time, if there are a plurality of batteries corresponding to Vmin, the lower limit V of the input allowable voltage range of the DC / DC converter
In consideration of end × (nm), a maximum of m batteries can be arbitrarily selected from a plurality of batteries corresponding to Vmin, and a changeover switch provided for the selected battery is connected to the current bypass circuit side. Just fine. If △ V is lower than the battery current bypass voltage difference △ Voff in step S7,
ΔV is compared with a preset discharge restart voltage difference ΔVon (S12), and when ΔV is equal to or smaller than the discharge restart voltage difference ΔVon, it has been connected to the current bypass circuit side in the previous process. All changeover switches SW1 including changeover switches
To SWn are connected to the battery side (S13), and the battery voltages V1 to Vn are detected (S3) again. In other cases, that is, even when ΔV is higher than the discharge restart voltage difference ΔVon, all the switches SW1 to SWn are connected to the battery side, and the detection of the battery voltages V1 to Vn (S3) is performed. Do.

【0012】上記実施例によれば、放電時に、単電池間
の電圧差を縮めたり、組電池の電圧値を確保する等単電
池の電圧を高精度に管理した状態で組電池の放電を行わ
せることができ、負荷に安定して電力を供給できる。電
流増加に基づく負荷電力や、損失の増大も防止でき、負
荷を含めた放電回路系または蓄電装置の効率を向上させ
得る。また、少なくとも1個以上の電池を放電終止電圧
Vendまで放電させることが可能であり、各単電池の
SOC(残存充電率)の差を少なく抑えることができ
る。また、単電池間の充電量の差を電圧差として検出し
易い放電終止電圧付近において、電圧による充電量補正
を行いながら放電させることもできる。
According to the above embodiment, at the time of discharging, the battery pack is discharged in a state where the voltage of the battery cells is controlled with high precision, such as reducing the voltage difference between the cells or securing the voltage value of the battery pack. Power can be stably supplied to the load. It is possible to prevent an increase in load power or loss due to an increase in current, and to improve the efficiency of a discharge circuit system or a power storage device including a load. Further, at least one or more batteries can be discharged to the discharge end voltage Vend, and the difference in SOC (remaining charge rate) of each unit cell can be suppressed. In addition, in the vicinity of the discharge end voltage at which the difference in the amount of charge between the single cells can be easily detected as the voltage difference, the discharge can be performed while performing the charge amount correction by the voltage.

