JP2017129320A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2017129320A
JP2017129320A JP2016009615A JP2016009615A JP2017129320A JP 2017129320 A JP2017129320 A JP 2017129320A JP 2016009615 A JP2016009615 A JP 2016009615A JP 2016009615 A JP2016009615 A JP 2016009615A JP 2017129320 A JP2017129320 A JP 2017129320A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
economizer
compressor
refrigeration apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016009615A
Other languages
English (en)
Inventor
齊藤 信
Makoto Saito
信 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016009615A priority Critical patent/JP2017129320A/ja
Publication of JP2017129320A publication Critical patent/JP2017129320A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】高圧側の圧縮部の負荷が低減される、複数の圧縮部を有する圧縮機を備えた冷凍装置を提供する。【解決手段】冷凍装置1は、熱源ユニット1a、放熱ユニット1bおよび冷却ユニット1cを備えている。熱源ユニット1aは、二段圧縮機8、油分離器11、レシーバ12、エコノマイザ13および油冷却器17を備えている。冷媒回路から分岐して、エコノマイザ膨張弁14およびエコノマイザ13を経て、低段圧縮部9と高段圧縮部10との間の中間圧流路に繋がっているインジェクション配管15が設けられている。油冷却器17では、冷媒回路を流れる冷媒によって冷凍機油が冷却される。冷凍機油は、返油配管16によって、油分離器11から油冷却器17に送られて冷却された後、二段圧縮機8に戻される。【選択図】図1

Description

本発明は冷凍装置に関し、特に、複数の圧縮部を有する圧縮機を備えた冷凍装置に関するものである。
従来、低圧段側圧縮機と高圧段側圧縮機とを有する二段圧縮機を備えた冷凍装置がある(特許文献1)。この種の冷凍装置では、高圧段側圧縮機から吐出する冷媒の吐出温度を下げるために、冷媒とともに吐出する冷凍機油の温度を下げて、その温度が下げられた冷凍機油を低圧段側圧縮機と高圧段側圧縮機とに戻すことが行われている。
従来の冷凍装置では、冷凍機油は、冷媒回路から分岐させた冷媒によって冷却される。冷凍機油を冷却した冷媒は、低圧段側圧縮機と高圧段側圧縮機との間の中間圧流路に戻されることになる。このような従来の冷凍装置では、冷媒としてR404Aが使用されている。
特開平7−190520号公報
近年、省エネルギ化を図るために、冷媒を変更することが求められている。R404Aの場合には、R410Aに変更することが求められている。
しかしながら、冷媒としてR410Aを使用した冷凍装置では、R404Aを使用した場合に比べて、二段圧縮機(高圧段側圧縮機)から吐出する冷媒の吐出温度が上がりやすいという傾向がある。このため、吐出する冷媒の温度を下げるために、冷媒回路から、より多くの冷媒を分岐させて、冷媒とともに吐出する冷凍機油の温度を下げる必要がある。
その分岐させた冷媒は、低圧段側圧縮機と高圧段側圧縮機との間の中間圧流路に戻される。その結果、冷媒としてR404Aを使用した冷凍装置と比べて、高圧段側圧縮機の負荷が増えるという問題があった。
本発明は、このような問題点を解決するためになされたものであり、その目的は、高圧側の圧縮部の負荷が低減される、複数の圧縮部を有する圧縮機を備えた冷凍装置を提供することである。
本発明に係る冷凍装置は、冷媒が、圧縮機、油分離器、凝縮器、レシーバ、エコノマイザ、第1膨張部および冷却器の順に循環する冷媒回路を備えた冷凍装置であって、油冷却器と返油配管とインジェクション配管とを備えている。圧縮機は、冷媒を順次圧縮する複数の圧縮部を有する。油冷却器は、冷媒回路における、凝縮器とレシーバとの間を接続する第1配管に設けられ、油分離器において分離された冷凍機油と第1配管を流れる冷媒との間で熱交換を行うことによって、冷凍機油を冷却する。返油配管は、油分離器から油冷却器を経て圧縮機に繋がっている。インジェクション配管は、冷媒回路における、エコノマイザと第1膨張部との間を接続する第2配管から分岐し、第2膨張部およびエコノマイザを経て、複数の圧縮部における中間圧流路に繋がっている。
