JP5110832B2 - Method for manufacturing power storage element - Google Patents

Method for manufacturing power storage element Download PDF

Info

Publication number
JP5110832B2
JP5110832B2 JP2006236702A JP2006236702A JP5110832B2 JP 5110832 B2 JP5110832 B2 JP 5110832B2 JP 2006236702 A JP2006236702 A JP 2006236702A JP 2006236702 A JP2006236702 A JP 2006236702A JP 5110832 B2 JP5110832 B2 JP 5110832B2
Authority
JP
Japan
Prior art keywords
electrode body
current collecting
clamp
current collector
collecting lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006236702A
Other languages
Japanese (ja)
Other versions
JP2008059948A (en
Inventor
武志 宮崎
琢司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006236702A priority Critical patent/JP5110832B2/en
Publication of JP2008059948A publication Critical patent/JP2008059948A/en
Application granted granted Critical
Publication of JP5110832B2 publication Critical patent/JP5110832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、平板状の正極シートと負極シートとがセパレータを介して交互に積層されてなる平板型の多層電極体を用いた蓄電素子に関し、とくに、気密性軟包装材からなるソフト容器を素子容器として用いたものに適用して有効である。   The present invention relates to an electricity storage device using a flat-plate type multilayer electrode body in which flat plate-like positive electrode sheets and negative electrode sheets are alternately laminated via separators, and in particular, a soft container made of an airtight flexible packaging material. It is effective when applied to those used as containers.

たとえば、風力発電や太陽電池等における負荷平準化、瞬低・停電対策、自動車等におけるエネルギー回生などに使用するため、大きな電気エネルギーの急速充放電が可能な蓄電素子が要求されている。   For example, there is a demand for a storage element that can rapidly charge and discharge a large amount of electric energy for use in load leveling in wind power generation, solar cells, etc., countermeasures for instantaneous voltage drop / power outage, energy regeneration in automobiles and the like.

この種の蓄電素子の構造としては、平板状の正極シートと負極シートを、セパレータを介して交互に積層してなる平板型の電極体を用いた蓄電素子が従来から提案されている(たとえば特許文献1参照)。   As a structure of this type of power storage element, a power storage element using a flat-plate electrode body in which flat plate-like positive electrode sheets and negative electrode sheets are alternately laminated via separators has been proposed (for example, patents). Reference 1).

この種の蓄電素子の充放電電流を大きくするため、本発明者らは図3および図4に示すような構成を有する蓄電素子を検討した。この蓄電素子は、まず、図3に示すように、金属箔集電体212に正極物質211が添着された平板状正極シート21と、金属箔集電体232に負極物質231が添着された平板状負極シート23を、セパレータ22を介して交互に積層することにより平板型の多層電極体20を形成する。この多層電極体20の側方には、正極シート21および負極シート23の各集電体212,232から延出されてなる集電リード部213,233が水平に張り出している。   In order to increase the charge / discharge current of this type of power storage element, the present inventors have studied a power storage element having a configuration as shown in FIGS. First, as shown in FIG. 3, the electricity storage device includes a flat positive electrode sheet 21 in which a positive electrode material 211 is attached to a metal foil current collector 212, and a flat plate in which a negative electrode material 231 is attached to a metal foil current collector 232. The plate-like multilayer electrode body 20 is formed by alternately laminating the negative electrode sheets 23 via the separators 22. On the side of the multilayer electrode body 20, current collecting lead portions 213 and 233 extending from the current collectors 212 and 232 of the positive electrode sheet 21 and the negative electrode sheet 23 project horizontally.

上記集電リード部213,233は、図4の(a)(b)に示すように、極性別に集合されて正極および負極の外部端子リード31,33に溶接接続される。この後、同図の(c)に示すように、蓄電部となる電極体20がラミネートフィルム等の気密性軟包装材11を用いた素子容器(ソフト容器)に電解液とともに密閉収容されて蓄電素子が作製される。   As shown in FIGS. 4A and 4B, the current collecting lead portions 213 and 233 are assembled according to polarity and are welded to the positive and negative external terminal leads 31 and 33, respectively. Thereafter, as shown in FIG. 3C, the electrode body 20 serving as a power storage unit is hermetically stored together with the electrolyte in an element container (soft container) using an airtight soft packaging material 11 such as a laminate film. An element is fabricated.

素子容器は気密性軟包装材11からなるソフト容器であって、その外形状は電極体20の外形状にほぼ追従する。このソフト容器は、軟包装材11の縁辺部を重ね合わせて熱融着することにより密閉封止される。この熱融着による封着部に上記外部端子リード31,33の中間部を挟み込むことにより、素子容器の密閉状態を保ちながら正極および負極の外部端子を取り出すことができる。   The element container is a soft container made of the airtight flexible packaging material 11, and its outer shape substantially follows the outer shape of the electrode body 20. The soft container is hermetically sealed by overlapping and heat-sealing the edge portions of the soft packaging material 11. By sandwiching the intermediate portion of the external terminal leads 31 and 33 in the heat sealed portion, the positive and negative external terminals can be taken out while maintaining the sealed state of the element container.

