JP2017125128A - Method for producing resin film for the production of printed wire board for millimeter wave radar - Google Patents

Method for producing resin film for the production of printed wire board for millimeter wave radar Download PDF

Info

Publication number
JP2017125128A
JP2017125128A JP2016005113A JP2016005113A JP2017125128A JP 2017125128 A JP2017125128 A JP 2017125128A JP 2016005113 A JP2016005113 A JP 2016005113A JP 2016005113 A JP2016005113 A JP 2016005113A JP 2017125128 A JP2017125128 A JP 2017125128A
Authority
JP
Japan
Prior art keywords
group
resin
resin film
resin composition
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016005113A
Other languages
Japanese (ja)
Other versions
JP6708947B2 (en
Inventor
隆雄 谷川
Takao Tanigawa
隆雄 谷川
入野 哲朗
Tetsuro Irino
哲朗 入野
近藤 裕介
Yusuke Kondo
裕介 近藤
島山 裕一
Yuichi Shimayama
裕一 島山
悦男 水嶋
Etsuo Mizushima
悦男 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016005113A priority Critical patent/JP6708947B2/en
Publication of JP2017125128A publication Critical patent/JP2017125128A/en
Application granted granted Critical
Publication of JP6708947B2 publication Critical patent/JP6708947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a resin film for the production of a printed wire board for a millimeter wave radar that achieves both of excellent high frequency properties (low relative dielectric constants and low dielectric loss tangents) and excellent adhesion to a conductor.SOLUTION: The present invention provides a method for producing a resin film for the production of a printed wire board for a millimeter wave radar, the method including the step for mixing a compound that has a maleimide group, a divalent group having at least two imide bonds and a saturated or unsaturated divalent hydrocarbon group with a substantially spherical inorganic filler.SELECTED DRAWING: Figure 1

Description

本発明は、ミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法に関する。   The present invention relates to a method for producing a resin film for producing a printed wiring board for millimeter wave radar.

携帯電話に代表される移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどの電子機器では使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする低比誘電率及び低誘電正接の基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実用化及び実用計画が進んでおり、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失基板材料が更に要求されると予想される。   In mobile communication devices typified by mobile phones, base station devices, network infrastructure devices such as servers and routers, and electronic devices such as large computers, the speed and capacity of signals used are increasing year by year. Along with this, printed wiring boards mounted on these electronic devices are required to cope with high frequencies, and a substrate material having a low relative dielectric constant and a low dielectric loss tangent that can reduce transmission loss is required. In recent years, practical applications and practical plans for new systems that handle high-frequency radio signals in the ITS field (related to automobiles and transportation systems) and indoor short-distance communication fields in addition to the above-described electronic devices are available as applications that handle such high-frequency signals. In the future, it is expected that a low transmission loss substrate material will be further required for printed wiring boards mounted on these devices.

また、近年の環境問題から、鉛フリーはんだによる電子部品の実装及びハロゲンフリーによる難燃化が要求されるようになってきたため、プリント配線板用材料にはこれまでよりも高い耐熱性及び難燃性が必要とされている。   In addition, due to recent environmental problems, mounting of electronic components with lead-free solder and flame-retardant with halogen-free has been required, so printed circuit board materials have higher heat resistance and flame resistance than before. Sex is needed.

従来、低伝送損失が要求されるプリント配線板には、優れた高周波特性を示す耐熱性熱可塑性ポリマーとしてポリフェニレンエーテル(PPE)系樹脂が使用されている。ポリフェニレンエーテル系樹脂の使用としては、例えば、ポリフェニレンエーテルと熱硬化性樹脂とを併用する方法が提案されており、具体的には、ポリフェニレンエーテル及びエポキシ樹脂を含有する樹脂組成物(例えば、特許文献1参照)、ポリフェニレンエーテルと、熱硬化性樹脂の中でも比誘電率が低いシアネートエステル樹脂とを併用した樹脂組成物(例えば、特許文献2参照)等が開示されている。   Conventionally, a polyphenylene ether (PPE) -based resin is used as a heat-resistant thermoplastic polymer exhibiting excellent high-frequency characteristics in a printed wiring board that requires low transmission loss. As the use of the polyphenylene ether-based resin, for example, a method in which polyphenylene ether and a thermosetting resin are used in combination has been proposed. Specifically, a resin composition containing a polyphenylene ether and an epoxy resin (for example, a patent document) 1), a resin composition (for example, refer to Patent Document 2) and the like using polyphenylene ether and a cyanate ester resin having a low relative dielectric constant among thermosetting resins.

また、本発明者らは、ポリフェニレンエーテル樹脂及びポリブタジエン樹脂をベースとして、樹脂組成物の製造段階(Aステージ段階)でセミIPN化することで相容性、耐熱性、熱膨張特性、導体との接着性等を向上できる樹脂組成物を提案している(例えば、特許文献3参照)。   In addition, the present inventors, based on polyphenylene ether resin and polybutadiene resin, are semi-IPN at the resin composition production stage (A stage stage), thereby providing compatibility, heat resistance, thermal expansion characteristics, and conductivity. The resin composition which can improve adhesiveness etc. is proposed (for example, refer patent document 3).

更に、プリント配線板用材料として、マレイミド化合物を用いることも検討されている。例えば、特許文献4には、少なくとも2つのマレイミド骨格を有するマレイミド化合物と、少なくとも2つのアミノ基を有するとともに芳香族環構造を有する芳香族ジアミン化合物と、前記マレイミド化合物と前記芳香族ジアミン化合物との反応を促す、塩基性基およびフェノール性水酸基を有する触媒と、シリカと、を有することを特徴とする樹脂組成物が開示されている。 Furthermore, the use of a maleimide compound as a printed wiring board material has been studied. For example, Patent Document 4 discloses a maleimide compound having at least two maleimide skeletons, an aromatic diamine compound having at least two amino groups and having an aromatic ring structure, and the maleimide compound and the aromatic diamine compound. A resin composition characterized by having a catalyst having a basic group and a phenolic hydroxyl group that promotes the reaction, and silica is disclosed.

特開昭58−69046号公報JP 58-69046 A 特公昭61−18937号公報Japanese Patent Publication No. 61-18937 特開2008−95061号公報JP 2008-95061 A 特開2012−255059号公報JP 2012-255059 A

しかしながら、近年の高周波帯で使用するプリント配線板用基板材料には高周波特性と接着性が更に優れていることが要求されている。   However, printed circuit board materials used in recent high-frequency bands are required to have further excellent high-frequency characteristics and adhesiveness.

また、樹脂フィルムの比誘電率が一定でなく(ばらつきが生じ)、当該樹脂フィルムを用いて得られるプリント配線板の高周波特性の安定性を悪化させたり、生産性を低下させる傾向があった。 In addition, the relative dielectric constant of the resin film is not constant (variation occurs), and the stability of the high-frequency characteristics of the printed wiring board obtained using the resin film tends to be deteriorated or the productivity tends to be lowered.

本発明は、このような現状に鑑み、優れた高周波特性(低比誘電率、低誘電正接)と導体との接着性とを両立するミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法を提供することを目的とする。   In view of such a current situation, the present invention provides a method for producing a resin film for producing a printed wiring board for millimeter wave radar that achieves both excellent high-frequency characteristics (low relative dielectric constant, low dielectric loss tangent) and adhesion to a conductor. The purpose is to provide.

本発明者らは上記課題を解決すべく鋭意検討した結果、特定の構造を有する化合物を含有する樹脂組成物により上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a resin composition containing a compound having a specific structure, and have completed the present invention.

すなわち、本発明は以下の態様を含むものである。
[2]マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物と、略球状の無機充填材とを混合する工程を備えるミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法。
[2]マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物と、無機充填材スラリーとを混合する工程を備える、ミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法。
That is, the present invention includes the following aspects.
[2] Millimeter wave radar comprising a step of mixing a maleimide group, a divalent group having at least two imide bonds and a compound having a saturated or unsaturated divalent hydrocarbon group, and a substantially spherical inorganic filler. Of manufacturing a resin film for manufacturing printed wiring boards.
[2] Millimeter wave radar comprising a step of mixing a maleimide group, a divalent group having at least two imide bonds and a compound having a saturated or unsaturated divalent hydrocarbon group and an inorganic filler slurry. Manufacturing method of resin film for printed wiring board manufacture.

本発明によれば、優れた高周波特性(低比誘電率、低誘電正接)を備え、かつ、導体との接着性を備える樹脂組成物、並びに前記樹脂組成物を用いて製造される樹脂層付き支持体、プリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板を提供できる。   According to the present invention, a resin composition having excellent high-frequency characteristics (low relative dielectric constant, low dielectric loss tangent) and adhesiveness to a conductor, and with a resin layer manufactured using the resin composition A support, a prepreg, a laminate, a multilayer printed wiring board, and a printed wiring board for millimeter wave radar can be provided.

本発明のプリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板は、本発明の樹脂組成物を用いて形成されるため、高周波領域における比誘電率及び誘電正接がともに低いという優れた誘電特性を有する。   Since the prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar of the present invention are formed using the resin composition of the present invention, both the relative dielectric constant and dielectric loss tangent in the high frequency region are low. Have dielectric properties.

本実施形態に係る多層印刷配線板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the multilayer printed wiring board which concerns on this embodiment. 内層回路基板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of an inner layer circuit board. 本実施形態に係る多層印刷配線板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the multilayer printed wiring board which concerns on this embodiment. 従来の多層印刷配線板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the conventional multilayer printed wiring board.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されない。なお、本明細書において、高周波領域とは、0.3GHz〜300GHzの領域を指し、特にミリ波レーダーに用いられる周波数領域は3GHz〜300GHzを指すものとする。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In this specification, the high frequency region refers to a region of 0.3 GHz to 300 GHz, and in particular, the frequency region used for millimeter wave radar refers to 3 GHz to 300 GHz.

≪ミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法≫
[樹脂組成物]
≪Method of manufacturing resin film for manufacturing printed wiring board for millimeter wave radar≫
[Resin composition]

<(A)マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物>
本実施形態に係る(a)マレイミド基、(b)少なくとも2つのイミド結合を有する2価の基及び(c)飽和又は不飽和の2価の炭化水素基を有する化合物を(A)成分ということがある。また、(a)マレイミド基を構造(a)、(b)少なくとも2つのイミド結合を有する2価の基を構造(b)、(c)飽和又は不飽和の2価の炭化水素基を構造(c)ということがある。(A)成分を用いることで、高周波特性及び導体との高い接着性を有する樹脂組成物を得ることができる。なお、本命最初において樹脂組成物とは、本実施形態にかかるミリ波レーダー用印刷配線板製造用樹脂フィルムの原料として用いられるものである。
<(A) Compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group>
A compound having (a) a maleimide group, (b) a divalent group having at least two imide bonds, and (c) a saturated or unsaturated divalent hydrocarbon group according to this embodiment is referred to as component (A). There is. Further, (a) a maleimide group has a structure (a), (b) a divalent group having at least two imide bonds has a structure (b), (c) a saturated or unsaturated divalent hydrocarbon group has a structure ( c). By using the component (A), it is possible to obtain a resin composition having high frequency characteristics and high adhesiveness with a conductor. In addition, the first resin composition is used as a raw material for the resin film for producing a printed wiring board for millimeter wave radar according to the present embodiment.

(a)マレイミド基は特に限定されず、一般的なマレイミド基である。(a)マレイミド基は芳香環に結合していても、脂肪族鎖に結合していてもよいが、誘電特性の観点からは、脂肪族鎖に結合していることが好ましい。   (A) The maleimide group is not particularly limited, and is a general maleimide group. (A) The maleimide group may be bonded to an aromatic ring or an aliphatic chain, but is preferably bonded to an aliphatic chain from the viewpoint of dielectric properties.

(b)少なくとも2つのイミド結合を有する2価の基としては特に限定されないが、例えば、下記式(I)で表される基が挙げられる。   (B) Although it does not specifically limit as a bivalent group which has an at least 2 imide bond, For example, group represented by following formula (I) is mentioned.

Figure 2017125128
Figure 2017125128

式(I)中、R1は4価の有機基を示す。R1は4価の有機基であれば特に限定されないが、例えば、取扱性の観点から、炭素数1〜100の炭化水素基であってもよく、炭素数2〜50の炭化水素基であってもよく、炭素数4〜30の炭化水素基であってもよい。 In formula (I), R 1 represents a tetravalent organic group. R 1 is not particularly limited as long as it is a tetravalent organic group. For example, from the viewpoint of handleability, R 1 may be a hydrocarbon group having 1 to 100 carbon atoms, or a hydrocarbon group having 2 to 50 carbon atoms. It may be a hydrocarbon group having 4 to 30 carbon atoms.

1は、置換又は非置換のシロキサン部位であってもよい。シロキサン部位としては、例えば、ジメチルシロキサン、メチルフェニルシロキサン、ジフェニルシロキサン等に由来する構造が挙げられる。 R 1 may be a substituted or unsubstituted siloxane moiety. Examples of the siloxane moiety include structures derived from dimethylsiloxane, methylphenylsiloxane, diphenylsiloxane, and the like.

1が置換されている場合、置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、水酸基、アルコキシ基、メルカプト基、シクロアルキル基、置換シクロアルキル基、ヘテロ環基、置換ヘテロ環基、アリール基、置換アリール基、ヘテロアリール基、置換ヘテロアリール基、アリールオキシ基、置換アリールオキシ基、ハロゲン原子、ハロアルキル基、シアノ基、ニトロ基、ニトロソ基、アミノ基、アミド基、−C(O)H、−NRxC(O)−N(Rx2、−OC(O)−N(Rx2、アシル基、オキシアシル基、カルボキシル基、カルバメート基、スルホンアミド基等が挙げられる。ここで、Rxは水素原子又はアルキル基を示す。これらの置換基は目的、用途等に合わせて、1種類又は2種類以上を選択できる。 When R 1 is substituted, examples of the substituent include an alkyl group, an alkenyl group, an alkynyl group, a hydroxyl group, an alkoxy group, a mercapto group, a cycloalkyl group, a substituted cycloalkyl group, a heterocyclic group, and a substituted heterocyclic group. , Aryl group, substituted aryl group, heteroaryl group, substituted heteroaryl group, aryloxy group, substituted aryloxy group, halogen atom, haloalkyl group, cyano group, nitro group, nitroso group, amino group, amide group, -C ( O) H, -NR x C ( O) -N (R x) 2, -OC (O) -N (R x) 2, like acyl groups, oxyacyl group, a carboxyl group, a carbamate group, a sulfonamido group or the like It is done. Here, R x represents a hydrogen atom or an alkyl group. These substituents can be selected from one type or two or more types according to the purpose and application.

1としては、例えば、1分子中に2個以上の無水物環を有する酸無水物の4価の残基、すなわち、酸無水物から酸無水物基(−C(=O)OC(=O)−)を2個除いた4価の基が好ましい。酸無水物としては、後述するような化合物が例示できる。 As R 1 , for example, a tetravalent residue of an acid anhydride having two or more anhydride rings in one molecule, that is, an acid anhydride to an acid anhydride group (—C (═O) OC (= A tetravalent group excluding two O)-) is preferred. Examples of the acid anhydride include compounds as described below.

機械強度の観点から、R1は芳香族であることが好ましく、無水ピロメリット酸から2つの酸無水物基を取り除いた基であることがより好ましい。すなわち、構造(b)は下記式(III)で表される基であることがより好ましい。 From the viewpoint of mechanical strength, R 1 is preferably aromatic, and more preferably a group obtained by removing two acid anhydride groups from pyromellitic anhydride. That is, the structure (b) is more preferably a group represented by the following formula (III).

Figure 2017125128
Figure 2017125128

流動性及び回路埋め込み性の観点からは、構造(b)は、(A)成分中に複数存在すると好ましい。その場合、構造(b)は、それぞれ同一であってもよく、異なっていてもよい。(A)成分中の構造(b)の数は、2〜40であることが好ましく、2〜20であることがより好ましく、2〜10であることが更に好ましい。   From the viewpoint of fluidity and circuit embedding properties, it is preferable that a plurality of structures (b) exist in the component (A). In that case, the structures (b) may be the same or different. The number of structures (b) in the component (A) is preferably 2 to 40, more preferably 2 to 20, and still more preferably 2 to 10.