本発明に係る冷凍装置によれば、圧縮機から吐出した冷凍機油は、返油配管を流れ、油冷却器において、冷媒回路を流れる冷媒によって冷却された後、複数の圧縮部における中間圧流路に戻される。これにより、冷媒回路から分岐させた冷媒によって冷凍機油を冷却させる場合と比べて、中間圧よりも高い高圧側の圧縮部の負荷を低減することができる。
実施の形態に係る冷凍装置の構成を示す冷媒回路を含む図である。 同実施の形態において、冷凍装置の動作を説明するための図である。 同実施の形態において、冷凍装置のP−h線図を示すグラフである。 比較例に係る冷凍装置の構成を示す冷媒回路を含む図である。 比較例に係る冷凍装置の動作を説明するための図である。 同実施の形態において、分岐される冷媒の量の評価結果を示す図である。
実施の形態に係る冷凍装置について説明する。図1に、冷凍装置の冷媒回路を示す。図1に示すように、冷凍装置1は、熱源ユニット1a、放熱ユニット1bおよび冷却ユニット1cを備えている。冷媒回路には、冷媒として、R410Aが封入されている。また、熱源ユニット1a、放熱ユニット1bおよび冷却ユニット1cは、互いに距離を隔てて配置されている。
熱源ユニット1aは、二段圧縮機8、油分離器11、レシーバ12、エコノマイザ13および油冷却器17を備えている。熱源ユニット1aは、たとえば、屋内に設置されている。二段圧縮機8は、低段圧縮部9と高段圧縮部10とを備えている。油分離器11では、二段圧縮機8から吐出する冷媒に含まれる冷凍機油が分離される。レシーバ12では、冷媒回路内に封入された冷媒の余剰分が貯留される。
エコノマイザ13では、冷媒回路から分岐させた冷媒によって、冷媒回路を流れる冷媒が冷却される。高圧の液冷媒は、エコノマイザ膨張弁14によって減圧される。また、冷媒回路から分岐して、エコノマイザ膨張弁14およびエコノマイザ13を経て、二段圧縮機8における低段圧縮部9と高段圧縮部10との間の中間圧流路に繋がっているインジェクション配管15が設けられている。分岐させた冷媒は、そのインジェクション配管15を流れて、二段圧縮機8に戻される。
油冷却器17では、冷媒回路を流れる高圧の液冷媒によって冷凍機油が冷却される。冷凍機油は、返油配管16によって、油分離器11から油冷却器17に送られる。油冷却器17において冷却された冷凍機油は、二段圧縮機8に戻される。また、油冷却器17に対して、バイパス管18とバイパス量調整弁19が並列に設けられている。
バイパス量調整弁19によりバイパス管18を流れる冷媒の量を調整することによって、油冷却器17における液冷媒と冷凍機油との熱交換が調整される。バイパス管18を流れる冷媒の量は、温度センサ4によって検知される冷媒の温度に基づき、制御部2によって調整される。温度センサ4は、油冷却器17の入り口側(放熱ユニット1b側)に設けられている。
放熱ユニット1bは、空冷凝縮器24および放熱ファン25を備えている。放熱ユニット1bは、たとえば、屋外に設置されている。放熱ユニット1bは、接続配管3a、3bによって熱源ユニット1aと接続されている。接続配管3aは、二段圧縮機8(油分離器11)と空冷凝縮器24とを接続している。接続配管8bは、空冷凝縮器24と油冷却器17とを接続している。接続配管3aから送られた高温のガス冷媒は、空冷凝縮器24において外気と熱交換される。熱交換された冷媒は液冷媒となり、接続配管3bを流れて油冷却器17へ送られる。
冷却ユニット1cは、電磁弁20、主膨張弁21、冷却器22および冷却用ファン23を備えている。冷却ユニット1cは、冷凍庫等に設置される。冷却ユニット1cは、接続配管3c、3dによって熱源ユニット1aと接続されている。接続配管3cは、エコノマイザ13と電磁弁20とを接続している。接続配管3dは、冷却器22と二段圧縮機8とを接続している。冷却用ファン23は、冷凍庫内の空気と冷却器22を流れる冷媒との熱交換を調整する。実施の形態に係る冷凍装置1は、上記のように構成される。
次に、上述した冷凍装置1の冷却運転について説明する。図2に、冷凍装置1における冷媒の流れと冷凍機油の流れとを示す。図3に、冷凍装置1の冷凍サイクルのP−h線図を示す。また、そのP−h線図には、冷凍装置における各点(A点〜J点)における冷媒の状態がプロットされている。
図2および図3に示すように、二段圧縮機8から、高温高圧のガス状の冷媒(ガス冷媒)が吐出する(C点)。ガス冷媒は、油分離器11へ流れ込む。油分離器11では、冷媒とともに吐出した冷凍機油が回収される。二段圧縮機8から吐出するガス冷媒の温度は、たとえば、約80℃〜90℃程度である。分離された冷凍機油の温度も、約80℃〜90℃程度である。