上記蓄電素子は、セパレータ22を介して積層される正極シート21と負極シート23の積層数を多くするとともに、各電極シート21,23の集電体212,232からそれぞれに延出された集電リード部213,233を集合して外部端子リード31,33に共通接続することにより、充放電流を大きくすることを可能にしている。   The power storage element increases the number of stacked positive electrode sheets 21 and negative electrode sheets 23 stacked via the separator 22, and collects current collectors 212 and 232 extending from the current collectors 212 and 232 of the electrode sheets 21 and 23, respectively. By gathering the lead portions 213 and 233 and commonly connecting them to the external terminal leads 31 and 33, it is possible to increase the charge / discharge current.

さらに、素子容器として、ラミネートフィルム等の気密性軟包装材11からなるソフト容器を用いれば、従来の金属缶を用いたものよりも、大幅に小型かつ軽量な蓄電素子を低コストで提供することが可能になる。
特開2005−149882
Furthermore, if a soft container made of an airtight flexible packaging material 11 such as a laminate film is used as an element container, a much smaller and lighter power storage element can be provided at a lower cost than those using a conventional metal can. Is possible.
JP 2005-149882 A

上記蓄電素子では、正極シート21と負極シート23の積層数を多くし、かつ、各電極シート21,23からそれぞれに張り出している集電リード部213,233を集合して外部端子リード31,33に共通接続することで、充放電電流を大きくすることができる。   In the power storage element, the number of stacked positive electrode sheets 21 and negative electrode sheets 23 is increased, and the current collecting lead portions 213 and 233 projecting from the electrode sheets 21 and 23 are gathered to collect the external terminal leads 31 and 33. The common connection to the charging and discharging current can be increased.

しかし、電極体20の積層数が多くなると電極体20の厚みが増大する。厚みが増大した電極体20において各電極シート21,23からそれぞれに張り出している集電リード部213,233を集合して外部端子リード31,33に溶接接続すると、各電極シート21,23にそれぞれ横方向の引っ張り力が作用する。この引っ張り力は、電極シート21,23の厚み方向の位置、すなわち積層位置によって異なる。このため、たとえば図4の(b)(c)に示すように、積層ずれが生じる。   However, as the number of stacked electrode bodies 20 increases, the thickness of the electrode body 20 increases. When the current collecting lead portions 213 and 233 projecting from the electrode sheets 21 and 23 in the electrode body 20 having an increased thickness are assembled and welded to the external terminal leads 31 and 33, the electrode sheets 21 and 23 are respectively connected. A lateral pulling force acts. This pulling force varies depending on the position in the thickness direction of the electrode sheets 21 and 23, that is, the stacking position. For this reason, for example, as shown in FIGS. 4B and 4C, stacking deviation occurs.

この積層ずれが生じると、正極と負極の接触による内部短絡が生じやすくなる。また、集電リード部213,233に溶接接続された外部端子リード31,33の位置、とくに電極体20の厚み方向に対する位置が、正確に定まらなくなるという問題も生じる。   When this misalignment occurs, an internal short circuit is likely to occur due to contact between the positive electrode and the negative electrode. Further, there is a problem that the positions of the external terminal leads 31 and 33 welded to the current collecting leads 213 and 233, particularly the position in the thickness direction of the electrode body 20, cannot be determined accurately.

外部端子リード31,33は素子容器の封止部(封着部)を通り抜けた状態で設置されるが、この設置状態で素子容器の密閉封止状態を安定に保持させるためには、集電リード部213,233に溶接接続された状態での位置決めが正しく行われている必要がある。   The external terminal leads 31 and 33 are installed in a state of passing through the sealing portion (sealing portion) of the element container. In order to stably maintain the hermetically sealed state of the element container in this installed state, a current collector is used. Positioning in a state where the lead portions 213 and 233 are welded to each other needs to be performed correctly.

素子容器がラミネートフィルム等の気密性軟包装材11からなるソフト容器の場合、集電リード部213,233に溶接接続された外部端子リード31,33は、電極体20の厚み方向において、そのソフト容器の封着部と同位置になるように位置決めされている必要がある。この位置決めが正しく行われてないと、外部端子リード31,33と素子容器間に無理な力が加わるようになり、この結果、封止不良による漏液が生じやすくなるなど、素子の信頼性が低下してしまう。   When the element container is a soft container made of an airtight flexible packaging material 11 such as a laminate film, the external terminal leads 31 and 33 welded to the current collecting lead portions 213 and 233 are soft in the thickness direction of the electrode body 20. It is necessary to be positioned so as to be in the same position as the sealing portion of the container. If this positioning is not performed correctly, an excessive force is applied between the external terminal leads 31 and 33 and the element container. As a result, liquid leakage due to poor sealing is likely to occur. It will decline.

