JP2017134962A - Method for manufacturing laminate type power storage device, and laminate type power storage device - Google Patents

Method for manufacturing laminate type power storage device, and laminate type power storage device Download PDF

Info

Publication number
JP2017134962A
JP2017134962A JP2016012994A JP2016012994A JP2017134962A JP 2017134962 A JP2017134962 A JP 2017134962A JP 2016012994 A JP2016012994 A JP 2016012994A JP 2016012994 A JP2016012994 A JP 2016012994A JP 2017134962 A JP2017134962 A JP 2017134962A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
terminal portion
laminate
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016012994A
Other languages
Japanese (ja)
Other versions
JP6678036B2 (en
Inventor
裕也 飯田
Yuya Iida
裕也 飯田
直昭 西村
Naoaki Nishimura
直昭 西村
隆二 伊藤
Ryuji Ito
隆二 伊藤
晃大 山本
Akihiro Yamamoto
晃大 山本
成瀬 悟
Satoru Naruse
悟 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2016012994A priority Critical patent/JP6678036B2/en
Publication of JP2017134962A publication Critical patent/JP2017134962A/en
Application granted granted Critical
Publication of JP6678036B2 publication Critical patent/JP6678036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To manufacture a laminate type power storage device further inexpensively, provided that in the power storage device, edges which terminal parts are led from are sealed with a high strength in close contact with each other.SOLUTION: A method for manufacturing a laminate type power storage device 1a comprises the steps of: assembling a positive electrode 20 and a negative electrode 30, each including a current collector (21, 22) with a terminal part (24, 34) formed thereon; assembling an electrode body 10 by laminating the positive and negative electrodes through a separator 40; holding, by a pair of belt-shaped tab films (14a, 14b) crossing the terminal parts of the positive and negative electrodes, the terminal parts of the positive and negative electrodes therebetween, and bonding the pair of belt-shaped tab films together by thermocompression; disposing the electrode body with the tab films thus bonded between two laminate films (11a-11b); leading the terminal parts of the positive and negative electrodes out from a predetermined edge 13 of the laminate films; disposing the tab films in a peripheral edge region 12 along the edge; bonding the laminate films on the sides of three directional edges (13, 15) together by thermocompression to shape them into an opened pouch like form; charging an electrolyte from an opening 17; and then, bonding, by thermocompression, the laminate films at the edge on the side of the opening.SELECTED DRAWING: Figure 4

Description

本発明はラミネートフィルムからなる外装体内に発電素子を収納してなるラミネート型蓄電素子の製造方法と当該方法によって製造されたラミネート型蓄電素子に関する。   The present invention relates to a method for manufacturing a laminate-type energy storage device in which a power generation element is housed in an outer package made of a laminate film, and a laminate-type energy storage device manufactured by the method.

近年、例えば、ワンタイムパスワード機能やディスプレイを搭載したICカード、ディスプレイ付きのICカード、あるいはタグやトークン(ワンタイムパスワード生成機)など、電源を内蔵しながら極めて薄型の電子機器(以下、薄型電子機器)が実用化されてきている。そしてこれらの薄型電子機器の実現には電源となる蓄電素子(一次電池、二次電池、電気二重層コンデンサーなど)の小型薄型が必須の要件であり、その小型薄型化に適した蓄電素子としてラミネート型蓄電素子がある。   In recent years, for example, an IC card with a one-time password function or display, an IC card with a display, or a tag or token (one-time password generator), etc. Equipment) has been put into practical use. In order to realize these thin electronic devices, it is essential to have a small and thin power storage element (primary battery, secondary battery, electric double layer capacitor, etc.) as a power source. Type storage element.

図1に一般的なラミネート型蓄電素子を示した。図1(A)はラミネート型蓄電素子101の外観図であり、図1(B)は当該蓄電素子101の内部構造の一例を示す分解斜視図である。ラミネート型蓄電素子101は、図1(A)に示したように平板状の外観形状を有し、ラミネートフィルムが扁平な矩形袋状に成形されてなる外装体11内に発電要素が密封されている。またここに示したラミネート型蓄電素子101では、矩形の外装体11の一辺13から正極端子板23および負極端子板33が外方に導出されている。   FIG. 1 shows a general laminated storage element. 1A is an external view of a laminate type power storage element 101, and FIG. 1B is an exploded perspective view showing an example of the internal structure of the power storage element 101. FIG. As shown in FIG. 1A, the laminate-type energy storage device 101 has a flat external shape, and a power generation element is sealed in an exterior body 11 in which a laminate film is formed into a flat rectangular bag shape. Yes. Moreover, in the laminate type electrical storage element 101 shown here, the positive electrode terminal plate 23 and the negative electrode terminal plate 33 are led out from one side 13 of the rectangular outer package 11.

つぎに図1(B)を参照しつつラミネート型蓄電素子101の構造について説明する。なお図1(B)では一部の部材や部位にハッチングを施し、他の部材や部位と区別しやすいようにしている。この図1(B)に示したように、外装体11内には、シート状の正極20とシート状の負極30がセパレーター40を介して積層されてなる電極体10が電解液とともに封入されている。正極20は金属板や金属箔からなる正極集電体21の一主面に正極活物質を含んだ正極材料22を配置したものであり、負極30は金属板や金属箔などからなる負極集電体31の一主面に負極活物質を含んだ負極材料32を配置したものである。そして電極体10は、正極20と負極30をそれぞれの電極材料(22、32)が対面するように、セパレーター40を介して積層、圧着(あるいはセパレーター40に溶着)されたものである。   Next, the structure of the laminate type power storage element 101 will be described with reference to FIG. In FIG. 1B, some members and parts are hatched so that they can be easily distinguished from other members and parts. As shown in FIG. 1B, an electrode body 10 formed by laminating a sheet-like positive electrode 20 and a sheet-like negative electrode 30 with a separator 40 interposed between the outer body 11 and an electrolytic solution. Yes. The positive electrode 20 includes a positive electrode current collector 21 made of a metal plate or metal foil and a positive electrode material 22 containing a positive electrode active material disposed on one main surface. The negative electrode 30 is made of a negative electrode current collector made of a metal plate or metal foil. A negative electrode material 32 containing a negative electrode active material is disposed on one main surface of the body 31. The electrode body 10 is formed by laminating and pressing (or welding) the positive electrode 20 and the negative electrode 30 through the separator 40 so that the respective electrode materials (22, 32) face each other.

外装体11は、互いに重ね合わせた矩形状の二枚のアルミラミネートフィルム(11a、11b)において図中網掛けのハッチングまたは点線の枠で示した周縁領域12が熱圧着法により溶着されて内部が密閉されたものである。ラミネートフィルム(11a、11b)は、周知のごとく、基材となる金属箔(アルミ箔、ステンレス箔)の表裏に1層以上の樹脂層が積層された構造となっており、一般的には、一方の面に例えばポリアミド樹脂などからなる保護層が積層され、他方の面には例えばポリプロピレンなどの熱溶着性を有する接着層が積層された構造を有している。   The exterior body 11 has a rectangular aluminum laminate film (11a, 11b) that is overlapped with each other, and a peripheral area 12 indicated by hatching or a dotted line frame in the figure is welded by a thermocompression bonding method. It is sealed. As is well known, the laminate films (11a, 11b) have a structure in which one or more resin layers are laminated on the front and back of a metal foil (aluminum foil, stainless steel foil) serving as a base material. For example, a protective layer made of polyamide resin or the like is laminated on one surface, and an adhesive layer having a heat-welding property such as polypropylene is laminated on the other surface.

2枚のラミネートフィルム(11a、11b)を扁平袋状の外装体11に成形しつつ、当該外装体11内に電極体10を収納する手順としては、例えば、矩形平面形状を有して互いに対面する2枚のラミネートフィルム(11a、11b)間に電極体10を配置するとともに、矩形の3辺同士を溶着して残りの一辺側が開口した袋状に形成する。また当該3辺の内の一辺13については正負両極(20、30)の端子板(23、33)を外装体11外に突出させた状態で溶着する。このようにして矩形の一辺が開口する袋状に形成されたラミネートフィルム(11a、11b)内に電解液を注入したならば、開口している一辺の周縁領域12を溶着し、図1(A)に示したラミネート型蓄電素子101を完成させる。   As a procedure for housing the electrode body 10 in the exterior body 11 while forming the two laminated films (11a, 11b) into the flat bag-shaped exterior body 11, for example, they have a rectangular planar shape and face each other. The electrode body 10 is disposed between the two laminated films (11a, 11b) to be formed, and the three sides of the rectangle are welded to form a bag shape with the remaining one side opened. Further, one side 13 of the three sides is welded in a state in which the terminal plates (23, 33) of both positive and negative poles (20, 30) are projected out of the exterior body 11. When the electrolyte is injected into the laminated film (11a, 11b) formed in a bag shape with one side opened in this way, the peripheral region 12 on one side opened is welded, and FIG. The laminate type energy storage device 101 shown in FIG.