吐出したガス冷媒は、接続配管3aを流れて放熱ユニット1bに流れ込む(矢印Y1)。放熱ユニット1bでは、空冷凝縮器24において、流れ込んだ冷媒と放熱ファン25によって送り込まれた空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液状の冷媒(液冷媒)になる。冷媒の熱は、外気に放出される。
放熱ユニット1bから送り出された高圧の液冷媒(D点)は、接続配管3bを流れて熱源ユニット1aに戻る(矢印Y2)。熱源ユニット1aに戻った液冷媒は、油冷却器17を流れる。油冷却器17では、油分離器11において分離された冷凍機油が、冷媒によって冷却される。なお、冷凍機油の冷却については後述する。
油冷却器17を流れた冷媒は、レシーバ12に流れ込む。レシーバ12では、冷凍回路に封入された余剰分の冷媒が貯留されるため、液冷媒とガス冷媒との共存状態である。このため、レシーバ12に流れ込む前(E点)では、飽和液となる。また、油冷却器17に流れ込む前、すなわち、高温の冷凍機油によって加熱される前(D点)の液冷媒は、過冷却液になっている。
レシーバ12から送り出された液冷媒は、エコノマイザ13に送られる。エコノマイザ13では、冷媒回路から分岐させた高圧の液冷媒を減圧させた中圧の冷媒によって、冷媒回路を流れる冷媒が冷却される。高圧の液冷媒は、エコノマイザ膨張弁14によって減圧される(H点)。
分岐させた冷媒は、エコノマイザ13において高圧液冷媒と熱交換が行われる(I点)。熱交換が行われた冷媒は、インジェクション配管15を流れた後、二段圧縮機8における低段圧縮部9と高段圧縮部10との間の中間圧流路に戻される(矢印Y5)。
エコノマイザ13によって冷却された冷媒は過冷却液になる(F点)。過冷却液となった冷媒は、熱源ユニット1aから接続配管3cを流れて冷却ユニット1cへ送り込まれる(矢印Y3)。冷却ユニット1cに送り込まれた高圧の液冷媒は、電磁弁20を経て主膨張弁21によって減圧されて、低圧のガス冷媒と液冷媒との二相状態の冷媒となる(G点)。
低圧の二相状態の冷媒は、冷却器22において、冷却対象とされる冷凍庫内の空気と熱交換される。熱交換によって液冷媒は蒸発し、二相状態の冷媒は、単相の低圧のガス冷媒となる。ここで、冷凍庫内の温度が、たとえば、−30℃である場合には、冷媒の蒸発温度は、約−40℃程度になる。
低圧のガス冷媒は、接続配管3dを流れて、熱源ユニット1aに戻される(矢印Y4)。熱源ユニット1aに戻された低圧のガス冷媒(A点)は、二段圧縮機8に流れ込み、圧縮されて高温高圧のガス冷媒となって、二段圧縮機8から吐出する。以下、このサイクルが繰り返されることで、冷却対象とされる冷凍庫内の温度が所定の温度に維持されることになる。
次に、冷凍装置1の冷凍機油を冷却する動作について説明する。二段圧縮機8から冷媒とともに吐出した冷凍機油は、油分離器11において、冷媒と分離される。油分離器11において分離された冷凍機油の温度は、たとえば、約80℃〜90℃程度である。冷凍機油は、返油配管16を流れて油冷却器17に送り込まれる(矢印Y6)。
油冷却器17では、送り込まれた冷凍機油と空冷凝縮器24から送り出された冷媒との間で熱交換が行われる。熱交換が行われることで、冷凍機油の温度は、たとえば、約50℃程度にまで冷却される。冷却された冷凍機油は、返油配管16を流れて二段圧縮機8に戻されることになる。
上述した冷凍装置1では、二段圧縮機から吐出した冷凍機油が冷媒回路を流れる冷媒によって冷却されて、二段圧縮機に戻される。これにより、冷媒として、R410Aを使用した場合に、二段圧縮機の高段圧縮部の負荷を軽減することができる。このことについて、比較例に係る冷凍装置と比べて説明する。
図4に示すように、比較例に係る冷凍装置101(冷媒回路)は、二段圧縮機108、油分離回収器111、凝縮器124、エコノマイザ113、第1膨張弁120、蒸発器122、第2膨張弁114および油クーラ117を備えている。冷媒回路には、冷媒として、R410Aが封入されている。
また、冷媒回路から分岐させた冷媒を、第2膨張弁114およびエコノマイザ113を経て、二段圧縮機108(中間圧流路)に戻すエコノマイザ配管115が設けられている。さらに、油分離回収器111において分離された冷凍機油を、油クーラ117を経て、二段圧縮機108に戻す返油配管116が設けられている。
次に、比較例に係る冷凍装置101の冷却運転について説明する。図5に、冷凍装置101における冷媒の流れと冷凍機油の流れとを示す。図5に示すように、二段圧縮機108から吐出した高温高圧の冷媒(ガス冷媒)は、油分離回収器111へ流れ込む(矢印YY1)。