本発明は以上のような問題を解決するものであって、その目的は、平板状の正極シートと負極シートとがセパレータを介して交互に積層されてなる平板型の多層電極体を用いた蓄電素子の製造方法において、電極シートの積層数を増やすとともに各電極シートの集電リード部を集合して外部端子リードに共通接続することにより、蓄電エネルギー密度および充放電可能電流の増大を可能にしつつ、内部短絡や漏液等の発生を確実に抑えて蓄電素子の信頼性を向上させるようにした技術を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to store electricity using a flat plate-type multilayer electrode body in which flat plate-like positive electrode sheets and negative electrode sheets are alternately laminated via separators. In the element manufacturing method, while increasing the number of stacked electrode sheets and collecting the current collecting lead portions of each electrode sheet and commonly connecting them to the external terminal leads, it is possible to increase the storage energy density and the chargeable / dischargeable current. Another object of the present invention is to provide a technique for improving the reliability of an electric storage element by reliably suppressing the occurrence of an internal short circuit or leakage.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面にてあきらかにする。   Other objects and configurations of the present invention will be clarified in the description of the present specification and the accompanying drawings.

本発明が提供する解決手段は以下のとおりである。
(1)金属製集電体に正極物質が添着された平板状正極シートと、金属製集電体に負極物質が添着された平板状負極シートとが、セパレータを介して交互に上下方向に積層されることにより平板型の多層電極体が形成され、この電極体が素子容器に密閉収容されるとともに、各正極シートの集電体および各負極シートの集電体からそれぞれに上記電極体の前方へ延出された集電リード部が、極性別に集合されて正極および負極の外部端子リードに溶接接続されている蓄電素子の製造方法であって、
上記電極体を上下方向に押圧して当該電極体の積層形状を保持しながら、上記集電リード部を第1のクランプを用いて上下方向から挟み込んで、当該集電リード部の前端を当該第1のクランプの前方外側に突出させつつ、上記電極体の厚み方向の中央位置に集合させるように成形する成形工程と
上記集合状態にある上記集電リード部において、前記第1のクランプの前方外側に突出している部分を、当該第1のクランプの前方外縁に沿って切断することで、当該集電リードの前端を揃える集電リード切断工程と
上記集電リード切断工程によって前端が揃えられた集電リードを、前後方向の厚さが前記第1のクランプより薄い第2のクランプで上下方向から挟み込んで、当該集電リード部の前端を当該第2のクランプの前方に突出させつつ、前記電極体の厚さ方向の中央に集合させた状態で、当該集合状態にある集電リードを上記外部端子リードに溶接接続する溶接工程と、
を行うことを特徴とする蓄電素子の製造方法。
(2)上記手段(1)において、上記素子容器を気密性軟包装材からなるソフト容器で構成するとともに、上記軟包装材の縁辺部を重ね合わせて融着することにより形成される上記ソフト容器の封着部に、上記外部端子リードの中間部を挟み込むことを特徴とする蓄電素子の製造方法。
The solution provided by the present invention is as follows.
(1) A flat positive electrode sheet in which a positive electrode material is attached to a metal current collector and a flat negative electrode sheet in which a negative electrode material is attached to a metal current collector are alternately stacked in a vertical direction via a separator. As a result, a flat-type multilayer electrode body is formed, and this electrode body is hermetically housed in the element container, and the current collector of each positive electrode sheet and the current collector of each negative electrode sheet are respectively forward of the electrode body. The current collector lead portion extended to the polarity is a method for producing a storage element that is assembled by polarity and welded to the positive and negative external terminal leads,
While holding the stacked shape of the electrode body by pressing the electrode body in the vertical direction, the current collector lead portion is sandwiched from the vertical direction using the first clamp, and the front end of the current collector lead portion is A molding step of molding so as to gather at the center position in the thickness direction of the electrode body while projecting to the front outer side of the clamp of 1 ;
In the current collecting lead portion in the aggregated state, the front end of the current collecting lead is cut by cutting a portion projecting to the front outer side of the first clamp along the front outer edge of the first clamp. Current collecting lead cutting process ,
A current collecting lead whose front end is aligned by the current collecting lead cutting step is sandwiched from above and below by a second clamp whose front-rear thickness is thinner than the first clamp, and the front end of the current collecting lead portion is A welding step of welding and connecting the current collecting leads in the aggregated state to the external terminal leads in a state of being aggregated at the center in the thickness direction of the electrode body while projecting forward of the second clamp ;
A method for manufacturing a power storage element, wherein:
(2) In the above means (1), the element container is constituted by a soft container made of an airtight flexible packaging material, and the soft container formed by overlapping and fusing the edge portions of the flexible packaging material An intermediate portion of the external terminal lead is sandwiched in the sealing portion of the battery.