誘電特性の観点から、構造(b)は、下記式(IV)又は下記式(V)で表される基であってもよい。   From the viewpoint of dielectric properties, the structure (b) may be a group represented by the following formula (IV) or the following formula (V).

Figure 2017125128
Figure 2017125128

Figure 2017125128
Figure 2017125128

構造(c)は特に限定されず、直鎖状、分岐状、環状のいずれであってもよい。また、飽和又は不飽和の2価の炭化水素基の炭素数は、8〜100であってもよい。構造(c)は、炭素数8〜100の分岐を有していてもよいアルキレン基であることが好ましく、炭素数10〜70の分岐を有していてもよいアルキレン基であるとより好ましく、炭素数15〜50の分岐を有していてもよいアルキレン基であると更に好ましい。(A)成分が構造(c)を有することで、本実施形態に係る樹脂組成物の可とう性が向上し、樹脂組成物から作製される樹脂フィルムの取扱性(タック性、割れ、粉落ち等)及び強度を高めることが可能である。また、上記の炭素数を有する構造(c)は、分子構造を三次元化し易く、ポリマーの自由体積を増大させて低密度化、すなわち低誘電率化できるため好ましい。   The structure (c) is not particularly limited, and may be linear, branched or cyclic. Moreover, 8-100 may be sufficient as carbon number of a saturated or unsaturated divalent hydrocarbon group. The structure (c) is preferably an alkylene group which may have a branch having 8 to 100 carbon atoms, more preferably an alkylene group which may have a branch having 10 to 70 carbon atoms, More preferably, it is an alkylene group which may have a branch having 15 to 50 carbon atoms. (A) The component having the structure (c) improves the flexibility of the resin composition according to this embodiment, and the handleability of the resin film produced from the resin composition (tackiness, cracking, powder falling off) Etc.) and strength can be increased. The structure (c) having the above carbon number is preferable because the molecular structure can be easily made three-dimensional and the free volume of the polymer can be increased to reduce the density, that is, to reduce the dielectric constant.

構造(c)としては、例えば、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基等のアルキレン基;ベンジレン基、フェニレン基、ナフチレン基等のアリーレン基;フェニレンメチレン基、フェニレンエチレン基、ベンジルプロピレン基、ナフチレンメチレン基、ナフチレンエチレン基等のアリーレンアルキレン基;フェニレンジメチレン基、フェニレンジエチレン基等のアリーレンジアルキレン基などが挙げられる。   As the structure (c), for example, an alkylene group such as a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tetradecylene group, a hexadecylene group, an octadecylene group or a nonadecylene group; an arylene group such as a benzylene group, a phenylene group or a naphthylene group; Examples include arylene alkylene groups such as phenylenemethylene group, phenyleneethylene group, benzylpropylene group, naphthylenemethylene group, and naphthyleneethylene group; and arylenealkylene groups such as phenylenedimethylene group and phenylenediethylene group.

高周波特性、低熱膨張特性、導体との接着性、耐熱性及び低吸湿性の観点から、構造(c)として下記式(II)で表される基が特に好ましい。   A group represented by the following formula (II) is particularly preferable as the structure (c) from the viewpoints of high frequency characteristics, low thermal expansion characteristics, adhesion to a conductor, heat resistance, and low hygroscopicity.

Figure 2017125128
Figure 2017125128

式(II)中、R2及びR3は各々独立に炭素数4〜50のアルキレン基を示す。柔軟性の更なる向上及び合成容易性の観点から、R2及びR3は各々独立に、炭素数5〜25のアルキレン基であることが好ましく、炭素数6〜10のアルキレン基であることがより好ましく、炭素数7〜10のアルキレン基であることが更に好ましい。 In formula (II), R 2 and R 3 each independently represents an alkylene group having 4 to 50 carbon atoms. From the viewpoint of further improvement in flexibility and ease of synthesis, R 2 and R 3 are each independently preferably an alkylene group having 5 to 25 carbon atoms, and preferably an alkylene group having 6 to 10 carbon atoms. More preferably, it is a C7-10 alkylene group.

式(II)中、R4は炭素数4〜50のアルキル基を示す。柔軟性の更なる向上及び合成容易性の観点から、R4は炭素数5〜25のアルキル基であることが好ましく、炭素数6〜10のアルキル基であることがより好ましく、炭素数7〜10のアルキル基であることが更に好ましい。 In formula (II), R 4 represents an alkyl group having 4 to 50 carbon atoms. From the viewpoint of further improving flexibility and ease of synthesis, R 4 is preferably an alkyl group having 5 to 25 carbon atoms, more preferably an alkyl group having 6 to 10 carbon atoms, and 7 to 7 carbon atoms. More preferably, it is 10 alkyl groups.

式(II)中、R5は炭素数2〜50のアルキル基を示す。柔軟性の更なる向上及び合成容易性の観点から、R5は炭素数3〜25のアルキル基であることが好ましく、炭素数4〜10のアルキル基であることがより好ましく、炭素数5〜8のアルキル基であることが更に好ましい。 In the formula (II), R 5 represents an alkyl group having 2 to 50 carbon atoms. From the viewpoint of further improvement in flexibility and ease of synthesis, R 5 is preferably an alkyl group having 3 to 25 carbon atoms, more preferably an alkyl group having 4 to 10 carbon atoms, and 5 to 5 carbon atoms. More preferably, it is an alkyl group of 8.

流動性及び回路埋め込み性の観点からは、構造(c)は、(A)成分中に複数存在すると好ましい。その場合、構造(c)はそれぞれ同一であってもよく、異なっていてもよい。例えば、(A)成分中に2〜40の構造(c)が存在することが好ましく、2〜20の構造(c)が存在することがより好ましく、2〜10の構造(c)が存在することが更に好ましい。   From the viewpoint of fluidity and circuit embedding properties, it is preferable that a plurality of structures (c) exist in the component (A). In that case, the structures (c) may be the same or different. For example, the component (A) preferably has 2 to 40 structures (c), more preferably 2 to 20 structures (c), and more preferably 2 to 10 structures (c). More preferably.

樹脂組成物中の(A)成分の含有量は特に限定されない。耐熱性の観点から(A)成分の含有量の下限値は、樹脂組成物の全質量に対して2質量%以上又は10質量%以上であってもよい。また、低熱膨張係数の観点から(A)成分の含有量の上限値は、樹脂組成物の全質量に対して98質量%以下、50質量%以下又は30質量%以下であってもよい。耐熱性の観点から、(A)成分の含有量は樹脂組成物の全質量に対して2〜98質量%であることが好ましく、10〜50質量%であることがより好ましく、10〜30質量%であることが更に好ましい。   The content of the component (A) in the resin composition is not particularly limited. From the viewpoint of heat resistance, the lower limit of the content of the component (A) may be 2% by mass or more or 10% by mass or more with respect to the total mass of the resin composition. Moreover, 98 mass% or less, 50 mass% or less, or 30 mass% or less may be sufficient with respect to the total mass of a resin composition from a viewpoint of a low thermal expansion coefficient. From the viewpoint of heat resistance, the content of the component (A) is preferably 2 to 98% by mass, more preferably 10 to 50% by mass, and more preferably 10 to 30% by mass with respect to the total mass of the resin composition. % Is more preferable.

(A)成分の分子量は特に限定されない。流動性の観点から(A)成分の重量平均分子量(Mw)の下限値は、500以上、1000以上、1500以上又は1700であってもよい。また、取扱性の観点から(A)成分のMwの上限値は、10000以下、9000以下、7000以下又は5000以下であってもよい。取扱性、流動性及び回路埋め込み性の観点より(A)成分のMwは、500〜10000であることが好ましく、1000〜9000であることがより好ましく、1500〜9000であることが更に好ましく、1500〜7000であることがより一層好ましく、1700〜5000であることが特に好ましい。   The molecular weight of the component (A) is not particularly limited. From the viewpoint of fluidity, the lower limit of the weight average molecular weight (Mw) of the component (A) may be 500 or more, 1000 or more, 1500 or more, or 1700. Moreover, 10,000 or less, 9000 or less, 7000 or less, or 5000 or less may be sufficient as the upper limit of Mw of (A) component from a viewpoint of handleability. Mw of the component (A) is preferably from 500 to 10,000, more preferably from 1000 to 9000, still more preferably from 1500 to 9000, from the viewpoints of handleability, fluidity, and circuit embedding properties. It is more preferable that it is -7000, and it is especially preferable that it is 1700-5000.

(A)成分のMwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定することができる。   (A) Mw of a component can be measured by a gel permeation chromatography (GPC) method.

なお、GPCの測定条件は下記のとおりである。
ポンプ:L−6200型[株式会社日立ハイテクノロジーズ製]
検出器:L−3300型RI[株式会社日立ハイテクノロジーズ製]
カラムオーブン:L−655A−52[株式会社日立ハイテクノロジーズ製]
カラム及びガードカラム:TSK Guardcolumn HHR−L+カラム;TSKgel G4000HHR+TSKgel G2000HHR[すべて東ソー株式会社製、商品名]
カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
The measurement conditions for GPC are as follows.
Pump: L-6200 [manufactured by Hitachi High-Technologies Corporation]
Detector: L-3300 RI [manufactured by Hitachi High-Technologies Corporation]
Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation]
Column and guard column: TSK Guardcolumn HHR-L + column; TSKgel G4000HHR + TSKgel G2000HHR [all trade names, manufactured by Tosoh Corporation]
Column size: 6.0 × 40 mm (guard column), 7.8 × 300 mm (column)
Eluent: Tetrahydrofuran Sample concentration: 30 mg / 5 mL
Injection volume: 20 μL
Flow rate: 1.00 mL / min Measurement temperature: 40 ° C

(A)成分を製造する方法は限定されない。(A)成分は、例えば、酸無水物とジアミンとを反応させてアミン末端化合物を合成した後、該アミン末端化合物を過剰の無水マレイン酸と反応させることで作製してもよい。   The method for producing the component (A) is not limited. The component (A) may be produced, for example, by reacting an acid anhydride and a diamine to synthesize an amine-terminated compound and then reacting the amine-terminated compound with an excess of maleic anhydride.

酸無水物としては、例えば、無水ピロメリット酸、無水マレイン酸、無水コハク酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。これらの酸無水物は目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。なお、前述のとおり、上記式(I)のR1として、上記に挙げられるような酸無水物に由来する4価の有機基を用いることができる。より良好な誘電特性の観点から、酸無水物は、無水ピロメリット酸であることが好ましい。 Examples of the acid anhydride include pyromellitic anhydride, maleic anhydride, succinic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl. Examples thereof include tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride. These acid anhydrides may be used alone or in combination of two or more depending on the purpose and application. In addition, as above-mentioned, the tetravalent organic group derived from an acid anhydride as mentioned above can be used as R < 1 > of the said formula (I). From the viewpoint of better dielectric properties, the acid anhydride is preferably pyromellitic anhydride.

ジアミンとしては、例えば、ダイマージアミン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、ポリオキシアルキレンジアミン、[3,4−ビス(1−アミノヘプチル)−6−ヘキシル−5−(1−オクテニル)]シクロヘキセン等が挙げられる。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。   Examples of the diamine include dimer diamine, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-amino). Phenoxy) biphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, 1,4-bis [2- (4 -Aminophenyl) -2-propyl] benzene, polyoxyalkylenediamine, [3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl)] cyclohexene, and the like. These may be used alone or in combination of two or more according to the purpose and application.

(A)成分としては、例えば、以下の化合物であってもよい。   As the component (A), for example, the following compounds may be used.

Figure 2017125128
Figure 2017125128

式中、R及びQはそれぞれ独立に2価の有機基を示す。Rは上述の構造(c)と同じものが使用でき、Qは上述のR1と同じものが使用できる。また、nは1〜10の整数を表す。 In the formula, R and Q each independently represent a divalent organic group. R can be the same as in the above structure (c), and Q can be the same as R 1 described above. N represents an integer of 1 to 10.

(A)成分としては市販されている化合物を使用することもできる。市販されている化合物としては、例えば、Designer Molecules Inc.製の製品が挙げられ、具体的には、BMI−1500、BMI−1700、BMI−3000、BMI−5000、BMI−9000(いずれも商品名)等が挙げられる。より良好な高周波特性を得る観点から、(A)成分としてBMI−3000を使用することがより好ましい。   As the component (A), a commercially available compound can also be used. As a commercially available compound, for example, Designer Molecules Inc. Specific examples include BMI-1500, BMI-1700, BMI-3000, BMI-5000, BMI-9000 (all are trade names), and the like. From the viewpoint of obtaining better high-frequency characteristics, it is more preferable to use BMI-3000 as the component (A).

<無機充填材>
本実施形態の樹脂組成物は、無機充填材を含有する。適切な無機充填材を選択することにより、低熱膨張特性、高弾性率、耐熱性、難燃性等を向上させることができる。無機充填材としては特に制限されないが、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
<Inorganic filler>
The resin composition of this embodiment contains an inorganic filler. By selecting an appropriate inorganic filler, low thermal expansion characteristics, high elastic modulus, heat resistance, flame retardancy, and the like can be improved. The inorganic filler is not particularly limited. For example, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, Examples thereof include aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, talc, aluminum borate, and silicon carbide. These may be used alone or in combination of two or more.

本実施形態においては、特定の無機充填材を含有させ、当該無機充填材を樹脂組成物中に略均一に分散することにより、樹脂成分と無機充填材成分との比誘電率の差により発生する高周波特性のばらつきを抑制することが可能となる。略均一に分散する方法としては、例えば、略球状の無機充填材を用いる方法、無機充填材をスラリーとして用いる方法等が挙げられ、任意の一つ以上の手法を用いて略均一な分散を達成できる。 In this embodiment, a specific inorganic filler is contained, and the inorganic filler is dispersed substantially uniformly in the resin composition, thereby generating a difference in relative dielectric constant between the resin component and the inorganic filler component. Variations in high frequency characteristics can be suppressed. Examples of the method for substantially uniformly dispersing include, for example, a method using a substantially spherical inorganic filler, a method using an inorganic filler as a slurry, and the like, and achieving substantially uniform dispersion using any one or more methods. it can.

(略球状の無機充填材を用いる方法)
無機充填材の形状として、例えば、球状、円柱状、角柱状、多面体状、不定形等が挙げられるが、球状の無機充填材を用いれば、略均一に分散させやすくなる。より分散性を高める観点から、上記無機充填材のアスペクト比(長径と短径の比)は、好ましくは2以下、より好ましくは1.5以下である。ここで、無機充填材の形状は、走査型電子顕微鏡により観察できる。なお、本明細書における「球状」とは略球状、真球状、楕円状、卵形等を含み、真球のみを意味するものではない。
(Method using a substantially spherical inorganic filler)
Examples of the shape of the inorganic filler include a spherical shape, a cylindrical shape, a prismatic shape, a polyhedron shape, and an indeterminate shape. If a spherical inorganic filler is used, it can be dispersed substantially uniformly. From the viewpoint of further improving dispersibility, the aspect ratio (ratio of major axis to minor axis) of the inorganic filler is preferably 2 or less, more preferably 1.5 or less. Here, the shape of the inorganic filler can be observed with a scanning electron microscope. In addition, “spherical” in the present specification includes a substantially spherical shape, a true spherical shape, an elliptical shape, an oval shape, and the like, and does not mean only a true sphere.

(無機充填材をスラリーとして用いる方法)
無機充填材を予め有機溶媒中に分散させることにより、略均一に分散させやすくなる。なお、当該状態のものを無機充填材スラリーともいう。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類;メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。
(Method using inorganic filler as slurry)
By dispersing the inorganic filler in the organic solvent in advance, it becomes easy to disperse substantially uniformly. In addition, the thing of the said state is also called inorganic filler slurry. Examples of the organic solvent include alcohols such as methanol, ethanol, propanol and butanol; glycol ethers such as methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. It is done.

無機充填材スラリー中のシリカ粒子の配合量としては、10質量%以上90質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましく、30質量%以上70質量%以下であることが更に好ましい。 The amount of silica particles in the inorganic filler slurry is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, and 30% by mass or more and 70% by mass or less. More preferably, it is as follows.