ところで正極材料22および負極材料32が積層されている正極集電体21および負極集電体31は、当然のことながら正極端子板23および負極端子板33に電気的に接続されており、その正極20および負極30の端子板(以下、電極端子板(23、33)とも言う)は密封状態にある外装体11外に導出されている。そのため外装体11において電極端子板(23、33)が導出されている縁辺13ではラミネートフィルム(11a、11b)の接着層同士を溶着させただけでは電極端子板(23、33)とラミネートフィルム(11a、11b)との密着強度を十分に確保できない場合がある。また電極端子板(23、33)が導出されている縁辺13では、その電極端子板(23、33)の厚さ方向に渡って接着層を溶融させた状態で介在させることが難しく、当該縁辺13が十分に封止されず防水性が低下する可能性がある。そのためラミネート型蓄電素子101では、外装体11において電極端子板(23、33)が導出される縁辺13を確実に封止するための構造を備えている。そして電極端子板(23、33)を外装体11外に導出させつつ当該外装体11を密封する方法としては、概ねタブリード50を電極端子板(23、33)として用いる方法と、正極20および負極30の集電体(21、31)に帯状の金属箔や金属板(以下、端子リード)を取り付け、その端子リードをそのまま電極端子板(23、33)として用いる方法がある。なお図1(B)ではタブリード50を用いた方法が示されており、正極集電体21と負極集電体31のそれぞれにタブリード50からなる電極端子板(23、33)が接続されている。タブリード50は、以下の特許文献1にも記載されているように、実質的な電極端子板(23、33)である金属板や金属箔などからなる帯状の端子リード51の延長途上に、絶縁樹脂製のシール剤(以下、タブフィルム52)が当該端子リード51を狭持するように接着された構造を有している。端子リード51の一方の端部53は外装体11の外側に露出し、他方の端部は正極集電体21および負極集電体31の一部に超音波溶着などの方法によって接続されている。もちろん正極集電体21および負極集電体31に別体の帯状の金属板や金属箔を取り付け、その金属板や金属箔にさらにタブリード50を接続することもできる。そして互いに対面し合うラミネートフィルム(11 a、11b)の周縁領域12を熱圧着して扁平袋状の外装体11に成形する際、外装体11の周縁領域12において、電極端子板(23、33)が突出する側の縁辺13ではタブリード50のタブフィルム52をラミネートフィルム(11a、11b)とともに熱溶着する。それによって当該縁辺13では端子リード51に溶着されているタブフィルム52がラミネートフィルム(11a、11b)の接着層に溶着されている。   Incidentally, the positive electrode current collector 21 and the negative electrode current collector 31 on which the positive electrode material 22 and the negative electrode material 32 are laminated are naturally connected to the positive electrode terminal plate 23 and the negative electrode terminal plate 33, and the positive electrode 20 and the terminal plate of the negative electrode 30 (hereinafter also referred to as electrode terminal plates (23, 33)) are led out of the outer package 11 in a sealed state. For this reason, the electrode terminal plates (23, 33) and the laminate film (23, 33) can be bonded to the edge 13 where the electrode terminal plates (23, 33) are led out in the outer package 11 by simply welding the adhesive layers of the laminate films (11a, 11b). 11a and 11b) may not be able to ensure sufficient adhesion strength. Further, at the edge 13 from which the electrode terminal plate (23, 33) is led out, it is difficult to interpose the adhesive layer in a melted state over the thickness direction of the electrode terminal plate (23, 33). 13 may not be sufficiently sealed and the waterproofness may be reduced. For this reason, the laminate-type energy storage device 101 has a structure for reliably sealing the edge 13 from which the electrode terminal plates (23, 33) are led out in the exterior body 11. And as a method of sealing the exterior body 11 while deriving the electrode terminal plate (23, 33) out of the exterior body 11, a method of using the tab lead 50 as the electrode terminal plate (23, 33), a positive electrode 20 and a negative electrode There is a method in which a strip-shaped metal foil or a metal plate (hereinafter referred to as a terminal lead) is attached to 30 current collectors (21, 31), and the terminal lead is used as it is as an electrode terminal plate (23, 33). FIG. 1B shows a method using a tab lead 50, and electrode terminal plates (23, 33) each composed of a tab lead 50 are connected to each of the positive electrode current collector 21 and the negative electrode current collector 31. . As described in Patent Document 1 below, the tab lead 50 is insulated on the way of extension of the strip-shaped terminal lead 51 made of a metal plate or a metal foil which is a substantial electrode terminal plate (23, 33). A resin sealant (hereinafter referred to as a tab film 52) has a structure in which the terminal lead 51 is bonded. One end 53 of the terminal lead 51 is exposed to the outside of the outer package 11, and the other end is connected to a part of the positive electrode current collector 21 and the negative electrode current collector 31 by a method such as ultrasonic welding. . Of course, a separate strip-shaped metal plate or metal foil may be attached to the positive electrode current collector 21 and the negative electrode current collector 31, and the tab lead 50 may be further connected to the metal plate or metal foil. When the peripheral regions 12 of the laminate films (11a, 11b) facing each other are thermocompression bonded to form a flat bag-shaped exterior body 11, the electrode terminal plates (23, 33) are formed in the peripheral region 12 of the exterior body 11. The tab film 52 of the tab lead 50 is heat-welded together with the laminate films (11a, 11b) at the edge 13 on the side from which the projections) protrude. Thereby, the tab film 52 welded to the terminal lead 51 is welded to the adhesive layer of the laminate film (11a, 11b) at the edge 13.

一方タブリードを用いず、端子リードのみをそのまま電極端子板として用いる方法もある。図2に当該方法によって作製されるラミネート型蓄電素子201の分解斜視図を示した。図2に示したように、外装体11の周縁領域12において、リード導体そのものからなる電極端子板(23、33)が導出されている縁辺13に、帯状のタブフィルム(14a、14b)をラミネートフィルム(11a、11b)の裏面にあらかじめ溶着した状態で熱圧着しておいた上で、ラミネートフィルム(11a、11b)の周縁領域12を熱圧着して外装体11を成形している。すなわち互いに対面するラミネートフィルム(11a、11b)において、電極端子板(23、33)が導出されている縁辺13ではこの帯状のタブフィルム(14a、14b)を介してラミネートフィルム同士(11a−11b)が接着されている。なおラミネート型蓄電素子の構造などについては、例えば以下の特許文献2に記載されている。また以下の非特許文献1には実際に市販されているラミネート型蓄電素子である薄型リチウム電池の特徴や放電性能などが記載されている。   On the other hand, there is a method in which only the terminal lead is used as it is as the electrode terminal plate without using the tab lead. FIG. 2 shows an exploded perspective view of a laminate type energy storage device 201 manufactured by the method. As shown in FIG. 2, in the peripheral region 12 of the outer package 11, the strip-shaped tab films (14a, 14b) are laminated on the edge 13 from which the electrode terminal plates (23, 33) made of the lead conductors are led out. The outer body 11 is formed by thermocompression bonding of the peripheral region 12 of the laminate film (11a, 11b) after being thermocompression bonded in a state of being previously welded to the back surface of the film (11a, 11b). That is, in the laminated film (11a, 11b) facing each other, the laminated film (11a-11b) is interposed between the strip-shaped tab films (14a, 14b) at the edge 13 where the electrode terminal plates (23, 33) are led out. Is glued. Note that the structure of the laminate-type power storage element is described in, for example, Patent Document 2 below. Non-Patent Document 1 below describes the characteristics and discharge performance of a thin lithium battery that is a laminate-type energy storage device that is actually commercially available.

特開2014−86139号公報JP 2014-86139 A 特開2006−281613号公報JP 2006-281613 A

FDK株式会社、”薄型リチウム一次電池”、[online]、[平成27年12月9日検索]、インターネット<URL:http://www.fdk.co.jp/battery/lithium/lithium_thin.html>FDK Corporation, “Thin Lithium Primary Battery”, [online], [Searched on December 9, 2015], Internet <URL: http://www.fdk.co.jp/battery/lithium/lithium_thin.html>

上述したように、ラミネート型蓄電素子では、対面するラミネートフィルム同士を熱圧着することで扁平袋状に成形された外装体から電極端子板を導出させた構造を有し、外装体を封止しつつ当該外装体から電極端子板を導出させるための方法としては、タブリードを用いた方法(以下、タブリード法とも言う)と、端子リードのみからなる電極端子板と裏面の一辺に帯状のタブフィルムが溶着されたラミネートフィルムとを用いる方法(以下、タブフィルム法とも言う)とがある。   As described above, the laminate-type energy storage device has a structure in which the electrode terminal plate is led out from the outer package formed into a flat bag shape by thermocompression bonding the facing laminate films, and the outer package is sealed. On the other hand, as a method for deriving the electrode terminal plate from the outer package, a method using a tab lead (hereinafter also referred to as a tab lead method), an electrode terminal plate consisting only of terminal leads, and a strip-shaped tab film on one side of the back surface are provided. There is a method (hereinafter also referred to as a tab film method) using a laminated film that has been welded.

まず後者のタブフィルム法は、ラミネートフィルムにおいて電極端子板が導出される縁辺(以下、端子側縁辺とも言う)にあらかじめ帯状のタブフィルムを溶着させておき、その帯状のタブフィルム間に金属製の電極端子板を介在させた状態で端子側縁辺を含むラミネートフィルムの周縁領域を熱圧着している。そのため端子側縁辺側の周縁領域では、ラミネートフィルムを熱圧着した際の熱が外装体の内方にまで十分に伝わらず、タブフィルムの溶融に必要な熱量が不足し、電極端子板とタブフィルムとの密着性が不十分になる可能性がある。また十分にタブフィルムを溶融させるために高い温度で熱圧着を行うと、ラミネートフィルムの保護層が損傷する可能性がある。保護層が損傷すればラミネートフィルムを構成する金属箔が空気中の水分などに触れて腐食し、漏液に至る場合もある。また高温での熱圧着は外装体内部の電極体を損傷させる原因にもなる。   First, in the latter tab film method, a band-shaped tab film is welded in advance to an edge (hereinafter also referred to as a terminal-side edge) from which an electrode terminal plate is led out in a laminate film, and a metal plate is formed between the band-shaped tab films. The peripheral region of the laminate film including the terminal side edge is thermocompression bonded with the electrode terminal plate interposed. Therefore, in the peripheral area on the terminal side edge side, the heat at the time of thermocompression bonding of the laminate film is not sufficiently transmitted to the inside of the exterior body, the amount of heat necessary for melting the tab film is insufficient, and the electrode terminal plate and the tab film Adhesion may be insufficient. Moreover, if the thermocompression bonding is performed at a high temperature in order to sufficiently melt the tab film, the protective layer of the laminate film may be damaged. If the protective layer is damaged, the metal foil constituting the laminate film may be corroded by contact with moisture in the air, leading to leakage. Further, thermocompression bonding at a high temperature may cause damage to the electrode body inside the outer package.

一方タブリード法では、工場生産によって蓄電素子とは個別に製造されているタブリードを用いており、そのタブリードでは、電極端子板となる端子リードの一部にタブフィルムが強固に密着している。そのため外装体を封止する際には、ラミネートフィルムの接着層が溶融する程度の温度と圧力でタブフィルムがラミネートフィルムに容易に溶着される。すなわち高い密着強度で電極端子の導出領域を封止することができる。しかし電極集電体にタブリードの端子リードを超音波溶着するため、ラミネート型蓄電素子を組み立てる際の工数が増加する。高価な超音波溶着機も必要となる。もちろんタブリード自体が一つの製品として販売されている部材であるため、タブフィルム法に用いた端子リードとタブフィルムに係る部材コストよりも高くなることが多い。また極めて小型で薄型のラミネート型蓄電素子では電極集電体に端子リードを取り付ける際に高い位置精度が要求され、このこともコストアップの要因となる。なお位置精度に関してはタブフィルム法でも同じことが言える。   On the other hand, in the tab lead method, a tab lead manufactured separately from the storage element by factory production is used, and in the tab lead, the tab film is firmly adhered to a part of the terminal lead serving as the electrode terminal plate. Therefore, when sealing the exterior body, the tab film is easily welded to the laminate film at such a temperature and pressure that the adhesive layer of the laminate film is melted. That is, the lead-out region of the electrode terminal can be sealed with high adhesion strength. However, since the tab lead terminal lead is ultrasonically welded to the electrode current collector, the number of man-hours for assembling the laminate-type energy storage device increases. An expensive ultrasonic welder is also required. Of course, since the tab lead itself is a member sold as one product, the cost is often higher than the member cost for the terminal lead and the tab film used in the tab film method. In addition, extremely small and thin laminate-type energy storage devices require high positional accuracy when attaching terminal leads to the electrode current collector, which also increases costs. The same can be said for the positional accuracy in the tab film method.