油分離回収器111では、冷媒とともに吐出した冷凍機油が回収される。二段圧縮機108から吐出するガス冷媒と分離された冷凍機油の温度は、たとえば、約80℃〜90℃程度である。冷凍機油と分離されたガス冷媒は、凝縮器124に流れ込む(矢印YY1)。凝縮器124では、流れ込んだ冷媒と空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液状の冷媒(液冷媒)になる。
凝縮器124から送り出された高圧の液冷媒は、エコノマイザ113に送られる。エコノマイザ113では、冷媒回路から分岐された高圧の液冷媒を減圧させた中圧の冷媒によって、冷媒回路を流れる冷媒が冷却される。分岐された高圧の液冷媒は、第2膨張弁114によって減圧されて、低圧の冷媒になる。
その低圧の冷媒は、エコノマイザ113において高圧の液冷媒と熱交換が行われる。熱交換が行われた低圧の冷媒は、エコノマイザ配管115を流れた後、二段圧縮機108における低段圧縮部109と高段圧縮部110との間の中間圧流路に戻される(矢印YY5)。
一方、エコノマイザ113によって冷却された冷媒は、第1膨張弁120によって減圧されて、低圧のガス冷媒と液冷媒との二相状態の冷媒となる(矢印YY3)。低圧の二相状態の冷媒は、蒸発器122において、たとえば、空気と熱交換される。熱交換によって液冷媒は蒸発し、二相状態の冷媒は、単相の低圧のガス冷媒となる。
低圧のガス冷媒は、配管を流れて二段圧縮機108に流れ込む(矢印YY4)。二段圧縮機108に流れ込んだ低圧のガス冷媒は、再び圧縮され、高温高圧のガス冷媒となって、二段圧縮機108から吐出する。以下、このサイクルが繰り返される。
次に、冷凍装置101の冷凍機油を冷却する動作について説明する。二段圧縮機108から冷媒とともに吐出した冷凍機油は、油分離回収器111において、冷媒と分離される。冷凍機油は、返油配管116を流れて油クーラ117に送り込まれる(矢印YY6)。
油クーラ117では、送り込まれた冷凍機油と、エコノマイザ113を経た冷媒との間で熱交換が行われる。熱交換された冷凍機油は、返油配管116を流れて二段圧縮機108に戻される。
すでに述べたように、冷凍装置では、省エネルギ化を図るために、冷媒を変更することが求められており、R404AからR410Aに変更することが求められている。冷媒としてR410Aを使用した場合には、R404Aを使用した場合に比べて、冷媒の吐出温度が高くなることが知られている。このため、冷媒(R410A)とともに吐出する冷凍機油の吐出温度も、R404Aを使用した場合に比べて高くなり、たとえば、約80℃〜90℃程度になる。
比較例に係る冷凍装置101では、吐出して分離された冷凍機油は、油クーラ117において冷却されて、二段圧縮機108に戻される。油クーラ117では、冷凍機油と冷媒回路から分岐させた冷媒とを熱交換させることによって、冷凍機油が冷却される。このため、冷凍機油の吐出温度が高くなると、冷凍機油の温度を所望の温度にまで冷却するには、冷凍機油と熱交換させる冷媒の量を増やす必要がある。すなわち、冷媒回路から分岐させる冷媒の量を増やす必要がある。
ここで、図2および図5に示すように、冷媒回路から分岐させる前の冷媒の量を「1+α」とし、分岐させる冷媒の量を「α」とし、分岐させた後の冷媒回路を流れる冷媒の量を「1」とする。なお、「α」は、分岐させた冷媒が、低段圧縮部109、9と高段圧縮部110、10との間の中間圧流路に戻されることから、中間インジェクション量比(%)と称する。
発明者は、種々の条件について中間インジェクション量比を評価した。その評価結果として、冷凍機油の吐出温度を83℃とした場合において、冷媒の蒸発温度が−30℃、−40℃および−50℃の場合のαの量を図6に示す。図6に示すように、比較例に係る冷凍装置では、蒸発温度が−30℃の場合には、αは30%になり、蒸発温度が−40℃の場合には、αは56%になり、蒸発温度が−50℃の場合には、αは100%になることがわかった。
一方、実施の形態に係る冷凍装置1について、比較例に係る冷凍装置101と同様に、中間インジェクション量比を評価した。図6に示すように、蒸発温度が−30℃の場合には、αは20%になり、蒸発温度が−40℃の場合には、αは33%になり、蒸発温度が−50℃の場合には、αは58%になることがわかった。
比較例に係る冷凍装置101では、冷媒回路から分岐させた冷媒によって冷凍機油が冷却される。このため、冷媒の変更(R404A→R410A)に伴って、冷凍機油の吐出温度が高くなると、冷凍機油を冷却するために、冷媒回路から分岐させる冷媒の量が増えてしまい、低段圧縮部109と高段圧縮部110との間の中間圧流路に戻される冷媒の量が増加する。このため、高段圧縮部110の負荷が増えることになる。