分散性を向上させるために、本実施形態に係る無機充填材は、粒度分布におけるD10に対するD90の比率が1.0〜4.0であることが好ましく、1.0〜3.0であることがより好ましい。「D10」とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積10%に相当する点の粒子径を意味し、「D90」とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積90%に相当する点の粒子径を意味する。ここで、本発明における粒度分布とは、粒径の分布割合を意味し、粒度分布は、レーザー回折散乱法を用いた粒度分布測定装置(例えば、SALD−2200(株式会社島津製作所社製)等)により測定できる。   In order to improve dispersibility, the ratio of D90 to D10 in the particle size distribution of the inorganic filler according to this embodiment is preferably 1.0 to 4.0, and preferably 1.0 to 3.0. Is more preferable. “D10” means the particle diameter at a point corresponding to a volume of 10% when the cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles being 100%, and “D90” is the total volume of the particles. Means a particle diameter at a point corresponding to a volume of 90%. Here, the particle size distribution in the present invention means a particle size distribution ratio, and the particle size distribution is a particle size distribution measuring device using a laser diffraction scattering method (for example, SALD-2200 (manufactured by Shimadzu Corporation)). ).

同様に、「D50」とは、積算値が50%の時の粒径を意味する。また、「D50」の粒径を平均粒径という。無機充填材のD50は特に限定されないが、例えば、0.01〜20μmであっても、0.1〜10μmであってもよい。 Similarly, “D50” means the particle size when the integrated value is 50%. The particle size of “D50” is referred to as an average particle size. Although D50 of an inorganic filler is not specifically limited, For example, 0.01-20 micrometers may be sufficient, and 0.1-10 micrometers may be sufficient.

無機充填材の使用量は特に制限されないが、例えば、樹脂組成物中の固形分を全量として無機充填材の含有比率が3〜75体積%であることが好ましく、5〜70体積%であることがより好ましい。樹脂組成物中の無機充填材の含有比率が上記の範囲である場合、良好な硬化性、成形性及び耐薬品性が得られ易くなる。   The amount of the inorganic filler used is not particularly limited. For example, the content of the inorganic filler is preferably 3 to 75% by volume, and preferably 5 to 70% by volume, with the solid content in the resin composition as a whole. Is more preferable. When the content ratio of the inorganic filler in the resin composition is in the above range, good curability, moldability, and chemical resistance are easily obtained.

無機充填材を用いる場合、無機充填材の分散性、有機成分との密着性を向上させる等の目的で、必要に応じ、カップリング剤を併用できる。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種類を単独で用いても、2種類以上を併用してもよい。また、カップリング剤の使用量も特に限定されず、例えば、使用する無機充填材100質量部に対して0.1〜5質量部としてもよいし、0.5〜3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、無機充填材の使用による特長を効果的に発揮し易くなる。   When an inorganic filler is used, a coupling agent can be used in combination as necessary for the purpose of improving the dispersibility of the inorganic filler and the adhesion with the organic component. It does not specifically limit as a coupling agent, For example, various silane coupling agents, a titanate coupling agent, etc. can be used. These may be used alone or in combination of two or more. Moreover, the usage-amount of a coupling agent is not specifically limited, For example, it is good also as 0.1-5 mass parts with respect to 100 mass parts of inorganic fillers to be used, and good also as 0.5-3 mass parts. If it is this range, there will be little fall of various characteristics and it will become easy to exhibit the feature by use of an inorganic filler effectively.

カップリング剤を用いる場合、樹脂組成物中に無機充填材を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め無機充填材にカップリング剤を、乾式又は湿式で表面処理して使用する方式が好ましい。この方法を用いることで、より効果的に上記無機充填材の特長を発現できる。   When using a coupling agent, it may be a so-called integral blend treatment method in which a coupling agent is added after blending an inorganic filler in the resin composition, but the coupling agent is added to the inorganic filler in advance. A method of using a surface treatment by dry or wet is preferred. By using this method, the characteristics of the inorganic filler can be expressed more effectively.

<(B)マレイミド基含有化合物>
本実施形態の樹脂組成物は、(A)成分とは異なるマレイミド基含有化合物を更に含有することができる。該マレイミド基含有化合物を(B)成分ということがある。なお、(A)成分及び(B)マレイミド基含有化合物の双方に該当し得る化合物は、(A)成分に帰属するものとする。(B)成分を用いることで、樹脂組成物は、特に低熱膨張特性に優れるものとなる。すなわち、本実施形態の樹脂組成物は、(A)成分と(B)成分とを併用することにより、良好な誘電特性を維持しつつ、低熱膨張特性等を更に向上させることができる。この理由として、(A)成分と(B)マレイミド基含有化合物とを含有する樹脂組成物から得られる硬化物は、低誘電特性を備える(A)成分からなる構造単位と、低熱膨張である(B)マレイミド基含有化合物からなる構造単位とを備えるポリマーを含有するためだと推測される。
<(B) Maleimide group-containing compound>
The resin composition of this embodiment can further contain a maleimide group-containing compound different from the component (A). The maleimide group-containing compound is sometimes referred to as component (B). In addition, the compound which can correspond to both (A) component and (B) maleimide group containing compound shall belong to (A) component. By using the component (B), the resin composition is particularly excellent in low thermal expansion characteristics. That is, the resin composition of the present embodiment can further improve the low thermal expansion characteristics and the like while maintaining good dielectric characteristics by using the component (A) and the component (B) in combination. For this reason, the cured product obtained from the resin composition containing the component (A) and the (B) maleimide group-containing compound has a structural unit composed of the component (A) having low dielectric properties and low thermal expansion ( B) It is presumed to be because it contains a polymer comprising a structural unit comprising a maleimide group-containing compound.

すなわち、(B)マレイミド基含有化合物は、(A)成分よりも熱膨張係数が低いことが好ましい。(A)成分よりも熱膨張係数が低い(B)成分として、例えば、(A)成分よりも分子量が低いマレイミド基含有化合物、(A)成分よりも多くの芳香環を有するマレイミド基含有化合物、主鎖が(A)成分よりも短いマレイミド基含有化合物等が挙げられる。   That is, the (B) maleimide group-containing compound preferably has a lower thermal expansion coefficient than the component (A). As the component (B) having a lower thermal expansion coefficient than the component (A), for example, a maleimide group-containing compound having a lower molecular weight than the component (A), a maleimide group-containing compound having more aromatic rings than the component (A), Examples thereof include maleimide group-containing compounds having a main chain shorter than the component (A).

樹脂組成物中の(B)成分の含有量は特に限定されない。低熱膨張性の観点から(B)成分の含有量の下限値は、樹脂組成物の全質量に対して1質量%以上、3質量%以上又は5質量%以上であってもよい。また、誘電特性の観点から(B)成分の含有量の上限値は、樹脂組成物の全質量に対して95質量%以下、90質量%以下又は85質量%以下であってもよい。低熱膨張性の観点から、(B)成分の含有量は樹脂組成物の全質量に対して1〜95質量%であることが好ましく、3〜90質量%であることがより好ましく、5〜85質量%であることが更に好ましい。   The content of the component (B) in the resin composition is not particularly limited. From the viewpoint of low thermal expansion, the lower limit of the content of the component (B) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more with respect to the total mass of the resin composition. Moreover, 95 mass% or less, 90 mass% or less, or 85 mass% or less may be sufficient with respect to the total mass of a resin composition from a dielectric characteristic viewpoint with respect to the total mass of a resin composition. From the viewpoint of low thermal expansion, the content of the component (B) is preferably 1 to 95% by mass, more preferably 3 to 90% by mass, and more preferably 5 to 85% with respect to the total mass of the resin composition. More preferably, it is mass%.

樹脂組成物中の(A)成分と(B)成分との配合割合は特に限定されない。誘電特性及び低熱膨張係数の観点から、(A)成分と(B)成分の質量比(B)/(A)が0.01〜3であることが好ましく、0.03〜2であることがより好ましく、0.05〜1であることが更に好ましい。   The blending ratio of the component (A) and the component (B) in the resin composition is not particularly limited. From the viewpoint of dielectric properties and a low thermal expansion coefficient, the mass ratio (B) / (A) of the component (A) to the component (B) is preferably 0.01 to 3, and preferably 0.03 to 2. More preferably, it is 0.05-1 more preferably.

(B)マレイミド基含有化合物は特に限定されないが、芳香環を有することが好ましい。芳香環は剛直で低熱膨張であるため、芳香環を有する(B)成分を用いることで、更に熱膨張係数を低減させることができる。マレイミド基は芳香環に結合していても、脂肪族鎖に結合していてもよいが、誘電特性の観点からは、芳香環に結合していることが好ましい。すなわち、(B)成分は、芳香環にマレイミド基が結合した基を有することが好ましい。また、(B)成分は、マレイミド基を2個以上含有するポリマレイミド化合物であることも好ましい。   (B) The maleimide group-containing compound is not particularly limited, but preferably has an aromatic ring. Since the aromatic ring is rigid and has low thermal expansion, the thermal expansion coefficient can be further reduced by using the component (B) having an aromatic ring. The maleimide group may be bonded to an aromatic ring or an aliphatic chain, but is preferably bonded to an aromatic ring from the viewpoint of dielectric properties. That is, the component (B) preferably has a group in which a maleimide group is bonded to an aromatic ring. The component (B) is also preferably a polymaleimide compound containing two or more maleimide groups.

(B)成分の具体例としては、1,2−ジマレイミドエタン、1,3−ジマレイミドプロパン、ビス(4−マレイミドフェニル)メタン、ビス(3−エチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,7−ジマレイミドフルオレン、N,N’−(1,3−フェニレン)ビスマレイミド、N,N’−(1,3−(4−メチルフェニレン))ビスマレイミド、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)エ−テル、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(3−(3−マレイミドフェノキシ)フェノキシ)ベンゼン、ビス(4−マレイミドフェニル)ケトン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−(4−マレイミドフェノキシ)フェニル)スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、1,3−ビス(2−(3−マレイミドフェニル)プロピル)ベンゼン、1,3−ビス(1−(4−(3−マレイミドフェノキシ)フェニル)−1−プロピル)ベンゼン、ビス(マレイミドシクロヘキシル)メタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス(マレイミドフェニル)チオフェン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、吸湿性及び熱膨張係数をより低下させる観点からは、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタンを用いることが好ましい。樹脂組成物から形成される樹脂フィルムの破壊強度及び金属箔引き剥がし強さを更に高める観点からは、(B)成分として、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いることが好ましい。   Specific examples of the component (B) include 1,2-dimaleimidoethane, 1,3-dimaleimidopropane, bis (4-maleimidophenyl) methane, bis (3-ethyl-4-maleimidophenyl) methane, bis ( 3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,7-dimaleimidofluorene, N, N ′-(1,3-phenylene) bismaleimide, N, N ′-(1,3- (4 -Methylphenylene)) bismaleimide, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ether, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (3- (3-maleimidophenoxy) phenoxy) benzene, bis (4-maleimidophenyl) ketone, 2,2-bi (4- (4-maleimidophenoxy) phenyl) propane, bis (4- (4-maleimidophenoxy) phenyl) sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfoxide, 4,4′-bis (3- Maleimidophenoxy) biphenyl, 1,3-bis (2- (3-maleimidophenyl) propyl) benzene, 1,3-bis (1- (4- (3-maleimidophenoxy) phenyl) -1-propyl) benzene, bis (Maleimidocyclohexyl) methane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis (maleimidophenyl) thiophene and the like can be mentioned. These may be used alone or in combination of two or more. Among these, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane is preferably used from the viewpoint of further reducing the hygroscopicity and the thermal expansion coefficient. From the viewpoint of further increasing the breaking strength and the metal foil peeling strength of the resin film formed from the resin composition, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is used as the component (B). It is preferable to use it.

成形性の観点からは、(B)マレイミド基含有化合物としては、例えば、下記式(VI)で表される化合物が好ましい。   From the viewpoint of moldability, the (B) maleimide group-containing compound is preferably, for example, a compound represented by the following formula (VI).

Figure 2017125128
Figure 2017125128

式(VI)中、A4は下記式(VII)、(VIII)、(IX)又は(X)で表される残基を示し、A5は下記式(XI)で表される残基を示す。 In formula (VI), A 4 represents a residue represented by the following formula (VII), (VIII), (IX) or (X), and A 5 represents a residue represented by the following formula (XI). Show.

Figure 2017125128
Figure 2017125128

式(VII)中、R10は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。 In formula (VII), R < 10 > shows a hydrogen atom, a C1-C5 aliphatic hydrocarbon group, or a halogen atom each independently.

Figure 2017125128
Figure 2017125128

式(VIII)中、R11及びR12は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A6は炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、単結合又は下記式(VIII−1)で表される残基を示す。 In formula (VIII), R 11 and R 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 6 represents an alkylene group or alkylidene group having 1 to 5 carbon atoms. , An ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond, or a residue represented by the following formula (VIII-1).

Figure 2017125128
Figure 2017125128

式(VIII−1)中、R13及びR14は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A7は炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (VIII-1), R 13 and R 14 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, A 7 represents an alkylene group having 1 to 5 carbon atoms, An isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond is shown.

Figure 2017125128
Figure 2017125128

式(IX)中、iは1〜10の整数である。   In formula (IX), i is an integer of 1-10.

Figure 2017125128
Figure 2017125128

式(X)中、R15及びR16は各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基を示し、jは1〜8の整数である。 In formula (X), R 15 and R 16 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8.

Figure 2017125128
Figure 2017125128

式(XI)中、R17及びR18は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子を示し、A8は、炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、フルオレニレン基、単結合、下記式(XI−1)で表される残基又は下記式(XI−2)で表される残基を示す。 In formula (XI), R 17 and R 18 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom, and A 8 represents , An alkylene group having 1 to 5 carbon atoms or an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a fluorenylene group, a single bond, a residue represented by the following formula (XI-1), or the following formula (XI- The residue represented by 2) is shown.

Figure 2017125128
Figure 2017125128

式(XI−1)中、R19及びR20は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A9は、炭素数1〜5のアルキレン基、イソプロピリデン基、m−フェニレンジイソプロピリデン基、p−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (XI-1), R 19 and R 20 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 9 represents an alkylene group having 1 to 5 carbon atoms. , Isopropylidene group, m-phenylene diisopropylidene group, p-phenylene diisopropylidene group, ether group, sulfide group, sulfonyl group, ketone group or single bond.

Figure 2017125128
Figure 2017125128

式(XI−2)中、R21は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (XI-2), R 21 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 10 and A 11 each independently represent 1 to 5 carbon atoms. An alkylene group, an isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond.

(B)マレイミド基含有化合物は、有機溶媒への溶解性、高周波特性、導体との高接着性、プリプレグの成形性等の観点から、ポリアミノビスマレイミド化合物として用いることが好ましい。ポリアミノビスマレイミド化合物は、例えば、末端に2個のマレイミド基を有する化合物と、分子中に2個の一級アミノ基を有する芳香族ジアミン化合物とを有機溶媒中でマイケル付加反応させることにより得られる。   (B) The maleimide group-containing compound is preferably used as a polyaminobismaleimide compound from the viewpoints of solubility in an organic solvent, high frequency characteristics, high adhesion to a conductor, moldability of a prepreg, and the like. The polyamino bismaleimide compound can be obtained, for example, by Michael addition reaction of a compound having two maleimide groups at the terminal and an aromatic diamine compound having two primary amino groups in the molecule in an organic solvent.

分子中に2個の一級アミノ基を有する芳香族ジアミン化合物は特に限定されないが、例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。   The aromatic diamine compound having two primary amino groups in the molecule is not particularly limited. For example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyl-diphenylmethane, 2,2 '-Dimethyl-4,4'-diaminobiphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline, and the like. These may be used alone or in combination of two or more.

また、有機溶媒への溶解性が高く、合成時の反応率が高く、かつ耐熱性を高くできる観点からは、4,4’−ジアミノジフェニルメタン及び4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタンが好ましい。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。   From the viewpoint of high solubility in organic solvents, high reaction rate during synthesis, and high heat resistance, 4,4′-diaminodiphenylmethane and 4,4′-diamino-3,3′-dimethyl -Diphenylmethane is preferred. These may be used alone or in combination of two or more according to the purpose and application.