そこで本発明は、コストアップを伴わずに、ラミネートフィルムや電極体の損傷を防止しつつ、外装体において電極端子板が導出されている周縁領域を十分に高い密着強度で封止することができるラミネート型蓄電素子の製造方法と当該方法で製造されたラミネート型蓄電素子を提供することを目的としている。   Therefore, the present invention can seal the peripheral region where the electrode terminal plate is led out in the exterior body with sufficiently high adhesion strength while preventing damage to the laminate film and the electrode body without increasing the cost. It aims at providing the manufacturing method of a lamination type electrical storage element, and the lamination type electrical storage element manufactured by the said method.

上記目的を達成するための本発明は、扁平袋状に成形された外装体内にシート状の正極と負極がセパレーターを介して積層された電極体が電解液とともに密封されているとともに、前記外装体の所定の縁辺から電極端子板が導出されてなるラミネート型蓄電素子の製造方法であって、
矩形の一辺に当該一辺と直交する方向に帯状に延長する正極端子部を一体的に備えた平板状または箔状の金属からなる正極集電体を用い、当該正極集電体における前記矩形の領域の一主面に正極活物質を含む正極材料を配置して前記正極を組み立てる正極組立ステップと、
矩形の一辺に当該一辺と直交する方向に帯状に延長する負極端子部を一体的に備えた平板状または箔状の金属からなる負極集電体を用い、当該負極集電体における前記矩形の領域の一主面に負極活物質を含む負極材料を配置して前記負極を組み立てる負極組立ステップと、
前記正極材料と前記負極材料とが対面するように前記正極と前記負極を前記セパレーターを介して積層して前記電極体を組み立てる電極体組立ステップと、
前記電極体における前記正極端子部および前記負極端子部の延長方向に対して横断する方向に帯状に延長して配置させた熱溶着性を有する2枚のタブフィルムで前記正極端子部と前記負極端子部を狭持しつつ、当該2枚のタブフィルムを熱圧着する第1熱圧着ステップと、
前記第1熱圧着ステップを実行した上で、前記電極体を対面する2枚の矩形状のラミネートフィルム間に配置するとともに、当該ラミネートフィルムの平面領域を周回する枠状の周縁領域における前記所定の縁辺に沿う領域に前記タブフィルムを配置しつつ前記正極端子部と前記負極端子部を当該縁辺から導出させる電極体配置ステップと、
前記対面する矩形のラミネートフィルムの平面領域を周回する周縁領域において前記所定の縁辺を含む三方の縁辺側を熱圧着することで、当該ラミネートフィルムを開口を備えた袋状に成形する第2熱圧着ステップと、
前記開口より前記袋状のラミネートフィルム内に電解液を充填するとともに、当該開口を熱圧着することで封止する密封ステップと、
を含む、
ことを特徴とするラミネート型蓄電素子の製造方法としている。
In order to achieve the above object, the present invention provides an electrode body in which a sheet-like positive electrode and a negative electrode are laminated with a separator in an outer package formed into a flat bag shape, and the outer package is sealed together with an electrolyte. A method of manufacturing a laminate-type energy storage device in which an electrode terminal plate is derived from a predetermined edge of
Using a positive electrode current collector made of a plate-like or foil-like metal integrally provided with a positive electrode terminal portion extending in a band shape in a direction perpendicular to the one side on one side of the rectangle, the rectangular region in the positive electrode current collector A positive electrode assembly step of assembling the positive electrode by disposing a positive electrode material including a positive electrode active material on one main surface;
Using a negative electrode current collector made of a plate-like or foil-like metal integrally provided with a negative electrode terminal portion extending in a band shape in a direction perpendicular to the one side on one side of the rectangle, the rectangular region of the negative electrode current collector A negative electrode assembly step of assembling the negative electrode by disposing a negative electrode material containing a negative electrode active material on one main surface;
An electrode assembly step of assembling the electrode assembly by laminating the positive electrode and the negative electrode via the separator so that the positive electrode material and the negative electrode material face each other;
In the electrode body, the positive electrode terminal portion and the negative electrode terminal are formed by two tab films having a heat-welding property arranged extending in a band shape in a direction transverse to the extending direction of the positive electrode terminal portion and the negative electrode terminal portion. A first thermocompression bonding step for thermocompression bonding the two tab films while holding the part;
After performing the first thermocompression bonding step, the electrode body is disposed between two rectangular laminate films facing each other, and the predetermined region in the frame-shaped peripheral region that circulates the planar region of the laminate film An electrode body disposing step for deriving the positive terminal portion and the negative terminal portion from the edge while disposing the tab film in a region along the edge;
2nd thermocompression-bonding which forms the said laminate film in the bag shape provided with the opening by carrying out thermocompression of the three edge sides including the said predetermined | prescribed edge in the peripheral area | region which circulates the planar area | region of the said rectangular laminate film which faces each other Steps,
A sealing step of filling the bag-like laminate film with the electrolyte from the opening and sealing the opening by thermocompression bonding;
including,
This is a method for manufacturing a laminate-type energy storage device.

より好適には、前記電極体組立ステップでは、前記正極端子版と前記負極端子板とが同方向に突出するように前記電極体を組み立て、
前記第1熱圧着ステップでは、前記2枚のタブフィルムで前記正極端子部と前記負極端子部を一括して狭持しつつ、当該2枚のタブフィルムを熱圧着し、
前記電極体配置ステップでは、前記正極端子部と前記負極端子部を前記対面するラミネートフィルムの特定の一つの縁辺から導出させる、
ことを特徴とするラミネート型蓄電素子の製造方法とすることである。前記正極集電体および前記負極集電体として金属箔を用いることを特徴とするラミネート型蓄電素子の製造方法としたり、前記ラミネート型蓄電素子は、電子回路と電源を内蔵したカード型電子機器の前記電源として使用されることを特徴とするラミネート型蓄電素子の製造方法としたりしてもよい。
More preferably, in the electrode assembly step, the electrode assembly is assembled so that the positive terminal plate and the negative terminal plate protrude in the same direction,
In the first thermocompression bonding step, the two tab films are thermocompression bonded while sandwiching the positive electrode terminal portion and the negative electrode terminal portion together with the two tab films,
In the electrode body arranging step, the positive electrode terminal portion and the negative electrode terminal portion are led out from a specific one edge of the facing laminate film.
In other words, the present invention provides a method for manufacturing a laminate-type energy storage device. A method of manufacturing a laminate-type energy storage device, wherein a metal foil is used as the positive electrode current collector and the negative electrode current collector, or the laminate-type energy storage device is a card-type electronic device incorporating an electronic circuit and a power source. It may be used as a method for manufacturing a laminate-type energy storage device that is used as the power source.

また本発明の範囲には前記製造方法によって製造されたラミネート型蓄電素子も含まれており、当該ラミネート型蓄電素子は、
扁平袋状に成形された外装体内にシート状の正極と負極がセパレーターを介して積層された電極体が前記電解液とともに密封されてなり、
前記正極は、矩形の一辺に当該一辺と直交する方向に帯状に延長する正極端子部を一体的に備えた正極集電体における前記矩形の領域の一主面に正極活物質を含む正極材料が配置されてなり、
前記負極は、矩形の一辺に当該一辺と直交する方向に帯状に延長する負極端子部を一体的に備えた負極集電体における前記矩形の領域の一主面に負極活物質を含む負極材料が配置されてなり、
前記負極は平板状または箔状の負極集電芯体の表面に負極活物質を含んだ負極の電極材料が積層された配置されてなり、
前記外装体は、対面する矩形のラミネートフィルムを周回する周縁領域が熱圧着によって溶着されてなり、
前記電極体における前記正極端子部および前記負極端子部の延長方向に対して横断する方向に帯状に延長しつつ互いに対面する2枚のタブフィルムが、前記正極端子部と前記負極端子部を狭持した状態で熱圧着されて溶着され、
前記正極端子部と前記負極端子部が前記外装体における所定の縁辺から導出されているとともに、当該縁辺に沿う前記周縁領域では前記ラミネートフィルムの内面側に前記タブフィルが溶着されている、
ことを特徴とするラミネート型蓄電素子としている。
Further, the scope of the present invention also includes a laminate-type energy storage device manufactured by the manufacturing method, the laminate-type energy storage device,
An electrode body in which a sheet-like positive electrode and a negative electrode are laminated via a separator in an outer package formed into a flat bag shape is sealed together with the electrolytic solution,
The positive electrode includes a positive electrode material containing a positive electrode active material on one main surface of the rectangular region of a positive electrode current collector integrally provided with a positive electrode terminal portion extending in a band shape in a direction orthogonal to the one side of the rectangle. Be arranged,
The negative electrode includes a negative electrode material containing a negative electrode active material on one main surface of the rectangular region of a negative electrode current collector integrally provided with a negative electrode terminal portion extending in a strip shape in a direction orthogonal to the one side of the rectangle. Be arranged,
The negative electrode is arranged by laminating a negative electrode material containing a negative electrode active material on the surface of a flat or foil negative electrode current collector,
The outer body is formed by welding a peripheral region that circulates a rectangular laminate film facing each other by thermocompression bonding,
Two tab films facing each other while extending in a strip shape in a direction transverse to the extending direction of the positive electrode terminal portion and the negative electrode terminal portion in the electrode body sandwich the positive electrode terminal portion and the negative electrode terminal portion. In a state where it is hot-pressed and welded,
The positive electrode terminal portion and the negative electrode terminal portion are led out from a predetermined edge in the exterior body, and the tab fill is welded to the inner surface side of the laminate film in the peripheral area along the edge.
A laminate type energy storage device is provided.

本発明のラミネート型蓄電素子によれば、ラミネートフィルムや電極体に損傷がなく、電極端子板の導出領域が十分に高い密着強度で封止されて、高い信頼性を有している。またより安価に提供することも可能である。また本発明のラミネート型蓄電素子の製造方法によれば、安価で信頼性の高いラミネート型蓄電素子を効率的に製造することができる。   According to the laminate type electricity storage device of the present invention, there is no damage to the laminate film or the electrode body, the lead-out region of the electrode terminal plate is sealed with sufficiently high adhesion strength, and has high reliability. It is also possible to provide it at a lower cost. In addition, according to the method for manufacturing a laminate-type energy storage device of the present invention, it is possible to efficiently manufacture an inexpensive and highly reliable laminate-type energy storage device.