【0013】以下、組電池の冷却につき説明する。図5
及び図6は本発明の実施例としての蓄電装置の構成例図
である。図5において、10は熱電素子、10aは熱電
素子の発熱面、10bは熱電素子の吸熱面、13は充放
電装置、12は金属ケース、14は単電池、16は組電
池、15は商用電源、17は負荷、18は冷却ファン、
21は電池ケース、31は冷却風路、32は冷却用空気
の導入口、33は排出口である。充放電装置13と組電
池16は金属ケース12内に収納される。充放電装置1
3は、商用電源15、組電池16、及び負荷7に接続さ
れている。充放電装置13は商用電源5からの電源電力
を交流から直流に変換し、該直流で組電池16を充電す
る。充放電装置13は、太陽電池、燃料電池などの自家
発電電源からの電力を組電池16に供給し蓄電するよう
にしてもよい。組電池16の放電時においては、該充放
電装置13は、組電池16の放電電力を直流から交流に
変換して負荷7に給電するか、または、組電池16の放
電電力を直流のまま負荷7に給電する。組電池16は、
ニッケル水素電池、ニッカド電池、リチウムイオン電池
などの単電池を複数個直列または並列接続して成る。組
電池16は、金属ケース12内において電池ケース21
やホルダーなどに取り付けられる。電池ケース21やホ
ルダーは冷却風路31が形成され、その両端部には冷却
用空気の導入口32と排出口33を備え、排出口33ま
たはその近傍には冷却ファン18が設けられている。冷
却ファン18は導入口32より吸い込んだ空気を組電池
16に当て該空気で該組電池を冷却して熱交換を行わ
せ、温まった空気を排出口33より装置外部に強制排気
する。冷却ファン8は充放電回路13と熱電素子10と
に接続されている。該熱電素子10は、ペルチェ素子か
ら成り、発熱面10aと吸熱面10bに温度差が生じる
と電力を生成する。該熱電素子10の発熱面10aは、
組電池16の表面に密着させるか、または、電池ケース
21などの組電池16に直接または間接に接する部材で
あって充放電時に一番高い温度分布を示す部位に装着さ
れる。組電池16の表面に密着させた場合は、電池温度
上昇の追従性を上げることができる。反対側の吸熱面1
0bは、発熱面10aより低い温度となるよう冷却風路
31の空気導入口32に面するよう配されるが、より温
度差を大きくするためにヒートシンクなどを装着しても
よい。かかる構成において、充電または放電に伴い、電
池温度が上昇すると、装着された熱電素子10の発熱面
10aが熱せられ、吸熱面10bとの間に温度差を生じ
る。このため、熱電素子10は組電池16のジュール熱
及び発熱反応による熱エネルギーを吸収して電力を生成
する。該電力は冷却ファン18に供給されて該冷却ファ
ン18を駆動する。該冷却ファン18の回転による冷却
空気で組電池16が強制空冷される。この生成される電
力は、発熱面10aと吸熱面10bの温度差が大きいほ
ど大きい。このため、組電池16の温度に応じたファン
風量を供給できる。また充電または放電終了後に、組電
池16が十分に冷却されていない場合は、発熱面10a
と吸熱面10bとの間には温度差が依然存在するため、
冷却ファン18は駆動され続ける。上記図5の構成の蓄
電装置によれば、温度上昇による熱エネルギーを利用し
て冷却ファンを駆動させるため、組電池の冷却に係る消
費電力を抑えつつ、組電池の温度に応じた冷却を行うこ
とができる。商用電源や電池電源の利用不可な充放電未
運転時にも電池冷却が可能である。
Hereinafter, cooling of the assembled battery will be described. FIG.
And FIG. 6 is a configuration example diagram of a power storage device as an embodiment of the present invention. 5, reference numeral 10 denotes a thermoelectric element, 10a denotes a heat generating surface of the thermoelectric element, 10b denotes a heat absorbing surface of the thermoelectric element, 13 denotes a charging / discharging device, 12 denotes a metal case, 14 denotes a unit cell, 16 denotes an assembled battery, and 15 denotes a commercial power supply. , 17 is a load, 18 is a cooling fan,
21 is a battery case, 31 is a cooling air passage, 32 is an inlet for cooling air, and 33 is an outlet. The charge / discharge device 13 and the battery pack 16 are housed in the metal case 12. Charge / discharge device 1
3 is connected to the commercial power supply 15, the battery pack 16, and the load 7. The charging / discharging device 13 converts the power supply from the commercial power supply 5 from AC to DC, and charges the assembled battery 16 with the DC. The charging / discharging device 13 may supply power from a private power source such as a solar cell or a fuel cell to the battery pack 16 to store the power. When the battery pack 16 is discharged, the charging / discharging device 13 converts the discharge power of the battery pack 16 from DC to AC and feeds it to the load 7, or loads the discharge power of the battery pack 16 as DC. 7. The assembled battery 16
A plurality of cells such as nickel-metal hydride batteries, nickel-cadmium batteries, and lithium-ion batteries are connected in series or in parallel. The assembled battery 16 includes a battery case 21 inside the metal case 12.
And can be attached to a holder. A cooling air passage 31 is formed in the battery case 21 and the holder, and an inlet 32 and an outlet 33 for cooling air are provided at both ends thereof, and the cooling fan 18 is provided at or near the outlet 33. The cooling fan 18 applies the air sucked from the inlet 32 to the battery pack 16 to cool the battery pack with the air to cause heat exchange, and forcibly exhausts the warmed air to the outside of the apparatus from the discharge port 33. Cooling fan 8 is connected to charge / discharge circuit 13 and thermoelectric element 10. The thermoelectric element 10 includes a Peltier element, and generates electric power when a temperature difference occurs between the heat generating surface 10a and the heat absorbing surface 10b. The heating surface 10a of the thermoelectric element 10
It is attached to the surface of the assembled battery 16 or a member such as the battery case 21 which is in direct or indirect contact with the assembled battery 16 and which has the highest temperature distribution during charging and discharging. When the battery is brought into close contact with the surface of the battery pack 16, the followability of the battery temperature rise can be improved. Heat absorbing surface 1 on the other side
Ob is disposed so as to face the air inlet 32 of the cooling air passage 31 so as to have a lower temperature than the heat generating surface 10a, but a heat sink or the like may be mounted to further increase the temperature difference. In such a configuration, when the battery temperature rises due to charging or discharging, the heat generating surface 10a of the attached thermoelectric element 10 is heated, and a temperature difference is generated between the heat generating surface 10a and the heat absorbing surface 10b. For this reason, the thermoelectric element 10 generates electric power by absorbing the heat energy due to the Joule heat and the exothermic reaction of the assembled battery 16. The electric power is supplied to the cooling fan 18 to drive the cooling fan 18. The assembled battery 16 is forcibly air-cooled by the cooling air generated by the rotation of the cooling fan 18. The generated power increases as the temperature difference between the heat generating surface 10a and the heat absorbing surface 10b increases. For this reason, a fan air volume according to the temperature of the battery pack 16 can be supplied. If the battery pack 16 has not been sufficiently cooled after the completion of charging or discharging, the heat generating surface 10a
And there is still a temperature difference between the heat absorbing surface 10b and
The cooling fan 18 continues to be driven. According to the power storage device having the configuration shown in FIG. 5, since the cooling fan is driven by using the heat energy due to the temperature rise, cooling according to the temperature of the battery pack is performed while suppressing power consumption for cooling the battery pack. be able to. The battery can be cooled even when the commercial power supply or the battery power supply cannot be used and the charging / discharging operation is not performed.