平板状の正極シートと負極シートとがセパレータを介して交互に積層されてなる平板型の多層電極体を用いた蓄電素子の製造方法において、電極シートの積層数を増やすとともに各電極シートの集電リード部を集合して外部端子リードに共通接続することにより、蓄電エネルギー密度および充放電可能電流の増大を可能にしつつ、内部短絡や漏液等の発生を確実に抑えて蓄電素子の信頼性を向上させることができる。   In a method for manufacturing an electricity storage device using a flat-type multilayer electrode body in which flat plate-like positive electrode sheets and negative electrode sheets are alternately laminated through separators, the number of electrode sheets is increased and the current collection of each electrode sheet By gathering the lead parts and connecting them in common to the external terminal leads, it is possible to increase the energy storage energy density and chargeable / dischargeable current, while also reliably preventing the occurrence of internal short circuits and liquid leakage, thereby improving the reliability of the storage element. Can be improved.

上記以外の作用/効果については、本明細書の記述および添付図面にてあきらかにする。   The operations / effects other than the above will be clarified in the description of the present specification and the accompanying drawings.

図1および図2は、本発明の一実施形態をなす蓄電素子の製造方法を工程段階順に示したものである。また図3は、上記蓄電素子に用いる平面積層型の多層電極体を示したものである。   FIG. 1 and FIG. 2 show a method for manufacturing a power storage element according to an embodiment of the present invention in the order of process steps. FIG. 3 shows a planar multi-layer electrode body used for the above-described power storage element.

まず、平板型の多層電極体20は、図3に示すように、平板状の正極シート21と、平板状の負極シート23を、セパレータ22を介して交互に積層することによって形成される。   First, as shown in FIG. 3, the flat multilayer electrode body 20 is formed by alternately laminating a flat positive electrode sheet 21 and a flat negative electrode sheet 23 with separators 22 interposed therebetween.

正極シート21は、リチウムイオンもしくは電解質アニオンを可逆的に担持可能な物質211が、金属箔からなる集電体212の両面に、塗布により層状に添着されて作製されている。同様に、負極シート23は、電解質カチオンであるリチウムイオンの吸蔵・放出が可能な物質231が、金属箔からなるシート状集電体232の両面に、塗布により層状に添着されて作製されている。   The positive electrode sheet 21 is produced by applying a substance 211 capable of reversibly carrying lithium ions or electrolyte anions to both surfaces of a current collector 212 made of a metal foil in a layered manner by coating. Similarly, the negative electrode sheet 23 is prepared by applying a material 231 capable of occluding and releasing lithium ions, which are electrolyte cations, to both surfaces of a sheet-like current collector 232 made of a metal foil by coating. .

多層電極体20の側方には、正極シート21および負極シート23の各集電体212,232から延出された集電リード部213,233が水平に張り出している。   On the side of the multilayer electrode body 20, current collecting lead portions 213 and 233 extending from the current collectors 212 and 232 of the positive electrode sheet 21 and the negative electrode sheet 23 project horizontally.

蓄電素子は上記電極体20を用いて、図1と図2に示す各工程(a)〜(h)を経て製造される。この製造においては、まず、図1の(a)(b)に示すように、電極体20を固定台71にセットして定位置に位置決めするとともに、同図(c)に示すように、可動押圧部材72で電極体20を積層方向(垂直方向)から押さえつけてその位置および形状を固定する。   A power storage element is manufactured through the steps (a) to (h) shown in FIGS. 1 and 2 using the electrode body 20. In this manufacturing, first, as shown in FIGS. 1A and 1B, the electrode body 20 is set on the fixed base 71 and positioned at a fixed position, and as shown in FIG. The electrode member 20 is pressed from the stacking direction (vertical direction) by the pressing member 72 to fix its position and shape.

そして、同図(c)に示すように、電極体20の積層形状を保持しながら、クランプ部材73,73で、電極体20の側方へ張り出している集電リード部213,233の先端側部分を、電極体20の厚み方向の中央位置に挟み込んで集合させる。この集合に際し、各集電リード部213,233は、電極体20の厚み方向に対するそれぞれの位置から上記中央位置に湾曲するように成形される。このとき、電極体20の積層形状は可動押圧部材72によって一定に保持されている。   Then, as shown in FIG. 3C, the front end side of the current collecting lead portions 213 and 233 projecting to the side of the electrode body 20 by the clamp members 73 and 73 while maintaining the laminated shape of the electrode body 20. The portions are sandwiched and assembled at the center position in the thickness direction of the electrode body 20. At the time of this assembly, the current collecting lead portions 213 and 233 are formed so as to be bent from the respective positions in the thickness direction of the electrode body 20 to the central position. At this time, the stacked shape of the electrode body 20 is held constant by the movable pressing member 72.

この後、上記保持状態にて、図1(d)に示すように、所定位置に集合させられた集電リード部213,233の先端位置を切断して揃える。そして、図2(e)に示すように、集電リード部213,233の集合部分をクランプ部材74,74で所定の集合位置(上記中央位置)に固定しながら、その集合部分を超音波溶接機61で外部端子リード31,33に溶接接続する。こられの工程も、上述したように、電極体20の位置および形状を固定しながら行う。   Thereafter, in the holding state, as shown in FIG. 1D, the tip positions of the current collecting lead portions 213 and 233 assembled at predetermined positions are cut and aligned. Then, as shown in FIG. 2 (e), the collective portion of the current collecting leads 213 and 233 is fixed to a predetermined collective position (the central position) by the clamp members 74 and 74, and the collective portion is ultrasonically welded. The machine 61 is welded to the external terminal leads 31 and 33. These steps are also performed while fixing the position and shape of the electrode body 20 as described above.