なお、図3に示されるP−h線図に、図5に示されるAA点、JJ点、II点、BB点、CC点、DD点における冷媒の状態がそれぞれプロットされている。比較例に係る冷凍装置101では、冷凍機油は、II点を流れる冷媒によって冷却される。また、DD点と、エコノマイザ113に流入する前のE点に相当する点とは、ほぼ一致する。
これに対して、実施の形態に係る冷凍装置1では、冷媒回路を流れる冷媒によって冷凍機油が冷却される。すなわち、図3に示されるD点からE点へ冷媒が流れる間に、冷凍機油が冷却される。このため、比較例に係る冷凍装置101と比べて、冷媒回路から分岐させる冷媒の量は大幅に減少する。つまり、図3に示されるII点を流れる冷媒の量からI点を流れる冷媒の量に減少させることができる。
これにより、冷媒回路から分岐させて、低段圧縮部9と高段圧縮部10との間の中間圧流路に戻される冷媒の量を減少させることができる。その結果、図3に示されるB点からC点に流れる冷媒の量が減少し、二段圧縮機8の高段圧縮部10の負荷を抑えることができることが判明した。
また、実施の形態に係る冷凍装置1では、空冷凝縮器24(放熱ユニット1b)から送り出される冷媒は、所定の過冷却度を有する状態となる。冷凍機油を冷却する冷媒は、放熱ユニット1bにおいて過冷却液となった状態(D点)から、過冷却分の熱量が放熱されて飽和液(E点)になるまで加熱される。
一般に、空冷凝縮器の放熱特性は、外気温度と凝縮温度との差の1/2程度の過冷却度で流出するように流量調整されるのが最も効率のよい状態とされる。このため、一般的な高圧レシーバ回路で運用するよりも効率の良い運転を行うことができる。
また、接続配管3bの圧力損失が大きい場合には、空冷凝縮器24から送り出される冷媒の過冷却度が過大となって、本来の放熱性能を十分発揮できなくなる場合も想定される。そのような場合には、バイパス量調整弁19によって油冷却器17を流れる液冷媒の流量を減少させることで、冷凍機油を冷却する量を少なくし、空冷凝縮器24から送り出される冷媒の過冷却度が小さくなるように調整する。
また、外気温度が低く、凝縮温度と吐出温度との双方が低くなってしまうケースでも、冷凍機油を冷却する量を少なくして、吐出温度を所定温度にまで上昇させ、放熱特性が下がらないようにする。すなわち、バイパス量調整弁19は、二段圧縮機8から吐出する冷媒の温度が所定温度、たとえば、約90℃程度の一定の吐出温度になるように、冷凍機油を冷却する量を調整する機能を有している。
一方、エコノマイザ膨張弁14では、エコノマイザ13の低圧側の出口(I点)の過熱度が一定になるように、たとえば、10(K)程度になるように、エコノマイザ膨張弁14の開度が調整される。これにより、分岐させた液冷媒を、二段圧縮機8における低段圧縮部9と高段圧縮部10との間の中間圧流路に不要に戻してしまうこともない。また、エコノマイザ13の低圧側の冷媒の過熱度が過大になり、高圧側の出口(F点)を十分に冷却できない不具合も抑制することができる。
このように、実施の形態に係る冷凍装置1では、分離された冷凍機油は、レシーバ12の上流側の設けられた油冷却器17において、冷媒回路の冷媒と熱交換される。これにより、冷媒回路から分岐させた冷媒(中間圧インジェクション冷媒)によって、冷凍機油を冷却する必要がない。これにより、中間圧インジェクション冷媒の量が増大して、成績係数(COP:Coefficient Of Performance)が悪化するのを阻止することができる。また、中間圧インジェクション冷媒の量が増大しないことで、蒸発温度が−30℃以下の条件下で使用されるような低温用の冷凍システムにも適用することができる。
また、実施の形態に係る冷凍装置1では、空冷凝縮器24の出口側(下流側)に冷媒の過冷却域が形成される。このため、空冷凝縮器24の出口側において冷媒が飽和液になるように運転する場合よりも、冷媒を高効率で放熱させることができる。このとき、冷媒に過冷却度をつけるための減圧装置が不要になるので、高圧の冷媒の圧力をほとんど低下させずに冷却ユニット1cに送り込むことができる。これにより、接続配管3cの圧力損失が大きい場合においても、主膨張弁21の前後(上流側と下流側)において、十分な差圧を確保することができる。
また、冷却熱源とされる液冷媒の温度は、凝縮温度より常に数℃低い程度の温度である。このため、外気温度が極端に異なる条件下においても、二段圧縮機8に戻される冷凍機油の温度の変化は小さい。これにより、冷凍機油の温度が極端に低下して、冷凍機油を二段圧縮機8に戻す回路の流動抵抗が増大してしまい、戻される冷凍機油の量が不足するのを阻止することができる。
