JP2017116455A - Measuring method, and measuring apparatus, for resistances of power storage elements - Google Patents

Measuring method, and measuring apparatus, for resistances of power storage elements Download PDF

Info

Publication number
JP2017116455A
JP2017116455A JP2015253585A JP2015253585A JP2017116455A JP 2017116455 A JP2017116455 A JP 2017116455A JP 2015253585 A JP2015253585 A JP 2015253585A JP 2015253585 A JP2015253585 A JP 2015253585A JP 2017116455 A JP2017116455 A JP 2017116455A
Authority
JP
Japan
Prior art keywords
voltage
storage element
measured
charging
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015253585A
Other languages
Japanese (ja)
Other versions
JP6662033B2 (en
JP2017116455A5 (en
Inventor
秋葉 直樹
Naoki Akiba
直樹 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2015253585A priority Critical patent/JP6662033B2/en
Publication of JP2017116455A publication Critical patent/JP2017116455A/en
Publication of JP2017116455A5 publication Critical patent/JP2017116455A5/ja
Application granted granted Critical
Publication of JP6662033B2 publication Critical patent/JP6662033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the accuracy of detecting voltage variations of measurable power storage elements, and accordingly the reliability of calculated results of the DCIR (direct current internal resistance).SOLUTION: A measurable power storage element (measurable capacitor 4) is charged or discharged and, when the voltage of the measurable power storage element has reached a prescribed level, charging or discharging of the measurable power storage element is stopped and the difference voltage of the measurable power storage element between the time of having stopped charging or discharging and a prescribed period afterwards is detected; also the difference voltage is amplified (differential amplifier 10) and the resistance (DCIR) of the measurable power storage element is figured out by using the voltage resulting from amplification of the difference voltage.SELECTED DRAWING: Figure 1

Description

本発明は、キャパシタ、充電池などの蓄電素子の抵抗測定技術に関する。
The present invention relates to a technique for measuring resistance of a storage element such as a capacitor or a rechargeable battery.

蓄電素子の一例としてキャパシタでは直流内部抵抗(DCIR)およびその特定がキャパシタ性能を表すパラメータのひとつとして用いられる。このDCIRは搭載機器の性能を維持する上で極めて重要である。このDCIRは一定値ではなく、使用状態や使用時間によって劣化する。従って、DCIRは製造時に測定し、その良否の判定は不可欠であるが、搭載機器の性能を維持する上で搭載時ないし搭載後のDCIR特性の監視が求められている。   As an example of a storage element, in a capacitor, a direct current internal resistance (DCIR) and its specification are used as one of parameters indicating capacitor performance. This DCIR is extremely important in maintaining the performance of the on-board equipment. This DCIR is not a constant value, but deteriorates depending on the use state and use time. Therefore, although DCIR is measured at the time of manufacture and it is indispensable to determine whether it is good or bad, monitoring of the DCIR characteristics during or after mounting is required to maintain the performance of the mounted device.

斯かるDCIRの測定に関し、キャパシタを定電流により所定電圧まで充電させ、その充電を停止した時点の端子間電圧と、開放状態に維持した所定時間後の端子間電圧との差電圧を一定電流で除すことにより抵抗が求められることが知られている(たとえば、特許文献1、特許文献2)。
Regarding such DCIR measurement, the capacitor is charged to a predetermined voltage with a constant current, and the difference voltage between the terminal voltage when the charging is stopped and the terminal voltage after a predetermined time maintained in an open state is constant current. It is known that resistance is required by dividing (for example, Patent Document 1 and Patent Document 2).

特開平9−211041号公報JP 9-2111041 A 特開2001−242204号公報JP 2001-242204 A

ところで、このようなキャパシタのDCIR測定ではたとえば、定電流充電を用いた場合、その充電停止時点の電圧と、所定時間放置後の電圧を測定することが必要である。この電圧変化(差電圧)は非常に小さく、この電圧変化を正確に測定するため、分解能の高い高精度な測定器を用いるか、流す電流を大きくとっている。いずれにしても測定装置が高価になるという課題がある。   By the way, in the DCIR measurement of such a capacitor, for example, when constant current charging is used, it is necessary to measure the voltage when the charging is stopped and the voltage after being left for a predetermined time. This voltage change (difference voltage) is very small, and in order to accurately measure this voltage change, a high-precision measuring device with high resolution is used or a large current is taken. In any case, there is a problem that the measuring apparatus becomes expensive.

斯かる微小な電圧変化の検出では、測定装置を備えた実験室は可能であっても、キャパシタの製造ラインや、搭載機器で使用中のキャパシタの電圧変化を検出することは厄介であるという課題がある。   In such a minute voltage change detection, even if a laboratory equipped with a measuring device is possible, it is troublesome to detect a voltage change of a capacitor in use in a capacitor production line or on-board equipment. There is.

しかも、電圧測定の誤差が大きくなれば、その測定電圧から算出される抵抗値では誤差が大きく、求められた抵抗値の信頼性が低いという課題がある。   In addition, if the voltage measurement error increases, the resistance value calculated from the measurement voltage has a large error, and there is a problem that the reliability of the obtained resistance value is low.

このような算出結果の誤差は、キャパシタの抵抗値変化が搭載機器の機能を損ない、期待する特性が得られないという課題がある。   Such an error in the calculation result has a problem that a change in the resistance value of the capacitor impairs the function of the on-board device, and the expected characteristics cannot be obtained.

そこで、本発明の目的は上記課題に鑑み、被測定蓄電素子の電圧変化の検出精度を高め、DCIR(直流内部抵抗)の算出結果の信頼性の向上を図ることにある。
Accordingly, in view of the above problems, an object of the present invention is to improve the accuracy of detection of a voltage change of a storage element to be measured and to improve the reliability of a DCIR (direct current internal resistance) calculation result.

上記目的を達成するため、本発明の蓄電素子の抵抗の測定方法の一側面によれば、被測定蓄電素子を充電または放電させ、前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止し、充電または放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の停止時点から所定時間後の前記被測定蓄電素子の電圧の差電圧を検出するとともに該差電圧を増幅し、前記差電圧を増幅した電圧を用いて前記被測定蓄電素子の抵抗を算出する、工程を含めばよい。   In order to achieve the above object, according to one aspect of the method for measuring resistance of a power storage element of the present invention, when the power storage element to be measured is charged or discharged and the voltage of the power storage element to be measured reaches a predetermined voltage, Charge or discharge of the measurement storage element is stopped, and a voltage difference between the voltage of the measurement storage element at the time of stopping charging or discharging and the voltage of the measurement storage element after a predetermined time from the stop of charging or discharging A step of detecting and amplifying the difference voltage and calculating a resistance of the storage element to be measured using a voltage obtained by amplifying the difference voltage may be included.