次に、図2(f)に示すように、アルミニウム・ラミネートフィルムからなる気密性軟包装材11,11で電極体20を上下から挟み込み、同図(g)に示すように、気密性軟包装材11,11の一辺を残した三方の縁辺を重ね合わせ、この重ね合わせ部分を熱シール機63で熱融着する。符号75は熱シール用の作業台を示す。   Next, as shown in FIG. 2 (f), the electrode body 20 is sandwiched from above and below by airtight flexible packaging materials 11, 11 made of an aluminum laminate film, and as shown in FIG. 2 (g), the airtight flexible packaging is performed. The three edges except one side of the materials 11 and 11 are overlapped, and the overlapped portion is heat-sealed by a heat sealing machine 63. Reference numeral 75 denotes a work table for heat sealing.

これにより、電極体20の外形状にほぼ追従する矩形平型の素子容器が形成される。このとき、外部端子リード31,33は、その中間部の所定部位が上記熱融着によって形成される封着部に、その封着部での封止状態を保持した状態で挟み込まれる。   Thereby, a rectangular flat element container that substantially follows the outer shape of the electrode body 20 is formed. At this time, the external terminal leads 31 and 33 are sandwiched between the sealing portions formed at the intermediate portions of the predetermined portions by the above-described heat-sealing while maintaining the sealed state at the sealing portions.

最後に、気密性軟包装材11,11からなる素子容器に電解液(リチウム塩を含む非水電解液)を注液し、残りの一辺を熱融着(熱シール)で封着して素子容器を密閉することにより、同図(h)に示すような断面構造の蓄電素子10が作製される。   Finally, an electrolytic solution (non-aqueous electrolytic solution containing a lithium salt) is injected into an element container made of airtight flexible packaging materials 11 and 11, and the remaining one side is sealed by thermal fusion (heat sealing). By sealing the container, the electricity storage device 10 having a cross-sectional structure as shown in FIG.

上記のように作製された蓄電素子10は、正極シート21と負極シート23の積層数を多くし、かつ、各電極シート21,23からそれぞれに張り出している集電リード部213,233を集合して外部端子リード31,33に共通接続することで、充放電電流を大きくすることができる。   The power storage device 10 manufactured as described above has a larger number of stacked positive electrode sheets 21 and negative electrode sheets 23, and collects current collecting lead portions 213 and 233 projecting from the electrode sheets 21 and 23, respectively. Thus, the common connection to the external terminal leads 31 and 33 can increase the charge / discharge current.

電極体20は積層数が多くなるにしたがって厚みが増し、これにもなって積層ずれが生じやすくなるが、集電リード部213,233はその積層ずれを生じさせることなく、電極体20の厚み方向に対して所定の位置(中央位置)に集合させることができる。これにより、正極と負極の接触による内部短絡の発生を確実に防止させることができる。   The electrode body 20 increases in thickness as the number of stacks increases, and this also tends to cause stacking misalignment, but the current collecting leads 213 and 233 cause the thickness of the electrode body 20 without causing stacking misalignment. They can be gathered at a predetermined position (center position) with respect to the direction. Thereby, generation | occurrence | production of the internal short circuit by the contact of a positive electrode and a negative electrode can be prevented reliably.

また、集合された集電リード部213,233に溶接接続された外部端子リード31,33も、電極体20の厚み方向に対して所定の位置(中央位置)に正しく位置決めされるため、外部端子リード31,33と素子容器間に無理な力あるいは歪みが加わるのを回避して、封止不良による漏液を確実に防止させることができる。   Further, the external terminal leads 31 and 33 welded to the assembled current collecting lead portions 213 and 233 are also correctly positioned at a predetermined position (center position) with respect to the thickness direction of the electrode body 20, so that the external terminals By avoiding excessive force or distortion between the leads 31 and 33 and the element container, it is possible to reliably prevent leakage due to poor sealing.

上記のように、本発明では、蓄電エネルギー密度および充放電可能電流の増大を可能にしつつ、内部短絡や漏液等の発生を確実に抑えて蓄電素子の信頼性を向上させることができる。
以下、本発明の具体的実施例を示す。
As described above, according to the present invention, it is possible to increase the energy storage energy density and the chargeable / dischargeable current, and to reliably suppress the occurrence of internal short circuits, liquid leakage, and the like and improve the reliability of the energy storage device.
Specific examples of the present invention will be described below.