一般的なラミネート型蓄電素子の一つの例を示す図である。It is a figure which shows one example of a general lamination type electrical storage element. 一般的なラミネート型蓄電素子のその他の例を示す図である。It is a figure which shows the other example of a general lamination type electrical storage element. 本発明の一実施形態に係るラミネート型蓄電素子を示す図である。It is a figure which shows the lamination type electrical storage element which concerns on one Embodiment of this invention. 本発明の実施例に係るラミネート型蓄電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the lamination type electrical storage element which concerns on the Example of this invention. 本発明の比較例に係るラミネート型蓄電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the lamination type electrical storage element which concerns on the comparative example of this invention. 本発明の実施例および比較例に係るラミネート型蓄電素子に対する接着強度試験の実施方法を示す図である。It is a figure which shows the implementation method of the adhesive strength test with respect to the laminate-type electrical storage element which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る方法で作製されたラミネート型蓄電素子に対する保存試験の結果を示す図である。It is a figure which shows the result of the storage test with respect to the laminate-type electrical storage element produced by the method which concerns on the Example and comparative example of this invention.

本発明の実施例について、以下に添付図面を参照しつつ説明する。なお以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。ある図面において符号を付した部分について、不要であれば他の図面ではその部分に符号を付さない場合もある。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that in the drawings used for the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. In some drawings, reference numerals may be assigned to parts that are not required in other drawings if unnecessary.

===実施形態===
本発明の一実施形態として、本発明の実施例に係る方法によって製造されたラミネート型蓄電素子を挙げる。図3に当該実施形態に係るラミネート型蓄電素子(以下、蓄電素子1aとも言う)を示した。図3(A)は蓄電素子1aの外観図であり、図3(B)は蓄電素子の分解斜視図である。図3(A)に示したように、蓄電素子1aの外観は図1(A)に示した一般的なラミネート型蓄電素子101と同様である。しかし内部の構造や構成が異なっている。具体的には、図3(B)に示したように正極集電体21および負極集電体31において、正極材料22および負極材料32が積層される矩形領域(以下、集電領域とも言う)に帯状の凸部(24、34)が一体的に形成された平面形状を有し、その凸部(24、24)の先端側の領域(25、35)が電極端子板として外装体11外に露出している。すなわち電極材料(22、34)が積層される集電体(21、31)そのもの(以下、芯体とも言う)が電極端子板を兼ねている。2枚のラミネートフィルム(11a、11b)において、外装体11の内方となる面(以下、裏面とも言う)には、電極端子板として機能する上記の凸部(以下、端子部(24、34)とも言う)が導出される縁辺(以下、端子側縁辺13とも言う)に沿って帯状のタブフィルム(14a、14b)が配置されている。そして2枚のラミネートフィルム(11a、11b)は、上記端子側縁辺13では、帯状の2枚のタブフィルム(14a、14b)が端子部(24、34)を狭持しつつ互いに溶着され、その溶着された状態の2枚のタブフィルム(14a、14b)がラミネートフィルム(11a、11b)の裏面に溶着されている。このように本発明の実施形態における蓄電素子1aでは、電極集電体(21、31)の構造や端子側縁辺13における外装体11の封止構造に特徴を有している。そして本発明の実施例は、これらの特徴を有する蓄電素子1aの製造方法であり、実施形態に係る蓄電素子1aは、本実施例に係る製造方法によって作製されることで、外装体11の端子側縁辺13が十分に高い密着強度で封止されているとともに、ラミネートフィルム(11a、11b)や電極体10の損傷もなく、極めて高い信頼性を有するものとなっている。また実施例に係る製造方法により蓄電素子1aをより安価に提供することも期待される。以下に本発明の実施例に係る蓄電素子の製造方法について説明する。
=== Embodiment ===
As an embodiment of the present invention, a laminate type electricity storage device manufactured by a method according to an example of the present invention is given. FIG. 3 shows a laminate-type energy storage device (hereinafter also referred to as energy storage device 1a) according to this embodiment. 3A is an external view of the power storage element 1a, and FIG. 3B is an exploded perspective view of the power storage element. As shown in FIG. 3A, the external appearance of the power storage element 1a is the same as that of the general laminated power storage element 101 shown in FIG. However, the internal structure and configuration are different. Specifically, as shown in FIG. 3B, in the positive electrode current collector 21 and the negative electrode current collector 31, a rectangular region in which the positive electrode material 22 and the negative electrode material 32 are stacked (hereinafter also referred to as a current collection region). The belt-shaped convex portions (24, 34) are integrally formed in a planar shape, and the regions (25, 35) on the front end side of the convex portions (24, 24) serve as electrode terminal plates. Is exposed. That is, the current collectors (21, 31) on which the electrode materials (22, 34) are laminated (hereinafter also referred to as a core) also serve as the electrode terminal plate. In the two laminated films (11a, 11b), on the inner surface (hereinafter also referred to as the back surface) of the outer package 11, the above-described convex portions (hereinafter referred to as the terminal portions (24, 34) functioning as electrode terminal plates). ) Is also provided along the edge (hereinafter also referred to as terminal-side edge 13) from which strip-shaped tab films (14a, 14b) are arranged. The two laminated films (11a, 11b) are welded to each other on the terminal side edge 13 while the two strip-shaped tab films (14a, 14b) are sandwiched between the terminal portions (24, 34). Two tab films (14a, 14b) in a welded state are welded to the back surface of the laminate films (11a, 11b). As described above, the power storage element 1 a according to the embodiment of the present invention is characterized by the structure of the electrode current collector (21, 31) and the sealing structure of the exterior body 11 at the terminal side edge 13. And the Example of this invention is a manufacturing method of the electrical storage element 1a which has these characteristics, The electrical storage element 1a which concerns on embodiment is produced by the manufacturing method which concerns on a present Example, and is the terminal of the exterior body 11 The side edges 13 are sealed with sufficiently high adhesion strength, and the laminate films (11a, 11b) and the electrode body 10 are not damaged and have extremely high reliability. It is also expected that the power storage device 1a can be provided at a lower cost by the manufacturing method according to the embodiment. Hereinafter, a method for manufacturing a power storage device according to an embodiment of the present invention will be described.

===実施例に係る製造方法===
本発明の実施例に係る蓄電素子の製造方法は、概略的には、電極体における正極と負極の電極端子部に帯状のタブフィルムを熱圧着により溶着させる工程と、この工程によってタブフィルムが端子部に溶着された状態の電極体を対面するラミネートフィルム間に配置して、そのラミネートフィルムの周縁領域を熱圧着により溶着する工程とが含まれている。そして以下では図3(B)にて示したように、電極体10の積層方向を上下方向とするとともに、セパレーター40に対して正極20が下方にあるものとして上下の各方向を規定することとして、本発明の実施例に係る蓄電素子の製造方法を説明する。図4は本発明に係る蓄電素子の製造方法の実施例の一つを示す図であり、図4(A)〜(F)にその製造手順を示した。まず図4(A)に示したように正極20における端子部24の基端側下面に帯状のタブフィルム14aを当該端子部24を横断する方向に位置合わせしつつ積層する。なおタブフィルム14aの位置は、最終的に外装体11の周縁領域12において、端子側縁辺13に沿う位置である。またここではその後の工程でタブフィルム14aの位置がずれないように、正極20の端子部(以下、正極端子部24とも言う)の上面の一部に半田ごて当てるなどしてタブフィルム14aを当該正極端子部24に仮溶着している。
=== Manufacturing Method According to Example ===
The method for manufacturing a power storage device according to an embodiment of the present invention is generally composed of a step of welding a strip-shaped tab film to the electrode terminal portions of the positive electrode and the negative electrode in the electrode body by thermocompression bonding, and the tab film is a terminal by this step. A step of disposing the electrode body welded to the portion between the facing laminate films and welding the peripheral area of the laminate film by thermocompression bonding. In the following, as shown in FIG. 3B, the stacking direction of the electrode body 10 is set as the vertical direction, and the vertical direction is defined as the positive electrode 20 being below the separator 40. The manufacturing method of the electrical storage element which concerns on the Example of this invention is demonstrated. FIG. 4 is a view showing one example of a method for manufacturing a power storage device according to the present invention, and the manufacturing procedure is shown in FIGS. First, as shown in FIG. 4A, a strip-shaped tab film 14 a is laminated on the bottom surface of the base end side of the terminal portion 24 in the positive electrode 20 while being aligned in a direction crossing the terminal portion 24. In addition, the position of the tab film 14a is a position along the terminal side edge 13 in the peripheral area 12 of the exterior body 11 finally. Also, here, the tab film 14a is applied to a part of the upper surface of the terminal portion of the positive electrode 20 (hereinafter also referred to as the positive electrode terminal portion 24) so that the position of the tab film 14a does not shift in the subsequent steps. Temporarily welded to the positive electrode terminal portion 24.

次に図4(B)に示したように、電極体10を構成する各部材(セパレーター40、負極30)を正極20の上方に順次積層して電極体10を形成する。ここでは各部材(40、30)を順次積層するそれぞれの工程で、その都度、各部材(40、30)の上面にブロック状のヒーターなどを押し当てるなどして部材同士(40−20、20−40)を仮溶着する。なおこのような電極体10の形成手順は従来の蓄電素子の製造方法でも採用されている。さらに図4(C)に示したように、最下層のタブフィルム14aと対面させるように、負極30の端子部(以下、負極端子部34とも言う)の上面にもタブフィルム14bを配置し、正極端子部24と負極端子部34を一括して2枚のタブフィルム(14a、14b)によって狭持する。そして正極端子部24と負極端子部34を介して積層されている2枚のタブフィルム(14a、14b)の上下両側からヒーターを内蔵したブロック状の治具などを用いて熱圧着する。ここでは150℃の温度と0.2MPaの圧力で熱圧着している。それによって正極端子部24と負極端子部34にタブフィルム(14a、14b)が強固に接着されるとともに、2枚のタブフィルム同士(14a―14b)も溶着して正極端子部24と負極端子部34を横断する当該タブフィルム(14a、14b)の介在領域の全域が確実に封止される。   Next, as shown in FIG. 4B, each member (separator 40 and negative electrode 30) constituting the electrode body 10 is sequentially stacked above the positive electrode 20 to form the electrode body 10. Here, in each step of sequentially laminating the members (40, 30), each time the members (40-20, 20) are pressed against each other by pressing a block heater or the like on the upper surface of each member (40, 30). −40) is temporarily welded. Such a procedure for forming the electrode body 10 is also employed in a conventional method for manufacturing a power storage element. Further, as shown in FIG. 4C, the tab film 14b is arranged on the upper surface of the terminal portion of the negative electrode 30 (hereinafter also referred to as the negative electrode terminal portion 34) so as to face the lowermost tab film 14a. The positive electrode terminal portion 24 and the negative electrode terminal portion 34 are held together by two tab films (14a, 14b). Then, thermocompression bonding is performed from the upper and lower sides of the two tab films (14a, 14b) laminated via the positive electrode terminal portion 24 and the negative electrode terminal portion 34 using a block-shaped jig with a built-in heater. Here, thermocompression bonding is performed at a temperature of 150 ° C. and a pressure of 0.2 MPa. As a result, the tab films (14a, 14b) are firmly bonded to the positive electrode terminal portion 24 and the negative electrode terminal portion 34, and the two tab films (14a-14b) are also welded to each other, thereby the positive electrode terminal portion 24 and the negative electrode terminal portion. 34, the entire intervening region of the tab film (14a, 14b) crossing 34 is securely sealed.

つぎに図4(D)に示したように、正極端子部24と負極端子部34にタブフィルム(14a、14b)が接着された状態の電極体10を、互いに対面する2枚のラミネートフィルム(11a、11b)で狭持する。ここではまず負極30の上面にラミネートフィルム11bを貼り付けたのち、このラミネートフィルム11bに対面させるように正極20の下面にラミネートフィルム11aを貼り付ける。さらに図4(E)に示したように、互いに対面する矩形のラミネートフィルム(11a、11b)の周縁領域12において、端子側縁辺13を含む三つの縁辺(13、15)側を熱圧着することで一辺16に開口17を有する袋状の外装体11に成形する。ここでは端子側縁辺13に対向する縁辺16側に開口17を設ける。そしてこの開口17から袋状の外装体11内に電解液を注入するとともに、開口17が設けられていた縁辺16を減圧環境化で熱溶着して図4(F)に示した蓄電素子1aを完成させる。   Next, as shown in FIG. 4D, the electrode body 10 in a state in which the tab films (14a, 14b) are bonded to the positive electrode terminal portion 24 and the negative electrode terminal portion 34 is bonded to two laminated films ( 11a, 11b). Here, first, the laminate film 11b is attached to the upper surface of the negative electrode 30, and then the laminate film 11a is attached to the lower surface of the positive electrode 20 so as to face the laminate film 11b. Further, as shown in FIG. 4E, in the peripheral region 12 of the rectangular laminate films (11a, 11b) facing each other, the three edges (13, 15) including the terminal side edge 13 are thermocompression bonded. To form a bag-shaped exterior body 11 having an opening 17 on one side 16. Here, an opening 17 is provided on the edge 16 side facing the terminal side edge 13. And while inject | pouring electrolyte solution into the bag-shaped exterior body 11 from this opening 17, the edge 16 in which the opening 17 was provided is heat-welded by pressure reduction environment, and the electrical storage element 1a shown to FIG. Finalize.

このように実施例に係る蓄電素子の製造方法では、あらかじめ芯体(21、31)の一部である端子部(24、34)を2枚のタブフィルム(14a、14b)で狭持しつつ2枚のタブフィルム同士(14a−14b)を熱圧着により溶着し、その上でラミネートフィルム(11a、11b)の周縁領域12を熱圧着により溶着している。そのためタブフィルム(14a、14b)と端子部(24、34)およびタブフィルム同士(14a−14b)が高い強度で密着し、かつタブフィルム(14a、14b)とラミネートフィルム(11a、11b)も高い強度で密着する。したがって外装体11の端子側縁辺13の周縁領域12が確実に封止される。また従来の蓄電素子の製造方法とは異なり、電極集電体の芯体が電極端子板を兼ねているので、電極端子板を電極集電体の芯体に超音波溶接などの方法によって取り付ける工程を必要としない。そのため複雑な工程や電極端子板に要する部材コストを低減させることができる。とくに電極端子板をタブリードで構成する場合には部材コストの低減効果が高い。超音波溶接機などの電極端子板を集電体の芯体に溶着するための設備も不要となる。電極端子板として機能する端子部は芯体と一体成形されるため、電極端子板を芯体に取り付ける際に生じる位置ずれが原理的に発生しない。すなわち、電極端子部を外装体に対して高い位置精度で外方に導出させることができる。とくにICカードなどのカード型電子機器に内蔵される極めて小型薄型の蓄電素子の場合、カード型電子機器内の電子回路と蓄電素子の電極端子板との接続には僅かな位置ずれも許容されないため、本実施例の方法で製造される蓄電素子は、外装体に対する電極端子板の相対的な位置ずれが発生し難く、カード型電子機器の電源として極めて好適なものとなっている。   As described above, in the method for manufacturing the power storage device according to the example, the terminal portions (24, 34) that are part of the core (21, 31) are held in advance by the two tab films (14a, 14b). Two tab films (14a-14b) are welded together by thermocompression bonding, and then the peripheral region 12 of the laminate films (11a, 11b) is welded by thermocompression bonding. Therefore, the tab films (14a, 14b), the terminal portions (24, 34), and the tab films (14a-14b) are in close contact with each other with high strength, and the tab films (14a, 14b) and the laminate films (11a, 11b) are also high. Adhere with strength. Therefore, the peripheral region 12 of the terminal side edge 13 of the exterior body 11 is reliably sealed. In addition, unlike the conventional method of manufacturing a storage element, the electrode current collector core also serves as an electrode terminal plate, and therefore the electrode terminal plate is attached to the electrode current collector core by a method such as ultrasonic welding. Do not need. Therefore, it is possible to reduce the cost of members required for complicated processes and electrode terminal plates. In particular, when the electrode terminal plate is composed of tab leads, the effect of reducing the member cost is high. Equipment for welding an electrode terminal plate such as an ultrasonic welder to the core of the current collector is also unnecessary. Since the terminal portion functioning as the electrode terminal plate is integrally formed with the core body, the positional deviation that occurs when the electrode terminal plate is attached to the core body does not occur in principle. That is, the electrode terminal portion can be led out with high positional accuracy with respect to the exterior body. In particular, in the case of an extremely small and thin storage element incorporated in a card-type electronic device such as an IC card, a slight misalignment is not allowed for the connection between the electronic circuit in the card-type electronic device and the electrode terminal plate of the storage element. The power storage device manufactured by the method of the present embodiment is hardly suitable for the power source of the card-type electronic device because the relative displacement of the electrode terminal plate with respect to the exterior body hardly occurs.

===信頼性===
本発明の実施例に係る方法で製造された蓄電素子の信頼性を確認するために、図3に示した構造を有するリチウム二次電池を実施例の方法、および実施例とは異なる方法(比較例に係る方法)で作製した。そして実施例に係る方法と比較例に係る方法でそれぞれ作製した2種類のリチウム二次電池をサンプルとして、これらサンプルに対して信頼性試験を行った。以下では、まずサンプルとして作製したリチウム二次電池の具体的な構成と比較例に係る製造方法について説明し、その上で作製した2種類のサンプルに対する信頼性試験の内容とその試験結果について説明する。
=== Reliability ===
In order to confirm the reliability of the electricity storage device manufactured by the method according to the embodiment of the present invention, the lithium secondary battery having the structure shown in FIG. The method according to the example). Then, two types of lithium secondary batteries respectively produced by the method according to the example and the method according to the comparative example were used as samples, and a reliability test was performed on these samples. In the following, first, a specific configuration of a lithium secondary battery manufactured as a sample and a manufacturing method according to a comparative example will be described, and details of a reliability test and test results of two types of samples manufactured thereon will be described. .

<リチウム二次電池の構成>
図3(B)を参照しつつサンプルとなるリチウム二次電池の構造について説明する。電極体10を構成する正極20は、10〜50μm厚みを持つアルミ箔からなる正極集電体21の片面にスラリー状の正極材料22を50〜200μmの厚さで塗布した後に、真空中130℃で乾燥して作製したものである。そして正極材料22は、正極活物質であるコバルト酸リチウム(LiCoO)と炭素系導電剤(アセチレンブラック、グラファイトなど)と、結着剤となるポリビニリデンフルオライド(PVdF)とが固形分の質量比で90:5:5となるように混合するとともに、その混合物を有機溶剤(NMPなど)に分解または溶解させながら混練することで調製されたものである。
<Configuration of lithium secondary battery>
A structure of a sample lithium secondary battery will be described with reference to FIG. The positive electrode 20 constituting the electrode body 10 is formed by applying a slurry-like positive electrode material 22 with a thickness of 50 to 200 μm on one surface of a positive electrode current collector 21 made of an aluminum foil having a thickness of 10 to 50 μm, and then in a vacuum at 130 ° C. It was produced by drying with The positive electrode material 22 is composed of lithium cobalt oxide (LiCoO 2 ) that is a positive electrode active material, a carbon-based conductive agent (acetylene black, graphite, and the like), and polyvinylidene fluoride (PVdF) that is a binder. The mixture was prepared so as to have a ratio of 90: 5: 5, and the mixture was kneaded while being decomposed or dissolved in an organic solvent (NMP or the like).

負極30は、厚さ10〜50μmの銅箔からなる負極集電体31の片面にスラリー状の負極材料32を、正極20と同様にして50〜200μmの厚さで塗布した後に、真空中130℃で乾燥して作製したものである。負極材料32は、難黒鉛化炭素を負極活物質として、正極と同様の炭素系導電剤と結着剤を固形分の質量比で90:5:5となるように混合するとともに、その混合物を有機溶剤(NMPなど)に分解または溶解させながら混練することで調製されたものである。なお電解液にはプロピレンカーボネートに溶質としてLiPFを溶解させたものを用いている。このようにサンプルとして作製したリチウム二次電池は、集電体の構造と外装体における端子側縁辺の封止構造が異なるだけで、充放電反応に関わる構成については、従来のラミネート型リチウム二次電池と同様である。 In the negative electrode 30, a slurry-like negative electrode material 32 is applied to one surface of a negative electrode current collector 31 made of a copper foil having a thickness of 10 to 50 μm in a thickness of 50 to 200 μm in the same manner as the positive electrode 20, and then 130 in vacuum. It was produced by drying at ° C. The negative electrode material 32 is composed of non-graphitizable carbon as a negative electrode active material, and a carbon-based conductive agent and a binder similar to those of the positive electrode are mixed at a solid mass ratio of 90: 5: 5. It is prepared by kneading while dissolving or dissolving in an organic solvent (NMP or the like). Note the electrolytic solution is used that obtained by dissolving LiPF 6 as a solute in propylene carbonate. The lithium secondary battery manufactured as a sample in this way is different from the current collector structure and the sealing structure of the terminal side edge in the exterior body. It is the same as a battery.

<比較例に係る製造方法>
図5は比較例に係る製造方法を示しており、図5(A)〜(E)にその製造手順を示した。まず図5(A)に示したように、2枚のラミネートフィルム(11a、11b)のそれぞれの端子側縁辺13にタブフィルム(14a、14b)を溶着しておき、図5(B)に示すように、下方(正極20側)のラミネートフィルム11aの上面に組み立て済みの正極20を積層しつつ正極端子部24とタブフィルム14aとの積層領域を熱圧着して正極端子部24とタブフィルム14aとを溶着する。上方(負極30側)のラミネートフィルム11bについては、当該負極30側のラミネートフィルム11bの下方に組み立て済みの負極30を積層しつつ負極端子部34とラミネートフィルム11bの積層領域を熱圧着してタブフィルム14bを負極端子部34に溶着する。それによって負極30側の組立済み部品(以下、負極組立品とも言う)が完成する。正極20側については、図5(C)に示したように、正極20の上面にセパレーター40を溶着して正極20側の組み立て済み部品(以下、正極組立品とも言う)を完成させる。もちろん負極30の下面にセパレーター40を溶着しておいてもよい。そして図5(D)に示したように、正極組立品と負極組立品を積層し、互いに対面する矩形のラミネートフィルム(11a、11b)の周縁領域12において、端子側縁辺13を含む三つの縁辺(13、15)側を熱圧着することで互いに一辺16に開口を有する袋状の外装体11に成形する。そしてこの開口17から袋状の外装体内に電解液を注入するとともに、外装体11の周縁領域12において当該開口17がある縁辺15側を熱圧着して外装体11を密封する。それによって図5(E)に示したリチウム二次電池1bが完成する。
<Production method according to comparative example>
FIG. 5 shows a manufacturing method according to a comparative example, and FIGS. 5A to 5E show the manufacturing procedure. First, as shown in FIG. 5 (A), tab films (14a, 14b) are welded to the respective terminal side edges 13 of the two laminate films (11a, 11b), and shown in FIG. 5 (B). Thus, the laminated region of the positive electrode terminal portion 24 and the tab film 14a is thermocompression bonded while laminating the assembled positive electrode 20 on the upper surface of the laminate film 11a on the lower side (positive electrode 20 side), and the positive electrode terminal portion 24 and the tab film 14a. And weld. Regarding the upper (negative electrode 30 side) laminate film 11b, the laminated region of the negative electrode terminal portion 34 and the laminate film 11b is thermocompression bonded while the assembled negative electrode 30 is laminated below the negative electrode 30 side laminate film 11b. The film 14 b is welded to the negative terminal portion 34. Thereby, an assembled part on the negative electrode 30 side (hereinafter also referred to as a negative electrode assembly) is completed. As for the positive electrode 20 side, as shown in FIG. 5C, a separator 40 is welded to the upper surface of the positive electrode 20 to complete an assembled part (hereinafter also referred to as a positive electrode assembly) on the positive electrode 20 side. Of course, the separator 40 may be welded to the lower surface of the negative electrode 30. Then, as shown in FIG. 5 (D), the positive electrode assembly and the negative electrode assembly are laminated, and in the peripheral region 12 of the rectangular laminate film (11a, 11b) facing each other, three edges including the terminal side edge 13 The (13, 15) side is thermocompression-bonded to form a bag-like exterior body 11 having openings on one side 16. And while inject | pouring electrolyte solution into this bag-shaped exterior body from this opening 17, the edge 15 side which has the said opening 17 in the peripheral area | region 12 of the exterior body 11 is thermocompression-bonded, and the exterior body 11 is sealed. Thereby, the lithium secondary battery 1b shown in FIG. 5E is completed.

<信頼性試験>
つぎに上述した実施例に係る方法で作製したサンプル(以下、サンプルA)と比較例に係る方法で作製したサンプル(以下、サンプルB)を3個ずつ作製し、各個体について、正極側および負極側のそれぞれのラミネートフィルム(図3〜図5、符号11aおよび11b)の端子側縁辺(図3〜図5、符号13)側の周縁領域(図3〜図5、符号12)に対して引張試験機を用いた接着強度試験を行った。図6に接着強度試験の実施方法の概略を示した。なお図6は正極側のラミネートフィルム11aの接着強度を測定する例を示している。まず接着強度試験の実施に先立って蓄電素子(図3、符号1a)を負極端子部34の幅に裁断し、負極端子部34の基端側も負極集電体(図3(B)、符号31)の集電領域から切り離しておく。そして負極端子部34の導出方向を鉛直方向、すなわち電極体(図3(b)、符号10)の積層方向に対応する上下方向ではなく、重力の方向に一致させるとともに、負極端子部34の先端側を鉛直上方に向ける。
<Reliability test>
Next, three samples (hereinafter referred to as sample B) prepared by the method according to the above-described embodiment (hereinafter referred to as sample A) and three samples (hereinafter referred to as sample B) manufactured according to the method according to the comparative example are prepared. Tensile against the peripheral region (FIGS. 3-5, 12) on the terminal side edge (FIGS. 3-5, 13) side of each side laminate film (FIGS. 3-5, 11a and 11b) An adhesion strength test using a testing machine was performed. FIG. 6 shows an outline of a method for performing the adhesive strength test. FIG. 6 shows an example in which the adhesive strength of the laminate film 11a on the positive electrode side is measured. First, prior to carrying out the adhesive strength test, the storage element (FIG. 3, reference numeral 1a) is cut into the width of the negative electrode terminal portion 34, and the base end side of the negative electrode terminal portion 34 is also connected to the negative electrode current collector (FIG. 3B, reference numeral 31) Separated from the current collecting area. The lead-out direction of the negative electrode terminal portion 34 is not the vertical direction corresponding to the vertical direction, that is, the vertical direction corresponding to the stacking direction of the electrode bodies (FIG. 3B, reference numeral 10), but the direction of gravity. Turn side up vertically.

そして負極端子部24の基端側と負極側のラミネートフィルム11bとをクランプ60dで狭持するとともに、この狭持した状態でクランプ60dを固定する。正極側のラミネートフィルム11aについては外装体11における端子側縁辺13に対して内方側、すなわちタブフィルム14aに接着されている周縁領域12に対して鉛直下方の端部61側を鉛直上方へ反転させ、その反転させた端部61をクランプ60uで挟むとともに、その鉛直上方側のクランプuを引張試験機に取り付ける。そして当該クランプを図中白抜き矢印で示したように引張試験機により鉛直上方に引っ張る。そして正極側のタブフィルム14aとラミネートフィルム11aとが剥離したときの接着強度(N)を正極側の接着強度とした。負極側のラミネートフィルム11bの接着強度については、試験前に蓄電素子から正極端子部(図3(b)、符号24)に対応する領域を切り出しておき、正極側のラミネートフィルム11aと正極端子部の基端側を鉛直下方のクランプ60dで狭持して固定し、負極側のラミネートフィルム11bを狭持した鉛直上方のクランプ60uを引張試験機により鉛直上方に引っ張って接着強度を測定すればよい。   Then, the base end side of the negative electrode terminal portion 24 and the laminate film 11b on the negative electrode side are sandwiched by the clamp 60d, and the clamp 60d is fixed in this sandwiched state. With respect to the laminate film 11a on the positive electrode side, the inner side with respect to the terminal side edge 13 in the exterior body 11, that is, the edge 61 side vertically below the peripheral region 12 bonded to the tab film 14a is inverted vertically upward. Then, the inverted end 61 is sandwiched between the clamps 60u, and the clamp u on the vertically upper side is attached to the tensile testing machine. Then, the clamp is pulled vertically upward by a tensile tester as indicated by the white arrow in the figure. And the adhesive strength (N) when the tab film 14a on the positive electrode side and the laminate film 11a were peeled was defined as the adhesive strength on the positive electrode side. Regarding the adhesive strength of the negative electrode side laminate film 11b, a region corresponding to the positive electrode terminal portion (FIG. 3B, reference numeral 24) is cut out from the power storage element before the test, and the positive electrode side laminate film 11a and the positive electrode terminal portion are cut out. The base end side is clamped and fixed with a clamp 60d vertically below, and the clamp 60u vertically above holding the laminate film 11b on the negative electrode side is pulled vertically upward with a tensile tester to measure the adhesive strength. .

以下の表1に接着強度試験の結果を示した。   Table 1 below shows the results of the adhesive strength test.

Figure 2017134962
表1ではサンプルAとサンプルBに属する各個体の正極側および負極側の接着強度の平均値と接着強度(N)のバラツキを示す標準偏差σが示されている。そしてこの表1に示したように、実施例の方法で作製したサンプルAは比較例の方法で作製したサンプルBに対して正極側と負極側の双方で接続強度の平均値が2N程度高く、外装体における端子側縁辺側の周縁領域が強固に封止されていることが分かった。また標準偏差σはサンプルBの1.7〜2.1に対してサンプルAは0.3〜0.6であり、極めて均一な接着強度で封止されていることも確認された。
Figure 2017134962
Table 1 shows an average value of the positive and negative adhesive strengths of each of the specimens belonging to Sample A and Sample B and a standard deviation σ indicating variations in the adhesive strength (N). And as shown in Table 1, the average value of the connection strength on the positive electrode side and the negative electrode side of the sample A produced by the method of the example is about 2N higher than the sample B produced by the method of the comparative example, It turned out that the peripheral area | region of the terminal side edge side in an exterior body is sealed firmly. The standard deviation σ was 1.7 to 2.1 for sample B, and 0.3 to 0.6 for sample A. It was also confirmed that the samples were sealed with extremely uniform adhesive strength.

つぎに接続強度試験とは別に各サンプルを3個ずつ作製し、各個体を60℃90%RHの高温高湿度環境下に保存する試験(以下、保存試験)を行った。そして保存開始から所定の日数が経過する毎に、各個体の内部抵抗を周知の交流定電流方式(1KHz、10mA)によって調べた。   Next, three samples were prepared separately from the connection strength test, and a test (hereinafter referred to as a storage test) was performed in which each specimen was stored in a high-temperature and high-humidity environment of 60 ° C. and 90% RH. Each time a predetermined number of days elapsed from the start of storage, the internal resistance of each individual was examined by a known AC constant current method (1 KHz, 10 mA).

図7と以下の表2に当該保存試験の結果を示した。   FIG. 7 and Table 2 below show the results of the storage test.

Figure 2017134962
図7および表2では、保存日数毎の内部抵抗を保存開始時点での内部抵抗を1としたときの比(倍)によって示している。そして図7および表2に示したように、実施例に対応するサンプルAでは保存後70日が経過した時点での内部抵抗か当初の20.5倍であったが、比較例に対応するサンプルBでは内部抵抗が108倍にもなったことから、実施例に係る方法によって製造された蓄電素子は高い保存性能を備えていることが分かった。
Figure 2017134962
In FIG. 7 and Table 2, the internal resistance for each storage day is shown by the ratio (times) when the internal resistance at the start of storage is 1. As shown in FIG. 7 and Table 2, in sample A corresponding to the example, the internal resistance at the time when 70 days passed after storage was 20.5 times the initial value, but the sample corresponding to the comparative example In B, since the internal resistance was 108 times, it was found that the electricity storage device manufactured by the method according to the example had high storage performance.

===その他の実施例===
本発明の実施例では、電極端子板を兼ねる電極集電体として20μm〜50μm程度の厚さを有する金属箔を用いていたが、それ以上の厚さを有する金属板を用いてもよい。しかし電極端子板の厚さが薄いほど密着強度が高くなることは明らかなので、空気中の水分などに対する防水性を考慮すれば電極端子板を兼ねた電極集電体には金属箔を用いることがより望ましい。
=== Other Embodiments ===
In the embodiment of the present invention, a metal foil having a thickness of about 20 μm to 50 μm is used as an electrode current collector that also serves as an electrode terminal plate, but a metal plate having a thickness greater than that may be used. However, it is clear that the thinner the electrode terminal plate is, the higher the adhesion strength becomes. Therefore, considering the waterproof property against moisture in the air, it is necessary to use a metal foil for the electrode current collector also serving as the electrode terminal plate. More desirable.

本発明の実施例に係る製造方法は、図4に示した手順に限らず、適宜に変更可能である。例えば、最初に電極体を組み立てておき、その上で正極と負極の端子部を横断する方向に延長する2枚のタブフィルムを、それぞれ正極端子部の下面および負極端子部の上面に接触させた状態で対面させて、その互いに対面するタブフィルムを熱圧着して、タブフィルム同士、および正極と負極の端子部とタブフィルムを溶着させてもよい。いずれにしてもタブリードを正極と負極の端子部が2枚のタブフィルムによって狭持された状態で、そのタブフィルムを溶着し、その上で電極体を2枚のラミネートフィルムで狭持してそのラミネートフィルム同士を熱溶着させればよい。すなわちタブフィルムとラミネートフィルムに対して個別に熱圧着工程を設ければよい。なお当然のことながら、本発明は積層構造を有する平板状の電極体をラミネートフィルムからなる外装体内に密封した構造であれば、リチウム二次電池限らず、様々な種類のラミネート型蓄電素子(リチウム二次電池、電気二重層コンデンサーなど)に適用することができる。   The manufacturing method according to the embodiment of the present invention is not limited to the procedure shown in FIG. For example, the electrode body is assembled first, and then two tab films extending in a direction crossing the positive electrode and negative electrode terminal portions are brought into contact with the lower surface of the positive electrode terminal portion and the upper surface of the negative electrode terminal portion, respectively. The tab films facing each other may be thermocompression bonded to each other, and the tab films may be bonded to each other, and the positive electrode and negative electrode terminal portions and the tab film may be welded. In any case, the tab lead is welded in a state where the positive and negative terminal portions are sandwiched between the two tab films, and then the electrode body is sandwiched between the two laminate films. What is necessary is just to heat-bond laminate films. That is, a thermocompression bonding process may be provided individually for the tab film and the laminate film. As a matter of course, the present invention is not limited to a lithium secondary battery, but various types of laminated storage elements (lithium) as long as a flat electrode body having a laminated structure is sealed in an outer package made of a laminate film. It can be applied to secondary batteries, electric double layer capacitors, etc.

上記実施形態に係る蓄電素子では正極端子部と負極端子部が外装体の同じ端子側縁辺から同方向に導出されていたが、正極端子部と負極端子部は、外装体において互いに対向する二つの縁辺から反対方向に向かって導出されていてもよい。しかし正極端子部と負極端子部が一つの縁辺から同方向に導出されている蓄電素子では、電極体の厚さによってこれら端子部同士が上下方向に離間している。そのため実施形態として図3に示したような蓄電素子では、二つの縁辺のそれぞれから端子部が一つずつ導出されている蓄電素子と比較すると、実質的には実際の厚さよりも厚い電極端子部が一つの縁辺から導出されていることになる。したがって本実施例の製造法では、正極と負極の端子部が同方向に導出されている蓄電素子を製造する際により高い効果を奏する。   In the electricity storage device according to the above embodiment, the positive electrode terminal portion and the negative electrode terminal portion are led out in the same direction from the same terminal side edge of the exterior body, but the positive electrode terminal portion and the negative electrode terminal portion are two opposite to each other in the exterior body. You may be derived | led-out toward the opposite direction from the edge. However, in the electric storage element in which the positive electrode terminal portion and the negative electrode terminal portion are led out in the same direction from one edge, the terminal portions are separated from each other in the vertical direction depending on the thickness of the electrode body. Therefore, in the electricity storage device as shown in FIG. 3 as an embodiment, the electrode terminal portion is substantially thicker than the actual thickness compared to the electricity storage device in which one terminal portion is led out from each of the two edges. Is derived from one edge. Therefore, in the manufacturing method of the present embodiment, a higher effect can be obtained when manufacturing a power storage element in which the positive and negative terminal portions are led out in the same direction.

1a,1b,101,201 ラミネート型蓄電素子、11 外装体、
11a,11b ラミネートフィルム、12 周縁領域、13 端子側縁辺、
14a,14b タブフィルム、16 開口側の縁辺、17 開口、20 正極、
21 正極集電体、22 正極材料、23 正極端子板、24 正極端子部、
25 正極端子部の先端領域、30 負極、31 負極集電体、32 負極材料、
33 負極端子板、34 負極端子部、35 負極端子部の先端領域、
40 セパレーター、50 タブリード、51 タブリードの端子リード、
52 タブリードのタブフィルム
1a, 1b, 101, 201 Laminate type storage element, 11 exterior body,
11a, 11b laminate film, 12 peripheral area, 13 terminal side edge,
14a, 14b tab film, 16 opening side edge, 17 opening, 20 positive electrode,
21 positive electrode current collector, 22 positive electrode material, 23 positive electrode terminal plate, 24 positive electrode terminal part,
25 Positive electrode terminal portion tip region, 30 negative electrode, 31 negative electrode current collector, 32 negative electrode material,
33 negative electrode terminal plate, 34 negative electrode terminal portion, 35 tip region of the negative electrode terminal portion,
40 separator, 50 tab lead, 51 tab lead terminal lead,
52 Tab Lead Tab Film

Claims (5)

扁平袋状に成形された外装体内にシート状の正極と負極がセパレーターを介して積層された電極体が電解液とともに密封されているとともに、前記外装体の所定の縁辺から電極端子板が導出されてなるラミネート型蓄電素子の製造方法であって、
矩形の一辺に当該一辺と直交する方向に帯状に延長する正極端子部を一体的に備えた平板状または箔状の金属からなる正極集電体を用い、当該正極集電体における前記矩形の領域の一主面に正極活物質を含む正極材料を配置して前記正極を組み立てる正極組立ステップと、
矩形の一辺に当該一辺と直交する方向に帯状に延長する負極端子部を一体的に備えた平板状または箔状の金属からなる負極集電体を用い、当該負極集電体における前記矩形の領域の一主面に負極活物質を含む負極材料を配置して前記負極を組み立てる負極組立ステップと、
前記正極材料と前記負極材料とが対面するように前記正極と前記負極を前記セパレーターを介して積層して前記電極体を組み立てる電極体組立ステップと、
前記電極体における前記正極端子部および前記負極端子部の延長方向に対して横断する方向に帯状に延長して配置させた熱溶着性を有する2枚のタブフィルムで前記正極端子部と前記負極端子部を狭持しつつ、当該2枚のタブフィルムを熱圧着する第1熱圧着ステップと、
前記第1熱圧着ステップを実行した上で、前記電極体を対面する2枚の矩形状のラミネートフィルム間に配置するとともに、当該ラミネートフィルムの平面領域を周回する枠状の周縁領域における前記所定の縁辺に沿う領域に前記タブフィルムを配置しつつ前記正極端子部と前記負極端子部を当該縁辺から導出させる電極体配置ステップと、
前記対面する矩形のラミネートフィルムの平面領域を周回する周縁領域において前記所定の縁辺を含む三方の縁辺側を熱圧着することで、当該ラミネートフィルムを開口を備えた袋状に成形する第2熱圧着ステップと、
前記開口より前記袋状のラミネートフィルム内に電解液を充填するとともに、当該開口を熱圧着することで封止する密封ステップと、
を含む、
ことを特徴とするラミネート型蓄電素子の製造方法。
An electrode body in which a sheet-like positive electrode and a negative electrode are laminated through a separator in a flat bag-shaped outer package is sealed together with an electrolytic solution, and an electrode terminal plate is led out from a predetermined edge of the outer package. A method for producing a laminate-type energy storage device comprising:
Using a positive electrode current collector made of a plate-like or foil-like metal integrally provided with a positive electrode terminal portion extending in a band shape in a direction perpendicular to the one side on one side of the rectangle, the rectangular region in the positive electrode current collector A positive electrode assembly step of assembling the positive electrode by disposing a positive electrode material including a positive electrode active material on one main surface;
Using a negative electrode current collector made of a plate-like or foil-like metal integrally provided with a negative electrode terminal portion extending in a band shape in a direction perpendicular to the one side on one side of the rectangle, the rectangular region of the negative electrode current collector A negative electrode assembly step of assembling the negative electrode by disposing a negative electrode material containing a negative electrode active material on one main surface;
An electrode assembly step of assembling the electrode assembly by laminating the positive electrode and the negative electrode via the separator so that the positive electrode material and the negative electrode material face each other;
In the electrode body, the positive electrode terminal portion and the negative electrode terminal are formed by two tab films having a heat-welding property arranged extending in a band shape in a direction transverse to the extending direction of the positive electrode terminal portion and the negative electrode terminal portion. A first thermocompression bonding step for thermocompression bonding the two tab films while holding the part;
After performing the first thermocompression bonding step, the electrode body is disposed between two rectangular laminate films facing each other, and the predetermined region in the frame-shaped peripheral region that circulates the planar region of the laminate film An electrode body disposing step for deriving the positive terminal portion and the negative terminal portion from the edge while disposing the tab film in a region along the edge;
2nd thermocompression-bonding which forms the said laminate film in the bag shape provided with the opening by carrying out thermocompression of the three edge sides including the said predetermined | prescribed edge in the peripheral area | region which circulates the planar area | region of the said rectangular laminate film which faces each other Steps,
A sealing step of filling the bag-like laminate film with the electrolyte from the opening and sealing the opening by thermocompression bonding;
including,
A method for producing a laminate-type energy storage device.
請求項1において、
前記電極体組立ステップでは、前記正極端子版と前記負極端子板とが同方向に突出するように前記電極体を組み立て、
前記第1熱圧着ステップでは、前記2枚のタブフィルムで前記正極端子部と前記負極端子部を一括して狭持しつつ、当該2枚のタブフィルムを熱圧着し、
前記電極体配置ステップでは、前記正極端子部と前記負極端子部を前記対面するラミネートフィルムの特定の一つの縁辺から導出させる、
ことをと特徴とするラミネート型蓄電素子の製造方法。
In claim 1,
In the electrode assembly step, the electrode assembly is assembled so that the positive terminal plate and the negative terminal plate protrude in the same direction,
In the first thermocompression bonding step, the two tab films are thermocompression bonded while sandwiching the positive electrode terminal portion and the negative electrode terminal portion together with the two tab films,
In the electrode body arranging step, the positive electrode terminal portion and the negative electrode terminal portion are led out from a specific one edge of the facing laminate film.
A method for producing a laminate-type energy storage device.
請求項1または2において、前記正極集電体および前記負極集電体として金属箔を用いることを特徴とするラミネート型蓄電素子の製造方法。   3. The method for manufacturing a laminate-type energy storage device according to claim 1, wherein a metal foil is used as the positive electrode current collector and the negative electrode current collector. 請求項1〜3のいずれかにおいて、前記ラミネート型蓄電素子は、電子回路と電源を内蔵したカード型電子機器の前記電源として使用されることを特徴とするラミネート型蓄電素子の製造方法。   4. The method of manufacturing a laminate-type energy storage device according to claim 1, wherein the laminate-type energy storage element is used as the power source of a card-type electronic device having an electronic circuit and a power source incorporated therein. 請求項1〜4のいずれかに記載の前記製造方法によって製造されたラミネート型蓄電素子であって、
扁平袋状に成形された外装体内にシート状の正極と負極がセパレーターを介して積層された電極体が前記電解液とともに密封されてなり、
前記正極は、矩形の一辺に当該一辺と直交する方向に帯状に延長する正極端子部を一体的に備えた正極集電体における前記矩形の領域の一主面に正極活物質を含む正極材料が配置されてなり、
前記負極は、矩形の一辺に当該一辺と直交する方向に帯状に延長する負極端子部を一体的に備えた負極集電体における前記矩形の領域の一主面に負極活物質を含む負極材料が配置されてなり、
前記負極は平板状または箔状の負極集電芯体の表面に負極活物質を含んだ負極の電極材料が積層された配置されてなり、
前記外装体は、対面する矩形のラミネートフィルムを周回する周縁領域が熱圧着によって溶着されてなり、
前記電極体における前記正極端子部および前記負極端子部の延長方向に対して横断する方向に帯状に延長しつつ互いに対面する2枚のタブフィルムが、前記正極端子部と前記負極端子部を狭持した状態で熱圧着されて溶着され、
前記正極端子部と前記負極端子部が前記外装体における所定の縁辺から導出されているとともに、当該縁辺に沿う前記周縁領域では前記ラミネートフィルムの内面側に前記タブフィルが溶着されている、
ことを特徴とするラミネート型蓄電素子。
A laminate type electricity storage device manufactured by the manufacturing method according to claim 1,
An electrode body in which a sheet-like positive electrode and a negative electrode are laminated via a separator in an outer package formed into a flat bag shape is sealed together with the electrolytic solution,
The positive electrode includes a positive electrode material containing a positive electrode active material on one main surface of the rectangular region of a positive electrode current collector integrally provided with a positive electrode terminal portion extending in a band shape in a direction orthogonal to the one side of the rectangle. Be arranged,
The negative electrode includes a negative electrode material containing a negative electrode active material on one main surface of the rectangular region of a negative electrode current collector integrally provided with a negative electrode terminal portion extending in a strip shape in a direction orthogonal to the one side of the rectangle. Be arranged,
The negative electrode is arranged by laminating a negative electrode material containing a negative electrode active material on the surface of a flat or foil negative electrode current collector,
The outer body is formed by welding a peripheral region that circulates a rectangular laminate film facing each other by thermocompression bonding,
Two tab films facing each other while extending in a strip shape in a direction transverse to the extending direction of the positive electrode terminal portion and the negative electrode terminal portion in the electrode body sandwich the positive electrode terminal portion and the negative electrode terminal portion. In a state where it is hot-pressed and welded,
The positive electrode terminal portion and the negative electrode terminal portion are led out from a predetermined edge in the exterior body, and the tab fill is welded to the inner surface side of the laminate film in the peripheral area along the edge.
A laminate type energy storage device.
JP2016012994A 2016-01-27 2016-01-27 Manufacturing method of laminate type energy storage device Active JP6678036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012994A JP6678036B2 (en) 2016-01-27 2016-01-27 Manufacturing method of laminate type energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012994A JP6678036B2 (en) 2016-01-27 2016-01-27 Manufacturing method of laminate type energy storage device

Publications (2)

Publication Number Publication Date
JP2017134962A true JP2017134962A (en) 2017-08-03
JP6678036B2 JP6678036B2 (en) 2020-04-08

Family

ID=59502850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012994A Active JP6678036B2 (en) 2016-01-27 2016-01-27 Manufacturing method of laminate type energy storage device

Country Status (1)

Country Link
JP (1) JP6678036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638308A (en) * 2018-12-19 2019-04-16 中山市臻铭智能科技有限公司 A kind of soft bag lithium ionic cell hot press
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery
CN110336082A (en) * 2019-07-04 2019-10-15 深圳市光大激光科技股份有限公司 A kind of battery core hot pressing cutting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233133A (en) * 1998-02-18 1999-08-27 Matsushita Electric Ind Co Ltd Battery in which laminated sheet is used for sheath case
JPH11260328A (en) * 1998-03-12 1999-09-24 Mitsubishi Materials Corp Sheet-like battery with proper sealing property and manufacture thereof
JPH11329382A (en) * 1998-05-21 1999-11-30 Furukawa Electric Co Ltd:The Film-like battery
WO2005036674A1 (en) * 2003-10-07 2005-04-21 Nec Lamilion Energy, Ltd. Film-clad battery and method of producing film-clad battery
JP2012109125A (en) * 2010-11-17 2012-06-07 Sony Corp Nonaqueous electrolyte battery
JP2012209125A (en) * 2011-03-29 2012-10-25 Fdk Tottori Co Ltd Thin-film electrochemical element
JP2013187018A (en) * 2012-03-07 2013-09-19 Fujimori Kogyo Co Ltd Electrode lead wire member for nonaqueous battery
JP2015510240A (en) * 2013-01-11 2015-04-02 エルジー・ケム・リミテッド Secondary battery including integrated positive electrode lead and negative electrode lead, and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233133A (en) * 1998-02-18 1999-08-27 Matsushita Electric Ind Co Ltd Battery in which laminated sheet is used for sheath case
JPH11260328A (en) * 1998-03-12 1999-09-24 Mitsubishi Materials Corp Sheet-like battery with proper sealing property and manufacture thereof
JPH11329382A (en) * 1998-05-21 1999-11-30 Furukawa Electric Co Ltd:The Film-like battery
WO2005036674A1 (en) * 2003-10-07 2005-04-21 Nec Lamilion Energy, Ltd. Film-clad battery and method of producing film-clad battery
JP2012109125A (en) * 2010-11-17 2012-06-07 Sony Corp Nonaqueous electrolyte battery
JP2012209125A (en) * 2011-03-29 2012-10-25 Fdk Tottori Co Ltd Thin-film electrochemical element
JP2013187018A (en) * 2012-03-07 2013-09-19 Fujimori Kogyo Co Ltd Electrode lead wire member for nonaqueous battery
JP2015510240A (en) * 2013-01-11 2015-04-02 エルジー・ケム・リミテッド Secondary battery including integrated positive electrode lead and negative electrode lead, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery
JP7003762B2 (en) 2018-03-19 2022-01-21 トヨタ自動車株式会社 All solid state battery
CN109638308A (en) * 2018-12-19 2019-04-16 中山市臻铭智能科技有限公司 A kind of soft bag lithium ionic cell hot press
CN109638308B (en) * 2018-12-19 2024-03-19 中山市臻铭智能科技有限公司 Soft package lithium ion battery hot press
CN110336082A (en) * 2019-07-04 2019-10-15 深圳市光大激光科技股份有限公司 A kind of battery core hot pressing cutting device

Also Published As

Publication number Publication date
JP6678036B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP5151115B2 (en) Bipolar secondary battery
WO2017149949A1 (en) Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
JP3941917B2 (en) Electric double layer capacitor manufacturing method and electric double layer capacitor
JP5730096B2 (en) Thin film electrochemical device
KR101533574B1 (en) Method for Manufacturing of Battery Cell Having Bent Sealing Surplus Portion
JP2013097931A (en) Manufacturing method of electrochemical element of thin film type
JP2010153841A (en) Safety mechanism for laminate external package electric storage device
JP2001102090A (en) Fabrication method of plate type cell
JP6678036B2 (en) Manufacturing method of laminate type energy storage device
JP5229440B2 (en) Electrochemical devices
JP3997430B2 (en) Film-clad battery and method for producing film-clad battery
JP2002280270A (en) Electric double-layer capacitor
JP2011023531A (en) Electric storage device and method for manufacturing the same
JP5110832B2 (en) Method for manufacturing power storage element
KR101546002B1 (en) electrochemical energy storage device
JP6796417B2 (en) Laminated power storage element, manufacturing method of laminated type power storage element
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
JP2019057473A (en) Electrochemical cell
JP3448389B2 (en) Method for manufacturing thin polymer solid electrolyte battery
JP2011009096A (en) Lamination type laminated battery
JP2003331798A (en) Cladding film for sealing electrode body and sealing method of cladding film
JP2003162996A (en) Power storage device and lead unit used therefor
JP2020035521A (en) Laminate type power storage element, manufacturing method of laminate type power storage element
US9202633B2 (en) Laminate type energy device and method of manufacturing the same
JP4224671B2 (en) Power storage device and lead unit used therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250