さらに、比較例に係る冷凍装置101では、二段圧縮機108に戻される冷凍機油だけで吐出ガス温度が十分に冷却されてしまうような場合には、分岐される冷媒の量が低下してしまう。このため、エコノマイザ113が十分機能せず、性能が悪化する状況が想定される。一方、実施の形態に係る冷凍装置1では、そのような状況をも回避することができる。
なお、上述した冷凍装置1の圧縮機として、低段圧縮部9と高段圧縮部10とを有する二段圧縮機8を例に挙げて説明した。圧縮機としては、二段圧縮機に限られず、三段以上の圧縮部を有する圧縮機についても適用することが可能である。
今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
本発明は、複数の圧縮部を有する圧縮機を備えた冷凍装置に有効に利用される。
1 冷凍装置、1a 熱源ユニット、1b 放熱ユニット、1c 冷却ユニット、2 制御部、3a、3b、3c,3d 接続配管、4 温度センサ、8 二段圧縮機、9 低段圧縮部、10 高段圧縮部、11 油分離器、12 レシーバ、13 エコノマイザ、14 エコノマイザ膨張弁、15 インジェクション配管、16 返油配管、17 油冷却器、18 バイパス管、19 バイパス量調整弁、20 電磁弁、21 主膨張弁、22 冷却器、23 冷却用ファン、24 空冷凝縮器、25 放熱ファン、Y1、Y2、Y3、Y4、Y5、Y6 矢印。

Claims (5)

  1. 冷媒が、圧縮機、油分離器、凝縮器、レシーバ、エコノマイザ、第1膨張部および冷却器の順に循環する冷媒回路を備えた冷凍装置であって、
    前記圧縮機は、前記冷媒を順次圧縮する複数の圧縮部を有し、
    前記冷媒回路における、前記凝縮器と前記レシーバとの間を接続する第1配管に設けられ、前記油分離器において分離された冷凍機油と前記第1配管を流れる前記冷媒との間で熱交換を行うことによって、前記冷凍機油を冷却する油冷却器と、
    前記油分離器から前記油冷却器を経て前記圧縮機に繋がる返油配管と、
    前記冷媒回路における、前記エコノマイザと前記第1膨張部との間を接続する第2配管から分岐し、第2膨張部および前記エコノマイザを経て、前記複数の圧縮部における中間圧流路に繋がるインジェクション配管と
    を備えた、冷凍装置。
  2. 前記油冷却器に対して並列に接続されたバイパス配管と、
    前記バイパス配管に流れる前記冷媒の量を調整する流量調整部と
    を備えた、請求項1記載の冷凍装置。
  3. 前記流量調整部は、前記凝縮器から送り出される前記冷媒の過冷却度に応じて調整される、請求項2記載の冷凍装置。
  4. 前記圧縮機、前記油分離器、前記油冷却器、前記返油配管、前記レシーバ、前記エコノマイザおよび前記インジェクション配管は、熱源ユニットとされ、
    前記凝縮器は放熱ユニットとされ、
    前記第1膨張部および前記冷却器は冷却ユニットされた、請求項1〜3のいずれか1項に記載の冷凍装置。
  5. 前記熱源ユニットと前記放熱ユニットとは、距離を隔てて配置された、請求項4記載の冷凍装置。
JP2016009615A 2016-01-21 2016-01-21 冷凍装置 Pending JP2017129320A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009615A JP2017129320A (ja) 2016-01-21 2016-01-21 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009615A JP2017129320A (ja) 2016-01-21 2016-01-21 冷凍装置

Publications (1)

Publication Number Publication Date
JP2017129320A true JP2017129320A (ja) 2017-07-27

Family

ID=59395511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009615A Pending JP2017129320A (ja) 2016-01-21 2016-01-21 冷凍装置

Country Status (1)

Country Link
JP (1) JP2017129320A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269138A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种防止压缩机回液的多联机***及其控制方法
CN110530060A (zh) * 2019-08-29 2019-12-03 东莞市欧冠节能技术开发有限公司 一种超低温变频复叠烘干机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105160A (ja) * 1989-09-18 1991-05-01 Hitachi Ltd スクリュー冷凍機
JPH06221620A (ja) * 1993-01-28 1994-08-12 Sanyo Electric Co Ltd 空気調和装置
JP2006275325A (ja) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd コンプレッサユニット
JP2007010257A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2015132422A (ja) * 2014-01-14 2015-07-23 三菱電機株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105160A (ja) * 1989-09-18 1991-05-01 Hitachi Ltd スクリュー冷凍機
JPH06221620A (ja) * 1993-01-28 1994-08-12 Sanyo Electric Co Ltd 空気調和装置
JP2006275325A (ja) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd コンプレッサユニット
JP2007010257A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2015132422A (ja) * 2014-01-14 2015-07-23 三菱電機株式会社 冷凍装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269138A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种防止压缩机回液的多联机***及其控制方法
CN109269138B (zh) * 2018-09-03 2020-10-30 南京天加环境科技有限公司 一种防止压缩机回液的多联机***及其控制方法
CN110530060A (zh) * 2019-08-29 2019-12-03 东莞市欧冠节能技术开发有限公司 一种超低温变频复叠烘干机

Similar Documents

Publication Publication Date Title
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5264874B2 (ja) 冷凍装置
CN101688702B (zh) 制冷设备和与所述制冷设备相关的用于循环制冷剂的方法
WO2011105270A1 (ja) 冷凍サイクル装置
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
KR102153016B1 (ko) 극저온 칠러
US10180269B2 (en) Refrigeration device
TW202020382A (zh) 流體溫度調節系統及冷凍裝置
JP2009204244A (ja) 冷凍装置
JP2020020576A (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
JP2011179783A (ja) 冷凍装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
TWI571606B (zh) A refrigeration unit using a triple tube heat exchanger
JP6253370B2 (ja) 冷凍サイクル装置
JP2018021730A (ja) 冷凍サイクル装置
JP2017129320A (ja) 冷凍装置
JP2010078165A (ja) 冷凍空調装置
JP5195302B2 (ja) 冷凍空調装置
JP6765086B2 (ja) 冷凍装置
JP2009250495A (ja) 空気調和機
KR101617394B1 (ko) 다중 열교환 냉동 사이클 시스템
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
CN108534382B (zh) 一种自复叠式低环境温度空气源热泵***
RU2432531C2 (ru) Холодильное устройство и способ циркуляции в нем охлаждающей текучей среды
JP3894222B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180529