上記目的を達成するため、本発明の蓄電素子の抵抗の測定装置の一側面によれば、被測定蓄電素子を充電または放電させ、前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止する充放電制御手段と、前記充電または前記放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の前記停止時点から所定時間後の前記被測定蓄電素子の電圧の差電圧を検出するとともに増幅する増幅手段と、前記増幅手段の出力電圧を測定する電圧測定手段と、前記電圧測定手段で測定される前記増幅手段の出力電圧を用いて前記被測定蓄電素子の抵抗を算出する演算手段とを含めばよい。   In order to achieve the above object, according to one aspect of the device for measuring the resistance of a storage element of the present invention, when the measured storage element is charged or discharged and the voltage of the measured storage element reaches a predetermined voltage, Charge / discharge control means for stopping charging or discharging of the measurement storage element; voltage of the measurement storage element at the time of stopping the charge or discharge; and the measurement under a predetermined time after the stop time of the charge or discharge Amplifying means for detecting and amplifying the differential voltage of the voltage of the storage element, voltage measuring means for measuring the output voltage of the amplifying means, and output voltage of the amplifying means measured by the voltage measuring means. A calculation means for calculating the resistance of the measurement storage element may be included.

上記蓄電素子の抵抗の測定装置において、前記増幅手段は、前記充電または前記放電の停止時点の前記被測定蓄電素子の電圧を非反転入力で受け、かつ前記充電または前記放電の前記停止時点から所定時間後の電圧を反転入力で受け、前記差電圧の検出と増幅とを行う入力インピーダンスの高い差動増幅器でよい。   In the device for measuring the resistance of the storage element, the amplifying means receives a voltage of the measured storage element at the time of stopping the charging or discharging with a non-inverting input, and is predetermined from the time of stopping the charging or discharging. A differential amplifier having a high input impedance for receiving the voltage after time by an inverting input and detecting and amplifying the differential voltage may be used.

上記蓄電素子の抵抗の測定装置において、前記充放電制御手段の制御、前記増幅手段の出力電圧の測定、前記出力電圧および前記被測定蓄電素子の充電電流または放電電流を用いた前記被測定蓄電素子の抵抗の算出の何れか2以上を行う制御手段を備えてよい。   In the measurement device for the resistance of the storage element, the measured storage element using the control of the charge / discharge control means, the measurement of the output voltage of the amplification means, the output voltage and the charging current or discharging current of the measured storage element Control means for performing any two or more of the calculation of the resistance may be provided.

上記蓄電素子の抵抗の測定装置において、さらに、前記被測定蓄電素子の電圧を保持する電圧保持素子とともに、該電圧保持素子に前記被測定蓄電素子の電圧を転送またはその解除を行うスイッチ、または、該スイッチに代え前記電圧保持素子を含むローパスフィルタを備えてよい。   In the device for measuring the resistance of the power storage element, the voltage holding element that holds the voltage of the power storage element to be measured, a switch that transfers the voltage of the power storage element to be measured to the voltage holding element or releases the voltage, or Instead of the switch, a low-pass filter including the voltage holding element may be provided.

本発明の蓄電素子の抵抗の測定方法または測定装置によれば、次のような効果が得られる。   According to the method or apparatus for measuring resistance of a storage element of the present invention, the following effects can be obtained.

(1) 所定電圧に充電または放電した被測定蓄電素子の電圧を検出して保持するとともに、その電圧と被測定蓄電素子の電圧の差電圧の検出と増幅を行い、増幅後の電圧を検出するので、検出電圧を大きく取ることができ、微小な電圧を直接測定することの測定誤差を低減できる。   (1) Detect and hold the voltage of the measured storage element charged or discharged to a predetermined voltage, and detect and amplify the voltage difference between the voltage and the measured storage element, and detect the amplified voltage Therefore, a large detection voltage can be taken, and measurement errors due to direct measurement of a minute voltage can be reduced.

(2) 増幅出力を用いて被測定蓄電素子の抵抗を算出するので、算出結果である抵抗値の信頼性を高めることができる。   (2) Since the resistance of the storage element to be measured is calculated using the amplified output, the reliability of the resistance value that is the calculation result can be improved.

(3) 前記差電圧の増幅出力を測定する測定機器は微小な電圧を直接測定することに比較し、比較的に簡易な測定機器でよく、高精度な機器を必要としない。蓄電素子の抵抗の測定を容易かつ安価に行える。
(3) The measuring device for measuring the amplified output of the differential voltage may be a relatively simple measuring device as compared to directly measuring a minute voltage, and does not require a highly accurate device. The resistance of the storage element can be easily and inexpensively measured.

本発明の第1の実施例に係る蓄電素子の抵抗測定装置を示す図である。It is a figure which shows the resistance measuring apparatus of the electrical storage element which concerns on 1st Example of this invention. Aは被測定蓄電素子の充放電電圧の変化を示す図、Bは差電圧の増幅出力電圧の変化を示す図である。A is a figure which shows the change of the charging / discharging voltage of a to-be-measured electrical storage element, B is a figure which shows the change of the amplified output voltage of a differential voltage. 本発明の第2の実施例に係る蓄電素子の抵抗測定装置を示す図である。It is a figure which shows the resistance measuring apparatus of the electrical storage element which concerns on the 2nd Example of this invention. Aは被測定蓄電素子の充放電電圧の変化を示す図、Bは差電圧の増幅出力電圧の変化を示す図である。A is a figure which shows the change of the charging / discharging voltage of a to-be-measured electrical storage element, B is a figure which shows the change of the amplified output voltage of a differential voltage. 本発明の第3の実施例に係る被測定蓄電素子を放電させる電圧検出部を示す回路図である。It is a circuit diagram which shows the voltage detection part which discharges the to-be-measured electrical storage element which concerns on 3rd Example of this invention.

〔第1の実施の形態〕 [First Embodiment]

本発明の第1の実施の形態として、蓄電素子の抵抗の測定方法では、被測定蓄電素子を充電または放電させる工程、前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止する工程、充電または放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の停止時点から所定時間後の前記被測定蓄電素子の電圧との差電圧を検出するとともに該差電圧を増幅する工程、前記差電圧を増幅した電圧を用いて前記被測定蓄電素子の抵抗を算出する工程を含めばよい。   As a first embodiment of the present invention, in the method for measuring the resistance of a power storage element, a step of charging or discharging the power storage element to be measured, and when the voltage of the power storage element to be measured reaches a predetermined voltage, the power storage element to be measured Detecting the difference voltage between the voltage of the measured storage element at the time of stopping charging or discharging and the voltage of the measured storage element after a predetermined time from the stopping time of charging or discharging. And a step of amplifying the difference voltage and a step of calculating the resistance of the storage element to be measured using the voltage obtained by amplifying the difference voltage.

測定対象である被測定蓄電素子は電気二重層キャパシタ、ハイブリッドキャパシタなどのキャパシタに限定されず、蓄電池でもよい。   The measured storage element to be measured is not limited to a capacitor such as an electric double layer capacitor or a hybrid capacitor, but may be a storage battery.

被測定蓄電素子の抵抗測定に用いる電圧は、充電によって得られたものに限定されず、被測定蓄電素子を充電した後の放電により得られる電圧であってもよい。   The voltage used for measuring the resistance of the power storage element to be measured is not limited to that obtained by charging, and may be a voltage obtained by discharging after charging the power storage element to be measured.

被測定蓄電素子の電圧を保持するには、被測定蓄電素子と同種の蓄電素子でよいが、他の蓄電素子や蓄電機能を備える回路装置であってもよい。たとえば、他の蓄電素子としては電解コンデンサが好ましい。電解コンデンサは充電停止後にも電圧の降下が小さく、電圧保持手段に有効である。また、検出した電圧情報をホールドするホールド回路や、電圧情報を記憶するメモリでもよい。   In order to hold the voltage of the power storage element to be measured, a power storage element of the same type as the power storage element to be measured may be used, but a circuit device having another power storage element or a power storage function may be used. For example, an electrolytic capacitor is preferable as the other power storage element. The electrolytic capacitor has a small voltage drop even after charging is stopped, and is effective as a voltage holding means. Further, a hold circuit for holding detected voltage information or a memory for storing voltage information may be used.

〔第2の実施の形態〕 [Second Embodiment]

本発明の第2の実施の形態として、蓄電素子の抵抗の測定装置では、被測定蓄電素子を充電または放電させ、前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止する充放電制御手段と、前記充電または前記放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の前記停止時点から所定時間後、前記被測定蓄電素子の電圧の差電圧を検出するとともに増幅する増幅手段と、前記増幅手段の出力電圧を測定する電圧測定手段と、前記電圧測定手段の出力電圧を用いて前記被測定蓄電素子の抵抗を算出する演算手段とを含めばよい。   As a second embodiment of the present invention, in a resistance measuring device for a power storage element, the power storage element to be measured is charged or discharged, and when the voltage of the power storage element to be measured reaches a predetermined voltage, Charge / discharge control means for stopping charging or discharging; voltage of the measured storage element at the time of stopping the charging or discharging; and voltage of the measured storage element after a predetermined time from the stopping time of the charging or discharging. An amplifying means for detecting and amplifying the difference voltage, a voltage measuring means for measuring an output voltage of the amplifying means, an arithmetic means for calculating the resistance of the storage element to be measured using the output voltage of the voltage measuring means, Should be included.

この測定装置において、測定対象、被測定蓄電素子の抵抗測定に用いる電圧、および電圧保持は、既述のとおりであるので、その説明は割愛する。   In this measuring apparatus, the measurement target, the voltage used for measuring the resistance of the storage element to be measured, and the voltage holding are as described above, and thus the description thereof is omitted.

増幅手段は、差電圧の検出と増幅は別個に行ってよいが、同時に行える入力インピーダンスの高い差動増幅器の利用は検出精度、増幅精度などの点で有益である。   The amplifying means may detect and amplify the differential voltage separately, but the use of a differential amplifier having a high input impedance that can be performed at the same time is beneficial in terms of detection accuracy and amplification accuracy.

被測定蓄電素子の抵抗の演算手段はコンピュータなどのディジタル化された情報処理手段でもよいが、アナログ値である電圧値および電流値を用いて被測定蓄電素子の抵抗を算出してもよい。
The calculation means for the resistance of the storage element to be measured may be a digital information processing means such as a computer, but the resistance of the storage element to be measured may be calculated using a voltage value and a current value that are analog values.

(第1の実施例)
図1は、本発明の第1の実施例に係る被測定蓄電素子の抵抗測定装置を示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
(First embodiment)
FIG. 1 shows a resistance measuring apparatus for a storage element to be measured according to a first embodiment of the present invention. The configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.

この抵抗測定装置2には被測定キャパシタ4の充放電制御部6、電圧出力回路8、差動増幅器10、電圧測定器12および抵抗値演算部14が備えられる。   The resistance measuring device 2 includes a charge / discharge control unit 6, a voltage output circuit 8, a differential amplifier 10, a voltage measuring device 12, and a resistance value calculating unit 14 for the capacitor 4 to be measured.

被測定キャパシタ4は、DCIRの測定対象である被測定蓄電素子の一例である。被測定キャパシタ4はたとえば、電気二重層キャパシタであり、他のキャパシタでもよく、また、蓄電池でもよい。   The measured capacitor 4 is an example of a measured storage element that is a DCIR measurement target. The capacitor 4 to be measured is, for example, an electric double layer capacitor, may be another capacitor, or may be a storage battery.

充放電制御部6は、被測定蓄電素子の充放電制御手段の一例であり、この実施例では被測定キャパシタ4を充電または放電させ、被測定キャパシタ4の電圧が所定電圧に到達したとき、被測定キャパシタ4の充電または放電を停止し、被測定キャパシタ4の充電または放電の停止時点の電圧を検出に用いられる。この充放電制御部6には直流電源16、充電またはその停止を切り替えるスイッチ18が備えられる。   The charge / discharge control unit 6 is an example of a charge / discharge control unit for the storage element to be measured. In this embodiment, when the capacitor 4 to be measured is charged or discharged and the voltage of the capacitor 4 to be measured reaches a predetermined voltage, The charging or discharging of the measuring capacitor 4 is stopped, and the voltage at the time of stopping the charging or discharging of the measured capacitor 4 is used for detection. The charge / discharge control unit 6 includes a DC power supply 16 and a switch 18 for switching between charging and stopping.

スイッチ18をオンすると、直流電源16から被測定キャパシタ4に一定電圧Vが加えられ、被測定キャパシタ4の定電流充電が行われ、被測定キャパシタ4の電圧(充電電圧)が上昇する。スイッチ18のオフにより、被測定キャパシタ4の充電を停止させる。DCIR測定に必要な電圧は、被測定キャパシタ4の定格電圧に到達する直前の電圧であればよい。したがって、その電圧に到達した時点を充電停止時点とすればよい。   When the switch 18 is turned on, a constant voltage V is applied from the DC power supply 16 to the capacitor 4 to be measured, the capacitor 4 to be measured is charged with a constant current, and the voltage (charge voltage) of the capacitor 4 to be measured increases. When the switch 18 is turned off, charging of the measured capacitor 4 is stopped. The voltage necessary for the DCIR measurement may be a voltage immediately before reaching the rated voltage of the capacitor 4 to be measured. Therefore, the time when the voltage is reached may be set as the charging stop time.

電圧出力回路8は充電停止時点t1(図2のA)の被測定蓄電素子の充電または放電の停止時点の電圧を取り出す電圧取り出し手段の一例である。この電圧出力回路8では、一例として抵抗20および電解コンデンサ22からなるローパスフィルタ24が備えられる。電解コンデンサ22は被測定キャパシタ4の電圧を保持する電圧保持素子の一例である。この電圧出力回路8では、被測定キャパシタ4の充電または放電の停止時点の電圧が電解コンデンサ22に加えられており、被測定キャパシタ4の電圧に追従して電解コンデンサ22が充電される。したがって、スイッチ18をオフすると、この実施例では充電停止時点の被測定キャパシタ4の電圧を電解コンデンサ22に保持される。抵抗20はたとえば、高抵抗であり、これにより、電解コンデンサ22の充電電荷が保持される。   The voltage output circuit 8 is an example of a voltage extracting means for extracting the voltage at the time of stopping the charging or discharging of the storage element to be measured at the charging stop time t1 (A in FIG. 2). As an example, the voltage output circuit 8 includes a low-pass filter 24 including a resistor 20 and an electrolytic capacitor 22. The electrolytic capacitor 22 is an example of a voltage holding element that holds the voltage of the capacitor 4 to be measured. In this voltage output circuit 8, the voltage at the time of stopping charging or discharging of the capacitor to be measured 4 is applied to the electrolytic capacitor 22, and the electrolytic capacitor 22 is charged following the voltage of the capacitor to be measured 4. Therefore, when the switch 18 is turned off, in this embodiment, the voltage of the capacitor 4 to be measured when the charging is stopped is held in the electrolytic capacitor 22. The resistor 20 is, for example, a high resistance, and thereby the charged charge of the electrolytic capacitor 22 is held.

この電解コンデンサ22が保持する電圧をVd、被測定キャパシタ4の電圧をVcとすれば、充電停止時点t1では、被測定キャパシタ4の電圧Vcが電解コンデンサ22に保持されるので、その保持電圧Vdは、Vd=Vcである。   If the voltage held by the electrolytic capacitor 22 is Vd and the voltage of the capacitor 4 to be measured is Vc, the voltage Vc of the capacitor 4 to be measured is held by the electrolytic capacitor 22 at the charging stop time t1, so the holding voltage Vd Vd = Vc.

被測定キャパシタ4の充電の停止時点t1から被測定キャパシタ4が放電状態となり、時間の経過に従って電圧Vcが低下し、電圧変化を生じる。したがって、この電圧変化により、保持電圧Vdと電圧Vcの間には差電圧ΔVを生じる。この差電圧ΔVは、
ΔV=Vd−Vc ・・・(1)
であり、充電停止時点t1ではΔV=0から時間経過した時点t2では、ΔV>0となるが、極めて小さい値であることは既述の通りである。
From time t1 when charging of the capacitor to be measured 4 is stopped, the capacitor to be measured 4 is in a discharging state, and the voltage Vc decreases with the passage of time, causing a voltage change. Therefore, this voltage change causes a difference voltage ΔV between the holding voltage Vd and the voltage Vc. This differential voltage ΔV is
ΔV = Vd−Vc (1)
At the time t1 when the charging is stopped, ΔV> 0 at the time t2 when time has elapsed from ΔV = 0. However, as described above, ΔV> 0.

そこで、保持電圧Vdおよび電圧Vcから差電圧ΔVを検出し、同時に増幅する増幅手段として差動増幅器10が備えられる。この差動増幅器10の非反転入力端子(+)には電解コンデンサ22の保持電圧Vd、その反転入力端子(−)には被測定キャパシタ4の電圧Vcを入力する。   Therefore, the differential amplifier 10 is provided as an amplifying means for detecting the differential voltage ΔV from the holding voltage Vd and the voltage Vc and simultaneously amplifying it. The holding voltage Vd of the electrolytic capacitor 22 is input to the non-inverting input terminal (+) of the differential amplifier 10, and the voltage Vc of the capacitor 4 to be measured is input to the inverting input terminal (−).

この差動増幅器10の出力電圧をVo、増幅利得(ゲイン)をAとすると、

Vo=A×ΔV ・・・(2)
となり、差動増幅器10には差電圧ΔVがゲインA倍されて取り出される。
When the output voltage of the differential amplifier 10 is Vo and the amplification gain (gain) is A,

Vo = A × ΔV (2)
Thus, the differential voltage ΔV is extracted from the differential amplifier 10 after gain A is multiplied.

この出力電圧Voが電圧測定器12により測定される。その測定値は、差電圧ΔVを直接測定した場合に比較し、大きな値で測定される。この測定値は、抵抗値演算部14に加えられる。この抵抗値演算部14はたとえば、コンピュータで構成すればよい。   This output voltage Vo is measured by the voltage measuring device 12. The measured value is measured as a large value as compared with the case where the differential voltage ΔV is directly measured. This measured value is added to the resistance value calculator 14. The resistance value calculation unit 14 may be configured by a computer, for example.

この抵抗値演算部14では、測定された出力電圧Voと被測定キャパシタ4の充電電流iを用いて、被測定キャパシタ4の内部抵抗rが算出される。この内部抵抗rは、式(2) および充電電流iを用いて、
r=ΔV/i=(Vo/i)×(1/A) ・・・(3)
により算出される。
In the resistance value calculation unit 14, the internal resistance r of the measured capacitor 4 is calculated using the measured output voltage Vo and the charging current i of the measured capacitor 4. This internal resistance r is calculated using equation (2) and the charging current i.
r = ΔV / i = (Vo / i) × (1 / A) (3)
Is calculated by

図2のAは、被測定キャパシタ4の電圧Vc、電解コンデンサ22に保持される電圧Vdを示している。   2A shows the voltage Vc of the capacitor to be measured 4 and the voltage Vd held in the electrolytic capacitor 22.

図2のAに示すように、時点t=t0で被測定キャパシタ4の充電が開始され、定格電圧の手前に到達した時点を充電停止時点とし、この充電停止時点t1まで定電流充電を行う。   As shown in FIG. 2A, charging of the capacitor 4 to be measured is started at time t = t0, and the time when it reaches before the rated voltage is set as the charge stop time, and constant current charging is performed until this charge stop time t1.

このとき、電解コンデンサ22では時点t0から僅かに遅れて充電が開始され、時点t=t1(充電停止時点)まで同様に定電流充電が行われる。   At this time, the electrolytic capacitor 22 starts to be charged with a slight delay from time t0, and constant current charging is similarly performed until time t = t1 (charge stop time).

被測定キャパシタ4は充電停止時点t1から開放状態に移行するのに対し、電解コンデンサ22の電圧Vdには被測定キャパシタ4の充電停止時点t1の電圧Vc(≒Vd)が保持される。なお、図2ではVdとVcの最大値に差異があるように示しているが、その差は僅かであり、電圧Vc≒Vdとみなすことができる。   The measured capacitor 4 shifts to the open state from the charging stop time t1, while the voltage Vd of the electrolytic capacitor 22 holds the voltage Vc (≈Vd) at the charging stop time t1 of the measured capacitor 4. In FIG. 2, the maximum values of Vd and Vc are shown as being different, but the difference is slight and can be regarded as voltage Vc≈Vd.

被測定キャパシタ4では図2のAに示すように、充電停止時点t1から開放状態に移行して時点t2まで急激に電圧Vcが低下する。これに対し、電解コンデンサ22の電圧Vdでは僅かに下降するものの、ほぼ一定の電圧値を呈する。   In the capacitor 4 to be measured, as shown in FIG. 2A, the voltage Vc rapidly decreases from the charging stop time t1 to the open state until the time t2. In contrast, the voltage Vd of the electrolytic capacitor 22 slightly decreases, but exhibits a substantially constant voltage value.

差動増幅器10の被反転入力端子(+)には電圧Vdが加えられ、その反転入力端子(−)には電圧Vcが加えられる。差動増幅器10では、これら電圧Vd−Vc間の差電圧ΔVの検出が行われると同時に、この差電圧ΔVの増幅が行われる。   The voltage Vd is applied to the inverted input terminal (+) of the differential amplifier 10, and the voltage Vc is applied to the inverted input terminal (−). In the differential amplifier 10, the difference voltage ΔV between these voltages Vd−Vc is detected, and at the same time, the difference voltage ΔV is amplified.

図2のBは、差動増幅器10の出力電圧Voを示している。この出力電圧Voは充電停止時点t1までは一定電圧であるのに対し、充電停止時点t1から所定時間の経過後の時点t2の間で大幅な増加傾向となり、時点t2から緩やかな減少傾向を呈する。   FIG. 2B shows the output voltage Vo of the differential amplifier 10. The output voltage Vo is a constant voltage until the charging stop time t1, whereas the output voltage Vo tends to increase significantly between the charging stop time t1 and the time t2 after a lapse of a predetermined time, and gradually decreases from the time t2. .

差増増幅器10のゲインをAとすれば、差電圧ΔVから出力電圧Voは、式(2) から求められ、
Vo=A×ΔV>ΔV ・・・(4)
となる。つまり、出力電圧Voは、差電圧ΔVのゲインA倍の値となり、差電圧ΔVに対して極めて大きな値となり、出力電圧Voが電圧測定器12に入力されて測定される。
Assuming that the gain of the differential amplifier 10 is A, the output voltage Vo is obtained from the difference voltage ΔV from the equation (2),
Vo = A × ΔV> ΔV (4)
It becomes. That is, the output voltage Vo is a value that is a gain A times the difference voltage ΔV, which is a very large value with respect to the difference voltage ΔV, and the output voltage Vo is input to the voltage measuring instrument 12 and measured.

<第1の実施例の効果> <Effect of the first embodiment>

(1) 差電圧ΔVを増幅して測定するので、測定誤差を低減させ、電圧測定精度を向上させることができる。   (1) Since the differential voltage ΔV is amplified and measured, the measurement error can be reduced and the voltage measurement accuracy can be improved.

(2) 差電圧ΔVを増幅してDCIRを算出するので、演算誤差を低減させ、演算精度を向上させることができ、算出結果であるDCIRの信頼性を高めることができる。   (2) Since the DCIR is calculated by amplifying the difference voltage ΔV, the calculation error can be reduced, the calculation accuracy can be improved, and the reliability of the DCIR that is the calculation result can be increased.

(3) 差電圧ΔVの検出および増幅に差動増幅器10を用いたので、差電圧ΔVの検出とともにその増幅を同時に行うことができ、差電圧ΔVの検出と、増幅とを別個に行う構成に比較し、回路構成を簡略化できる。   (3) Since the differential amplifier 10 is used to detect and amplify the differential voltage ΔV, the differential voltage ΔV can be detected and amplified simultaneously, and the differential voltage ΔV is detected and amplified separately. In comparison, the circuit configuration can be simplified.

(4) 差動増幅器10を用いれば、入力インピーダンスが高いので、被測定キャパシタ4および電解コンデンサ22の各電圧を直接入力しても、各電圧の放電を防止でき、差電圧ΔVの検出および増幅の精度を低下させることがない。この結果、測定精度を向上させることができる。   (4) If the differential amplifier 10 is used, since the input impedance is high, even if each voltage of the capacitor 4 to be measured and the electrolytic capacitor 22 is directly input, discharge of each voltage can be prevented, and detection and amplification of the differential voltage ΔV The accuracy is not reduced. As a result, measurement accuracy can be improved.

(第2の実施例)
図3は、本発明の第2の実施例に係る被測定蓄電素子の抵抗測定装置を示している。図3に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。図3において、図1と同一部分には同一符号を付してある。
(Second embodiment)
FIG. 3 shows a resistance measuring apparatus for an electricity storage element to be measured according to the second embodiment of the present invention. The configuration illustrated in FIG. 3 is an example, and the present invention is not limited to such a configuration. In FIG. 3, the same parts as those in FIG.

この第2の実施例では、制御装置26が備えられる。この制御装置26はたとえば、コンピュータで構成すればよい。したがって、制御装置26は記憶手段としてROM(Read-Only Memory)、RAM(Random-Access Memory)、制御手段としてプロセッサ{たとえば、CPU(Central Processing Unit )}を備える。   In the second embodiment, a control device 26 is provided. The control device 26 may be constituted by a computer, for example. Therefore, the control device 26 includes ROM (Read-Only Memory) and RAM (Random-Access Memory) as storage means, and a processor {for example, CPU (Central Processing Unit)} as control means.

この制御装置26は、電圧測定器12で測定された出力電圧Voを用いて被測定キャパシタ4のDCIRを算出する演算手段の一例であり、この実施例ではスイッチ18、28の開閉機能、差動増幅器10のゲインコントロール、電圧測定器12の電圧測定値の取込み、DCIRの演算などの機能を含んでいる。   The control device 26 is an example of a calculation means for calculating DCIR of the capacitor 4 to be measured using the output voltage Vo measured by the voltage measuring device 12, and in this embodiment, the switching function of the switches 18 and 28, the differential It includes functions such as gain control of the amplifier 10, acquisition of voltage measurement values of the voltage measuring device 12, and calculation of DCIR.

そこで、第1のスイッチとして、充放電制御部6のスイッチ18は制御装置26により開閉可能なリレーや電子スイッチを用いればよい。   Therefore, as the first switch, the switch 18 of the charge / discharge control unit 6 may be a relay or an electronic switch that can be opened and closed by the control device 26.

電圧出力回路8には既述のローパスフィルタ24に代え、被測定キャパシタ4に第2のスイッチ28を介して電解コンデンサ22が接続されている。   Instead of the low-pass filter 24 described above, the electrolytic capacitor 22 is connected to the measured capacitor 4 via the second switch 28 in the voltage output circuit 8.

その他の構成は第1の実施例と同様であるので、その説明を割愛する。   Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

図4のAに示すように、時点t=t0でスイッチ18、28を同時にオンにし、被測定キャパシタ4、電解コンデンサ22の充電を開始する。このとき、電解コンデンサ22も時点t0から同時に充電を開始し、時点t=t1(充電停止時点)まで同様に定電流充電が行われる。   As shown in FIG. 4A, at the time t = t0, the switches 18 and 28 are simultaneously turned on, and charging of the measured capacitor 4 and the electrolytic capacitor 22 is started. At this time, the electrolytic capacitor 22 also starts to be charged at the same time from the time point t0, and the constant current charging is similarly performed until the time point t = t1 (charging stop time).

被測定キャパシタ4の定格電圧の手前に到達した時点を充電停止時点t1とし、この充電停止時点t1でスイッチ28をオフする。この充電停止時点t1の被測定キャパシタ4の電圧Vcが電解コンデンサ22に保持される。つまり、時点t1ではVd=Vcである。   The time when the measured voltage of the capacitor 4 to be measured reaches before the rated voltage is defined as a charge stop time t1, and the switch 28 is turned off at the charge stop time t1. The voltage Vc of the capacitor 4 to be measured at this charging stop time t1 is held in the electrolytic capacitor 22. That is, Vd = Vc at time t1.

この時点t1から間断なくスイッチ18をオフにし、被測定キャパシタ4の充電を停止させる。この時点t1から被測定キャパシタ4は開放状態に移行する。   From this time t1, the switch 18 is turned off without interruption, and charging of the capacitor 4 to be measured is stopped. From this time t1, the measured capacitor 4 shifts to an open state.

被測定キャパシタ4では図4のAに示すように、時点t1から開放状態に移行して予め設定した時点t2まで急激にVcが低下する。これに対し、電解コンデンサ22の電圧Vdでは僅かに下降するものの、ほぼ一定の電圧値を呈する。   In the capacitor 4 to be measured, as shown in FIG. 4A, Vc rapidly decreases from the time point t1 to the open state until a preset time point t2. In contrast, the voltage Vd of the electrolytic capacitor 22 slightly decreases, but exhibits a substantially constant voltage value.

この実施例においても、差動増幅器10の被反転入力端子(+)には電圧Vdが加えられ、その反転入力端子(−)には電圧Vcが加えられる。差動増幅器10では、これら電圧Vd−Vc間の差電圧ΔVの検出が行われると同時に、この差電圧ΔVの増幅が行われる。   Also in this embodiment, the voltage Vd is applied to the inverted input terminal (+) of the differential amplifier 10, and the voltage Vc is applied to the inverted input terminal (−). In the differential amplifier 10, the difference voltage ΔV between these voltages Vd−Vc is detected, and at the same time, the difference voltage ΔV is amplified.

図4のBは、差動増幅器10の出力電圧Voを示している。この出力電圧Voは充電停止時点t1から所定時間の経過後の時点t2の間で急激な電圧の増加傾向であるのに対し、時点t2から緩やかな増加傾向を呈する。   FIG. 4B shows the output voltage Vo of the differential amplifier 10. The output voltage Vo has a rapid increasing tendency from the charging stop time t1 to a time point t2 after a lapse of a predetermined time, whereas it gradually increases from the time point t2.

差増増幅器10のゲインをAとすれば、差電圧ΔVから出力電圧Voは、式(2) から求められる。出力電圧Voが、差電圧ΔVのゲインA倍の値となり、差電圧ΔVに対して極めて大きな値となり、出力電圧Voが電圧測定器12で測定され、その測定結果が制御装置26に入力されてDCIRの演算が制御装置26で実行される。   If the gain of the differential amplifier 10 is A, the output voltage Vo can be obtained from the equation (2) from the difference voltage ΔV. The output voltage Vo is a value that is a gain A times the difference voltage ΔV, which is an extremely large value with respect to the difference voltage ΔV, and the output voltage Vo is measured by the voltage measuring device 12, and the measurement result is input to the control device 26. The DCIR calculation is executed by the control device 26.

<第2の実施例の効果> <Effect of the second embodiment>

(1) この実施例においても、第1の実施例と同様の効果が得られる。   (1) In this embodiment, the same effect as that of the first embodiment can be obtained.

(2) この実施例によれば、制御装置26によってスイッチ18、28の開閉時点を正確に制御でき、迅速な測定処理を行うことができる。   (2) According to this embodiment, the control device 26 can accurately control the opening and closing points of the switches 18 and 28, and can perform a quick measurement process.

(3) 制御装置26が演算機能を備えているので、電圧測定器12の測定結果を用いてDCIRを制御装置26で算出でき、信頼性の高い演算結果を得ることができる。   (3) Since the control device 26 has a calculation function, the DCIR can be calculated by the control device 26 using the measurement result of the voltage measuring device 12, and a highly reliable calculation result can be obtained.

(第3の実施例)
図5は、本発明の第3の実施例に係る被測定蓄電素子の抵抗測定装置の充放電制御部6を示している。図5に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。図5において、図1と同一部分には同一符号を付してある。
(Third embodiment)
FIG. 5 shows the charge / discharge control unit 6 of the resistance measuring device for the measured storage element according to the third embodiment of the present invention. The configuration shown in FIG. 5 is an example, and the present invention is not limited to such a configuration. In FIG. 5, the same parts as those in FIG.

第1および第2の実施例では、充放電制御部6が被測定キャパシタ4の充電回路、被測定キャパシタ4、スイッチ18、28で構成したが、この第3の実施例では充放電制御部6が被測定キャパシタ4の放電回路、被測定キャパシタ4、スイッチ18として構成する。   In the first and second embodiments, the charge / discharge control unit 6 includes the charging circuit for the capacitor 4 to be measured, the capacitor to be measured 4, and the switches 18 and 28. In the third embodiment, the charge / discharge control unit 6 Are configured as a discharge circuit of the capacitor 4 to be measured, the capacitor 4 to be measured, and the switch 18.

この抵抗測定装置2では、被測定キャパシタ4を充電した後、スイッチ18を閉じ、放電素子30を用いて被測定キャパシタ4の定電流放電を行う。   In this resistance measuring apparatus 2, after charging the capacitor to be measured 4, the switch 18 is closed, and the constant current discharge of the capacitor to be measured 4 is performed using the discharge element 30.

スイッチ18を閉じる放電停止時点t1の被測定キャパシタ4の電圧Vcが電圧Vdとして電解コンデンサ22に保持される。この電圧Vdが差動増幅器10の被反転入力端子(+)に入力される。   The voltage Vc of the capacitor 4 to be measured at the discharge stop time t1 when the switch 18 is closed is held in the electrolytic capacitor 22 as the voltage Vd. This voltage Vd is input to the inverted input terminal (+) of the differential amplifier 10.

そして、放電中の被測定キャパシタ4の電圧Vcを差動増幅器10の反転入力端子(−)に入力すればよい。   Then, the voltage Vc of the capacitor 4 to be measured during discharge may be input to the inverting input terminal (−) of the differential amplifier 10.

これにより、被測定キャパシタ4の放電モードで生じる差電圧ΔVを差動増幅器10で検出し、同時に増幅することにより、その出力電圧Voを用いて被測定キャパシタ4のDCIRを測定することができる。   As a result, the differential voltage ΔV generated in the discharge mode of the capacitor 4 to be measured is detected by the differential amplifier 10, and simultaneously amplified, whereby the DCIR of the capacitor 4 to be measured can be measured using the output voltage Vo.

<第3の実施例の効果> <Effect of the third embodiment>

第1および第2の実施例と同様に、充電された被測定キャパシタ4を放電させることにより、その放電電圧の変化を以てDCIRを測定でき、このDCIRの測定においても、放電における差電圧の検出と増幅とを同時に行い、電圧の測定精度を高め、DCIRの演算精度を高めることができる。これにより、信頼性の高い算出結果が得られることは、充電モードだけでなく放電モードにおいても同様である。   As in the first and second embodiments, by discharging the charged capacitor 4 to be measured, the DCIR can be measured by the change in the discharge voltage. In this DCIR measurement, the detection of the differential voltage in the discharge is also possible. Amplification can be performed at the same time to increase voltage measurement accuracy and DCIR calculation accuracy. Thereby, a highly reliable calculation result is obtained not only in the charging mode but also in the discharging mode.

〔他の実施の形態〕 [Other Embodiments]

上記実施例のスイッチ18、28は、制御装置26で開閉が制御されるリレーおよびリレー接点を用いてよい。   The switches 18 and 28 in the above embodiment may use relays and relay contacts whose opening / closing is controlled by the control device 26.

以上説明したように、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the present invention has been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the specification. It goes without saying that such modifications and changes are included in the scope of the present invention.

本発明は、被測定蓄電素子の電圧変化を直接測定してのDCIRの演算に比較し、電圧変化の差動増幅により、差電圧の検出と増幅とを同時に行い、差電圧の検出精度を高め、DCIR(直流内部抵抗)の算出結果の信頼性の向上を図ることができ、有用である。
The present invention compares the DCIR calculation by directly measuring the voltage change of the storage element to be measured, and simultaneously detects and amplifies the difference voltage by differential amplification of the voltage change, thereby improving the accuracy of detecting the difference voltage. It is possible to improve the reliability of the calculation result of DCIR (direct current internal resistance), which is useful.

2 抵抗測定装置
4 被測定キャパシタ
6 充放電制御部
8 電圧出力回路
10 差動増幅器
12 電圧測定器
14 抵抗値演算部
16 直流電源
18 スイッチ
20 抵抗
22 電解コンデンサ
24 ローパスフィルタ
26 制御装置
28 スイッチ
30 放電素子

DESCRIPTION OF SYMBOLS 2 Resistance measuring apparatus 4 Capacitor to be measured 6 Charge / discharge control part 8 Voltage output circuit 10 Differential amplifier 12 Voltage measuring device 14 Resistance value calculation part 16 DC power supply 18 Switch 20 Resistance 22 Electrolytic capacitor 24 Low pass filter 26 Control apparatus 28 Switch 30 Discharge element

Claims (5)

被測定蓄電素子を充電または放電させ、
前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止し、
充電または放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の停止時点から所定時間後の前記被測定蓄電素子の電圧の差電圧を検出するとともに該差電圧を増幅し、
前記差電圧を増幅した電圧を用いて前記被測定蓄電素子の抵抗を算出する、
蓄電素子の抵抗の測定方法。
Charge or discharge the measured electricity storage element,
When the voltage of the storage element to be measured reaches a predetermined voltage, the charging or discharging of the storage element to be measured is stopped,
Detecting a differential voltage between the voltage of the measured storage element at the time of stopping charging or discharging and the voltage of the measured storage element after a predetermined time from the stopping time of charging or discharging, and amplifying the differential voltage;
Calculating a resistance of the storage element to be measured using a voltage obtained by amplifying the differential voltage;
A method for measuring the resistance of a storage element.
被測定蓄電素子を充電または放電させ、前記被測定蓄電素子の電圧が所定電圧に到達したとき、被測定蓄電素子の充電または放電を停止する充放電制御手段と、
前記充電または前記放電の停止時点の前記被測定蓄電素子の電圧と前記充電または前記放電の前記停止時点から所定時間後の前記被測定蓄電素子の電圧の差電圧を検出するとともに増幅する増幅手段と、
前記増幅手段の出力電圧を測定する電圧測定手段と、
前記電圧測定手段で測定される前記増幅手段の出力電圧を用いて前記被測定蓄電素子の抵抗を算出する演算手段と、
を含む、蓄電素子の抵抗の測定装置。
Charge / discharge control means for charging or discharging the measured energy storage element and stopping charging or discharging of the measured energy storage element when the voltage of the measured energy storage element reaches a predetermined voltage;
Amplifying means for detecting and amplifying a difference voltage between the voltage of the measured storage element at the time of stopping the charging or discharging and the voltage of the measured storage element after a predetermined time from the stopping time of the charging or discharging; ,
Voltage measuring means for measuring the output voltage of the amplifying means;
Arithmetic means for calculating a resistance of the storage element to be measured using an output voltage of the amplifying means measured by the voltage measuring means;
A device for measuring the resistance of a storage element.
前記増幅手段は、前記充電または前記放電の停止時点の前記被測定蓄電素子の電圧を非反転入力で受け、かつ前記充電または前記放電の前記停止時点から所定時間後の電圧を反転入力で受け、前記差電圧の検出と増幅とを行う入力インピーダンスの高い差動増幅器である、請求項2に記載の蓄電素子の抵抗の測定装置。   The amplifying means receives the voltage of the measured storage element at the time of stopping the charging or discharging with a non-inverting input, and receives the voltage after a predetermined time from the stopping time of the charging or discharging with an inverting input, The apparatus for measuring resistance of a storage element according to claim 2, wherein the differential amplifier has a high input impedance for detecting and amplifying the differential voltage. 前記充放電制御手段の制御、前記増幅手段の出力電圧の測定、前記出力電圧および前記被測定蓄電素子の充電電流または放電電流を用いた前記被測定蓄電素子の抵抗の算出の何れか2以上を行う制御手段を備える、請求項2または請求項3に記載の蓄電素子の抵抗の測定装置。   Any two or more of the control of the charge / discharge control unit, the measurement of the output voltage of the amplification unit, the calculation of the resistance of the storage element to be measured using the output voltage and the charge current or discharge current of the storage element to be measured The apparatus for measuring resistance of a storage element according to claim 2 or 3, further comprising a control unit for performing the control. さらに、前記被測定蓄電素子の電圧を保持する電圧保持素子とともに、該電圧保持素子に前記被測定蓄電素子の電圧を転送またはその解除を行うスイッチ、または、該スイッチに代え前記電圧保持素子を含むローパスフィルタを備える、請求項2ないし請求項4のいずれかの請求項に記載の蓄電素子の抵抗の測定装置。
And a voltage holding element that holds the voltage of the measured energy storage element, a switch that transfers the voltage of the measured energy storage element to the voltage holding element, or a release thereof, or the voltage holding element instead of the switch The apparatus for measuring a resistance of a storage element according to any one of claims 2 to 4, comprising a low-pass filter.
JP2015253585A 2015-12-25 2015-12-25 Method and apparatus for measuring resistance of storage element Active JP6662033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253585A JP6662033B2 (en) 2015-12-25 2015-12-25 Method and apparatus for measuring resistance of storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253585A JP6662033B2 (en) 2015-12-25 2015-12-25 Method and apparatus for measuring resistance of storage element

Publications (3)

Publication Number Publication Date
JP2017116455A true JP2017116455A (en) 2017-06-29
JP2017116455A5 JP2017116455A5 (en) 2018-12-06
JP6662033B2 JP6662033B2 (en) 2020-03-11

Family

ID=59234337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253585A Active JP6662033B2 (en) 2015-12-25 2015-12-25 Method and apparatus for measuring resistance of storage element

Country Status (1)

Country Link
JP (1) JP6662033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168392A (en) * 2018-03-26 2019-10-03 ラピスセミコンダクタ株式会社 Semiconductor device and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168392A (en) * 2018-03-26 2019-10-03 ラピスセミコンダクタ株式会社 Semiconductor device and electronic apparatus
JP7153458B2 (en) 2018-03-26 2022-10-14 ラピスセミコンダクタ株式会社 Semiconductor equipment and electronic equipment

Also Published As

Publication number Publication date
JP6662033B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
EP2494372B1 (en) Device and method for testing internal resistance of battery pack
US10666066B2 (en) Differential voltage measurement device
JP2013542418A (en) How to test if a current sensor is functioning correctly
KR20160110211A (en) Battery remaining power predicting device and battery pack
JP6183336B2 (en) Charge rate calculation device
US10627450B2 (en) Battery state detection device
TW201606328A (en) Battery remaining power predicting device and battery pack
JP2017062168A (en) Electric leakage detection circuit
CN108966670B (en) Electric meter and current acquisition calibration circuit and calibration method thereof
TW201606329A (en) Battery state monitoring circuit and battery device
JP2008064700A (en) Internal resistance measuring device for electric double layer capacitor
US20160190836A1 (en) Method and apparatus for detecting voltage
JP2016099276A (en) Insulation resistance measurement device
WO2020196438A1 (en) Battery management device, power storage device, battery management method, and computer program
JP2017116455A (en) Measuring method, and measuring apparatus, for resistances of power storage elements
JP2023107032A (en) Insulation resistance detector and fault detection method
JP2007170953A (en) Deterioration determining device of secondary battery
JP4845953B2 (en) Dynamic characteristic inspection device
JP2001242204A (en) Direct current resistance measuring method of capacitor and its device
JP5852882B2 (en) A / D conversion circuit, A / D converter error correction device, and battery remaining amount detection device
JP5752086B2 (en) Secondary battery monitoring device
KR20130138384A (en) Insulation resistance sensing apparatus and control method thereof
JP2004014462A (en) Remaining capacity measurement device of secondary battery
JP2011203259A (en) Method and device for detecting battery state
JP2022066088A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150