ポリアミノビスマレイミド化合物を製造する際に使用される有機溶媒は特に制限はないが、例えば、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、メシチレン等の芳香族炭化水素類;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素類などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、これらの中でも、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドが溶解性の観点から好ましい。   The organic solvent used in producing the polyaminobismaleimide compound is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl Ketones such as isobutyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and mesitylene; esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate and ethyl acetate; N, N-dimethylformamide, N, And nitrogen-containing compounds such as N-dimethylacetamide and N-methyl-2-pyrrolidone. These may be used alone or in combination of two or more. Among these, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide and N, N-dimethylacetamide are preferable from the viewpoint of solubility.

<その他の成分>
(触媒)
本実施形態の樹脂組成物は、(A)成分の硬化を促進するための触媒を更に含有してもよい。触媒の含有量は特に限定されないが、樹脂組成物の全質量に対して0.1〜5質量%であってもよい。触媒としては、例えば、過酸化物、アゾ化合物等を用いることができる。
<Other ingredients>
(catalyst)
The resin composition of this embodiment may further contain a catalyst for promoting the curing of the component (A). Although content of a catalyst is not specifically limited, 0.1-5 mass% may be sufficient with respect to the total mass of a resin composition. As the catalyst, for example, a peroxide, an azo compound, or the like can be used.

過酸化物としては、例えば、ジクミルパーオキサイド、ジベンゾイルパーオキサイド、2−ブタノンパーオキサイド、tert−ブチルパーベンゾエイト、ジ−tert−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ビス(tert−ブチルパーオキシイソプロピル)ベンゼン及びtert−ブチルヒドロパーオキシドが挙げられる。アゾ化合物としては、例えば、2,2’−アゾビス(2−メチルプロパンニトリル)、2,2’アゾビス(2−メチルブタンニトリル)及び1,1’―アゾビス(シクロヘキサンカルボニトリル)が挙げられる。   Examples of the peroxide include dicumyl peroxide, dibenzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-dioxide. (T-Butylperoxy) hexane, bis (tert-butylperoxyisopropyl) benzene, and tert-butyl hydroperoxide. Examples of the azo compound include 2,2'-azobis (2-methylpropanenitrile), 2,2'azobis (2-methylbutanenitrile), and 1,1'-azobis (cyclohexanecarbonitrile).

((C)熱硬化性樹脂)
本実施形態の樹脂組成物は、(A)成分及び(B)成分とは異なる熱硬化性樹脂を更に含有することができる。なお、(A)成分又は(B)成分に該当し得る化合物は、(C)熱硬化性樹脂に帰属しないものとする。(C)熱硬化性樹脂としては、例えば、エポキシ樹脂、シアネートエステル樹脂等が挙げられる。(C)熱硬化性樹脂を含むことで、樹脂組成物の低熱膨張特性等を更に向上させることができる。
((C) thermosetting resin)
The resin composition of this embodiment can further contain a thermosetting resin different from the component (A) and the component (B). In addition, the compound which can correspond to (A) component or (B) component shall not belong to (C) thermosetting resin. (C) As a thermosetting resin, an epoxy resin, cyanate ester resin, etc. are mentioned, for example. (C) By including a thermosetting resin, the low thermal expansion characteristic etc. of a resin composition can further be improved.

(C)熱硬化性樹脂としてエポキシ樹脂を含有させる場合、特に制限されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂などが挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、高周波特性及び熱膨張特性の観点からは、ナフタレン骨格含有型エポキシ樹脂又はビフェニルアラルキル型エポキシ樹脂を用いることが好ましい。   (C) When an epoxy resin is contained as the thermosetting resin, it is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, etc. Biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, dihydroanthracene type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more. Among these, it is preferable to use a naphthalene skeleton containing type epoxy resin or a biphenyl aralkyl type epoxy resin from the viewpoint of high frequency characteristics and thermal expansion characteristics.

(C)熱硬化性樹脂としてシアネートエステル樹脂を含有させる場合、特に限定されないが、例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等が挙げられる。これらは1種類を用いても、2種類以上を併用してもよい。これらの中でも、安価である点、高周波特性及びその他特性の総合バランスを考慮すると、2,2−ビス(4−シアナトフェニル)プロパンを用いることが好ましい。   (C) When cyanate ester resin is contained as the thermosetting resin, it is not particularly limited. For example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3 , 5-Dimethyl-4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4 -Cyanatophenyl) -m-diisopropylbenzene, cyanate ester compound of phenol-added dicyclopentadiene polymer, phenol novolak type cyanate ester compound, cresol novolak type cyanate ester compound and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use 2,2-bis (4-cyanatophenyl) propane in consideration of the low cost, the high-frequency characteristics, and the overall balance of other characteristics.

(硬化剤)
本実施形態の樹脂組成物は、(C)熱硬化性樹脂の硬化剤を更に含有してもよい。これにより、樹脂組成物の硬化物を得る際の反応を円滑に進めることができるとともに、得られる樹脂組成物の硬化物の物性を適度に調節することが可能となる。
(Curing agent)
The resin composition of this embodiment may further contain (C) a curing agent for a thermosetting resin. Thereby, the reaction at the time of obtaining the cured product of the resin composition can be smoothly advanced, and the physical properties of the cured product of the obtained resin composition can be appropriately adjusted.

エポキシ樹脂を用いる場合、硬化剤としては特に制限されないが、例えば、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジシアンジアミド等のポリアミン化合物;ビスフェノールA、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂等のポリフェノール化合物;無水フタル酸、無水ピロメリット酸等の酸無水物;各種カルボン酸化合物;各種活性エステル化合物などが挙げられる。   When an epoxy resin is used, the curing agent is not particularly limited. For example, polyamine compounds such as diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, m-phenylenediamine, and dicyandiamide; bisphenol A, phenol novolac resin, cresol novolac resin, bisphenol A Examples thereof include polyphenol compounds such as novolak resins and phenol aralkyl resins; acid anhydrides such as phthalic anhydride and pyromellitic anhydride; various carboxylic acid compounds; and various active ester compounds.

シアネートエステル樹脂を用いる場合、硬化剤としては特に限定されないが、例えば、各種モノフェノール化合物、各種ポリフェノール化合物、各種アミン化合物、各種アルコール化合物、各種酸無水物、各種カルボン酸化合物等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。   When the cyanate ester resin is used, the curing agent is not particularly limited, and examples thereof include various monophenol compounds, various polyphenol compounds, various amine compounds, various alcohol compounds, various acid anhydrides, various carboxylic acid compounds, and the like. These may be used alone or in combination of two or more.

(硬化促進剤)
本実施形態の樹脂組成物には、(C)熱硬化性樹脂の種類に応じて硬化促進剤を更に配合してもよい。エポキシ樹脂の硬化促進剤としては、例えば、潜在性の熱硬化剤である各種イミダゾール類、BF3アミン錯体、リン系硬化促進剤等が挙げられる。硬化促進剤を配合する場合、樹脂組成物の保存安定性、半硬化の樹脂組成物の取扱性及びはんだ耐熱性の観点から、イミダゾール類及びリン系硬化促進剤が好ましい。
(Curing accelerator)
You may further mix | blend a hardening accelerator with the resin composition of this embodiment according to the kind of (C) thermosetting resin. Examples of the epoxy resin curing accelerator include various imidazoles, BF 3 amine complexes, and phosphorus-based curing accelerators, which are latent thermosetting agents. When a curing accelerator is blended, imidazoles and phosphorus curing accelerators are preferable from the viewpoints of storage stability of the resin composition, handleability of the semi-cured resin composition, and solder heat resistance.

(熱可塑性樹脂)
本実施形態の樹脂組成物は、樹脂フィルムの取扱い性を高める観点から、熱可塑性樹脂を更に含有してもよい。熱可塑性樹脂の種類は特に限定されず、分子量も限定されないが、(A)成分との相溶性をより高める点から、数平均分子量(Mn)が200〜60000であることが好ましい。
(Thermoplastic resin)
The resin composition of the present embodiment may further contain a thermoplastic resin from the viewpoint of improving the handleability of the resin film. Although the kind of thermoplastic resin is not specifically limited and molecular weight is also not limited, It is preferable that a number average molecular weight (Mn) is 200-60000 from the point which improves compatibility with (A) component.

フィルム形成性及び耐吸湿性の観点から、熱可塑性樹脂は、熱可塑性エラストマであることが好ましい。熱可塑性エラストマとしては飽和型熱可塑性エラストマ等が挙げられ、飽和型熱可塑性エラストマとしては化学変性飽和型熱可塑性エラストマ、非変性飽和型熱可塑性エラストマ等が挙げられる。化学変性飽和型熱可塑性エラストマとしては、無水マレイン酸で変性されたスチレン−エチレン−ブチレン共重合体等が挙げられる。化学変性飽和型熱可塑性エラストマの具体例としては、タフテックM1911、M1913、M1943(全て旭化成ケミカルズ株式会社製、商品名)等が挙げられる。一方、非変性飽和型熱可塑性エラストマとしては、非変性のスチレン−エチレン−ブチレン共重合体等が挙げられる。非変性飽和型熱可塑性エラストマの具体例としては、タフテックH1041、H1051、H1043、H1053(全て旭化成ケミカルズ株式会社製、商品名)等が挙げられる。   From the viewpoint of film formability and moisture absorption resistance, the thermoplastic resin is preferably a thermoplastic elastomer. Examples of the thermoplastic elastomer include saturated thermoplastic elastomers, and examples of the saturated thermoplastic elastomer include chemically modified saturated thermoplastic elastomers and non-modified saturated thermoplastic elastomers. Examples of the chemically-modified saturated thermoplastic elastomer include styrene-ethylene-butylene copolymer modified with maleic anhydride. Specific examples of the chemically modified saturated thermoplastic elastomer include Tuftec M1911, M1913, M1943 (all trade names, manufactured by Asahi Kasei Chemicals Corporation). On the other hand, examples of the non-modified saturated thermoplastic elastomer include non-modified styrene-ethylene-butylene copolymer. Specific examples of the unmodified saturated thermoplastic elastomer include Tuftec H1041, H1051, H1043, and H1053 (all trade names, manufactured by Asahi Kasei Chemicals Corporation).

フィルム形成性、誘電特性及び耐吸湿性の観点から、飽和型熱可塑性エラストマは、分子中にスチレンユニットを有することがより好ましい。なお、本明細書において、スチレンユニットとは、重合体における、スチレン単量体に由来する単位を指し、飽和型熱可塑性エラストマとは、スチレンユニットの芳香族炭化水素部分以外の脂肪族炭化水素部分が、いずれも飽和結合基によって構成された構造を有するものをいう。   From the viewpoint of film formability, dielectric properties, and moisture absorption resistance, the saturated thermoplastic elastomer preferably has a styrene unit in the molecule. In this specification, the styrene unit refers to a unit derived from a styrene monomer in a polymer, and the saturated thermoplastic elastomer refers to an aliphatic hydrocarbon portion other than the aromatic hydrocarbon portion of the styrene unit. Are all having a structure constituted by a saturated bonding group.

飽和型熱可塑性エラストマにおけるスチレンユニットの含有比率は、特に限定されないが、飽和型熱可塑性エラストマの全質量に対するスチレンユニットの質量百分率で、10〜80質量%であると好ましく、20〜70質量%であるとより好ましい。スチレンユニットの含有比率が上記範囲内であると、フィルム外観、耐熱性及び接着性に優れる傾向にある。   The content ratio of the styrene unit in the saturated thermoplastic elastomer is not particularly limited, but is preferably 10 to 80% by mass with respect to the total mass of the saturated thermoplastic elastomer, preferably 10 to 80% by mass, and 20 to 70% by mass. More preferably. When the content ratio of the styrene unit is within the above range, the film appearance, heat resistance and adhesiveness tend to be excellent.

分子中にスチレンユニットを有する飽和型熱可塑性エラストマの具体例としては、スチレン−エチレン−ブチレン共重合体が挙げられる。スチレン−エチレン−ブチレン共重合体は、例えば、スチレン−ブタジエン共重合体のブタジエンに由来する構造単位が有する不飽和二重結合に水素添加を行うことにより得ることができる。   Specific examples of the saturated thermoplastic elastomer having a styrene unit in the molecule include a styrene-ethylene-butylene copolymer. A styrene-ethylene-butylene copolymer can be obtained, for example, by hydrogenating an unsaturated double bond of a structural unit derived from butadiene of a styrene-butadiene copolymer.

熱可塑性樹脂の含有量は特に限定されないが、誘電特性を更に良好にする観点からは樹脂組成物の固形分を全量として0.1〜15質量%であることが好ましく、0.3〜10質量%であることがより好ましく、0.5〜5質量%であることが更に好ましい。   The content of the thermoplastic resin is not particularly limited, but from the viewpoint of further improving the dielectric properties, the total solid content of the resin composition is preferably 0.1 to 15% by mass, and 0.3 to 10% by mass. % Is more preferable, and 0.5 to 5% by mass is still more preferable.

(難燃剤)
本実施形態の樹脂組成物には、難燃剤を更に配合してもよい。難燃剤としては特に限定されないが、臭素系難燃剤、リン系難燃剤、金属水酸化物等が好適に用いられる。臭素系難燃剤としては、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂;ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン等の臭素化添加型難燃剤;トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、臭素化スチレン等の不飽和二重結合基含有の臭素化反応型難燃剤などが挙げられる。これらの難燃剤は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(Flame retardants)
You may further mix | blend a flame retardant with the resin composition of this embodiment. Although it does not specifically limit as a flame retardant, A bromine flame retardant, a phosphorus flame retardant, a metal hydroxide, etc. are used suitably. Brominated flame retardants include brominated epoxy resins such as brominated bisphenol A type epoxy resins and brominated phenol novolac type epoxy resins; hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl), ethylenebistetrabromophthalimide 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated polystyrene, 2,4, Brominated flame retardants such as 6-tris (tribromophenoxy) -1,3,5-triazine; tribromophenylmaleimide, tribromophenyl acrylate, tribromophenyl methacrylate, tetrabromobisphenol A type Methacrylate, pentabromobenzyl acrylate, and unsaturated double bond group brominated reactive flame retardants containing brominated styrene. These flame retardants may be used alone or in combination of two or more.

リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)等の芳香族系リン酸エステル;フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1−ブテニル)等のホスホン酸エステル;ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体等のホスフィン酸エステル;ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物、赤リン等のリン系難燃剤などが挙げられる。金属水酸化物難燃剤としては、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。これらの難燃剤は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   Phosphorus flame retardants include aromatic phosphoric acids such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol bis (diphenyl phosphate) Ester; Phosphonic acid ester such as divinyl phenylphosphonate, diallyl phenylphosphonate, bis (1-butenyl) phenylphosphonate; phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phos Phosphinic acid esters such as faphenanthrene-10-oxide derivatives; phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene; melamine phosphate, melamine pyrophosphate, poly Phosphate melamine, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds, such as phosphorus-based flame retardant of red phosphorus and the like. Examples of the metal hydroxide flame retardant include magnesium hydroxide and aluminum hydroxide. These flame retardants may be used alone or in combination of two or more.

[樹脂組成物の製造方法]
本実施形態に係る樹脂組成物は、上記した各成分を均一に分散及び混合することによって得ることができ、その調製手段、条件等は特に限定されない。例えば、所定配合量の各種成分をミキサー等によって十分に均一に撹拌及び混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等を用いて混練し、更に得られた混練物を冷却及び粉砕する方法が挙げられる。なお、混練形式についても特に限定されない。樹脂組成物は、必要に応じ有機溶媒を含んでいてもよく、上記成分が、有機溶媒に溶解又は分散した樹脂ワニスの形態であってもよい。
[Method for Producing Resin Composition]
The resin composition according to this embodiment can be obtained by uniformly dispersing and mixing the above-described components, and the preparation means, conditions, and the like are not particularly limited. For example, after stirring and mixing various components of a predetermined blending amount sufficiently uniformly with a mixer, etc., the mixture is kneaded using a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and the obtained kneaded product is cooled and The method of pulverizing is mentioned. The kneading type is not particularly limited. The resin composition may contain an organic solvent as necessary, and the above components may be in the form of a resin varnish dissolved or dispersed in an organic solvent.

本実施形態の樹脂組成物において無機充填材を略均一に分散させる方法として、特定の方法で分散処理を行う方法を用いてもよい。分散処理する方法としては、例えば、ビーズミル、ボールミル等のメディアミル;ディゾルバー等のハイスピードディスパーサー、ナノマイザー等の高圧ホモジナイザー;コロイドミル;超音波処理機などが挙げられる。これらの中で、不純物の混入が少なく、効率良く分散できる点から高圧ホモジナイザーで処理する方法が好ましい。また、分散混合の際に分散剤として、シラン系やチタネート系、アルミネート系等のカップリング剤、ポリエーテル変性ポリシロキサン等の変性シリコーン類、ポリカルボン酸類、ウレタン系やアクリル系のポリマー分散剤等を添加することもできる。   As a method of dispersing the inorganic filler substantially uniformly in the resin composition of the present embodiment, a method of performing a dispersion treatment by a specific method may be used. Examples of the dispersion treatment include a media mill such as a bead mill and a ball mill; a high-speed disperser such as a dissolver; a high-pressure homogenizer such as a nanomizer; a colloid mill; and an ultrasonic processor. Among these, a method of treating with a high-pressure homogenizer is preferable from the viewpoint that impurities are less mixed and can be efficiently dispersed. In addition, as a dispersant during dispersion mixing, coupling agents such as silane, titanate, and aluminate, modified silicones such as polyether-modified polysiloxane, polycarboxylic acids, urethane-based and acrylic polymer dispersants Etc. can also be added.

分散性をより高める観点からは、無機充填材スラリー、必要に応じて熱可塑性樹脂、熱硬化性樹脂をこの順で混合することが好ましい。 From the viewpoint of further improving the dispersibility, it is preferable to mix the inorganic filler slurry and, if necessary, the thermoplastic resin and the thermosetting resin in this order.

[樹脂組成物の特性]
本実施形態の樹脂組成物の硬化物の比誘電率は特に限定されないが、高周波帯で好適に用いる観点から、10GHzでの比誘電率は3.6以下であることが好ましく、3.1以下であることがより好ましく、3.0以下であることが更に好ましい。比誘電率の下限については特に限定はないが、例えば、1.0程度であってもよい。また、高周波帯で好適に用いる観点から、本実施形態の樹脂組成物の硬化物の誘電正接は0.004以下であることが好ましく、0.003以下であることがより好ましい。比誘電率の下限については特に限定はなく、例えば、0.0001程度であってもよい。比誘電率及び誘電正接は下記実施例で示す方法で測定できる。
[Characteristics of resin composition]
The relative dielectric constant of the cured product of the resin composition of the present embodiment is not particularly limited, but the relative dielectric constant at 10 GHz is preferably 3.6 or less from the viewpoint of being suitably used in a high frequency band. Is more preferable, and it is still more preferable that it is 3.0 or less. The lower limit of the relative dielectric constant is not particularly limited, but may be about 1.0, for example. Further, from the viewpoint of being suitably used in the high frequency band, the dielectric loss tangent of the cured product of the resin composition of the present embodiment is preferably 0.004 or less, and more preferably 0.003 or less. The lower limit of the relative dielectric constant is not particularly limited, and may be, for example, about 0.0001. The relative dielectric constant and dielectric loss tangent can be measured by the methods shown in the following examples.

積層板のそりを抑制する観点から、本実施形態の樹脂組成物の硬化物の熱膨張係数は、10〜90ppm/℃であることが好ましく、10〜45ppm/℃であることがより好ましく、10〜40ppm/℃であることが更に好ましい。熱膨張係数はIPC−TM−650 2.4.24に準拠して測定できる。   From the viewpoint of suppressing warpage of the laminate, the thermal expansion coefficient of the cured product of the resin composition of the present embodiment is preferably 10 to 90 ppm / ° C, more preferably 10 to 45 ppm / ° C. More preferably, it is ˜40 ppm / ° C. The thermal expansion coefficient can be measured according to IPC-TM-650 2.4.24.

[樹脂フィルム]
本実施形態では、上記の樹脂組成物を用いて、樹脂フィルムを製造することができる。なお、樹脂フィルムとは未硬化又は半硬化のフィルム状の樹脂組成物を指す。
[Resin film]
In the present embodiment, a resin film can be produced using the above resin composition. The resin film refers to an uncured or semi-cured film-shaped resin composition.

樹脂フィルムの製造方法は限定されないが、例えば、樹脂組成物を支持基材上に塗布して形成された樹脂層を乾燥することで得られる。具体的には、上記樹脂組成物をキスコーター、ロールコーター、コンマコーター等を用いて支持基材上に塗布した後、加熱乾燥炉中等で、例えば70〜250℃、好ましくは70〜200℃の温度で、1〜30分間、好ましくは3〜15分間乾燥してもよい。これにより、樹脂組成物が半硬化した状態の樹脂フィルムを得ることができる。   Although the manufacturing method of a resin film is not limited, For example, it can obtain by drying the resin layer formed by apply | coating a resin composition on a support base material. Specifically, after coating the resin composition on a supporting substrate using a kiss coater, roll coater, comma coater, etc., the temperature is, for example, 70 to 250 ° C., preferably 70 to 200 ° C. in a heating and drying furnace. And may be dried for 1 to 30 minutes, preferably 3 to 15 minutes. Thereby, the resin film in the state in which the resin composition is semi-cured can be obtained.

なお、この半硬化した状態の樹脂フィルムを、加熱炉で更に、例えば、170〜250℃、好ましくは185〜230℃の温度で、60〜150分間加熱させることによって樹脂フィルムを熱硬化させることができる。   In addition, the resin film in the semi-cured state is further cured in a heating furnace, for example, by heating at a temperature of 170 to 250 ° C., preferably 185 to 230 ° C. for 60 to 150 minutes. it can.

本実施形態に係る樹脂フィルムの厚さは特に限定されないが、1〜200μmであることが好ましく、2〜180μmであることがより好ましく、3〜150μmであることが更に好ましい。樹脂フィルムの厚さを上記の範囲とすることにより、本実施形態に係る樹脂フィルムを用いて得られるプリント配線板の薄型化と良好な高周波特性、を両立し易い。   Although the thickness of the resin film which concerns on this embodiment is not specifically limited, It is preferable that it is 1-200 micrometers, It is more preferable that it is 2-180 micrometers, It is still more preferable that it is 3-150 micrometers. By setting the thickness of the resin film in the above range, it is easy to achieve both a reduction in thickness of the printed wiring board obtained by using the resin film according to the present embodiment and good high frequency characteristics.

支持基材は特に限定されないが、ガラス、金属箔及びPETフィルムからなる群より選ばれる少なくとも一種であることが好ましい。樹脂フィルムが支持基材を備えることにより、保管性及びプリント配線板の製造に用いる際の取扱性が良好となる傾向にある。すなわち、本実施形態に係る樹脂フィルムは、本実施形態の樹脂組成物を含む樹脂層及び支持基材を備える、樹脂層付き支持体の形態をとることができ、使用される際には支持基材から剥離してもよい。   The support substrate is not particularly limited, but is preferably at least one selected from the group consisting of glass, metal foil, and PET film. When a resin film is provided with a support base material, it exists in the tendency for the storage property and the handleability at the time of using for manufacture of a printed wiring board to become favorable. That is, the resin film according to the present embodiment can take the form of a support with a resin layer including a resin layer containing the resin composition of the present embodiment and a support base material, and when used, a support base. It may be peeled from the material.

≪プリプレグ≫
本実施形態のプリプレグは、上述の樹脂組成物と、繊維基材とから構成される。
≪Prepreg≫
The prepreg of this embodiment is comprised from the above-mentioned resin composition and a fiber base material.

本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物を補強基材である繊維基材に塗工し、塗工された樹脂組成物を乾燥させて得られる。また、本実施形態のプリプレグは、繊維基材を本実施形態の樹脂組成物に含浸した後、含浸された樹脂組成物を乾燥させて得てもよい。具体的には、樹脂組成物が付着した繊維基材を、乾燥炉中で通常、80〜200℃の温度で、1〜30分間加熱乾燥することで、樹脂組成物が半硬化したプリプレグを得られる。良好な成形性の観点からは、繊維基材に対する樹脂組成物の付着量は、乾燥後のプリプレグ中の樹脂含有率として30〜90質量%となるように塗工又は含浸することが好ましい。   The prepreg of the present embodiment is obtained, for example, by applying the resin composition of the present embodiment to a fiber substrate that is a reinforcing substrate and drying the applied resin composition. Further, the prepreg of the present embodiment may be obtained by impregnating the fiber base material into the resin composition of the present embodiment and then drying the impregnated resin composition. Specifically, the prepreg in which the resin composition is semi-cured is obtained by heating and drying the fiber base material to which the resin composition is adhered, usually in a drying oven at a temperature of 80 to 200 ° C. for 1 to 30 minutes. It is done. From the viewpoint of good moldability, it is preferable to apply or impregnate the resin composition with respect to the fiber substrate so that the resin content in the prepreg after drying is 30 to 90% by mass.

繊維基材としては限定されないが、シート状繊維基材が好ましい。シート状繊維基材としては、例えば、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。その材質としては、例えば、Eガラス、NEガラス、Sガラス、Qガラス等の無機繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維などが挙げられる。シート状繊維基材として、織布、不織布、チョップドストランドマット等の形状を有するものが使用できる。また、シート状繊維基材の厚みは特に制限されず、例えば、0.02〜0.5mmのものを用いることができる。また、シート状繊維基材としては、カップリング剤等で表面処理したもの、又は、機械的に開繊処理を施したものが、樹脂組成物の含浸性、積層板とした際の耐熱性、耐吸湿性及び加工性の観点から好ましい。   Although it does not limit as a fiber base material, a sheet-like fiber base material is preferable. As a sheet-like fiber base material, the well-known thing used for the laminated board for various electrical insulation materials is used, for example. Examples of the material include inorganic fibers such as E glass, NE glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene. As the sheet-like fiber base material, those having a shape such as woven fabric, non-woven fabric, and chopped strand mat can be used. Moreover, the thickness in particular of a sheet-like fiber base material is not restrict | limited, For example, a 0.02-0.5 mm thing can be used. In addition, as the sheet-like fiber base material, what is surface-treated with a coupling agent or the like, or mechanically subjected to fiber opening treatment is impregnated with a resin composition, heat resistance when used as a laminate, It is preferable from the viewpoint of moisture absorption resistance and processability.

≪積層板≫
本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、導体層と、を有する積層板を提供することができる。例えば、上記樹脂フィルム、樹脂層付き支持体又はプリプレグを用い、金属張積層板を製造することができる。
≪Laminated board≫
According to this embodiment, the laminated board which has the resin layer containing the hardened | cured material of the above-mentioned resin composition, and a conductor layer can be provided. For example, a metal-clad laminate can be produced using the resin film, the support with a resin layer, or a prepreg.

金属張積層板の製造方法は限定されないが、例えば、本実施形態の樹脂フィルム又はプリプレグを1枚又は複数枚重ね、少なくとも一つの面に導体層となる金属箔を配置し、例えば、170〜250℃、好ましくは185〜230℃の温度及び0.5〜5.0MPaの圧力で60〜150分間加熱及び加圧することにより、絶縁層となる樹脂層又はプリプレグの少なくとも一つの面に金属箔を備える金属張積層板が得られる。加熱及び加圧は、例えば、真空度は10kPa以下、好ましくは5kPa以下の条件で実施でき、効率を高める観点からは真空中で行うことが好ましい。加熱及び加圧は、開始から30分間〜成形終了時間まで実施することが好ましい。   Although the manufacturing method of a metal-clad laminated board is not limited, For example, the resin film or prepreg of this embodiment is laminated | stacked 1 or more sheets, the metal foil used as a conductor layer is arrange | positioned on at least one surface, for example, 170-250 A metal foil is provided on at least one surface of a resin layer or a prepreg serving as an insulating layer by heating and pressurizing at a temperature of 185 ° C., preferably 185 to 230 ° C. and a pressure of 0.5 to 5.0 MPa for 60 to 150 minutes. A metal-clad laminate is obtained. The heating and pressurization can be performed, for example, under a condition where the degree of vacuum is 10 kPa or less, preferably 5 kPa or less, and is preferably performed in vacuum from the viewpoint of increasing efficiency. It is preferable to carry out the heating and pressurization from the start for 30 minutes to the molding end time.

≪多層プリント配線板≫
本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、少なくとも3層の回路層とを備える、多層プリント配線板を提供することができる。回路層の数の上限値は特に限定されず、3層〜20層であってもよい。多層プリント配線板は、例えば、上記の樹脂フィルム、樹脂層付き支持体、プリプレグ又は金属張積層板を用いて製造することもできる。
≪Multilayer printed wiring board≫
According to this embodiment, a multilayer printed wiring board provided with the resin layer containing the hardened | cured material of the above-mentioned resin composition and at least three circuit layers can be provided. The upper limit of the number of circuit layers is not particularly limited, and may be 3 to 20 layers. A multilayer printed wiring board can also be manufactured using said resin film, a support body with a resin layer, a prepreg, or a metal-clad laminated board, for example.

多層プリント配線板の製造方法としては特に限定されないが、例えば、まず、回路形成加工されたコア基板の片面又は両面に、樹脂フィルムを配置するか、あるいは複数枚のコア基板の間に樹脂フィルムを配置し、加圧及び加熱ラミネート成形、又は加圧及び加熱プレス成形を行って各層を接着した後、レーザー穴開け加工、ドリル穴開け加工、金属めっき加工、金属エッチング等による回路形成加工を行うことで、多層プリント配線板を製造することができる。樹脂フィルムが支持基材を有している場合(樹脂層付き支持体を用いる場合)、支持基材は、コア基板上又はコア基板間に樹脂フィルムを配置する前に剥離しておくか、あるいは、樹脂層をコア基板に張り付けた後に剥離することができる。   The method for producing a multilayer printed wiring board is not particularly limited. For example, first, a resin film is disposed on one or both sides of a core substrate subjected to circuit formation processing, or a resin film is disposed between a plurality of core substrates. Place and apply pressure and heat laminate molding, or press and heat press molding to bond each layer, then perform circuit formation processing by laser drilling, drilling, metal plating, metal etching, etc. Thus, a multilayer printed wiring board can be manufactured. When the resin film has a support base (when using a support with a resin layer), the support base is peeled off before placing the resin film on the core substrate or between the core substrates, or The resin layer can be peeled off after being attached to the core substrate.

本実施形態に係る樹脂フィルムを用いた多層プリント配線板の製造方法を、図1に沿って説明する。図1は、本実施形態に係る多層プリント配線板の製造工程を模式的に示す図である。本実施形態に係る多層プリント配線板の製造方法は、(a)内層回路基板に樹脂フィルムを積層して樹脂層を形成する工程(以下、「工程(a)」という)と、(b)樹脂層を加熱・加圧して硬化する工程(以下、「工程(b)」という)と、(c)硬化した樹脂層上にアンテナ回路層を形成する工程(以下、「工程(c)」という)とを有する。   The manufacturing method of the multilayer printed wiring board using the resin film which concerns on this embodiment is demonstrated along FIG. FIG. 1 is a diagram schematically showing a manufacturing process of a multilayer printed wiring board according to the present embodiment. The method for producing a multilayer printed wiring board according to the present embodiment includes (a) a step of forming a resin layer by laminating a resin film on an inner layer circuit board (hereinafter referred to as “step (a)”), and (b) a resin. A step of curing the layer by heating and pressing (hereinafter referred to as “step (b)”), and a step of forming an antenna circuit layer on the cured resin layer (hereinafter referred to as “step (c)”). And have.

図1の(a)に示すように、工程(a)では、内層回路基板11に本実施形態に係る樹脂フィルム12を積層して樹脂フィルム12からなる樹脂層を形成する。   As shown in FIG. 1A, in step (a), the resin film 12 according to this embodiment is laminated on the inner layer circuit board 11 to form a resin layer made of the resin film 12.

積層方法は特に限定されないが、例えば、多段プレス、真空プレス、常圧ラミネーター、および真空下で加熱加圧するラミネーターを用いて積層する方法が挙げられ、真空下で加熱加圧するラミネーターを用いる方法が好ましい。これにより、内層回路基板11が表面に微細配線回路を有していてもボイドがなく回路間を樹脂で埋め込むことができる。ラミネート条件は特に限定されないが、圧着温度が70〜130℃、圧着圧力が1〜11kgf/cm2であって、減圧又は真空下で積層するのが好ましい。ラミネートは、バッチ式であってもよく、また、ロールでの連続式であってもよい。 The lamination method is not particularly limited, and examples thereof include a multi-stage press, a vacuum press, a normal pressure laminator, and a method of laminating using a laminator that is heated and pressurized under vacuum, and a method using a laminator that is heated and pressurized under vacuum is preferable. . Thereby, even if the inner circuit board 11 has a fine wiring circuit on the surface, there is no void and the circuit can be filled with the resin. Lamination conditions are not particularly limited, but the pressure bonding temperature is 70 to 130 ° C., the pressure bonding pressure is 1 to 11 kgf / cm 2 , and it is preferable to perform lamination under reduced pressure or vacuum. The laminate may be a batch type or a continuous type in a roll.

内層回路基板11としては、特に限定されず、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用することができる。内層回路基板11の樹脂フィルムが積層される面の回路表面は予め粗化処理されていてもよい。   The inner layer circuit board 11 is not particularly limited, and a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, or the like can be used. The circuit surface of the surface on which the resin film of the inner layer circuit board 11 is laminated may be roughened in advance.

内層回路基板11の回路層数は限定されない。図1では6層の内層回路基板としたが、この層数に限定されず、例えば、ミリ波レーダー用プリント配線板を作製する場合、その設計に応じて2層〜20層等と自由に選択することができる。本実施形態の多層プリント配線板は、ミリ波レーダーの作製へ応用することができる。すなわち、本実施形態の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える、ミリ波レーダー用プリント配線板を作製することができる。   The number of circuit layers of the inner layer circuit board 11 is not limited. In FIG. 1, the inner circuit board has six layers. However, the number of layers is not limited. For example, when a printed wiring board for millimeter wave radar is manufactured, it can be freely selected from 2 to 20 layers depending on the design. can do. The multilayer printed wiring board of this embodiment can be applied to the production of millimeter wave radar. That is, a printed wiring board for millimeter wave radar comprising a resin layer containing a cured product of the resin composition of the present embodiment and a circuit layer can be produced.

後述するアンテナ回路層14をエッチングにより樹脂層12a上に形成する場合、樹脂フィルム12上に更に金属箔13を積層して金属層13aを形成してもよい。金属箔としては、例えば、銅、アルミニウム、ニッケル、亜鉛等が挙げられ、導電性の観点からは銅が好ましい。金属箔は合金であってもよく、例えば、銅合金として、ベリリウム又はカドミウムを少量添加した高純度銅合金が挙げられる。金属箔の厚みは、3〜200μmが好ましく、5〜70μmがより好ましい。   When the antenna circuit layer 14 described later is formed on the resin layer 12a by etching, a metal foil 13 may be further laminated on the resin film 12 to form the metal layer 13a. Examples of the metal foil include copper, aluminum, nickel, zinc and the like, and copper is preferable from the viewpoint of conductivity. The metal foil may be an alloy. Examples of the copper alloy include a high purity copper alloy to which a small amount of beryllium or cadmium is added. The thickness of the metal foil is preferably 3 to 200 μm, more preferably 5 to 70 μm.

図1の(b)に示すように、工程(b)では、工程(a)で積層した内層回路基板11及び樹脂層12aを加熱加圧して熱硬化させる。条件は特に限定されないが、温度100℃〜250℃、圧力0.2〜10MPa、時間30〜120分間の範囲が好ましく、150℃〜220℃がより好ましい。   As shown in FIG. 1B, in the step (b), the inner layer circuit board 11 and the resin layer 12a laminated in the step (a) are heated and pressurized to be thermally cured. The conditions are not particularly limited, but a temperature range of 100 ° C. to 250 ° C., a pressure of 0.2 to 10 MPa, and a time of 30 to 120 minutes are preferable, and 150 ° C. to 220 ° C. is more preferable.

図1の(c)に示すように、工程(c)では、樹脂層12a上にアンテナ回路層14を形成する。アンテナ回路層14の形成方法は特に限定されず、例えば、サブトラクティブ法等のエッチング法、セミアディティブ法等によって形成してもよい。   As shown in FIG. 1C, in step (c), the antenna circuit layer 14 is formed on the resin layer 12a. The method for forming the antenna circuit layer 14 is not particularly limited, and for example, the antenna circuit layer 14 may be formed by an etching method such as a subtractive method or a semi-additive method.

サブトラクティブ法は、金属層13aの上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、レジストの除去された部分の金属層を薬液で溶解し除去することによって、所望の回路を形成する方法である。薬液としては、例えば、塩化銅溶液、塩化鉄溶液等を使用することができる。   In the subtractive method, an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal layer 13a, and a portion of the metal layer from which the resist has been removed is dissolved and removed by a chemical solution by subsequent development processing. Thus, a desired circuit is formed. As the chemical solution, for example, a copper chloride solution, an iron chloride solution, or the like can be used.

セミアディティブ法は、無電解めっき法により樹脂層12aの表面に金属被膜を形成し、金属被膜上に所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法によって金属層を形成した後、不要な無電解めっき層を薬液等で除去し、所望の回路層を形成する方法である。   In the semi-additive method, a metal film is formed on the surface of the resin layer 12a by an electroless plating method, a plating resist layer having a shape corresponding to a desired pattern is formed on the metal film, and then the metal layer is formed by an electrolytic plating method. After the formation, an unnecessary electroless plating layer is removed with a chemical solution or the like to form a desired circuit layer.

また、樹脂層12aには、必要に応じてビアホール15等のホールを形成してもよい。ホールの形成方法は限定されないが、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等を適用できる。   Moreover, you may form holes, such as the via hole 15, as needed in the resin layer 12a. The hole forming method is not limited, but an NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or the like can be applied.

ここで、内層回路基板11は、図2に示す工程(p)〜(r)によって製造することもできる。図2は、内層回路基板の製造工程を模式的に示す図である。すなわち、本実施形態に係る多層プリント配線板の製造方法は、工程(p)、工程(q)、工程(r)、工程(a)、工程(b)及び工程(c)を有していてもよい。以下、工程(p)〜(r)について説明する。   Here, the inner layer circuit board 11 can also be manufactured by steps (p) to (r) shown in FIG. FIG. 2 is a diagram schematically showing a manufacturing process of the inner layer circuit board. That is, the method for manufacturing a multilayer printed wiring board according to the present embodiment includes a step (p), a step (q), a step (r), a step (a), a step (b), and a step (c). Also good. Hereinafter, steps (p) to (r) will be described.

まず、図2の(p)に示すように、工程(p)では、コア基板41及びプリプレグ42を積層する。コア基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用できる。プリプレグとしては、例えば、日立化成株式会社製「GWA−900G」、「GWA−910G」、「GHA−679G」、「GHA−679G(S)」、「GZA−71G」「GEA−75G」(いずれも商品名)等を使用することができる。   First, as shown in FIG. 2P, in the step (p), the core substrate 41 and the prepreg 42 are laminated. As the core substrate, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or the like can be used. As the prepreg, for example, “GWA-900G”, “GWA-910G”, “GHA-679G”, “GHA-679G (S)”, “GZA-71G”, “GEA-75G” manufactured by Hitachi Chemical Co., Ltd. Can also be used.

次に、図2の(q)に示すように、工程(q)では、工程(p)で得られたコア基板41及びプリプレグ42の積層体を加熱加圧する。加熱する温度は、特に限定されないが、120〜230℃が好ましく、150〜210℃がより好ましい。また、加圧する圧力は、特に限定されないが、1〜5MPaが好ましく、2〜4MPaがより好ましい。加熱時間は特に限定されないが30〜120分が好ましい。これにより、誘電特性、高温多湿化での機械的、電気的接続信頼性に優れた内層回路基板を得ることができる。   Next, as shown in FIG. 2 (q), in the step (q), the laminated body of the core substrate 41 and the prepreg 42 obtained in the step (p) is heated and pressurized. Although the temperature to heat is not specifically limited, 120-230 degreeC is preferable and 150-210 degreeC is more preferable. Moreover, the pressure to pressurize is not particularly limited, but is preferably 1 to 5 MPa, and more preferably 2 to 4 MPa. The heating time is not particularly limited but is preferably 30 to 120 minutes. Thereby, it is possible to obtain an inner layer circuit board excellent in dielectric characteristics and mechanical and electrical connection reliability under high temperature and high humidity.

さらに、図2の(r)に示すように、工程(r)では、必要に応じて内層回路基板にスルーホール43を形成する。スルーホール43の形成方法は特に限定されず、上述するアンテナ回路層を形成する工程と同一であってもよいし、公知の方法を用いてもよい。   Further, as shown in FIG. 2 (r), in the step (r), through holes 43 are formed in the inner layer circuit board as necessary. The formation method of the through hole 43 is not particularly limited, and may be the same as the step of forming the antenna circuit layer described above, or a known method may be used.

上記の工程により、本実施形態の多層プリント配線板を製造できる。また、上記工程を経て製造されたプリント配線板を内層回路基板として更に工程(a)〜(c)を繰り返してもよい。   The multilayer printed wiring board of this embodiment can be manufactured by the above steps. Moreover, you may repeat process (a)-(c) further by making the printed wiring board manufactured through the said process into an inner layer circuit board.

図3は、図1に示す工程により製造された多層プリント配線板を内層回路基板として用いた多層プリント配線板の製造工程を模式的に示す図である。図3の(a)と図1の(a)が、図3の(b)と図1の(b)が、図3の(c)と図1の(c)が、それぞれ対応する。   FIG. 3 is a diagram schematically showing a manufacturing process of a multilayer printed wiring board using the multilayer printed wiring board manufactured by the process shown in FIG. 1 as an inner layer circuit board. FIG. 3A corresponds to FIG. 1A, FIG. 3B corresponds to FIG. 1B, and FIG. 3C corresponds to FIG. 1C.

具体的には、図3の(a)は、内層回路基板21に樹脂フィルム22を積層して樹脂層22sを形成し、必要に応じて金属箔23を樹脂フィルム22に積層して金属層23aを形成する工程である。図3の(b)は、樹脂層22aを加熱・加圧して硬化する工程であり、図3の(c)は硬化した樹脂層上にアンテナ回路層24を形成する工程である。   Specifically, in FIG. 3A, a resin film 22 is laminated on the inner circuit board 21 to form a resin layer 22s, and a metal foil 23 is laminated on the resin film 22 as necessary to form a metal layer 23a. Is a step of forming. 3B is a step of curing the resin layer 22a by heating and pressing, and FIG. 3C is a step of forming the antenna circuit layer 24 on the cured resin layer.

図1及び図3では、アンテナ回路パターン等を形成する目的で内層回路基板上に積層する樹脂層の層数を1層又は2層としたが、これに限定されず、アンテナ回路設計に応じて3層又はそれ以上の層数としてもよい。アンテナ回路層を多層とすることで、広帯域特性を有するアンテナ及び使用周波数帯域でアンテナ放射パターンの角度変化が少ない(ビームチルトレス)アンテナの設計が容易となる。   1 and 3, the number of resin layers laminated on the inner circuit board is one or two for the purpose of forming an antenna circuit pattern or the like. However, the number of resin layers is not limited to this. The number of layers may be three or more. By making the antenna circuit layer multi-layered, it becomes easy to design an antenna having a wide band characteristic and an antenna in which the angle change of the antenna radiation pattern is small (beam tiltless) in the used frequency band.

本実施形態に係る多層プリント配線板の製造方法では、マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物を含有する樹脂組成物を用いて樹脂層を形成しているため、高周波特性に優れる層の他に接着層を設けずに積層体を作製することができる。これにより、工程の簡略化及び更なる高周波特性の向上効果が得られる。   In the method for producing a multilayer printed wiring board according to this embodiment, a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. Since the resin layer is formed by using the layer, a laminate can be manufactured without providing an adhesive layer in addition to the layer having excellent high frequency characteristics. Thereby, the simplification of a process and the further improvement effect of a high frequency characteristic are acquired.

上記のような本実施形態の樹脂組成物を用いた樹脂フィルム、樹脂層付き支持体、プリプレグ、積層板及び多層プリント配線板は、1GHz以上の高周波信号を扱う電子機器に好適に用いることができ、特に10GHz以上の高周波信号を扱う電子機器に好適に用いることができる。   A resin film, a support with a resin layer, a prepreg, a laminated board, and a multilayer printed wiring board using the resin composition of the present embodiment as described above can be suitably used for electronic devices that handle high-frequency signals of 1 GHz or more. In particular, it can be suitably used for electronic devices that handle high-frequency signals of 10 GHz or higher.

以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。   The preferred embodiments of the present invention have been described above, but these are examples for explaining the present invention, and the scope of the present invention is not intended to be limited to these embodiments. The present invention can be implemented in various modes different from the above-described embodiments without departing from the gist thereof.

以下、実施例及び比較例に基づいて、本発明を更に詳細に説明する。ただし、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, the present invention is not limited to the following examples.

[樹脂組成物]
下記手順に従って、各種の樹脂組成物を調製した。実施例1〜8及び比較例1〜4の樹脂組成物の調製に用いた各原材料の使用量(質量部)は、表1及び表2にまとめて示す。
[Resin composition]
Various resin compositions were prepared according to the following procedures. Tables 1 and 2 collectively show the amounts (parts by mass) of the raw materials used in the preparation of the resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4.

温度計、還流冷却管及び攪拌装置を備えた300mLの4つ口フラスコに、表1又は2に示す各成分を投入し、25℃で1時間攪拌した後、#200ナイロンメッシュ(開口75μm)によりろ過して樹脂組成物を得た。   Each component shown in Table 1 or 2 was put into a 300 mL four-necked flask equipped with a thermometer, a reflux condenser, and a stirrer, stirred at 25 ° C. for 1 hour, and then # 200 nylon mesh (opening 75 μm). Filtration gave a resin composition.

なお、表1及び2における各材料の略号等は、以下のとおりである。
(1)BMI−1500[Mw:約1500、Designer Molecules Inc.製、商品名]
(2)BMI−1700[Mw:約1700、Designer Molecules Inc.製、商品名]
(3)BMI−3000[Mw:約3000、Designer Molecules Inc.製、商品名]
(4)BMI−5000[Mw:約5000、Designer Molecules Inc.製、商品名]
(5)BMI−1000[ビス(4−マレイミドフェニル)メタン、大和化成工業株式会社製、商品名]
(6)BMI−4000[2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、大和化成工業株式会社製、商品名]
(7)BMI−2300[ポリフェニルメタンマレイミド、大和化成工業株式会社製、商品名]
(8)MIR−3000[ビフェニルアラルキル型マレイミド、日本化薬株式会社製、商品名]
(9)B−3000[ブタジエンホモポリマー、Mn:約3000、日本曹達株式会社製、商品名]
(10)PPO640[ポリフェニレンエーテル、Mn:約16000、SABICイノベーティブプラスチックス社製、商品名]
(11)NC−3000H[ビフェニルアラルキル型エポキシ樹脂、日本化薬株式会社製、商品名]
(12)BADCY[2,2−ビス(4−シアナトフェニル)プロパン、ロンザ社製、商品名]
(13)KA1165[ノボラック型フェノール樹脂、DIC株式会社製、商品名]、
(14)PCP[p−クミルフェノール、和光純薬工業株式会社製、商品名]、
(15)H1041[Mn6万未満のスチレン−ブタジエン共重合体の水素添加物、スチレン含有比率:30%、Mn:58000、旭化成ケミカルズ株式会社製、商品名「タフテックH1041」]
(16)シリカスラリー[球状溶融シリカ、表面処理:フェニルアミノシランカップリング剤(1質量%/スラリー中の全固形分)、分散媒:メチルイソブチルケトン(MIBK)、固形分濃度:70質量%、平均粒子径:0.5μm、密度:2.2g/cm3、株式会社アドマテックス製、商品名「SC−2050KNK」]
(17)パーヘキシン25B[2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、日油株式会社製、商品名]
(18)2E4MZ[2−エチル−4メチル−イミダゾール、四国化成工業株式会社製、商品名]
(19)ナフテン酸亜鉛[東京化成工業株式会社製]
(20)REF−015[ガラスフレーク、鱗片形状、日本板硝子株式会社製]
(21)SN−9FWS[窒化けい素粉末、電気化学工業株式会社製]
(22)SN−F1[窒化けい素粉末、電気化学工業株式会社製)]
(23)TF9207Z[四フッ化エチレン樹脂マイクロパウダー、スリーエムジャパン株式会社製]
In addition, the symbol of each material in Tables 1 and 2 is as follows.
(1) BMI-1500 [Mw: about 1500, Designer Molecules Inc. Product name
(2) BMI-1700 [Mw: about 1700, Designer Moleculars Inc. Product name
(3) BMI-3000 [Mw: about 3000, Designer Moleculars Inc. Product name
(4) BMI-5000 [Mw: about 5000, Designer Moleculars Inc. Product name
(5) BMI-1000 [Bis (4-maleimidophenyl) methane, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name]
(6) BMI-4000 [2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name]
(7) BMI-2300 [polyphenylmethanemaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name]
(8) MIR-3000 [biphenyl aralkyl type maleimide, manufactured by Nippon Kayaku Co., Ltd., trade name]
(9) B-3000 [Butadiene homopolymer, Mn: about 3000, manufactured by Nippon Soda Co., Ltd., trade name]
(10) PPO640 [polyphenylene ether, Mn: about 16000, manufactured by SABIC Innovative Plastics, trade name]
(11) NC-3000H [Biphenyl aralkyl type epoxy resin, Nippon Kayaku Co., Ltd., trade name]
(12) BADCY [2,2-bis (4-cyanatophenyl) propane, manufactured by Lonza, trade name]
(13) KA1165 [Novolac type phenolic resin, manufactured by DIC Corporation, trade name]
(14) PCP [p-cumylphenol, manufactured by Wako Pure Chemical Industries, Ltd., trade name],
(15) H1041 [hydrogenated product of styrene-butadiene copolymer having an Mn of less than 60,000, styrene content ratio: 30%, Mn: 58000, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1041”]
(16) Silica slurry [spherical fused silica, surface treatment: phenylaminosilane coupling agent (1 mass% / total solid content in slurry), dispersion medium: methyl isobutyl ketone (MIBK), solid content concentration: 70 mass%, average Particle size: 0.5 μm, density: 2.2 g / cm 3 , manufactured by Admatechs Corporation, trade name “SC-2050KNK”
(17) Perhexine 25B [2,5-dimethyl-2,5-di (t-butylperoxy) hexane, manufactured by NOF Corporation, trade name]
(18) 2E4MZ [2-ethyl-4methyl-imidazole, trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.]
(19) Zinc naphthenate [Tokyo Chemical Industry Co., Ltd.]
(20) REF-015 [Glass flakes, scale shape, manufactured by Nippon Sheet Glass Co., Ltd.]
(21) SN-9FWS [silicon nitride powder, manufactured by Denki Kagaku Kogyo Co., Ltd.]
(22) SN-F1 [silicon nitride powder, manufactured by Denki Kagaku Kogyo Co., Ltd.]
(23) TF9207Z [tetrafluoroethylene resin micro powder, manufactured by 3M Japan Ltd.]

Figure 2017125128
Figure 2017125128

Figure 2017125128
Figure 2017125128

なお、上記(A)成分として用いた化合物の推定される構造は以下のとおりである。下記式(XII−1)〜(XII−3)がそれぞれ上記(1)〜(3)に対応し、(4)は式(XII−3)の構造を有し、(3)よりも大きな重量平均分子量を持つ。式(XII−1)〜(XII−3)において、nは1〜10の整数を表す。   In addition, the presumed structure of the compound used as said (A) component is as follows. The following formulas (XII-1) to (XII-3) correspond to the above (1) to (3), respectively, (4) has the structure of the formula (XII-3), and has a weight larger than (3) Has an average molecular weight. In formulas (XII-1) to (XII-3), n represents an integer of 1 to 10.

Figure 2017125128
Figure 2017125128

Figure 2017125128
Figure 2017125128

Figure 2017125128
Figure 2017125128

[樹脂フィルム]
実施例及び比較例で得られた樹脂組成物を、コンマコーターを用いて、支持基材として厚さ38μmのPETフィルム(G2−38、帝人株式会社製)上に塗工し(乾燥温度:130℃)、半硬化状態の樹脂層を備える樹脂層付き支持体であるPETフィルム付き半硬化樹脂フィルムを作製した。半硬化樹脂フィルム(樹脂層)の厚さは50μmであった。
[Resin film]
The resin compositions obtained in Examples and Comparative Examples were coated on a PET film (G2-38, manufactured by Teijin Ltd.) having a thickness of 38 μm as a supporting substrate using a comma coater (drying temperature: 130). C.), a semi-cured resin film with a PET film, which is a support with a resin layer provided with a semi-cured resin layer, was prepared. The thickness of the semi-cured resin film (resin layer) was 50 μm.

[樹脂フィルム(樹脂層)の評価]
実施例及び比較例の半硬化樹脂フィルムの外観及び取扱性を評価した。結果を表3に示す。
[Evaluation of resin film (resin layer)]
The appearance and handleability of the semi-cured resin films of Examples and Comparative Examples were evaluated. The results are shown in Table 3.

外観は目視により下記の基準で評価した。
○:半硬化樹脂フィルムの表面にムラ、スジ等がない。
×:半硬化樹脂フィルムの表面に多少なりともムラ、スジ等があり、表面平滑性に欠ける。
The appearance was evaluated visually according to the following criteria.
○: There is no unevenness, streaks, etc. on the surface of the semi-cured resin film.
X: The surface of the semi-cured resin film is somewhat uneven, streaks, and lacks surface smoothness.

取扱性は、目視及び触感により下記の基準で評価した。
(1)25℃における表面のべたつき(タック)の有無。
(2)カッターナイフで切断した際の状態の樹脂割れ又は粉落ちの有無。
○:上記(1)及び(2)のいずれも無い。
×:上記(1)及び(2)のいずれか一方でも有る。
The handleability was evaluated according to the following criteria by visual and tactile sensations.
(1) Presence or absence of tackiness (tack) on the surface at 25 ° C.
(2) Presence or absence of resin cracking or powder falling when cut with a cutter knife.
○: None of the above (1) and (2).
X: It exists in any one of said (1) and (2).

[多層プリント配線板]
上述した樹脂層付き支持体を用い、以下の手順で多層プリント配線板を作製した。
回路パターンが形成されたガラス布基材エポキシ樹脂銅張積層板を内層回路基板とし、その両面に、上記樹脂層付き支持体からPETフィルムを剥離した半硬化樹脂フィルムを1枚乗せ、その上に厚さ12μmの電解銅箔(日本電解株式会社製、商品名「YGP−12」)を配置した後、その上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱及び加圧成形して、4層プリント配線板を作製した。
[Multilayer printed wiring board]
Using the above-mentioned support with a resin layer, a multilayer printed wiring board was produced according to the following procedure.
A glass cloth base epoxy resin copper clad laminate on which a circuit pattern is formed is used as an inner circuit board, and a semi-cured resin film from which the PET film is peeled off from the support with the resin layer is placed on both sides of the circuit board. An electrolytic copper foil having a thickness of 12 μm (trade name “YGP-12”, manufactured by Nippon Electrolytic Co., Ltd.) was placed, and then a mirror plate was placed thereon, and heated and heated under press conditions of 200 ° C./3.0 MPa / 70 minutes. The four-layer printed wiring board was produced by pressure forming.

次いで、作製された4層プリント配線板の最外層の銅箔をエッチングし、回路埋め込み性(多層化成形性)を評価した。多層化成形性は目視により下記基準で評価した。評価結果を表3に示す。
○:回路にボイド、カスレが存在しない。
×:ボイド、カスレが多少なりとも存在する。
Subsequently, the copper foil of the outermost layer of the produced four-layer printed wiring board was etched, and circuit embedding property (multilayered formability) was evaluated. The multilayer formability was visually evaluated according to the following criteria. The evaluation results are shown in Table 3.
○: There are no voids or blurs in the circuit.
X: Voids and blurring are present to some extent.

[両面金属張硬化樹脂フィルム]
上述の樹脂層付き支持体からPETフィルムを剥離した樹脂フィルムを2枚重ねた後、その両面に、厚さ18μmのロープロファイル銅箔(M面Rz:3μm、古河電気工業株式会社製、商品名「F3−WS」)をその粗化面(M面)が接するように配置し、その上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱及び加圧成形して、両面金属張硬化樹脂フィルム(厚さ:0.1mm)を作製した。
[Double-sided metal-clad cured resin film]
After stacking two resin films from which the PET film was peeled off from the above support with a resin layer, a low profile copper foil having a thickness of 18 μm (M surface Rz: 3 μm, manufactured by Furukawa Electric Co., Ltd., trade name) "F3-WS") is arranged so that the roughened surface (M surface) is in contact with it, a mirror plate is placed on it, and heated and pressure-molded under press conditions of 200 ° C / 3.0 MPa / 70 minutes, A double-sided metal-clad cured resin film (thickness: 0.1 mm) was produced.

上述の両面金属張硬化樹脂フィルムについて、取扱性、誘電特性(比誘電率、誘電正接)、比誘電率バラツキ、銅箔引きはがし強さ、吸水率を評価した。その評価結果を表3に示す。両面金属張硬化樹脂フィルムの特性評価方法は以下のとおりである。   About the above-mentioned double-sided metal-clad cured resin film, handling property, dielectric properties (relative dielectric constant, dielectric loss tangent), relative dielectric constant variation, copper foil peeling strength, and water absorption were evaluated. The evaluation results are shown in Table 3. The characteristic evaluation method of the double-sided metal-clad cured resin film is as follows.

[取扱性(耐折曲げ性)]
取扱性(耐折曲げ性)は、両面金属張硬化樹脂フィルムの外層銅箔をエッチングしたものを180度折り曲げることにより、下記基準により評価した。
○:折り曲げた際、割れ又はクラックが発生しない。
×:折り曲げた際、割れ又はクラックが多少なりとも発生する。
[Handling (bending resistance)]
The handleability (bending resistance) was evaluated according to the following criteria by bending 180 ° of the outer layer copper foil of the double-sided metal-clad cured resin film.
○: No cracking or cracking occurs when bent.
X: When bent, some cracks or cracks occur.

[誘電特性]
誘電特性である比誘電率及び誘電正接は、両面金属張硬化樹脂フィルムの外層銅箔をエッチングし、長さ60mm、幅2mm、厚み約1mmに切断したものを試験片として空洞共振器摂動法により測定した。測定器にはアジレントテクノロジー社製ベクトル型ネットワークアナライザE8364B、空洞共振器には株式会社関東電子応用開発製CP129(10GHz帯共振器)及びCP137(20GHz帯共振器)、測定プログラムにはCPMA−V2をそれぞれ使用した。条件は、周波数10GHz及び20GHz、測定温度25℃とした。
[比誘電率バラツキ]
500mm角に成形した硬化樹脂フィルムの外層銅箔をエッチングしたものを50mm角、合計100枚に切断したものを試験片として、各試験片の比誘電率を上記と同様にして空洞共振器摂動法により測定した。各試験片の比誘電率の平均値、最大値、最小値を算出し、(最大値と平均値の差)/平均値、及び、(最小値と平均値の差)/平均値の合計値を比誘電率のバラツキ(%)とした。
[Dielectric properties]
The dielectric constant and dielectric loss tangent, which are dielectric properties, are obtained by etching the outer layer copper foil of a double-sided metal-clad cured resin film and cutting it into a length of 60 mm, a width of 2 mm, and a thickness of about 1 mm by a cavity resonator perturbation method. It was measured. Vector type network analyzer E8364B manufactured by Agilent Technologies Co., Ltd., CP129 (10 GHz band resonator) and CP137 (20 GHz band resonator) manufactured by Kanto Electronics Co., Ltd., and CPMA-V2 are used for the measurement program. Each was used. The conditions were frequencies of 10 GHz and 20 GHz, and a measurement temperature of 25 ° C.
[Dielectric constant variation]
Cavity resonator perturbation method in which the relative dielectric constant of each test piece is the same as described above, with a test piece obtained by etching the outer layer copper foil of a cured resin film formed into a 500 mm square into 50 mm square and cutting into a total of 100 pieces It was measured by. Calculate the average value, maximum value, and minimum value of the relative permittivity of each specimen, and (total difference between (maximum value and average value) / average value) (minimum value and average value difference) / average value Was the variation in relative dielectric constant (%).

[銅箔引きはがし強さ]
銅箔引きはがし強さは、銅張積層板試験規格JIS−C−6481に準拠して測定した。測定温度は25℃とした。
[Copper foil peeling strength]
The copper foil peeling strength was measured in accordance with the copper clad laminate test standard JIS-C-6481. The measurement temperature was 25 ° C.

[吸水率]
吸水率は、両面金属張硬化樹脂フィルムの両面の銅箔をエッチングし、50mm角に切断したものを試験片として、その常態及びプレッシャークッカーテスト(PCT)装置(条件:121℃、2.2気圧)中に所定時間(5時間)処理し、処理前後の質量を測定することで、処理前後の増加割合(重量%)を算出した。
[Water absorption rate]
The water absorption is determined by etching the copper foils on both sides of the double-sided metal-clad cured resin film and cutting them into 50 mm squares, using the test pieces as normal and pressure cooker test (PCT) equipment (conditions: 121 ° C., 2.2 atm. ) Was measured for a predetermined time (5 hours), and the mass before and after the treatment was measured to calculate the increase rate (% by weight) before and after the treatment.

Figure 2017125128
Figure 2017125128

表3に示した結果から明らかなように、実施例1〜8の樹脂組成物を用いて作製された半硬化樹脂フィルムによれば、外観(表面均一性)、取扱性(タック性、割れ、粉落ち等)に問題がなく、多層化成形性も良好であることが確認された。加えて、実施例1〜8の樹脂組成物の硬化物である硬化樹脂フィルムは、いずれも比誘電率、誘電正接がともに優れており、さらに、比誘電率バラツキも0.02%と非常に優れ、銅箔引きはがし強さ及び吸水率に関しても優れていた。対する比較例では、比誘電率バラツキが4.55〜6.85%程度と大きかった。   As is clear from the results shown in Table 3, according to the semi-cured resin films prepared using the resin compositions of Examples 1 to 8, the appearance (surface uniformity), the handleability (tackiness, cracking, It was confirmed that there was no problem in powder omission and the like, and the multilayer formability was also good. In addition, the cured resin films that are cured products of the resin compositions of Examples 1 to 8 are both excellent in relative dielectric constant and dielectric loss tangent, and also have a relative dielectric constant variation of 0.02%. The copper foil peeling strength and water absorption were also excellent. In contrast, the relative dielectric constant variation was as large as about 4.55 to 6.85%.

[ミリ波レーダー用プリント配線板]
(実施例1)
図2に示す工程で内層回路基板11を作製した後、実施例1の樹脂フィルムを用いて図1に示す工程でミリ波アンテナ回路層を1層含む計7層構造のミリ波レーダー用プリント配線板を作製した。
[Printed wiring board for millimeter wave radar]
Example 1
After producing the inner layer circuit board 11 in the step shown in FIG. 2, the printed wiring for millimeter wave radar having a total of seven layers including one millimeter wave antenna circuit layer in the step shown in FIG. 1 using the resin film of Example 1. A plate was made.

まず、工程(p)で、厚さ18μmの銅箔を両面に貼り合わせた厚さ0.1mmのガラス布基材エポキシ銅張積層板(日立化成株式会社製、商品名「MCL−E−75G」)の不要な銅箔をエッチング除去して内層回路基板を作製した後、0.1mmのガラス布基材エポキシプリプレグ(日立化成株式会社製、商品名「GEA−75G」)を銅張積層板間に重ねて配置し構造体を作製した。次いで、工程(q)で、工程(p)にて作製した構造体に対し、180℃/3.0MPa/60分のプレス条件で加熱加圧成形して一体化基板を形成した。そして、工程(r)で、工程(q)にて作製した一体化基板に対し、所望の位置にドリルにより穴を開け、ホール内に銅めっきを施して内層回路基板11を作製した。   First, in the step (p), a glass cloth base epoxy copper-clad laminate (made by Hitachi Chemical Co., Ltd., trade name “MCL-E-75G” in which a copper foil having a thickness of 18 μm is bonded to both sides in the step (p). ]) Unnecessary copper foil was etched away to produce an inner layer circuit board, and then a 0.1 mm glass cloth base epoxy prepreg (manufactured by Hitachi Chemical Co., Ltd., trade name “GEA-75G”) was copper-clad laminate. A structure was produced by placing them in between. Next, in step (q), the structure produced in step (p) was subjected to heat and pressure molding under press conditions of 180 ° C./3.0 MPa / 60 minutes to form an integrated substrate. Then, in step (r), the integrated substrate produced in step (q) was drilled at a desired position with a drill, and copper plating was performed in the hole to produce inner layer circuit board 11.

工程(a)では、内層回路基板11の表面に、実施例1の樹脂組成物を用いて作製した半硬化樹脂フィルム(厚さ130μm)を真空ラミネーターにて仮接着し、更に厚さ18μmのロープロファイル銅箔(古河電気工業株式会社製、商品名「F3−WS」)を配置し構造体を作製した。次いで、工程(b)では、工程(a)にて作製した構造体の上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱加圧成形した。そして、工程(c)で、工程(b)にて作製した構造体に対し、所望の位置にレーザーにて不要な樹脂の除去及びビアホール(IVH)の形成を行った後、めっき及びエッチングを施してアンテナ回路層14を形成し、ミリ波アンテナ回路層を1層含む計7層構造の多層プリント配線板を得た。   In the step (a), a semi-cured resin film (thickness 130 μm) produced using the resin composition of Example 1 is temporarily bonded to the surface of the inner circuit board 11 with a vacuum laminator, and further a 18 μm-thick solder A profile copper foil (manufactured by Furukawa Electric Co., Ltd., trade name “F3-WS”) was placed to prepare a structure. Next, in the step (b), an end plate was placed on the structure produced in the step (a), and heat-press molding was performed under press conditions of 200 ° C./3.0 MPa / 70 minutes. In step (c), after removing unnecessary resin and forming a via hole (IVH) with a laser at a desired position, the structure produced in step (b) is plated and etched. The antenna circuit layer 14 was formed, and a multilayer printed wiring board having a total of seven layers including one millimeter-wave antenna circuit layer was obtained.

(実施例2)
実施例2の樹脂フィルムを用い、図3に示す工程でミリ波アンテナ回路層を2層含む計8層構造のミリ波レーダー用プリント配線板を作製した。
(Example 2)
Using the resin film of Example 2, a printed wiring board for millimeter wave radar having a total of eight layers including two millimeter wave antenna circuit layers was manufactured by the process shown in FIG.

工程(a)では、実施例1にて作製したミリ波レーダー用プリント配線板を内層回路基板21として用い、その表面に実施例2の樹脂組成物を用いて作製した半硬化樹脂フィルム(厚さ130μm)を真空ラミネーターにて仮接着した後、「F3−WS」を配置し構造体を作製した。次いで、工程(b)で、工程(a)にて作製した構造体の上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱加圧成形した。そして、工程(c)で、工程(b)にて作製した構造体に対し、所望の位置にレーザーにて不要な樹脂の除去及びビアホール(IVH)の形成を行った後、めっき及びエッチングを施してアンテナ回路層24を形成し、ミリ波アンテナ回路を層2層含む計8層構造のミリ波レーダー用プリント配線板を得た。   In the step (a), the millimeter wave radar printed wiring board produced in Example 1 was used as the inner layer circuit board 21, and the semi-cured resin film (thickness) produced using the resin composition of Example 2 on the surface thereof. 130 μm) was temporarily bonded with a vacuum laminator, and then “F3-WS” was arranged to produce a structure. Next, in step (b), an end plate was placed on the structure produced in step (a), and heat-press molding was performed under press conditions of 200 ° C./3.0 MPa / 70 minutes. In step (c), after removing unnecessary resin and forming a via hole (IVH) with a laser at a desired position, the structure produced in step (b) is plated and etched. Thus, an antenna circuit layer 24 was formed, and a printed wiring board for millimeter wave radar having a total of eight layers including two layers of millimeter wave antenna circuits was obtained.

(比較例5)
実施例2の樹脂フィルムに代えて、フッ素系樹脂材料を用い、従来の手法である図4で示す工程でミリ波アンテナ回路層を2層含む計8層構造のミリ波レーダー用プリント配線板を作製した。
(Comparative Example 5)
In place of the resin film of Example 2, a fluororesin material is used, and a printed wiring board for millimeter wave radar having a total of eight layers including two millimeter wave antenna circuit layers in the conventional method shown in FIG. Produced.

まず、図4の工程(a’)では、上記工程(p)〜(r)で作製した内層回路基板31上に、0.1mmのガラス布基材エポキシプリプレグ(GEA−75G)33及び0.13mmのフッ素系樹脂基材銅張積層板(Rogers corporation製、商品名「RO−3003」)の不要な銅箔をエッチング除去した銅張積層板32を重ねて配置し構造体を作製した。次いで、工程(b’)で、工程(a’)にて作製した構造体に対し、180℃/3.0MPa/60分のプレス条件で加熱加圧成形し、アンテナ回路を1層含む計7層構造の多層配線板を作製した。次に、工程(c’)で、工程(b’)にて作製した多層配線板上に、0.1mmのガラス布基材エポキシプリプレグ(GEA−75G)33及び0.13mmのフッ素系樹脂基材銅張積層板(RO−3003)の不要な銅箔をエッチング除去した銅張積層板32を重ねて配置し構造体を作製した。そして、工程(d’)で、工程(c’)にて作製した構造体に対し、180℃/3.0MPa/60分のプレス条件で加熱加圧成形した後、スルーホール穴あけ〜めっき〜エッチングにより所望の回路を形成し、アンテナ回路を2層含む計8層構造のミリ波レーダー用プリント配線板を得た。   First, in the step (a ′) of FIG. 4, a 0.1 mm glass cloth base epoxy prepreg (GEA-75G) 33 and 0. 0 mm are formed on the inner layer circuit board 31 produced in the steps (p) to (r). A 13 mm fluororesin-based copper-clad laminate (manufactured by Rogers Corporation, trade name “RO-3003”) was formed by stacking and arranging the copper-clad laminate 32 from which unnecessary copper foil was removed by etching. Next, in the step (b ′), the structure produced in the step (a ′) is subjected to heat and pressure molding under the press conditions of 180 ° C./3.0 MPa / 60 minutes, and a total of 7 antenna circuits are included. A multilayer wiring board having a layer structure was produced. Next, in step (c ′), 0.1 mm glass cloth base epoxy prepreg (GEA-75G) 33 and 0.13 mm fluorine-based resin base are formed on the multilayer wiring board produced in step (b ′). A copper-clad laminate 32 from which unnecessary copper foil of the material copper-clad laminate (RO-3003) was removed by etching was placed in an overlapping manner to produce a structure. Then, in the step (d ′), the structure produced in the step (c ′) is subjected to heat and pressure molding under press conditions of 180 ° C./3.0 MPa / 60 minutes, and then through-hole drilling to plating to etching Thus, a desired circuit was formed, and a printed wiring board for millimeter wave radar having a total of eight layers including two antenna circuits was obtained.

比較例5の方法によれば、フッ素系樹脂基材銅張積層板を用いても多層構造のアンテナ回路を形成可能であるが、フッ素系樹脂の間にプリプレグ等の接着層が必要となる。その際、一般的なプリプレグ等の接着層はミリ波帯での比誘電率及び誘電正接がフッ素系樹脂材料と比較して悪いため、フッ素系樹脂間の接着層存在により、多層構造のアンテナ回路特性は劣化し易い。   According to the method of Comparative Example 5, an antenna circuit having a multilayer structure can be formed using a fluorine resin-based copper-clad laminate, but an adhesive layer such as a prepreg is required between the fluorine resins. At that time, a general prepreg adhesive layer has a lower relative dielectric constant and dielectric loss tangent in the millimeter wave band than a fluorine resin material. Characteristics are likely to deteriorate.

これに対して、実施例2の方法では、ミリ波帯での比誘電率及び誘電正接に優れた材料のみで多層構造のアンテナ回路が構成されるため、比較例5と比べて特性に優れた多層構造のアンテナ回路を形成できる。   On the other hand, in the method of Example 2, since the antenna circuit having a multilayer structure is configured only with a material excellent in relative permittivity and dielectric loss tangent in the millimeter wave band, the characteristics are superior to those in Comparative Example 5. A multilayer antenna circuit can be formed.

本発明の樹脂組成物はプリント配線板に要求される各種特性及び優れた高周波特性を発現するため、1GHz以上又は10GHz以上の高周波信号を扱う電子機器、移動体通信機器及びその基地局装置、サーバー、ルーター等のネットワーク関連電子機器、大型コンピュータ等の各種電子機器などに使用されるプリント配線板の部材・部品用途として有用である。   Since the resin composition of the present invention expresses various characteristics required for printed wiring boards and excellent high-frequency characteristics, an electronic device, a mobile communication device, a base station device, and a server that handle high-frequency signals of 1 GHz or more or 10 GHz or more It is useful as a member / part for printed wiring boards used in network-related electronic devices such as routers and various electronic devices such as large computers.

11,21,31…内層回路基板、12,22…樹脂フィルム、12a,22a…樹脂層、13,23…金属箔、13a,23a…金属層、14,24…アンテナ回路層、15…ビアホール、32…銅張積層板、33,42…プリプレグ、41…コア基板、43…スルーホール。   11, 21, 31 ... inner layer circuit board, 12, 22 ... resin film, 12a, 22a ... resin layer, 13, 23 ... metal foil, 13a, 23a ... metal layer, 14, 24 ... antenna circuit layer, 15 ... via hole, 32 ... Copper-clad laminate, 33, 42 ... Prepreg, 41 ... Core substrate, 43 ... Through hole.

Claims (2)

マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物と、球状の無機充填材とを混合する工程を備えるミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法。 Printed wiring board for millimeter wave radar comprising a step of mixing a maleimide group, a divalent group having at least two imide bonds and a compound having a saturated or unsaturated divalent hydrocarbon group, and a spherical inorganic filler. A method for producing a resin film for production. マレイミド基、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基を有する化合物と、無機充填材スラリーとを混合する工程を備える、ミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法。 A printed wiring board for millimeter wave radar, comprising a step of mixing a maleimide group, a divalent group having at least two imide bonds and a compound having a saturated or unsaturated divalent hydrocarbon group, and an inorganic filler slurry. A method for producing a resin film for production.
JP2016005113A 2016-01-14 2016-01-14 Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar Active JP6708947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016005113A JP6708947B2 (en) 2016-01-14 2016-01-14 Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005113A JP6708947B2 (en) 2016-01-14 2016-01-14 Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar

Publications (2)

Publication Number Publication Date
JP2017125128A true JP2017125128A (en) 2017-07-20
JP6708947B2 JP6708947B2 (en) 2020-06-10

Family

ID=59365518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005113A Active JP6708947B2 (en) 2016-01-14 2016-01-14 Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar

Country Status (1)

Country Link
JP (1) JP6708947B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008643A1 (en) * 2016-07-05 2018-01-11 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
WO2018016489A1 (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin composition, laminate sheet, and multilayer printed wiring board
WO2020105696A1 (en) * 2018-11-21 2020-05-28 三菱瓦斯化学株式会社 Film-forming material for lithography, film-forming composition for lithography, lower layer film for lithography, and pattern-forming method
JP2020128501A (en) * 2019-02-08 2020-08-27 味の素株式会社 Resin composition
KR20200117884A (en) 2019-04-05 2020-10-14 신에쓰 가가꾸 고교 가부시끼가이샤 Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product
WO2021039596A1 (en) * 2019-08-29 2021-03-04 Agc株式会社 Composition, method for producing antenna, and molded article
JP2021187893A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
WO2022025123A1 (en) * 2020-07-29 2022-02-03 昭和電工マテリアルズ株式会社 Resin composition, cured material, sheet, laminate, and flexible printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012124A (en) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc Polyimide resin composition, and metal laminate using the same
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2013211348A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Chip protection coat formation film
JP2016131244A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet and multilayer printed wiring board
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012124A (en) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc Polyimide resin composition, and metal laminate using the same
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2013211348A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Chip protection coat formation film
JP2016131244A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet and multilayer printed wiring board
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339251B2 (en) 2016-07-05 2022-05-24 Showa Denko Materials Co., Ltd. Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
WO2018008643A1 (en) * 2016-07-05 2018-01-11 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JPWO2018008643A1 (en) * 2016-07-05 2019-04-25 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JP7036010B2 (en) 2016-07-05 2022-03-15 昭和電工マテリアルズ株式会社 Method for manufacturing resin composition, resin film, laminated board, multilayer printed wiring board and multilayer printed wiring board
JP7003918B2 (en) 2016-07-19 2022-01-21 昭和電工マテリアルズ株式会社 Resin composition, laminated board and multi-layer printed wiring board
JP7468502B2 (en) 2016-07-19 2024-04-16 株式会社レゾナック Resin composition, laminate, multilayer printed wiring board, resin film and prepreg
US11377546B2 (en) 2016-07-19 2022-07-05 Showa Denko Materials Co., Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
JPWO2018016489A1 (en) * 2016-07-19 2019-05-16 日立化成株式会社 Resin composition, laminate and multilayer printed wiring board
WO2018016489A1 (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin composition, laminate sheet, and multilayer printed wiring board
JP2022058409A (en) * 2016-07-19 2022-04-12 昭和電工マテリアルズ株式会社 Resin composition, laminate sheet, multilayer printed wiring board, resin film, and prepreg
WO2020105696A1 (en) * 2018-11-21 2020-05-28 三菱瓦斯化学株式会社 Film-forming material for lithography, film-forming composition for lithography, lower layer film for lithography, and pattern-forming method
JP2020128501A (en) * 2019-02-08 2020-08-27 味の素株式会社 Resin composition
KR20200117884A (en) 2019-04-05 2020-10-14 신에쓰 가가꾸 고교 가부시끼가이샤 Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product
US11530324B2 (en) 2019-04-05 2022-12-20 Shin-Etsu Chemical Co., Ltd. Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product
CN114341257A (en) * 2019-08-29 2022-04-12 Agc株式会社 Composition, method for producing antenna, and molded article
WO2021039596A1 (en) * 2019-08-29 2021-03-04 Agc株式会社 Composition, method for producing antenna, and molded article
JP2021187893A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
JP7400627B2 (en) 2020-05-26 2023-12-19 味の素株式会社 resin composition
WO2022025123A1 (en) * 2020-07-29 2022-02-03 昭和電工マテリアルズ株式会社 Resin composition, cured material, sheet, laminate, and flexible printed circuit board

Also Published As

Publication number Publication date
JP6708947B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6620844B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP6756107B2 (en) Resin film, resin film with support, prepreg, metal-clad laminate for high multilayer and high multilayer printed wiring board
JP6922157B2 (en) Resin composition, laminated board and multi-layer printed wiring board
JP6708947B2 (en) Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar
JP6756108B2 (en) Resin film, resin film with support, prepreg, metal-clad laminate and multi-layer printed wiring board
JP7036010B2 (en) Method for manufacturing resin composition, resin film, laminated board, multilayer printed wiring board and multilayer printed wiring board
WO2017122376A1 (en) Multilayer transmission line plate
JP7055994B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multi-layer printed wiring board and printed wiring board for millimeter wave radar
JP2022140464A (en) Resin composition, resin-layer provided support, prepreg, laminate sheet, multilayer printed wiring board and printed wiring board for millimeter-wave radar
JP7102682B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
JP7310944B2 (en) Resin composition, support with resin layer, prepreg, laminate, multilayer printed wiring board, and printed wiring board for millimeter wave radar
JP2022048627A (en) Laminate of fluororesin substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200505

R151 Written notification of patent or utility model registration

Ref document number: 6708947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350