【0014】図6は本発明の実施例としての蓄電装置の
他の構成例である。上記図5における構成に対し、熱電
素子10の発熱面10aが、金属ケース12の内面に取
り付けられている点、及び、充放電装置13からも冷却
ファン18へ駆動電力が給電されるようになっている点
が異なる。該発熱面10aは、直射日光照射等により金
属ケース12が高い温度分布を示す部位に密着状態で装
着されている。吸熱面10bは、該金属ケース12の内
側方向を向き、該発熱面10aよりも低い温度となる
が、より温度差を大きくし生成電力を増大させるために
ヒートシンクなどを装着してもよい。充電放電運転時に
おいては、充放電装置13からも冷却ファン18へ駆動
電力が給電され、冷却ファン18を回転させて組電池1
6を強制空冷する。一方、蓄電装置未運転時には充放電
装置13より冷却ファン8への給電は行われない。この
ような状態で、例えば直射日光等により金属ケース12
が熱せられ表面温度が上昇すると、ケース内側に装着さ
れた熱電素子10の発熱面10aも同時に熱せられ、吸
熱面10bとの間に温度差を生じ、熱電素子10は金属
ケース2からの熱エネルギーを吸収して電力を生成す
る。この電力は冷却ファン18に供給されて該冷却ファ
ン18を駆動する。一般に、金属ケース12の表面温度
の上昇速度は、熱容量の大きい組電池6よりも大きいた
め、組電池16の温度が上昇する前から冷却ファン18
に電力を送電し空冷を開始することが可能であり、これ
によって、より効果的に組電池16の冷却を行うことが
できる。また、このような未運転時には、充放電装置1
3の発熱や電池自身の発熱がないため、外部条件に起因
する温度上昇さえ抑制できればよい。上記図6の構成の
蓄電装置によれば、温度上昇による熱エネルギーを利用
して冷却ファンを駆動させるため、組電池の冷却に係る
消費電力を抑えつつ、組電池の温度に応じた冷却を行う
ことができる。商用電源や電池電源の利用不可な充放電
未運転時にも電池冷却が可能で、電池温度が上昇する前
から空冷を開始することもできる。特に、蓄電装置の運
転時には、充放電装置13からの電力も冷却ファン18
に供給されるため、冷却能力を大幅に高め、高い温度環
境下での蓄電装置使用に対応できる。
FIG. 6 shows another configuration example of a power storage device as an embodiment of the present invention. Compared to the configuration in FIG. 5, the point that the heat generating surface 10 a of the thermoelectric element 10 is attached to the inner surface of the metal case 12, and the drive power is also supplied to the cooling fan 18 from the charge / discharge device 13. Is different. The heat-generating surface 10a is mounted in close contact with a portion where the metal case 12 exhibits a high temperature distribution by direct sunlight irradiation or the like. The heat absorbing surface 10b faces inward of the metal case 12 and has a lower temperature than the heat generating surface 10a. However, a heat sink or the like may be mounted to further increase the temperature difference and increase the generated power. During the charge / discharge operation, drive power is also supplied from the charge / discharge device 13 to the cooling fan 18, and the cooling fan 18 is rotated to
6. Force air cooling. On the other hand, when the power storage device is not operating, power is not supplied from the charge / discharge device 13 to the cooling fan 8. In such a state, for example, the metal case 12 is exposed to direct sunlight or the like.
When the surface temperature rises due to the heat generated, the heat generating surface 10a of the thermoelectric element 10 mounted inside the case is also heated, and a temperature difference is generated between the heat absorbing surface 10b and the thermoelectric element 10. To generate electric power. This electric power is supplied to the cooling fan 18 to drive the cooling fan 18. In general, the rising speed of the surface temperature of the metal case 12 is higher than that of the assembled battery 6 having a large heat capacity.
, And air cooling can be started, whereby the battery pack 16 can be cooled more effectively. In such a non-operation time, the charging / discharging device 1
Since there is no heat generation of No. 3 or the heat generation of the battery itself, it is sufficient that only a temperature rise caused by external conditions can be suppressed. According to the power storage device having the configuration shown in FIG. 6, since the cooling fan is driven by using the heat energy due to the temperature rise, cooling according to the temperature of the battery pack is performed while suppressing power consumption for cooling the battery pack. be able to. The battery can be cooled even when the commercial power supply or the battery power supply cannot be used and the battery is not operated, and the air cooling can be started before the battery temperature rises. In particular, during operation of the power storage device, electric power from the charging / discharging device 13 is also supplied to the cooling fan 18.
As a result, the cooling capacity can be greatly increased, and the power storage device can be used in a high temperature environment.

【0015】[0015]

【発明の効果】本発明によれば、放電については、単電
池の電圧を高精度に管理した状態で組電池の放電を行わ
せることができ、負荷に安定して電力を供給できる。電
流増加に基づく負荷電力や、損失の増大も防止でき、負
荷を含めた放電回路系または蓄電装置の効率を向上させ
得る。また、各単電池のSOC(残存充電率)の差を少
なく抑えることができる。
According to the present invention, it is possible to discharge the assembled battery while controlling the voltage of the unit cell with high accuracy, and to supply power stably to the load. It is possible to prevent an increase in load power or loss due to an increase in current, and to improve the efficiency of a discharge circuit system or a power storage device including a load. Further, the difference in the SOC (remaining charge rate) of each unit cell can be reduced.

【0016】また、冷却については、温度上昇による熱
エネルギーを冷却電力に利用する構成のため、消費電力
を低減した状態で効率的に組電池を冷却できる。また、
商用電源や電池電源の利用不可な充放電未運転時にも冷
却が可能である。
Further, as for cooling, since the heat energy due to the temperature rise is used for cooling power, the battery pack can be efficiently cooled with reduced power consumption. Also,
Cooling is possible even when charging / discharging is not in operation, where commercial power or battery power cannot be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例としての放電回路の構成例図で
ある。
FIG. 1 is a configuration example diagram of a discharge circuit as an embodiment of the present invention.

【図2】図1の放電回路の動作説明図である。FIG. 2 is an operation explanatory diagram of the discharge circuit of FIG. 1;

【図3】図1の放電回路における制御動作の説明図であ
る。
FIG. 3 is an explanatory diagram of a control operation in the discharge circuit of FIG.

【図4】組電池の充電特性例を示す図である。FIG. 4 is a diagram showing an example of charging characteristics of a battery pack.

【図5】本発明の実施例としての蓄電装置の構成例図で
ある。
FIG. 5 is a configuration example diagram of a power storage device as an embodiment of the present invention.

【図6】本発明の実施例としての蓄電装置の構成例図で
ある。
FIG. 6 is a configuration example diagram of a power storage device as an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

B1〜Bn…単電池、 SW1〜SWn…切換え用スイ
ッチ、 1…スイッチ駆動回路、 2…制御用マイコ
ン、 3…電池電圧検出回路、 4…DC/DCコンバ
ータ、 5…負荷、 10…熱電素子、 10a…発熱
面、 10b…吸熱面、 12…金属ケース、 21…
電池ケース、 16…組電池、 18…冷却ファン。
B1 to Bn: unit cells, SW1 to SWn: switch for switching, 1: switch drive circuit, 2: microcomputer for control, 3: battery voltage detection circuit, 4: DC / DC converter, 5: load, 10: thermoelectric element, 10a: Heat generating surface, 10b: Heat absorbing surface, 12: Metal case, 21 ...
Battery case, 16: assembled battery, 18: cooling fan.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂入 美千子 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 Fターム(参考) 5G003 BA03 CA11 DA13 DA15 GB03 5H030 AA03 AA04 AA06 BB21 FF24 FF26 FF44 5H031 AA09 CC05 CC09 KK01 5H115 PG04 PI16 PO10 TI02 TI05 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Michiko Sakairi 800 F, Tomita, Oita-machi, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture F-term (Ref.) 5G003 BA03 CA11 DA13 DA15 GB03 5H030 AA03 AA04 AA06 BB21 FF24 FF26 FF44 5H031 AA09 CC05 CC09 KK01 5H115 PG04 PI16 PO10 TI02 TI05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】複数個の単電池を直列接続して成る組電池
の放電方法であって、 放電状態で各単電池の電圧を検出し該単電池間の電圧差
を求める第1のステップと、 該求めた電圧差に基づき特定される単電池の接続を組電
池から切り離す第2のステップと、 を備え、組電池内の単電池の電圧差を抑えた状態で該組
電池を放電させることを特徴とする組電池の放電方法。
1. A method of discharging a battery pack comprising a plurality of cells connected in series, comprising: detecting a voltage of each cell in a discharged state to obtain a voltage difference between the cells. A second step of disconnecting the connection of the unit cell specified based on the obtained voltage difference from the assembled battery, and discharging the assembled battery in a state where the voltage difference of the unit cells in the assembled battery is suppressed. A method for discharging an assembled battery, comprising:
【請求項2】複数個の単電池を直列接続して成る組電池
の放電方法であって、 放電状態で各単電池の電圧を検出し該単電池間の電圧差
を求める第1のステップと、 該求めた電圧差が、予め設定してある基準値以上または
該基準値を超えるとき、該電圧差を生じている低電圧側
の単電池を組電池から切り離す第2のステップと、 該低電圧側の単電池を切り離した状態で組電池を放電さ
せる第3のステップと各単電池の電圧を検出し電圧差を
求め、該切り離した単電池の電圧差が基準値以下または
基準値未満のとき、該切り離した単電池を再び組電池内
に直列接続する第4のステップと、 を備え、組電池内の単電池の電圧差を抑えた状態で該組
電池を放電させることを特徴とする組電池の放電方法。
2. A method for discharging a battery pack comprising a plurality of cells connected in series, comprising: detecting a voltage of each cell in a discharged state to obtain a voltage difference between the cells; A second step of, when the obtained voltage difference is equal to or more than a preset reference value or exceeding the reference value, disconnecting the low-voltage unit cell having the voltage difference from the assembled battery; A third step of discharging the battery pack with the voltage-side unit cells separated and detecting the voltage of each unit cell to determine the voltage difference, and determining that the voltage difference between the separated unit cells is equal to or less than the reference value or less than the reference value. And a fourth step of connecting the separated cells in series again in the assembled battery, wherein the assembled battery is discharged in a state where the voltage difference between the cells in the assembled battery is suppressed. How to discharge the assembled battery.
【請求項3】上記第2のステップにおいて組電池から切
り離しが可能な単電池の個数は、組電池の電圧変動を抑
えるためのDC/DCコンバータの許容入力電圧に基づ
き定められる請求項1または請求項2に記載の組電池の
放電方法。
3. The method according to claim 1, wherein the number of cells that can be separated from the battery pack in the second step is determined based on an allowable input voltage of a DC / DC converter for suppressing voltage fluctuation of the battery pack. Item 3. The method for discharging an assembled battery according to Item 2.
【請求項4】上記DC/DCコンバータの許容入力電圧
は、単電池の許容放電終止電圧Vendと上記切り離し
後の残りの単電池数との積の電圧値に設定される請求項
3に記載の組電池の放電方法。
4. The DC / DC converter according to claim 3, wherein the allowable input voltage of the DC / DC converter is set to a voltage value of a product of an allowable discharge end voltage Vend of the cell and the number of remaining cells after the disconnection. How to discharge the assembled battery.
【請求項5】上記単電池は、非水電解液二次電池である
請求項1から4のいずれかに記載の組電池の放電方法。
5. The method according to claim 1, wherein the single cell is a non-aqueous electrolyte secondary battery.
【請求項6】複数個の単電池を直列接続した組電池の放
電回路であって、 単電池単位で設けられた電流迂回手段と、 該電流迂回手段をオンまたはオフ状態にするスイッチ手
段と、 各単電池の電圧を検出し該単電池間の電圧差を求める手
段と、 該電圧差に基づき上記スイッチ手段を制御する制御手段
と、 を備え、上記電圧差に基づき特定される単電池に対応し
た上記電流迂回手段を上記スイッチ手段によりオン状態
にして、該単電池の接続を組電池から切り離し、組電池
内の単電池の電圧差を抑えた状態で該組電池を放電させ
るようにした構成を特徴とする組電池の放電回路。
6. A discharge circuit for a battery pack in which a plurality of cells are connected in series, comprising: a current diverting means provided for each cell; and a switch means for turning on or off the current diverting means. Means for detecting the voltage of each cell and obtaining a voltage difference between the cells, and control means for controlling the switch means based on the voltage difference, corresponding to the cell specified based on the voltage difference The above-mentioned current diverting means is turned on by the above-mentioned switch means, the connection of the unit cells is disconnected from the assembled battery, and the assembled battery is discharged in a state where the voltage difference between the cells in the assembled battery is suppressed. A discharge circuit for a battery pack.
【請求項7】複数個の単電池を直列接続した組電池の放
電回路であって、 単電池単位で設けられた電流迂回手段と、 該電流迂回手段をオンまたはオフ状態にするスイッチ手
段と、 各単電池の電圧を検出し電圧差を求める手段と、 該電圧差に基づき上記スイッチ手段を制御する制御手段
と、 を備え、上記電圧差が予め設定してある基準値以上また
は該基準値を超えるときは、該電圧差を生じている低電
圧側の単電池に対応した上記電流迂回手段を上記スイッ
チ手段によりオン状態にして、該低電圧側の単電池の接
続を組電池から切り離し、該切り離した単電池の電圧差
が上記基準値以下または基準値未満となったときは、上
記スイッチ手段により上記電流迂回手段を再びオフ状態
にし、該切り離していた単電池を再び該組電池内に直列
接続し、該組電池内の単電池の電圧差を抑えた状態で該
組電池を放電させるようにした構成を特徴とする組電池
の放電回路。
7. A discharge circuit for a battery pack in which a plurality of cells are connected in series, comprising: a current diverting means provided for each cell; and a switch means for turning on or off the current diverting means. Means for detecting the voltage of each cell to obtain a voltage difference, and control means for controlling the switch means based on the voltage difference, wherein the voltage difference is equal to or greater than a preset reference value or the reference value If the voltage difference is exceeded, the current bypass means corresponding to the cell on the low voltage side where the voltage difference is generated is turned on by the switch means, and the connection of the cell on the low voltage side is disconnected from the assembled battery. When the voltage difference between the separated cells becomes equal to or less than the reference value or less than the reference value, the current bypass means is turned off again by the switch means, and the separated cells are connected again in series in the battery pack. Connection , The discharge circuit of the battery pack, characterized in configuration so as to discharge the said set battery while suppressing a voltage difference between the unit cells within said set battery.
【請求項8】複数個の単電池を直列接続した組電池の放
電回路であって、 単電池単位で設けられた電流迂回手段と、 該電流迂回手段をオンまたはオフ状態にするスイッチ手
段と、 各単電池の電圧を検出し電圧差を求める手段と、 該電圧差に基づき上記スイッチ手段を制御する制御手段
と、 上記組電池の出力電圧変動を抑えて負荷側に供給するた
めのDC/DCコンバータと、 を備え、上記電圧差が予め設定してある基準値以上また
は該基準値を超えるとき、該電圧差を生じている低電圧
側の単電池に対応した上記電流迂回手段を上記スイッチ
手段によりオン状態にして、該低電圧側の単電池の接続
を組電池から切り離し、組電池内の単電池の電圧差を抑
えた状態で上記DC/DCコンバータを介し放電させる
ようにした構成を特徴とする組電池の放電回路。
8. A discharge circuit for a battery pack in which a plurality of cells are connected in series, comprising: current bypass means provided for each cell; and switch means for turning on or off the current bypass means; Means for detecting the voltage of each cell to obtain a voltage difference; control means for controlling the switch means based on the voltage difference; and DC / DC for suppressing the output voltage fluctuation of the battery pack and supplying it to the load side And a converter, wherein when the voltage difference is equal to or greater than a predetermined reference value or exceeds the reference value, the current diverting means corresponding to the cell on the low voltage side causing the voltage difference is switched to the switching means. , The cell of the low voltage side is disconnected from the battery pack, and the battery is discharged via the DC / DC converter in a state where the voltage difference between the cells in the battery pack is suppressed. To be Discharge circuit of the battery.
【請求項9】上記単電池は、非水電解液二次電池である
請求項6、7または8に記載の組電池の放電回路。
9. The discharge circuit for an assembled battery according to claim 6, wherein the single cell is a non-aqueous electrolyte secondary battery.
【請求項10】組電池を備えた蓄電装置であって、 発熱面が上記組電池、該組電池に直接または間接に接す
る部材または筐体に装着された熱電素子と、 該熱電素子に接続された冷却ファンと、 を備え、該熱電素子の生成電力により該冷却ファンを駆
動し該組電池を冷却するようにした構成を特徴とする蓄
電装置。
10. A power storage device provided with an assembled battery, wherein the heat generating surface is connected to the assembled battery, a thermoelectric element mounted on a member or a housing directly or indirectly in contact with the assembled battery, and a thermoelectric element connected to the thermoelectric element. And a cooling fan, wherein the cooling fan is driven by the power generated by the thermoelectric element to cool the battery pack.
【請求項11】上記組電池は、非水電解液二次電池から
構成される請求項10に記載の蓄電装置。
11. The power storage device according to claim 10, wherein said assembled battery is constituted by a non-aqueous electrolyte secondary battery.
JP2001122251A 2001-04-20 2001-04-20 Discharge method of assembled battery and discharge circuit of assembled battery Expired - Fee Related JP3526277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122251A JP3526277B2 (en) 2001-04-20 2001-04-20 Discharge method of assembled battery and discharge circuit of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122251A JP3526277B2 (en) 2001-04-20 2001-04-20 Discharge method of assembled battery and discharge circuit of assembled battery

Publications (2)

Publication Number Publication Date
JP2002320339A true JP2002320339A (en) 2002-10-31
JP3526277B2 JP3526277B2 (en) 2004-05-10

Family

ID=18971989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122251A Expired - Fee Related JP3526277B2 (en) 2001-04-20 2001-04-20 Discharge method of assembled battery and discharge circuit of assembled battery

Country Status (1)

Country Link
JP (1) JP3526277B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006087A (en) * 2008-06-24 2010-01-14 Toyota Motor Corp Hybrid vehicle
WO2013008882A1 (en) * 2011-07-12 2013-01-17 株式会社 豊田自動織機 Temperature detection device
JP2013192389A (en) * 2012-03-14 2013-09-26 Ntt Facilities Inc Discharge control system and discharge control method for battery pack
JP2013192388A (en) * 2012-03-14 2013-09-26 Ntt Facilities Inc Discharge control system and discharge control method for battery pack
KR101382663B1 (en) 2011-11-30 2014-04-14 서울과학기술대학교 산학협력단 Cooling device in system discharging battery depending on discharge profile and manufacturing method thereof
CN114342159A (en) * 2019-09-03 2022-04-12 株式会社Lg新能源 Battery pack, battery holder, and energy storage system including the battery holder
CN115007503A (en) * 2022-07-19 2022-09-06 湖北亿纬动力有限公司 Battery cell sorting method, device, equipment and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006087A (en) * 2008-06-24 2010-01-14 Toyota Motor Corp Hybrid vehicle
WO2013008882A1 (en) * 2011-07-12 2013-01-17 株式会社 豊田自動織機 Temperature detection device
KR101382663B1 (en) 2011-11-30 2014-04-14 서울과학기술대학교 산학협력단 Cooling device in system discharging battery depending on discharge profile and manufacturing method thereof
JP2013192389A (en) * 2012-03-14 2013-09-26 Ntt Facilities Inc Discharge control system and discharge control method for battery pack
JP2013192388A (en) * 2012-03-14 2013-09-26 Ntt Facilities Inc Discharge control system and discharge control method for battery pack
CN114342159A (en) * 2019-09-03 2022-04-12 株式会社Lg新能源 Battery pack, battery holder, and energy storage system including the battery holder
CN115007503A (en) * 2022-07-19 2022-09-06 湖北亿纬动力有限公司 Battery cell sorting method, device, equipment and storage medium
CN115007503B (en) * 2022-07-19 2023-07-28 湖北亿纬动力有限公司 Cell sorting method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP3526277B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US6781343B1 (en) Hybrid power supply device
US7615969B2 (en) Systems and methods for temperature-dependent battery charging
JP4049959B2 (en) Battery charging method
US10320214B2 (en) Power tool
US10461546B2 (en) System and method of managing battery by using balancing battery
JP3931446B2 (en) Battery charge state adjustment device
US20050001593A1 (en) Method of charging and discharging a plurality of batteries
WO2009128080A1 (en) Method and apparatus for rapidly charging a battery
EP1118146A1 (en) Energy storage system
JP2001218306A (en) Power supply for hybrid vehicle
JP2010282878A (en) Secondary battery system and method of controlling temperature
US9413037B2 (en) Cell capacity adjusting device
JP2001314046A (en) Charging apparatus and method of battery pack and electric vehicle
CN113517750A (en) Multi-module portable power station
JP6648539B2 (en) Power storage system
KR20160051064A (en) Secondary Battery Charging And Discharging System And Control Method For Cooling
JP2003203679A (en) Power source device for automobile
EP4105069A1 (en) Charging management device, charging management method, and electric vehicle
JP3526277B2 (en) Discharge method of assembled battery and discharge circuit of assembled battery
JP3625721B2 (en) Battery control device for electric vehicle
WO2000042690A1 (en) Energy monitoring and charging system
JP2001043902A (en) Controlling method of battery pack for automobile
JPH11113183A (en) Battery device
JPH11150882A (en) Method for charging battery
JP2001161004A (en) Control method of battery pack

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees