JP2017135056A - Regeneration type fuel cell device and method for operating regeneration type fuel cell device - Google Patents

Regeneration type fuel cell device and method for operating regeneration type fuel cell device Download PDF

Info

Publication number
JP2017135056A
JP2017135056A JP2016015685A JP2016015685A JP2017135056A JP 2017135056 A JP2017135056 A JP 2017135056A JP 2016015685 A JP2016015685 A JP 2016015685A JP 2016015685 A JP2016015685 A JP 2016015685A JP 2017135056 A JP2017135056 A JP 2017135056A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
water
oxygen
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016015685A
Other languages
Japanese (ja)
Inventor
昇 篠崎
Noboru Shinozaki
昇 篠崎
雄作 谷内
Yusaku Yanai
雄作 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Aerospace Co Ltd filed Critical IHI Corp
Priority to JP2016015685A priority Critical patent/JP2017135056A/en
Publication of JP2017135056A publication Critical patent/JP2017135056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regeneration type fuel battery device which can store hydrogen and oxygen with a simple structure without consuming an energy, and which never exhausts hydrogen, oxygen, and water to outside the device.SOLUTION: A regeneration type fuel cell device 100 comprises: a fuel battery 1 which uses hydrogen of a hydrogen-storing part 5 and oxygen of an oxygen-storing part 6 to generate an electric power; a water electrolyzing device 3 which electrolyzes resultant water to generate a hydrogen gas and an oxygen gas; a gas-liquid separator 4a, 4b with a pressure-resistant container, which introduces a hydrogen or oxygen gas resulting from electrolysis into the pressure-resistant container, and controls the flow rate of a hydrogen or oxygen gas flowing out of the pressure-resistant container so as to retain an internal pressure in the pressure-resistant container at a predetermined pressure or larger and to dehumidify the hydrogen or oxygen gas; the hydrogen-storing part 5 for serving to store the dehumidified hydrogen gas; and the oxygen-storing part 6 for serving to store the dehumidified oxygen gas.SELECTED DRAWING: Figure 1

Description

本発明は、再生型燃料電池装置に係り、更に詳細には、太陽エネルギー等の外部電力を利用して水を電解して水素と酸素を蓄え、電力が必要なときに蓄えた水素等を燃料電池に供給して発電して電力を得る再生型燃料電池装置に関する。   The present invention relates to a regenerative fuel cell apparatus, and more specifically, electrolyzes water using external electric power such as solar energy to store hydrogen and oxygen, and stores hydrogen and the like stored when electric power is needed. The present invention relates to a regenerative fuel cell device that supplies power to a battery to generate electric power.

燃料電池は、発電効率が高く、電力消費地に設置できるので送電損失がなく、限られたエネルギー資源の有効利用が図られると共に、大気汚染物質の排出が極めて少ないクリーンな発電装置である。   A fuel cell is a clean power generator that has high power generation efficiency and can be installed in a power consuming area, so there is no transmission loss, effective use of limited energy resources, and extremely low emission of air pollutants.

上記燃料電池と水電解装置を組み合わせた再生型燃料電池は、余剰の電力が得られるときには水を電気分解して水素と酸素を発生させて貯蔵し、電力が必要なときに貯蔵した水素と酸素とを電気化学的に反応させて電気と水を生成することができる。   The regenerative fuel cell that combines the fuel cell and the water electrolysis device generates hydrogen and oxygen by electrolyzing water and stores it when surplus power is obtained, and stores the hydrogen and oxygen stored when power is required. Can be electrochemically reacted to produce electricity and water.

上記水電解により得られた水素及び酸素は飽和蒸気圧の水分を含んでおり、そのまま貯蔵すると燃料電池に供給する際、水が電極表面を覆って電池の発電効率が低下したり、ガスの搬送性が低下したりすることがある。
したがって、上記水電解により得られた水素や酸素を利用するためには上記水分をある程度除去することが必要である。
The hydrogen and oxygen obtained by the water electrolysis contain moisture at a saturated vapor pressure, and when stored as it is, when supplying it to the fuel cell, the water covers the electrode surface, reducing the power generation efficiency of the cell, May deteriorate.
Therefore, in order to use hydrogen and oxygen obtained by the water electrolysis, it is necessary to remove the moisture to some extent.

特許文献1の特開2014−185387号公報には、加熱再生できる吸着剤により、水電解により発生させた水素ガスを除湿することが開示されている。
また、特許文献2の特開2013−231213号公報には、水電解により発生させた水素ガス及び酸素ガスを、さらに水電解することで水素ガス及び酸素ガス中の水分を低減させることが開示されている。
さらに、特許文献3の特開2013−227634号公報には、水電解で生成された酸素を膨張減圧させて低温化し、該低温化された酸素と水電解で生成された水素とを熱交換することが開示されている。
Japanese Patent Application Laid-Open No. 2014-185387 of Patent Document 1 discloses dehumidification of hydrogen gas generated by water electrolysis with an adsorbent that can be heated and regenerated.
Japanese Patent Laid-Open No. 2013-231213 of Patent Document 2 discloses that hydrogen gas and oxygen gas generated by water electrolysis are further subjected to water electrolysis to reduce moisture in the hydrogen gas and oxygen gas. ing.
Furthermore, Japanese Patent Application Laid-Open No. 2013-227634 of Patent Document 3 expands and depressurizes oxygen generated by water electrolysis to lower the temperature, and heat-exchanges the reduced oxygen and hydrogen generated by water electrolysis. It is disclosed.

特開2014−185387号公報JP 2014-185387 A 特開2013−231213号公報JP 2013-231213 A 特開2013−227634号公報JP 2013-227634 A

上記再生型燃料電池を地上のみならず宇宙空間において使用する場合は、燃料電池から排出される水をすべて水素と酸素に戻して再利用することが望ましく、また、水素及び酸素を貯蔵するためのエネルギー等、再生型燃料電池の運転に伴う消費エネルギーを低減させることが好ましい。   When the regenerative fuel cell is used not only on the ground but also in outer space, it is desirable to recycle all the water discharged from the fuel cell back to hydrogen and oxygen, and to store hydrogen and oxygen. It is preferable to reduce energy consumption associated with the operation of the regenerative fuel cell, such as energy.

しかしながら、上記特許文献1〜3に記載の除湿方法を再生型燃料電池に適用する場合は、除去した水分の一部が再生型燃料電池外部に排出されることがあり、また、気液分離装置が複雑化・大型化し水素ガス及び酸素ガスの貯蔵のために多くのエネルギーが消費される。   However, when the dehumidification method described in Patent Documents 1 to 3 is applied to a regenerative fuel cell, part of the removed water may be discharged outside the regenerative fuel cell, and the gas-liquid separation device However, it becomes complicated and large, and much energy is consumed for storing hydrogen gas and oxygen gas.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、水素、酸素及び水を装置外に排出することがなく、かつ水素及び酸素の貯蔵に消費するエネルギーを、簡単な構造で少なくすることができる再生型燃料電池を提供することにある。   The present invention has been made in view of such problems of the prior art. The object of the present invention is to prevent hydrogen, oxygen and water from being discharged outside the apparatus, and to store hydrogen and oxygen. An object of the present invention is to provide a regenerative fuel cell that can consume less energy with a simple structure.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、燃料電池から排出された水を水電解装置により電解し、生成した水素及び酸素を順次気液分離装置に導入し、気液分離装置内圧力を所定圧力以上に維持して除湿することにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor electrolyzed water discharged from the fuel cell with a water electrolysis device, and sequentially introduced the generated hydrogen and oxygen into the gas-liquid separation device. It has been found that the above object can be achieved by dehumidifying the internal pressure of the separation device at a predetermined pressure or higher, and the present invention has been completed.

即ち、本発明の再生型燃料電池は、燃料電池と、水貯蔵部と、水電解装置と、気液分離装置と、水素貯蔵部と、酸素貯蔵部と、を備える。
そして、上記燃料電池が、上記水素貯蔵部の水素と上記酸素貯蔵部の酸素を用いて発電するものであり、
上記水貯蔵部が、上記燃料電池が排出した水を貯蔵するものであり、
上記水電解装置が、上記水貯蔵部の水を電解して水素ガス及び酸素ガスを発生させる水電解装置であり、
上記気液分離装置が、耐圧容器を有し、該耐圧容器に上記電解により発生した水素ガス又は酸素ガスを導入し、該耐圧容器から流出する水素ガス又は酸素ガスの流量を制御して上記耐圧容器内圧力を所定圧力以上に維持することで上記水素ガス又は酸素ガスの除湿を行うものであり、
上記水素貯蔵部が上記除湿された水素ガスを貯蔵し、上記酸素貯蔵部が上記除湿された酸素ガスを貯蔵するものであることを特徴とする。
That is, the regenerative fuel cell of the present invention includes a fuel cell, a water storage unit, a water electrolysis device, a gas-liquid separation device, a hydrogen storage unit, and an oxygen storage unit.
And the fuel cell generates power using hydrogen of the hydrogen storage part and oxygen of the oxygen storage part,
The water storage unit stores water discharged from the fuel cell;
The water electrolysis device is a water electrolysis device that generates hydrogen gas and oxygen gas by electrolyzing water in the water storage unit,
The gas-liquid separator has a pressure vessel, introduces hydrogen gas or oxygen gas generated by the electrolysis into the pressure vessel, and controls the flow rate of the hydrogen gas or oxygen gas flowing out from the pressure vessel. The dehydration of the hydrogen gas or oxygen gas is performed by maintaining the internal pressure of the container at a predetermined pressure or higher,
The hydrogen storage unit stores the dehumidified hydrogen gas, and the oxygen storage unit stores the dehumidified oxygen gas.

また、本発明の再生型燃料電池装置の運転方法は、燃料電池と、水貯蔵部と、水電解装置と、気液分離装置と、水素貯蔵部と、酸素貯蔵部と、を備える再生型燃料電池装置の運転方法である。
そして、上記燃料電池により上記水素貯蔵部の水素と上記酸素貯蔵部の酸素を用いて発電する発電工程と、
上記発電工程から生じる水を水貯蔵部で貯蔵する水貯蔵工程と、
上記水貯蔵部の水を上記水電解装置で電解して水素ガス及び酸素ガスを発生させる水電解工程と、
上記水電解工程で発生した水素ガス又は酸素ガスを上記気液分離装置の耐圧容器に導入し、該耐圧容器から流出する水素ガス又は酸素ガスの流量を制御して上記耐圧容器内圧力を所定圧力以上に維持することで上記水素ガス又は酸素ガスの除湿を行う気液分離工程と、
上記除湿された水素ガスを上記水素貯蔵部に貯蔵し、上記除湿された酸素ガスを上記酸素貯蔵部に貯蔵するガス貯蔵工程と、を有することを特徴とする。
Also, a method for operating a regenerative fuel cell apparatus according to the present invention comprises a regenerative fuel comprising a fuel cell, a water storage unit, a water electrolysis device, a gas-liquid separator, a hydrogen storage unit, and an oxygen storage unit. This is a method of operating a battery device.
And the electric power generation process which generates electricity using the hydrogen of the hydrogen storage part and the oxygen of the oxygen storage part by the fuel cell,
A water storage process for storing water generated from the power generation process in a water storage unit;
A water electrolysis step of generating hydrogen gas and oxygen gas by electrolyzing water in the water storage unit with the water electrolysis device;
Hydrogen gas or oxygen gas generated in the water electrolysis process is introduced into the pressure vessel of the gas-liquid separator, and the flow rate of the hydrogen gas or oxygen gas flowing out from the pressure vessel is controlled to set the pressure inside the pressure vessel to a predetermined pressure. A gas-liquid separation step of dehumidifying the hydrogen gas or oxygen gas by maintaining the above,
A gas storage step of storing the dehumidified hydrogen gas in the hydrogen storage unit and storing the dehumidified oxygen gas in the oxygen storage unit.

本発明によれば、水電解装置で発生して気液分離装置に流入させた水素及び酸素を、気液分離装置から流出する際の流量を調節することにより高圧化させることとしたため、加圧ポンプ等を用いることなく水素貯蔵部及び酸素貯蔵部への充填、並びに除湿が可能で、簡単な構造で省エネルギー化・高効率化が可能な再生型燃料電池を提供することができる。   According to the present invention, the hydrogen and oxygen generated in the water electrolysis device and introduced into the gas-liquid separation device are increased in pressure by adjusting the flow rate when flowing out of the gas-liquid separation device. It is possible to provide a regenerative fuel cell capable of filling the hydrogen storage unit and the oxygen storage unit and dehumidifying without using a pump or the like and saving energy and increasing efficiency with a simple structure.

本発明の再生型燃料電池装置の一例を示す概略図である。It is the schematic which shows an example of the regenerative fuel cell apparatus of this invention. 気液分離装置の一例を示す概略図である。It is the schematic which shows an example of a gas-liquid separator. 気液分離装置から取り出すガスの流量を制御したときの圧力変化を示すグラフである。It is a graph which shows a pressure change when controlling the flow volume of the gas taken out from a gas-liquid separator.

本発明の再生型燃料電池装置について詳細に説明する。
上記再生型燃料電池装置100は、図1に示すように、燃料電池1、水貯蔵部2、水電解装置3、気液分離装置4a、4b、水素貯蔵部5、及び酸素貯蔵部6を備え、水素ガス、酸素ガス、及び水を、外部に一切排出せずに再利用する閉鎖系の再生型燃料電池装置である。
The regenerative fuel cell device of the present invention will be described in detail.
As shown in FIG. 1, the regenerative fuel cell device 100 includes a fuel cell 1, a water storage unit 2, a water electrolysis device 3, gas-liquid separators 4 a and 4 b, a hydrogen storage unit 5, and an oxygen storage unit 6. This is a closed-type regenerative fuel cell device that reuses hydrogen gas, oxygen gas, and water without discharging them to the outside.

本発明の再生型燃料電池装置100は水電解装置3として高圧水電解装置を用いる。
上記高圧水電解装置は、高圧容器内に収められた電解セルにより、純水を電気分解して水素及び酸素を発生させるものであるあり、上記電解セルは固体高分子電解質膜(PEM)の両側に電極を有するものである。
The regenerative fuel cell apparatus 100 of the present invention uses a high-pressure water electrolysis apparatus as the water electrolysis apparatus 3.
The high-pressure water electrolysis apparatus is one that electrolyzes pure water by an electrolysis cell housed in a high-pressure vessel to generate hydrogen and oxygen, and the electrolysis cell is on both sides of a solid polymer electrolyte membrane (PEM). Have an electrode.

上記高圧水電解装置は、純水をそのまま電気分解するものであり、アルカリ等の添加物を使用する必要がないため、配管等の腐食が防止され、長期に亘り安定した運転が可能である。   The high-pressure water electrolysis apparatus electrolyzes pure water as it is and does not require the use of an additive such as an alkali. Therefore, corrosion of piping and the like is prevented, and stable operation is possible for a long time.

また、水を電気分解すると、18mLの水から標準状態で22.4Lの水素ガスと11.2Lの酸素ガスが得られ、体積が大きく膨張するため、密閉空間で水を電気分解することにより、コンプレッサーを用いることなく高圧の水素ガス及び酸素ガスを発生させることができる。   Moreover, when water is electrolyzed, 22.4 L hydrogen gas and 11.2 L oxygen gas are obtained from 18 mL of water in a standard state, and the volume expands greatly. Therefore, by electrolyzing water in a sealed space, High-pressure hydrogen gas and oxygen gas can be generated without using a compressor.

そして、発生した高圧の水蒸気含有ガスを次々に気液分離装置の耐圧容器内に導入し、該耐圧容器から流出するガスの流量を調節することで、上記耐圧容器内の圧力を所定圧力以上に維持すると、水蒸気含有ガス中の水蒸気が凝縮して水滴として分離され、水蒸気含有ガスがより低い露点のガスとなるため、高効率で水分を除去することができる。   Then, the generated high-pressure steam-containing gas is successively introduced into the pressure-resistant container of the gas-liquid separator, and the pressure in the pressure-resistant container is increased to a predetermined pressure or more by adjusting the flow rate of the gas flowing out from the pressure-resistant container. If maintained, water vapor in the water vapor-containing gas is condensed and separated as water droplets, and the water vapor-containing gas becomes a gas with a lower dew point, so that water can be removed with high efficiency.

したがって、水素ガス及び酸素ガスの除湿及び貯蔵部への充填のためにエネルギーを消費することがなく、高効率の再生型燃料電池装置とすることができる。   Therefore, energy is not consumed for dehumidification of hydrogen gas and oxygen gas and filling of the storage unit, and a highly efficient regenerative fuel cell device can be obtained.

上記気液分離装置について説明する。
上記気液分離装置は、図2に示すように、耐圧容器41と、水素ガス又は酸素ガスを取り出す取出導管42と、排水導管43と、上記耐圧容器41内の水位を検出する水位センサ44を備える。上記取出導管42は背圧弁421を有し、また上記排水導管43は電磁弁431を有する。
The gas-liquid separator will be described.
As shown in FIG. 2, the gas-liquid separation device includes a pressure vessel 41, an extraction conduit 42 for taking out hydrogen gas or oxygen gas, a drainage conduit 43, and a water level sensor 44 for detecting the water level in the pressure vessel 41. Prepare. The extraction conduit 42 has a back pressure valve 421, and the drainage conduit 43 has an electromagnetic valve 431.

但し、上記高圧水電解装置では、水素発生側か酸素発生側、またはその両方に給水して循環させるため、給水側の気液分離装置では電磁弁431を設けなくてもよい。   However, in the high-pressure water electrolysis apparatus, water is supplied to the hydrogen generation side, the oxygen generation side, or both to circulate, so the gas-liquid separation device on the water supply side does not have to provide the electromagnetic valve 431.

上記取出導管42の背圧弁421は所定の圧力で開弁するように設定され、上記排水導管43の電磁弁431は耐圧容器41内の水位が所定の水位よりも高いときに開弁するように設定される。   The back pressure valve 421 of the extraction conduit 42 is set to open at a predetermined pressure, and the electromagnetic valve 431 of the drainage conduit 43 is opened when the water level in the pressure vessel 41 is higher than the predetermined water level. Is set.

上記高圧水電解装置から気液分離装置の耐圧容器内に、水素又は酸素と水蒸気を含む湿潤ガスが次々に導入されると、上記取出導管42の背圧弁421の設定圧力まで耐圧容器41内の圧力が上昇する。   When wet gas containing hydrogen or oxygen and water vapor is successively introduced from the high-pressure water electrolysis apparatus into the pressure-resistant container of the gas-liquid separator, the pressure inside the pressure-resistant container 41 reaches the set pressure of the back pressure valve 421 of the extraction conduit 42. Pressure increases.

上記耐圧容器41内で湿潤ガス(混合気体)の圧力が上昇すると、湿潤ガスに含まれる水素ガス又は酸素ガスの分圧と水蒸気の分圧はそれぞれ上昇する。
しかし、水蒸気の分圧がその温度での飽和水蒸気圧に達すると、飽和水蒸気圧を超えた分の水蒸気は凝縮して水となる一方で、水素ガス又は酸素ガスは凝縮しないため、湿潤ガス中の水蒸気のモル分率が低下して除湿される。
When the pressure of the wet gas (mixed gas) increases in the pressure vessel 41, the partial pressure of hydrogen gas or oxygen gas and the partial pressure of water vapor contained in the wet gas respectively increase.
However, when the partial pressure of water vapor reaches the saturated water vapor pressure at that temperature, the water vapor in excess of the saturated water vapor pressure is condensed into water, while hydrogen gas or oxygen gas is not condensed. The water vapor mole fraction is dehumidified.

このように、高圧水電解装置から耐圧容器41内に、水素又は酸素の湿潤ガスが導入され、耐圧容器41内の圧力が取出導管42の背圧弁421の設定圧力を超えて高くなると低露点の水素ガス又は酸素ガスが耐圧容器41から排出される。   As described above, when a wet gas of hydrogen or oxygen is introduced from the high pressure water electrolysis apparatus into the pressure vessel 41 and the pressure in the pressure vessel 41 becomes higher than the set pressure of the back pressure valve 421 of the extraction conduit 42, a low dew point is obtained. Hydrogen gas or oxygen gas is discharged from the pressure vessel 41.

また、高圧水電解装置から耐圧容器41内に、水素または酸素の湿潤ガスと同時に水(液体)が流入し、上記凝縮した水とともに耐圧容器41内の水位を上昇させる。そして、耐圧容器41内の水位が所定の水位よりも高くなったときは、該排水導管43の電磁弁431を開弁して排水導管43から水が排出する。   Further, water (liquid) flows simultaneously with the hydrogen or oxygen wet gas from the high-pressure water electrolysis apparatus into the pressure vessel 41, and the water level in the pressure vessel 41 is raised together with the condensed water. When the water level in the pressure vessel 41 becomes higher than a predetermined water level, the electromagnetic valve 431 of the drainage conduit 43 is opened and water is discharged from the drainage conduit 43.

但し、上記高圧水電解装置の給水を行う側の気液分離装置では、排水導管43から連続的に水が排出されるため、電磁弁431は設けなくてもよい。   However, in the gas-liquid separator on the side of supplying water to the high-pressure water electrolyzer, water is continuously discharged from the drainage conduit 43, so the electromagnetic valve 431 may not be provided.

上記気液分離装置の運用圧力(P)の下限をPmin、上限をPmax、上記取出導管の背圧弁421を開弁する所定圧力、すなわち、必要な露点条件に対応する圧力閾値をPthrとするとき、上記背圧弁421によりガスの流量を制御しない場合、すなわち常時開の場合の運用圧力(PNC)は、Pmin〜Pmax間で変化する。   When the lower limit of the operating pressure (P) of the gas-liquid separator is Pmin, the upper limit is Pmax, the predetermined pressure for opening the back pressure valve 421 of the extraction conduit, that is, the pressure threshold corresponding to the necessary dew point condition is Pthr When the gas flow rate is not controlled by the back pressure valve 421, that is, when the gas pressure is normally open, the operating pressure (PNC) varies between Pmin and Pmax.

これに対して、上記背圧弁421によりガスの流量を制御する場合の運用圧力(PC)は、Pthr〜Pmax間で変化する。つまり、Pmin〜Pthrでは上記背圧弁が閉(開度0)じており、Pthr以上となった時点から徐々に背圧弁421が開く。   On the other hand, the operating pressure (PC) when the gas flow rate is controlled by the back pressure valve 421 changes between Pthr and Pmax. That is, the back pressure valve is closed (opening degree 0) from Pmin to Pthr, and the back pressure valve 421 is gradually opened from the time when the pressure becomes Pthr or more.

上記気液分離装置の運用圧力パターンを図3に示す。図3中、実線は取出導管の背圧弁によりガスの流量を制御した場合の運用圧力(PC)である。また、点線は、ガスの流量を制御しない場合の運用圧力(PNC)であり、水素ガス又は酸素ガスの充填に伴う通常の圧力上昇を示すものである。   The operation pressure pattern of the gas-liquid separator is shown in FIG. In FIG. 3, the solid line represents the operating pressure (PC) when the gas flow rate is controlled by the back pressure valve of the extraction conduit. Moreover, a dotted line is an operating pressure (PNC) when the gas flow rate is not controlled, and shows a normal pressure increase accompanying filling with hydrogen gas or oxygen gas.

上記ガスの流量を制御しない場合の水蒸気の圧力分率Pv,sの時間平均値は次式で表わされる。   When the gas flow rate is not controlled, the time average value of the water vapor pressure fraction Pv, s is expressed by the following equation.

Figure 2017135056
Figure 2017135056

また、上記ガスの流量を制御した場合の水蒸気の圧力分率の時間平均値は、所定圧力(Pthr)になるまでの時間遅れを無視すると次式で表わされる。   Further, the time average value of the pressure fraction of water vapor when the gas flow rate is controlled is expressed by the following equation when the time delay until reaching the predetermined pressure (Pthr) is ignored.

Figure 2017135056
Figure 2017135056

したがって、上記ガスの流量を制御することによる水蒸気の圧力分率(水蒸気モル分率)の低減量は、所定圧力(Pthr)以上の圧力上昇率(dP/dt)を一定とした場合次式で表される。   Therefore, the amount of water vapor pressure fraction (water vapor mole fraction) reduced by controlling the gas flow rate is given by the following equation when the pressure increase rate (dP / dt) equal to or higher than the predetermined pressure (Pthr) is constant. expressed.

Figure 2017135056
Figure 2017135056

また、流量制御した場合の水蒸気圧力分率の平均値を大気圧下に換算した換算水蒸気圧(Pv,a)は不飽和状態となり、次式で表される。   Further, the converted water vapor pressure (Pv, a) obtained by converting the average value of the water vapor pressure fraction when the flow rate is controlled to atmospheric pressure is in an unsaturated state, and is expressed by the following equation.

Figure 2017135056
Figure 2017135056

このときの大気圧下露点をT(K)で表わすと、JIS Z-8806に記載されたSonntagの式に従って以下の関係が成り立つ。 When the dew point under atmospheric pressure at this time is represented by T a (K), the following relationship is established according to Sontag's equation described in JIS Z-8806.

Figure 2017135056
Figure 2017135056

本発明の再生型燃料電池装置は流体について閉じたシステムであって、外部との流体のやり取りがないため、水素ガス又は酸素ガスの露点条件は再生型燃料電池装置の運用上の要求から決定することができ、上記所定圧力(Pthr)を上記式から与えられる水蒸気圧力分率や露点条件が運用上の要求を満足するように設定すればよい。   Since the regenerative fuel cell apparatus of the present invention is a closed system for fluid and there is no fluid exchange with the outside, the dew point condition of hydrogen gas or oxygen gas is determined from the operational requirements of the regenerative fuel cell apparatus. The predetermined pressure (Pthr) may be set so that the water vapor pressure fraction and the dew point condition given by the above equation satisfy the operational requirements.

上記所定圧力(Pthr)は、気液分離装置の状態に応じて自動で変化させてもよく、気液分離装置を冷却してより低露点のガスとすることもできる。   The predetermined pressure (Pthr) may be automatically changed according to the state of the gas-liquid separator, or the gas-liquid separator can be cooled to a gas with a lower dew point.

上記燃料電池1としては、特に制限はないが、湿潤状態において高い水素イオン導電性を示す高分子電解質膜(PEM)を用いた燃料電池は、もともと電解質膜への水分供給が必要であり、水素ガス及び酸素ガスから水蒸気を完全に除去する必要がないため、上記気液分離装置と好ましく組み合わせることができる。   Although there is no restriction | limiting in particular as the said fuel cell 1, The fuel cell using the polymer electrolyte membrane (PEM) which shows high hydrogen ion conductivity in a wet state originally needs the water supply to an electrolyte membrane, Since it is not necessary to completely remove water vapor from the gas and oxygen gas, it can be preferably combined with the gas-liquid separator.

以下、本発明を実施形態により詳細に説明するが、本発明は下記実施形態に限定されるものではない。   Hereinafter, the present invention will be described in detail by embodiments, but the present invention is not limited to the following embodiments.

[実施形態]
図1は、本発明の実施形態1に係る再生型燃料電池装置の概略構成を示している。
なお、図1には、水素ガス、酸素ガス、及び水のラインのみが示されており、負荷等の電気的な回路は省略してある。また、ラインの矢印は流体が流れる方向を示している。
[Embodiment]
FIG. 1 shows a schematic configuration of a regenerative fuel cell apparatus according to Embodiment 1 of the present invention.
In FIG. 1, only hydrogen gas, oxygen gas, and water lines are shown, and electrical circuits such as loads are omitted. Moreover, the arrow of a line has shown the direction through which a fluid flows.

図1に示す燃料電池1は、高分子膜と該高分子膜の両側に電極を有する燃料電池単セルを複数積層した構造を有し、図示しない冷却装置を備える。上記高分子膜としてはイオン交換膜を使用することができ、該高分子膜と各電極との間に電池反応を促進する触媒が配置される。   A fuel cell 1 shown in FIG. 1 has a structure in which a plurality of fuel cell single cells each having a polymer membrane and electrodes on both sides of the polymer membrane are stacked, and includes a cooling device (not shown). An ion exchange membrane can be used as the polymer membrane, and a catalyst that promotes a cell reaction is disposed between the polymer membrane and each electrode.

また、水電解装置3も上記燃料電池1と同様、高分子膜と該高分子膜の両側に電極を有する電解単セルを複数積層した構造を有し、高圧容器に収容されて成る。
図1においては、燃料電池1と水電解装置3が別体のものを示したが、発電と水電解は逆反応であるので、発電と水電解の両方を行う一体化した燃料電池/水電解装置とすることもできる。
Similarly to the fuel cell 1, the water electrolysis apparatus 3 has a structure in which a plurality of electrolytic single cells each having a polymer membrane and electrodes on both sides of the polymer membrane are stacked, and is housed in a high-pressure vessel.
In FIG. 1, the fuel cell 1 and the water electrolysis apparatus 3 are shown as separate units, but since power generation and water electrolysis are opposite reactions, an integrated fuel cell / water electrolysis that performs both power generation and water electrolysis is shown. It can also be a device.

水素貯蔵部5には水素ガスが充填貯蔵されており、酸素貯蔵部6には酸素が充填貯蔵されている。また、水貯蔵部2には所定量の水(液体)が貯蔵されている。   The hydrogen storage unit 5 is filled and stored with hydrogen gas, and the oxygen storage unit 6 is filled and stored with oxygen. The water storage unit 2 stores a predetermined amount of water (liquid).

そして、図1に示す燃料電池1、水貯蔵部2、水電解装置3、気液分離装置4、水素貯蔵部5、酸素貯蔵部6、及びこれらを接続する導管は閉鎖されており、再生型燃料電池装置の運用のために、水素ガス、酸素ガス及び水を外部から供給する必要がない。   The fuel cell 1, the water storage unit 2, the water electrolysis device 3, the gas-liquid separation device 4, the hydrogen storage unit 5, the oxygen storage unit 6, and the conduit connecting them shown in FIG. It is not necessary to supply hydrogen gas, oxygen gas and water from the outside for the operation of the fuel cell device.

水を電解する水電解工程では、水貯蔵部2の水がポンプ7aにより逆止弁9cを介して、水電解装置3と気液分離装置4との水循環経路(気液分離装置4→ポンプ7b→水電解装置3→気液分離装置4→…)に供給され、該水循環経路内では水電解装置3の冷却に必要な水量として気液分離装置4bの連続的に排出される水も合わせて、ポンプ7bにより高圧水電解装置に供給される。   In the water electrolysis process of electrolyzing water, the water in the water storage unit 2 is pumped by the pump 7a through the check valve 9c to the water circulation path between the water electrolyzer 3 and the gas-liquid separator 4 (gas-liquid separator 4 → pump 7b. → water electrolysis device 3 → gas-liquid separation device 4 → ...), and the water continuously discharged from the gas-liquid separation device 4b as the amount of water necessary for cooling the water electrolysis device 3 is also combined in the water circulation path. The high pressure water electrolyzer is supplied by the pump 7b.

そして、高圧水電解装置の酸素側電極には正の電圧が印加され、水素側電極に負の電圧が印加される。
すると、水が酸素側電極において、酸素ガス(O)と水素イオン(H)と電子(e)に電解され、該水素イオン(H)は高分子膜を通って水素側電極に運ばれ、電気回路を通って水素側電極に到達した電子(e)と結合して水素ガス(H)となる。
Then, a positive voltage is applied to the oxygen side electrode of the high pressure water electrolysis apparatus, and a negative voltage is applied to the hydrogen side electrode.
Then, the water is oxygen-side electrode, oxygen gas (O 2) and hydrogen ions (H +) Electronic (e -) is electrolyzed, hydrogen ions (H +) in the hydrogen side electrode through the polymer film It is transported and combined with electrons (e ) that have reached the hydrogen side electrode through the electric circuit and become hydrogen gas (H 2 ).

高圧水電解装置で発生した水素ガスと酸素ガスは気液分離装置4の耐圧容器に流入する。気液分離工程では、水素ガス又は酸素ガスの流量を制御して上記耐圧容器内の圧力を所定圧力以上に維持して水素ガス又は酸素ガスの除湿を行う。   Hydrogen gas and oxygen gas generated in the high-pressure water electrolyzer flows into the pressure vessel of the gas-liquid separator 4. In the gas-liquid separation step, the hydrogen gas or oxygen gas is dehumidified by controlling the flow rate of the hydrogen gas or oxygen gas to maintain the pressure in the pressure-resistant vessel at a predetermined pressure or higher.

また、気液分離装置4aで水素ガスと分離された水は、気液分離装置4a内の水位が所定の水位よりも高いときに気液分離装置4aから排出されて、ポンプ7bにより、水循環径路に供給される。   The water separated from the hydrogen gas by the gas-liquid separator 4a is discharged from the gas-liquid separator 4a when the water level in the gas-liquid separator 4a is higher than a predetermined water level, and the water circulation path is supplied by the pump 7b. To be supplied.

他方、気液分離装置4bで酸素ガスと分離された水は、連続的に気液分離装置4bから排出されて、ポンプ7bにより、再度高圧水電解装置へと供給(循環給水)される。   On the other hand, the water separated from the oxygen gas by the gas-liquid separator 4b is continuously discharged from the gas-liquid separator 4b and supplied again (circulated water supply) to the high-pressure water electrolyzer by the pump 7b.

上記水循環経路では、水電解装置3のアノード側を流れる水がポンプ7bにより一定量で循環している。
このとき、ガス発生反応で消費される水(電解消費水)と、水電解装置3のカソード側に透過して気液分離装置4aに流入する水(膜透過水)の合計量が気液分離装置4bから出ていくことになる。
In the water circulation path, the water flowing on the anode side of the water electrolysis device 3 is circulated in a constant amount by the pump 7b.
At this time, the total amount of water (electrolytic consumption water) consumed in the gas generation reaction and water (membrane permeated water) permeating the cathode side of the water electrolysis device 3 and flowing into the gas-liquid separation device 4a is gas-liquid separation. It goes out of the device 4b.

しかし、気液分離装置4aが一定以上の水位になるとその電磁弁431を開いて溜めた上記膜透過水を循環流路に戻し、また、上記電解消費水に相当する水が水貯蔵部2からポンプ7aにより送られ補充されるので、気液分離装置4bから水を連続的に排出しても耐圧容器41内の水位は概ね一定(下限以上)に維持され、酸素ガスが水循環経路に流れることはない。
そして、水電解工程が進み水貯蔵部2から水循環経路に補充する水がなくなるときには、水素貯蔵部5、酸素貯蔵部6が最大充填量となり、水の電解を終了する。
However, when the gas-liquid separation device 4a reaches a certain level or more, the membrane permeated water collected by opening the electromagnetic valve 431 is returned to the circulation flow path, and water corresponding to the electrolytic consumption water is supplied from the water storage unit 2. Since it is sent and replenished by the pump 7a, the water level in the pressure vessel 41 is maintained substantially constant (above the lower limit) even when water is continuously discharged from the gas-liquid separator 4b, and oxygen gas flows through the water circulation path. There is no.
Then, when the water electrolysis process proceeds and there is no more water to be replenished from the water storage unit 2 to the water circulation path, the hydrogen storage unit 5 and the oxygen storage unit 6 reach the maximum filling amount, and the electrolysis of water is finished.

上記は高圧水電解装置の酸素側電極に給水する場合の動作であり、水素側電極に給水する場合には、水素側が気液分離装置4bとポンプ7bの動作、酸素側が気液分離装置4aとポンプ7aの動作、をそれぞれ行う。   The above is the operation when water is supplied to the oxygen side electrode of the high pressure water electrolysis apparatus. When water is supplied to the hydrogen side electrode, the hydrogen side is the operation of the gas-liquid separator 4b and the pump 7b, and the oxygen side is the gas-liquid separator 4a. Each operation of the pump 7a is performed.

上記除湿された水素ガス又は酸素ガスは、気液分離装置4から流出し、ガス貯蔵工程においてそれぞれ、逆止弁9a9bを介して水素貯蔵部5、酸素貯蔵部6に流入し充填貯蔵される。   The dehumidified hydrogen gas or oxygen gas flows out from the gas-liquid separator 4 and flows into the hydrogen storage unit 5 and the oxygen storage unit 6 through the check valve 9a9b in the gas storage step, respectively, and is stored in a filled state.

また、発電を行う発電工程では、調圧弁8a、8bを開くと、燃料電池1の水素側電極には水素ガス(H)が供給され、酸素側電極には酸素ガス(O)が供給される。
すると、水素側電極では触媒の作用により水素ガス(H)が電子(e)と水素イオン(H)に分離し、水素イオン(H)は高分子膜を通って酸素側電極に到達し、酸素側電極では酸素ガス(O)と水素イオン(H)及び電気回路を通ってきた電子(e)が反応して水が生成され、酸素側電極が正、水素側電極が負となる起電力が生じる。
Further, in the power generation process for generating power, when the pressure regulating valves 8a and 8b are opened, hydrogen gas (H 2 ) is supplied to the hydrogen side electrode of the fuel cell 1 and oxygen gas (O 2 ) is supplied to the oxygen side electrode. Is done.
Then, the hydrogen-side electrode with hydrogen gas under the action of the catalyst (H 2) electrons (e -) is separated into hydrogen ions (H +), hydrogen ions (H +) to the oxygen side electrode through the polymer film At the oxygen side electrode, oxygen gas (O 2 ), hydrogen ions (H + ), and electrons (e ) that have passed through the electric circuit react to generate water, the oxygen side electrode is positive, the hydrogen side electrode A negative electromotive force is generated.

燃料電池1で反応しなかった水素ガス(H)は循環導管を通り、燃料電池1に再度供給される。
また、反応しなかった酸素ガス(O)は生成した水と共に水貯蔵部2に入って水を分離し(水貯蔵工程)、分離後のガスが再度燃料電池に供給される。
Hydrogen gas (H 2 ) that has not reacted in the fuel cell 1 passes through the circulation conduit and is supplied again to the fuel cell 1.
The oxygen gas (O 2 ) that has not reacted enters the water storage unit 2 together with the generated water to separate the water (water storage step), and the separated gas is supplied to the fuel cell again.

上記のように、高圧水電解装置で高圧の水素ガス及び酸素ガスを得ることにより、水素貯蔵部5及び酸素貯蔵部6への充填、並びに水素ガス及び酸素ガスの除湿を、加圧ポンプを用いずに行うことができる。   As described above, a high-pressure hydrogen electrolyzer is used to obtain high-pressure hydrogen gas and oxygen gas, thereby filling the hydrogen storage unit 5 and oxygen storage unit 6 and dehumidifying the hydrogen gas and oxygen gas using a pressure pump. Can be done without.

1 燃料電池
2 水貯蔵部
3 水電解装置
4a 気液分離装置
4b 気液分離装置
41 耐圧容器
42 取出導管
421 背圧弁
43 排水導管
431 電磁弁
44 水位センサ
5 水素貯蔵部
6 酸素貯蔵部
7a ポンプ
7b ポンプ
8 調圧弁
9a 逆止弁
9b 逆止弁
9c 逆止弁
100 再生型燃料電池装置
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Water storage part 3 Water electrolysis apparatus 4a Gas-liquid separation apparatus 4b Gas-liquid separation apparatus 41 Pressure-resistant container 42 Extraction conduit 421 Back pressure valve 43 Drainage conduit 431 Electromagnetic valve 44 Water level sensor 5 Hydrogen storage part 6 Oxygen storage part 7a Pump 7b Pump 8 Pressure regulating valve 9a Check valve 9b Check valve 9c Check valve 100 Regenerative fuel cell device

Claims (2)

燃料電池と、水貯蔵部と、水電解装置と、気液分離装置と、水素貯蔵部と、酸素貯蔵部と、を備える再生型燃料電池装置であって、
上記燃料電池が、上記水素貯蔵部の水素と上記酸素貯蔵部の酸素を用いて発電するものであり、
上記水貯蔵部が、上記燃料電池が排出した水を貯蔵するものであり、
上記水電解装置が、上記水貯蔵部の水を電解して水素ガス及び酸素ガスを発生させる水電解装置であり、
上記気液分離装置が、耐圧容器を有し、該耐圧容器に上記電解により発生した水素ガス又は酸素ガスを導入し、該耐圧容器から流出する水素ガス又は酸素ガスの流量を制御して上記耐圧容器内の圧力を所定圧力以上に維持することで上記水素ガス又は酸素ガスの除湿を行うものであり、
上記水素貯蔵部が上記除湿された水素ガスを貯蔵し、上記酸素貯蔵部が上記除湿された酸素ガスを貯蔵するものであることを特徴とする再生型燃料電池装置。
A regenerative fuel cell device comprising a fuel cell, a water storage unit, a water electrolysis device, a gas-liquid separator, a hydrogen storage unit, and an oxygen storage unit,
The fuel cell generates power using hydrogen of the hydrogen storage unit and oxygen of the oxygen storage unit,
The water storage unit stores water discharged from the fuel cell;
The water electrolysis device is a water electrolysis device that generates hydrogen gas and oxygen gas by electrolyzing water in the water storage unit,
The gas-liquid separator has a pressure vessel, introduces hydrogen gas or oxygen gas generated by the electrolysis into the pressure vessel, and controls the flow rate of the hydrogen gas or oxygen gas flowing out from the pressure vessel. The dehydration of the hydrogen gas or oxygen gas is performed by maintaining the pressure in the container at a predetermined pressure or higher,
The regenerative fuel cell apparatus, wherein the hydrogen storage unit stores the dehumidified hydrogen gas, and the oxygen storage unit stores the dehumidified oxygen gas.
燃料電池と、水貯蔵部と、水電解装置と、気液分離装置と、水素貯蔵部と、酸素貯蔵部と、を備える再生型燃料電池装置の運転方法であって、
上記燃料電池により上記水素貯蔵部の水素と上記酸素貯蔵部の酸素を用いて発電する発電工程と、
上記発電工程から生じる水を水貯蔵部で貯蔵する水貯蔵工程と、
上記水貯蔵部の水を上記水電解装置で電解して水素ガス及び酸素ガスを発生させる水電解工程と、
上記水電解工程で発生した水素ガス又は酸素ガスを上記気液分離装置の耐圧容器に導入し、該耐圧容器から流出する水素ガス又は酸素ガスの流量を制御して上記耐圧容器内の圧力を所定圧力以上に維持することで上記水素ガス又は酸素ガスの除湿を行う気液分離工程と、
上記除湿された水素ガスを上記水素貯蔵部に貯蔵し、上記除湿された酸素ガスを上記酸素貯蔵部に貯蔵するガス貯蔵工程と、を有することを特徴とする再生型燃料電池装置の運転方法。
An operation method of a regenerative fuel cell device comprising a fuel cell, a water storage unit, a water electrolysis device, a gas-liquid separator, a hydrogen storage unit, and an oxygen storage unit,
A power generation step of generating power using the hydrogen of the hydrogen storage unit and the oxygen of the oxygen storage unit by the fuel cell;
A water storage process for storing water generated from the power generation process in a water storage unit;
A water electrolysis step of generating hydrogen gas and oxygen gas by electrolyzing water in the water storage unit with the water electrolysis device;
Hydrogen gas or oxygen gas generated in the water electrolysis step is introduced into the pressure vessel of the gas-liquid separator, and the flow rate of the hydrogen gas or oxygen gas flowing out from the pressure vessel is controlled to set the pressure in the pressure vessel to a predetermined value. A gas-liquid separation step of dehumidifying the hydrogen gas or oxygen gas by maintaining the pressure or higher;
And a gas storage step of storing the dehumidified hydrogen gas in the hydrogen storage unit and storing the dehumidified oxygen gas in the oxygen storage unit.
JP2016015685A 2016-01-29 2016-01-29 Regeneration type fuel cell device and method for operating regeneration type fuel cell device Pending JP2017135056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015685A JP2017135056A (en) 2016-01-29 2016-01-29 Regeneration type fuel cell device and method for operating regeneration type fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015685A JP2017135056A (en) 2016-01-29 2016-01-29 Regeneration type fuel cell device and method for operating regeneration type fuel cell device

Publications (1)

Publication Number Publication Date
JP2017135056A true JP2017135056A (en) 2017-08-03

Family

ID=59502738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015685A Pending JP2017135056A (en) 2016-01-29 2016-01-29 Regeneration type fuel cell device and method for operating regeneration type fuel cell device

Country Status (1)

Country Link
JP (1) JP2017135056A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015282A (en) * 2014-07-03 2016-01-28 株式会社Ihi Regenerative type fuel battery system and operation method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015282A (en) * 2014-07-03 2016-01-28 株式会社Ihi Regenerative type fuel battery system and operation method for the same

Similar Documents

Publication Publication Date Title
CN1966777B (en) Water electrolysis device with proton exchange membrane
US8721867B2 (en) Method of shutting down water electrolysis apparatus
JP5437968B2 (en) Water electrolysis system
JP5192001B2 (en) Operation method of water electrolysis system
JP2010535942A (en) Electrolyzer with anode depolarized by sulfur dioxide and method of using the same in hydrogen production
Vincent et al. Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives
US20050136310A1 (en) Hydrogen/hydrogen peroxide fuel cell
JP6150269B2 (en) Regenerative fuel cell
US20190214885A1 (en) Cooling arrangement using an electrochemical cell
CN112534085A (en) Electrolysis unit and method for operating an electrolysis unit
US20210292917A1 (en) Hydrogen production and storage system using solar energy independently operated without external power
US7399392B2 (en) Electrochemical reformer and fuel cell system
US8658008B2 (en) High-pressure hydrogen producing apparatus
CN114402094A (en) Electrochemical cell and method of treating a hydrogen-containing gas stream
JP4009300B2 (en) FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL
JP5341547B2 (en) Water electrolysis system
KR100896900B1 (en) Oxygen generator using a fuel cell and water electrolysis
JP5415168B2 (en) Water electrolysis system
JP5140123B2 (en) Water electrolysis system
JP5490654B2 (en) Method for stopping operation of high-pressure water electrolyzer
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
US20120255867A1 (en) Water electrolysis system and method of operating water electrolysis system
JP2012052208A (en) Method of operating water electrolysis system
JP2017135056A (en) Regeneration type fuel cell device and method for operating regeneration type fuel cell device
KR100448692B1 (en) Fuel feed system for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200402