<実施例>
正極シートの作製:
正極物質の主材料となる炭素粉末と、結着剤であるカルボキシメチルセルロース(第一工業薬品(株)製「セロゲン4H」)を、97:3の重量比で混合する。この混合体にイオン交換水を加えてペースト状にした後、集電体となる厚さ20μmのアルミニウム箔の両面に塗布する。これに乾燥および圧延操作を行った後、所定形状に切断してシート状の正極を作製した。これとともに、上記集電体には、電極物質が塗布されていない導電リード部を形成した。
<Example>
Production of positive electrode sheet:
Carbon powder, which is the main material of the positive electrode substance, and carboxymethylcellulose (“Serogen 4H” manufactured by Daiichi Kogyo Kagaku Co., Ltd.) as a binder are mixed at a weight ratio of 97: 3. After ion-exchanged water is added to this mixture to form a paste, it is applied to both sides of an aluminum foil with a thickness of 20 μm that will be a current collector. This was dried and rolled, and then cut into a predetermined shape to produce a sheet-like positive electrode. At the same time, a conductive lead portion to which no electrode material was applied was formed on the current collector.

負極シートの作製:
負極物質の主材料となる難黒鉛化性炭素材料(呉羽化学(株)製「PIC」)と、結着剤であるポリフッ化ビニリデン樹脂(呉羽化学(株)製「KF#1100」)を、95:5の重量比で混合する。これに、溶剤としてN−メチル−2−ピロリドンを加えてペースト状の合剤を調製した。この合剤を、集電体となる厚さ14μmの銅箔の両面に塗布した。これに乾燥および圧延操作を行った後、所定形状に切断してシート状の負極を作製した。これとともに、上記集電体には、電極物質が塗布されていない導電リード部を形成した。
Production of negative electrode sheet:
A non-graphitizable carbon material (“PIC” manufactured by Kureha Chemical Co., Ltd.), which is the main material of the negative electrode material, and a polyvinylidene fluoride resin (“KF # 1100” manufactured by Kureha Chemical Co., Ltd.), which is a binder, Mix at a weight ratio of 95: 5. To this, N-methyl-2-pyrrolidone was added as a solvent to prepare a paste-like mixture. This mixture was applied to both sides of a 14 μm thick copper foil serving as a current collector. This was dried and rolled, and then cut into a predetermined shape to produce a sheet-like negative electrode. At the same time, a conductive lead portion to which no electrode material was applied was formed on the current collector.

電極体および蓄電素子の作製:
上記正極シートと上記負極シートとを、セパレータを介して交互に積層することにより平板型の多層電極体を作製した。各電極シートから電極体の側方へ延出されている導電リード部を上述した実施形態の方法より、電極体の厚み方向の中央位置に集合するように成形し、その集合部分を外部端子リードに溶接接続した(図1,図2)。
Production of electrode body and electricity storage element:
The positive electrode sheet and the negative electrode sheet were alternately laminated via separators to produce a flat plate type multilayer electrode body. The conductive lead portions extending from the electrode sheets to the side of the electrode body are formed so as to be gathered at the center position in the thickness direction of the electrode body by the method of the above-described embodiment, and the gathered portion is an external terminal lead. (FIG. 1, FIG. 2).

この後、電極体および外部端子リードを上述した実施形態の方法より、アルミニウム・ラミネートフィルムで上下から挟み込み、三辺を熱シールにより封着して矩形平型の素子容器を形成した。この素子容器にリチウム塩を含む非水電解液を注液した後、残った一辺を熱シールで封止して実施例の蓄電素子を作製した。   Thereafter, the electrode body and the external terminal lead were sandwiched from above and below by the aluminum laminate film by the method of the above-described embodiment, and the three sides were sealed by heat sealing to form a rectangular flat element container. After injecting a non-aqueous electrolyte containing lithium salt into this element container, the remaining side was sealed with a heat seal to produce an electricity storage element of the example.

<従来例>
基本的な構成は上記実施例と同じであるが、図4に示したように、電極体の積層ずれを阻止する方策を行うことなく、集電リード部を集合して外部端子リードに溶接接続することにより、従来例の蓄電素子を作製した。
<Conventional example>
The basic configuration is the same as the above embodiment, but as shown in FIG. 4, the current collecting lead parts are assembled and welded to the external terminal lead without taking measures to prevent the electrode body from being stacked. As a result, a conventional power storage device was produced.

<試験>
実施例の蓄電素子と従来例の蓄電素子をそれぞれ所定サンプル数(20個)作製し、同一環境条件にて、内部短絡の発生状況、および封止部からの漏液発生状況をそれぞれ調べた。その結果、従来例のサンプルでは、内部短絡の発生が3件、封止部からの漏液が2件発生したが、実施例のサンフルでは、どちらの発生もゼロ件であった。
<Test>
A predetermined number of samples (20) each of the electricity storage device of the example and the conventional electricity storage device were produced, and the occurrence of internal short circuit and the occurrence of leakage from the sealing portion were examined under the same environmental conditions. As a result, in the sample of the conventional example, three occurrences of internal short circuit and two leaks from the sealing portion occurred, but in the sample of the example, both occurrences were zero.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、上記実施例では素子容器としてソフト容器を用いたが、本発明は、ラミネートフィルム等の軟包装材以外を用いないハード容器を素子容器とする場合にも適用可能である。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above. For example, although the soft container is used as the element container in the above embodiment, the present invention can also be applied to a case where a hard container that does not use a soft packaging material such as a laminate film is used as the element container.

平板状の正極シートと負極シートとがセパレータを介して交互に積層されてなる平板型の多層電極体を用いた蓄電素子の製造方法において、電極シートの積層数を増やすとともに各電極シートの集電リード部を集合して外部端子リードに共通接続することにより、蓄電エネルギー密度および充放電可能電流の増大を可能にしつつ、内部短絡や漏液等の発生を確実に抑えて蓄電素子の信頼性を向上させることができる。   In a method for manufacturing an electricity storage device using a flat-type multilayer electrode body in which flat plate-like positive electrode sheets and negative electrode sheets are alternately laminated through separators, the number of electrode sheets is increased and the current collection of each electrode sheet By gathering the lead parts and connecting them in common to the external terminal leads, it is possible to increase the energy storage energy density and chargeable / dischargeable current, while also reliably preventing the occurrence of internal short circuits and liquid leakage, thereby improving the reliability of the storage element. Can be improved.

本発明の一実施形態をなす蓄電素子の製造方法の前段階を工程順に示す省略断面図である。It is an abbreviated sectional view showing a previous stage of a manufacturing method of an electrical storage element which constitutes one embodiment of the present invention in order of a process. 本発明の一実施形態をなす蓄電素子の製造方法の後段階を工程順に示す省略断面図である。It is an abbreviated sectional view showing the latter stage of the manufacturing method of the electrical storage element which constitutes one embodiment of the present invention in process order. 平面積層型の多層電極体の構成を示す平面図、斜視図、および部分断面図である。FIG. 2 is a plan view, a perspective view, and a partial cross-sectional view showing a configuration of a planar laminated multilayer electrode body. 従来における蓄電素子の製造方法を示す省略断面図である。It is an abbreviated sectional view showing a conventional method for manufacturing a storage element.

符号の説明Explanation of symbols

10 蓄電素子
20 多層電極体
21 正極シート
211 正極物質
212 集電体(正極)
213 集電リード部(正極)
22 セパレータ
23 負極シート
231 負極物質
232 集電体(負極)
233 集電リード部(負極)
31 外部端子リード(正極)
33 外部端子リード(負極)
61 超音波溶接機
63 熱シール機
71 固定台
72 可動押圧部材
73,74 クランプ部材
75 作業台
DESCRIPTION OF SYMBOLS 10 Power storage element 20 Multilayer electrode body 21 Positive electrode sheet 211 Positive electrode material 212 Current collector (positive electrode)
213 Current collector lead (positive electrode)
22 Separator 23 Negative electrode sheet 231 Negative electrode material 232 Current collector (negative electrode)
233 Current collecting lead (negative electrode)
31 External terminal lead (positive electrode)
33 External terminal lead (negative electrode)
61 Ultrasonic Welding Machine 63 Heat Sealing Machine 71 Fixed Base 72 Movable Press Member 73, 74 Clamp Member 75 Working Table

Claims (2)

金属製集電体に正極物質が添着された平板状正極シートと、金属製集電体に負極物質が添着された平板状負極シートとが、セパレータを介して交互に上下方向に積層されることにより平板型の多層電極体が形成され、この電極体が素子容器に密閉収容されるとともに、各正極シートの集電体および各負極シートの集電体からそれぞれに上記電極体の前方へ延出された集電リード部が、極性別に集合されて正極および負極の外部端子リードに溶接接続されている蓄電素子の製造方法であって、
上記電極体を上下方向に押圧して当該電極体の積層形状を保持しながら、上記集電リード部を第1のクランプを用いて上下方向から挟み込んで、当該集電リード部の前端を当該第1のクランプの前方外側に突出させつつ、上記電極体の厚み方向の中央位置に集合させるように成形する成形工程と
上記集合状態にある上記集電リード部において、前記第1のクランプの前方外側に突出している部分を、当該第1のクランプの前方外縁に沿って切断することで、当該集電リードの前端を揃える集電リード切断工程と
上記集電リード切断工程によって前端が揃えられた集電リードを、前後方向の厚さが前記第1のクランプより薄い第2のクランプで上下方向から挟み込んで、当該集電リード部の前端を当該第2のクランプの前方に突出させつつ、前記電極体の厚さ方向の中央に集合させた状態で、当該集合状態にある集電リードを上記外部端子リードに溶接接続する溶接工程と、
を行うことを特徴とする蓄電素子の製造方法。
A flat positive electrode sheet in which a positive electrode material is attached to a metal current collector and a flat negative electrode sheet in which a negative electrode material is attached to a metal current collector are alternately stacked in the vertical direction via a separator. To form a flat multilayer electrode body, and the electrode body is hermetically accommodated in the element container, and extends from the current collector of each positive electrode sheet and the current collector of each negative electrode sheet to the front of the electrode body, respectively. The current collecting lead portion is assembled by polarity, and is a method for manufacturing a storage element that is welded to the positive and negative external terminal leads,
While holding the stacked shape of the electrode body by pressing the electrode body in the vertical direction, the current collector lead portion is sandwiched from the vertical direction using the first clamp, and the front end of the current collector lead portion is A molding step of molding so as to gather at the center position in the thickness direction of the electrode body while projecting to the front outer side of the clamp of 1 ;
In the current collecting lead portion in the aggregated state, the front end of the current collecting lead is cut by cutting a portion projecting to the front outer side of the first clamp along the front outer edge of the first clamp. Current collecting lead cutting process ,
A current collecting lead whose front end is aligned by the current collecting lead cutting step is sandwiched from above and below by a second clamp whose front-rear thickness is thinner than the first clamp, and the front end of the current collecting lead portion is A welding step of welding and connecting the current collecting leads in the aggregated state to the external terminal leads in a state of being aggregated at the center in the thickness direction of the electrode body while projecting forward of the second clamp ;
A method for manufacturing a power storage element, wherein:
請求項1において、上記素子容器を気密性軟包装材からなるソフト容器で構成するとともに、上記軟包装材の縁辺部を重ね合わせて融着することにより形成される上記ソフト容器の封着部に、上記外部端子リードの中間部を挟み込むことを特徴とする蓄電素子の製造方法。

2. The sealing portion of the soft container according to claim 1, wherein the element container is formed of a soft container made of an airtight soft packaging material, and the edge portion of the soft packaging material is overlapped and fused. A method for manufacturing a power storage element, comprising sandwiching an intermediate portion of the external terminal lead.

JP2006236702A 2006-08-31 2006-08-31 Method for manufacturing power storage element Expired - Fee Related JP5110832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236702A JP5110832B2 (en) 2006-08-31 2006-08-31 Method for manufacturing power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236702A JP5110832B2 (en) 2006-08-31 2006-08-31 Method for manufacturing power storage element

Publications (2)

Publication Number Publication Date
JP2008059948A JP2008059948A (en) 2008-03-13
JP5110832B2 true JP5110832B2 (en) 2012-12-26

Family

ID=39242431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236702A Expired - Fee Related JP5110832B2 (en) 2006-08-31 2006-08-31 Method for manufacturing power storage element

Country Status (1)

Country Link
JP (1) JP5110832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287181B2 (en) * 2008-11-28 2013-09-11 トヨタ自動車株式会社 Battery and battery manufacturing method
KR101108839B1 (en) * 2010-04-27 2012-02-09 삼성전기주식회사 Jig for manufacturing energy storage device
JP5751218B2 (en) * 2012-07-19 2015-07-22 トヨタ自動車株式会社 Terminal welding method
KR101610680B1 (en) 2013-09-02 2016-04-20 주식회사 엘지화학 Welding method for electrode tap of secondary battery and the electrode assembly manufactured by the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260406A (en) * 1998-03-12 1999-09-24 Toshiba Battery Co Ltd Polymer electrolyte lithium secondary battery
JP2000251882A (en) * 1999-03-03 2000-09-14 Toshiba Battery Co Ltd Tab welding jig for battery
JP4009803B2 (en) * 1999-03-11 2007-11-21 大阪瓦斯株式会社 Non-aqueous secondary battery
JP4951810B2 (en) * 2000-12-08 2012-06-13 パナソニック株式会社 Flat battery
JP4300172B2 (en) * 2004-09-24 2009-07-22 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2007053002A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Manufacturing method of battery

Also Published As

Publication number Publication date
JP2008059948A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
KR101543065B1 (en) Electrode assembly and electrochemical cell containing the same
JP5830953B2 (en) Secondary battery, battery unit and battery module
KR101510518B1 (en) Fabricating method of electrode assembly
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP4211769B2 (en) Automotive battery
JP5205713B2 (en) Bipolar secondary battery
JP2005276486A (en) Laminated battery, battery pack, and vehicle
KR20170110053A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
KR101170881B1 (en) High Power Secondary Battery of Series Connection Structure
JP6177908B2 (en) Secondary battery
JP4096718B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
KR20120012400A (en) Square secondary battery
US20220352606A1 (en) Secondary battery and method for manufacturing same
KR20160134331A (en) Pouch type secondary battery and method for fabricating the same
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP5110832B2 (en) Method for manufacturing power storage element
KR20140012601A (en) Secondary battery and electrochemical cell having the same
JP4218400B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP2011175913A (en) Laminated battery
JP4635589B2 (en) Bipolar battery, assembled battery, composite battery and vehicle equipped with these
JP7154791B2 (en) thin battery
JP2009110812A (en) Battery and method of manufacturing the same
JP2008060407A (en) Storage element
KR20140022531A (en) Electrode assembly and fabricating method of electrochemical cell containing the electrode assembly, electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees