JP2017102906A - 情報処理装置、情報処理方法及びプログラム - Google Patents

情報処理装置、情報処理方法及びプログラム Download PDF

Info

Publication number
JP2017102906A
JP2017102906A JP2016205462A JP2016205462A JP2017102906A JP 2017102906 A JP2017102906 A JP 2017102906A JP 2016205462 A JP2016205462 A JP 2016205462A JP 2016205462 A JP2016205462 A JP 2016205462A JP 2017102906 A JP2017102906 A JP 2017102906A
Authority
JP
Japan
Prior art keywords
data
learning
parameter
information processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016205462A
Other languages
English (en)
Inventor
大佑 和泉
Daisuke Izumi
大佑 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/358,580 priority Critical patent/US20170147909A1/en
Publication of JP2017102906A publication Critical patent/JP2017102906A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

【課題】十分な不良品データを用いることができない場合であっても、識別器の適切なパラメータを決定することを目的とする。
【解決手段】対象データが特定カテゴリデータ及び非特定カテゴリデータのいずれであるかを判定する判定用の識別器を生成するために利用する複数の学習データを受け付ける受付手段と、学習データが特定カテゴリデータであることの確からしさを示す第1の尤度を求める第1のデータ評価手段と、複数の学習データそれぞれの第1の尤度に基づいて、判定用の識別器のパラメータを決定するパラメータ決定手段とを有する。
【選択図】図2

Description

本発明は、情報処理装置、情報処理方法及びプログラムに関する。
従来、工場等で製造された製品が、良品か不良品かの外観検査を自動化する方法の一つとして、多数の特徴量を用いた方法が知られている。この方法は、学習用の複数の良品と不良品の画像から画素値の平均、最大値等多数の特徴量を抽出し、抽出した特徴量で構成される特徴空間上で良品と不良品を分類する識別器を学習し、識別器を用いて、被検対象物が良品か不良品かを判定するものである。
このような画像処理による不良品の検出方法では、適切な識別器を学習するには、学習データとして誤りのない良品データと不良品データが必要となる。これに対し、特許文献1には、学習データとして与えられたデータセット中の良品データの中から適切ではない良品データを除く技術が開示されている。
また、実際の検査工程の立ち上げ時など、良品データは十分な数を用意できるが、不良品の発生率が低く、十分な数のデータを用意することができない場合がある。これに対し、1つのラベルデータのみから識別器の学習が可能な1クラス識別器モデルも知られている。1クラス識別器は、良品データを表現する特徴空間を学習し、学習した空間に属するか否かにより良品と不良品を判定するものである。
特開2011−70635号公報
しかしながら、1クラス識別モデルを用いた場合でも、識別器の学習時に必要なハイパーパラメータの決定には、不良品データを用いたり、ユーザが手動でハイパーパラメータを決定したりする必要がある。このため、不良品データが十分でないために、適切な識別器を学習するのが難しい場合があった。また、ユーザがハイパーパラメータを決定する場合には、適切なハイパーパラメータを決定するのが難しかった。
本発明はこのような問題点に鑑みなされたもので、十分な不良品データを用いることができない場合であっても、識別器の適切なパラメータを決定することを目的とする。
そこで、本発明は、情報処理装置であって、対象データが特定カテゴリデータ及び非特定カテゴリデータのいずれであるかを判定する判定用の識別器を生成するために利用する複数の学習データを受け付ける受付手段と、前記学習データが前記特定カテゴリデータであることの確からしさを示す第1の尤度を求める第1のデータ評価手段と、複数の学習データそれぞれの前記第1の尤度に基づいて、前記判定用の識別器のパラメータを決定するパラメータ決定手段とを有することを特徴とする。
本発明によれば、十分な不良品データを用いることができない場合であっても、識別器の適切なパラメータを決定することができる。
情報処理装置のハードウェア構成を示す図である。 情報処理装置のソフトウェア構成を示す図である。 学習処理を示すフローチャートである。 学習データ分類処理を示すフローチャートである。 パラメータ決定処理を示すフローチャートである。 判定処理を示すフローチャートである。
以下、本発明の実施形態について図面に基づいて説明する。
図1は、本実施形態に係る情報処理装置100のハードウェア構成を示す図である。情報処理装置100は、正解データとして与えられた複数の学習データを含む学習データセットを用いて正解データと不正解データとを識別する識別器を学習する。情報処理装置100はさらに、学習された識別器を用いて、判定対象の対象データが正解データであるか不正解データであるかの判定を行う。なお、識別器は、あるカテゴリに分類されるデータである特定カテゴリデータと、特定カテゴリデータ以外のデータである非特定カテゴリデータとを識別するものであればよく、識別対象は、正解データと不正解データに限定されるものではない。
なお、本実施形態においては、情報処理装置100が工場等における製品の外観検査に利用される場合を例に説明する。すなわち、良品の撮影画像(良品データ)が正解データとなり、不良品の撮影画像(不良品データ)が不正解データとなる。そして、情報処理装置100は、学習により得られた、判定用の識別器を用いて、実際の検査対象物の撮影画像を対象データとして、対象データが良品データであるか不良品データであるかを判定する。これにより、対象データに示される検査対象物が良品であるか不良品であるかを判定することができる。
情報処理装置100は、CPU101と、ROM102と、RAM103と、HDD104と、表示部105と、入力部106と、通信部107とを有している。CPU101は、ROM102に記憶された制御プログラムを読み出して各種処理を実行する。ROM102は、オペレーティングシステム(OS)や各処理プログラム、デバイスドライバ等を記憶している。RAM103は、CPU101の主メモリ、ワークエリア等の一時記憶領域として用いられる。HDD104は、画像データや各種プログラム等各種情報を記憶する。なお、後述する情報処理装置100の機能や処理は、CPU101がROM102又はHDD104に格納されているプログラムを読み出し、このプログラムを実行することにより実現されるものである。
表示部105は、各種情報を表示する。入力部106は、キーボードやマウスを有し、ユーザによる各種操作を受け付ける。通信部107は、ネットワークを介して画像形成装置等の外部装置との通信処理を行う。
図2は、情報処理装置100のソフトウェア構成を示す図である。情報処理装置100は、受付部201と、特徴量抽出部202と、分類部203と、パラメータ決定部204と、学習部205と、識別部206とを有している。受付部201は、学習データ及び判定対象データの入力を受け付ける。ここで、学習データとは、良品データ及び不良品データのいずれであるかがわかっているデータである。一方、判定対象データは、良品データ及び不良品データのいずれであるかが不明なデータであり、いずれのデータであるかの判定対象となるデータである。特徴量抽出部202は、学習データ及び判定対象データの特徴量を抽出する。分類部203は、特徴量に基づいて、各学習データが良品データであることの確からしさを評価し、評価結果に応じて、学習データセットを2つのデータセットに分類する。パラメータ決定部204は、判定用の識別器のパラメータを推定する。学習部205は、判定用の識別器を学習する。
なお、情報処理装置100は、図2に示す各機能部をハードウェア構成として有することとしてもよい。この場合、情報処理装置100は、各機能部に対応する演算部や回路を有するものとすればよい。
図3は、情報処理装置100による学習処理を示すフローチャートである。S301において、受付部201は、学習データセットを受け付ける。学習データセットに含まれる学習データとしての画像は、検査対象の物体が撮像装置によって撮像された学習画像である。学習画像として撮像される物体は、良品であることが予めわかっている物体である。なお、本実施形態においては、情報処理装置100は、撮像装置等外部装置から入力された画像を受け付けることとするが、他の例としては、情報処理装置100は、予め自装置のHDD104等の記憶部に記憶されている学習データセットを読み出してもよい。
次に、S302において、特徴量抽出部202は、各学習データから予め定められた複数の種類の特徴量を抽出する。特徴量としては、画像の輝度値の平均、分散、歪度、尖度、最頻値、エントロピー等が挙げられる。また、特徴量としては、Co−Occurrence Matrixを用いたテクスチャー特徴量、SIFTを用いた局所特徴量等が挙げられる。Co−Occurrence Matrixを用いたテクスチャー特徴量及びIFTを用いた局所特徴量については、それぞれ以下に示す文献1、2を参照することができる。

参考文献1
Robert M. Haralick, K. Sharnmugam, and Itshak Dinstein, "Texture Features for Image Classification", IEEE Transactions on System, Man and Cybernatic, Vol.6, pp. 610-621, 1973.

参考文献2
Lowe, David G, "Object Recognition from Local Scale-invariant Features", Proceedings of the International, Conference on Computer Vision 2 pp. 1150-1157, 1999.
特徴量抽出部202は、これらの特徴量のうち予め定められた複数の特徴量を抽出するものとする。そして、特徴量抽出部202は、抽出した複数の特徴量を順に並べた特徴ベクトルを最終的な特徴量として得る。なお、抽出対象の特徴量の種類については、設定ファイル等としてROM102等に記録されているものとする。また、CPU101は、入力部106を介したユーザ操作に基づいて、設定ファイルの内容を変更することができるものとする。
次に、S303において、分類部203は、学習データセットを良品データセット及び不良品候補データセットの2つのデータセットに分類し(分類処理)、良品データ又は不良品候補データを示すラベルを付与する。本処理については、図4を参照しつつ後に詳述する。次に、S304において、パラメータ決定部204は、S303において得られた特徴量と、S303において付与されたラベルと、に基づいて、識別器のパラメータを決定する。本処理については、図5を参照しつつ後に詳述する。
次に、S305において、学習部205は、S303において得られた特徴量と、S304において決定したパラメータと、に基づいて、判定用の識別器を学習する。以上で、学習処理が終了する。なお、本実施形態においては、識別器として、One class Support Vector Machine(SVM)を用いものとする。one class SVMについては、以下の文献を参照することができる。

Vapnik, V. (1995). "Support-vector networks". Machine Learning 20 (3): 273.

本実施形態では、識別器としてOne class SVMを用いているが、識別器は、クラス分類が可能な識別モデルであればよく実施形態に限定されるものではない。他の例としては、識別器として、マハラノビス距離や部分空間法の一種である投影距離法、ニューラルネットワークなどを用いてもよい。
図4は、図3を参照しつつ説明した学習データセット分類処理(S303)における詳細な処理を示すフローチャートである。ここで、S302において受け付けた学習データセットをD={d1,d2,d3,…dN}とする。Nは、学習データセットに含まれる学習データの数である。また、各学習データをdi={xi,li}(1≦i≦N)とする。ここで、xiは特徴量ベクトル、liは各学習データに付与されたラベルである。本実施形態においては、学習データは、いずれも良品データであるため、受け付けた学習データには、良品データであることを表すラベル(li=+1)が付与されている。なお、学習データにラベルが付与されていない場合には、受付部201は、各学習データにラベルを付与(設定)するものとする。
S401において、分類部203は、識別器の学習に必要となるハイパーパラメータ
Figure 2017102906
を設定する。本実施形態では、識別器としてOne class SVMを用いるため、ハイパーパラメータの候補集合Φは、予め用意し、情報処理装置100のHDD104等に記憶しておいてもよいし、任意のハイパーパラメータφで学習した結果から更新してもよい。One Class SVMでは、誤分類を許容する範囲を決定するCパラメータや、カーネルとしてRBFを用いた場合は、RBFカーネルのγパラメータなどがハイパーパラメータとなる。その他、One class SVMの他に識別器として部分空間法を用いた場合は、ハイパーパラメータは部分空間次元数となり、ニューラルネットワークを用いた場合は隠れ層や出力層のノード数となる。また、入力特徴量の次元数に対して次元削減を実施した場合、削減後の次元数を決定する部分をハイパーパラメータとしても良い。例えば、次元削減を実施するためにPrincipal Component nalysis(PCA)を用いた場合、削減後の次元数を寄与率から決定することがある。この場合、寄与率を複数パターン用意し、ハイパーパラメータの候補集合に含めて計算しても良い。次元削減の方法はPCAに限定するものではなく、その他の方法を用いても構わない。以下、ハイパーパラメータを単にパラメータと称する。
次に、S402において、分類部203は、S401において設定したパラメータφと、学習データセットDと、を用いて、識別器を学習(生成)する。ここで学習する識別器は、学習データセットを分類するために用いる学習用の識別器である。本実施形態においては、判定処理において用いられる判定用の識別器と同じ識別器を用いて学習データセットの分類を行うこととするが、他の例としては、判定用の識別器と異なる種類の識別器を用いてもよい。
次に、S403において、分類部203は、学習データの識別処理を行う。具体的には、分類部203は、S403において学習した識別器を用いて、学習データxiに対し、良品クラスへの帰属度
Figure 2017102906
を求める。ここで、帰属度は、良品データ(正解データ)であることの確からしさを示す、学習用の識別器に依存した尤度の一例である。また、S403の処理は、学習用の識別器に依存した尤度を求めるデータ評価処理の一例である。
次に、S404において、分類部203は、帰属度siと閾値Tvとの比較処理により、(式1)に示すような投票処理を行う。すなわち、分類部203は、帰属度siが、閾値Tvよりも小さい学習データに対し投票を行う。
Figure 2017102906
なお、S404の処理は、学習用の識別器に依存した複数の尤度に基づいて、学習データの尤度を求めるデータ評価処理の一例である。
なお、本実施形態においては、帰属度siが閾値Tvより小さいデータに対して投票を行ったが、投票処理はこれに限定されるものではない。他の例としては、分類部203は、閾値Tvではなく学習データセットDに含まれるデータ数Nに対する割合で投票してもよい。また、本実施形態においては、投票の値を1としているが、他の例としては、分類部203は、重み付けにより投票の値を決定してもよい。分類部203は、例えば、(式2)に示すように、帰属度に比例した値を投票してもよい。また、他の例としては、分類部203は、(式3)に示すように、学習データセット中のすべての帰属度との順位から値を決定してもよい。
Figure 2017102906
ここで、Sは、帰属度siの集合である。すなわち、S={s1,s2,s3,…sN}である。また、
Figure 2017102906
は、帰属度集合Sに含まれるデータを降順にソートしたときの帰属度Sの順位を返す関数である。
次に、S405において、分類部203は、未選択のパラメータが存在するか否かを確認する。分類部203は、未選択のパラメータが存在する場合には(S405でYes)、処理をS401へ進める。そして、S401において、分類部203は、パラメータの候補集合Φから未選択のパラメータを選択し、これを設定し、その後の処理を継続する。分類部203は、未選択のパラメータが存在しない場合には(S405でNo)、処理をS406へ進める。
S406において、分類部203は、投票結果に基づいて、学習データxiが良品データ及び不良品候補データのいずれであるかを判定する。具体的には、分類部203は、(式4)により、viが閾値Th以上の場合には不良品候補データと判定し、学習データxiに、不良品候補データのラベル(li=0)を付与する。一方、viが閾値Th未満の場合には良品データと判定し、学習データxiに良品データのラベル(li=+1)を付与する。これにより、学習データセットは、良品データセットと不良品候補データセットの2つのデータセットに分類される。すなわち、本処理は、複数の学習データを2つのデータセットに分類する分類処理の一例である。
Figure 2017102906
図5は、図3を参照しつつ説明したパラメータ決定処理(S304)における詳細な処理を示すフローチャートである。本実施形態においては、パラメータ決定部204は、交差検定法を用いてパラメータを決定する。なお、本実施形態においては、ハイパーパラメータの決定には、交差検定法を用いることとしたが、交差検定法以外の手法を用いてもよい。
ここで、一般的な交差検定法について説明する。交差検定法では、学習データセットDの良品データと不良品データのそれぞれをK個のグループに分割する。そして、分割したK個のグループのうち1つ以外を学習用に利用し、残りの1つを評価(検定)用に利用する。すなわち、良品データ群である良品データセットDOKをK個のグループに分割し、そのうちの1のグループをDOK(1)、残りのグループをDOK(K-1)とする。同様に、不良品データ群である不良品データセットDNGをK個のグループに分割し、そのうちの1つのグループをDNG(1)、残りのグループをDNG(K-1)とする。そして、任意のパラメータを評価するために、良品グループDOK(K-1)及び不良品グループDNG(K-1)を用いて、識別器の学習を行う。そして、学習した識別器を用いて残りの良品グループDOK(1)及び不良品グループDNG(1)の分離度を算出する。この処理を学習グループ及び評価グループを入れ替えて繰り返して評価を行い、パラメータを選択する。これにより良品データセットと不良品データセットを最も分離するパラメータを選択することが可能となる。
しかしながら、上記の方法で、本実施形態の良品データと不良品候補データを分類するパラメータを選択した場合、良品データと不良品候補データの間が識別境界となる。そのため、ユーザが良品データとして与えているにも関わらず、不良品候補データは不良品データと判定される可能性がある。そこで、本実施形態においては、以下に説明する処理を行うことにより、良品データと不良品候補データを分類するパラメータではなく、不良品候補データよりも良品データがより良品として確からしいと判定されるようなパラメータを選択する。
まず、S501において、パラメータ決定部204は、学習データセットDを、S303において付与されたラベルに基づいて、良品データセットDOKと不良品候補データセットDNGCとに分割し、各データセットをK個のグループに分割する。次に、S502において、パラメータ決定部204は、パラメータ候補を選択する。次に、S503において、パラメータ決定部204は、良品データセットDOKのK個のグループから1つのグループDOK(1)を評価グループとして選択する。同様に、パラメータ決定部204は、不良品候補データセットDNGCのK個のグループから1つのグループDNGC(1)を評価グループとして選択する。
次に、S504において、パラメータ決定部204は、評価グループ以外の良品グループトDOK(K-1)と、評価グループ以外の不良品候補グループDNGC(K-1)とを用いて、識別器を学習する。すなわち、パラメータ決定部204は、良品データと不良品候補データの両方を良品データとみなして、学習用の識別器を学習する(学習処理)。次に、S505において、パラメータ決定部204は、S503において選択した評価グループDOK(1)、DNGC(1)を用いて、S504における学習に用いられたパラメータの有効性を評価する(パラメータ評価処理)。なお、本実施形態においては、Area Under the Curve(AUC)を評価値として用いる。すなわち、パラメータ決定部204は、次式により、評価値C(φ)を算出する。

C(φ)=AUC(DOK(1)、DNGC(1)

なお、本実施形態においては、評価値としてAUCを用いたがこれに限定されるものではない。評価値は、2クラスの分離度を評価できる値であればよく、できればよく、AICやBIC等であってもよい。
次に、S506において、パラメータ決定部204は、評価グループとして選択されていないグループが存在するか否かを確認する。パラメータ決定部204は、未選択のグループが存在する場合には(S506でYes)、処理をS503へ進める。そして、S503において、パラメータ決定部204は、未選択のグループを評価グループとして選択し、その後の処理を行う。このように、パラメータ決定部204は、評価グループを変更しながら、S502〜S505の処理を繰り返す。一方、パラメータ決定部204は、すべてのグループが評価グループとして選択済みの場合には(S506でNo)、処理をS507へ進める。
S507において、パラメータ決定部204は、未選択のパラメータ候補が存在するか否かを確認する。パラメータ決定部204は、未選択のパラメータ候補が存在する場合には(S507でYes)、処理をS502へ進める。そして、S502において、パラメータ決定部204は、未選択のパラメータ候補を選択し、その後の処理を行う。このように、パラメータ決定部204は、各パラメータ候補に対し、評価値を算出する。一方、パラメータ決定部204は、すべてのパラメータ候補が選択済みの場合には(S507でNo)、処理をS508へ進める。
S508において、パラメータ決定部204は、S502〜S505の処理を繰り返すことにより、各パラメータ候補φに対して得られた複数の評価値を用いて、適切なパラメータを選択する。パラメータ決定部204は、例えば、各パラメータ候補に対して得られた複数の評価値の平均値を求め、平均値が最大となるパラメータφを選択する。また、他の例としては、パラメータ決定部204は、各パラメータ候補の複数の評価値のうち最小値が最大となるパラメータφを選択してもよい。また、他の例としては、パラメータ決定部204は、各パラメータ候補の複数の評価値のメディアン値を求め、メディアン値が最大となるパラメータを選択してもよい。以上で、パラメータ決定処理が終了する。
図6は、情報処理装置100による判定処理を示すフローチャートである。判定処理は、図3等を参照しつつ説明した学習処理により得られた、判定用の識別器を利用し、検査対象の物体の撮影画像が良品データ及び不良品データのいずれであるかを判定する処理である。S601において、受付部201は、検査対象の物体の撮影画像、すなわち対象データを受け付ける。本実施形態においては、受付部201は、撮像装置から対象データを受け付けることとするが、他の例としては、情報処理装置100は、予め自装置のHDD104等の記憶部に記憶されている対象データを読み出してもよい。
次に、S602において、特徴量抽出部202は、対象データから、予め定められた複数の種類の特徴量を抽出する。ここで抽出する特徴量の種類及び数は、S302において抽出する特徴量の種類及び数と等しいものとする。なお、他の例としては、S602においては、特徴量抽出部202は、学習処理により得られた識別器を用いることにより対象データを良品データと不良品データに分類可能な特徴量のみを抽出することとしてもよい。
次に、S603において、識別部206は、学習処理により得られた識別器を用いて、S602において抽出された特徴量に基づいて、対象データが良品データであるか不良品データであるかを識別する。以上で、判定処理が終了する。
以上のように、本実施形態においては、パラメータ決定部204は、良品グループと不良品候補グループの両方の学習データを良品データとみなして、識別器を学習する。一方で、パラメータ決定部204は、学習した識別器の評価においては、良品グループの学習データを良品データ、不良品候補グループの学習データを不良品データとみなして、分離度(評価値)を算出する。このため、選択されたパラメータにより学習された判定用の識別器では、ユーザが良品データとして与えた学習データは、良品と判定される。ただし、不良品候補データセットに分類された学習データは、良品グループに分類された学習データに比べて良品データであることの確からしさの値が低く判定される。
仮に、不良品候補データセットを含まない良品データセットの学習データのみを良品データとみなして識別器を学習した場合には、良品データセットと不良品候補データセットを分離するようなパラメータが選択される。このため、不良品候補データセットに属するような対象データを不良品データと判定するような識別器が学習されてしまう可能性がある。これに対し、本実施形態においては、パラメータ決定部204は、良品データセットの学習データだけでなく不良品候補データセットの学習データを良品データとして用いて識別器を学習する。これにより、不良品候補データセットに分類された学習データは、良品グループに分類された学習データに比べて良品データであることの確からしさの値が低く判定されるような識別器を学習することができる。すなわち、良品データであることが予めわかっている学習データセットのみから、判定用の識別器の適切なパラメータを決定することができる。
なお、本実施形態に係る情報処理装置100は、学習処理と判定処理の両方を行うが、これにかえて、情報処理装置100は、学習処理のみを行うものとしてもよい。この場合、情報処理装置100と別の、判定処理を行う装置に学習処理により得られた識別器をセットする。そして、判定処理を行う装置において、判定処理を行う。
(第2の実施形態)
次に、第2の実施形態に係る情報処理装置100について説明する。第2の実施形態に係る情報処理装置100は、正解データと、少量の不正解データとを含む学習データセットを用いて、正解データと不正解データとを識別する識別器を学習する。第2の実施形態においても、情報処理装置100が工場等における製品の外観検査に利用される場合を例に説明する。すなわち、正解データは、良品の撮影画像(良品データ)である。また、不正解データは、不良品の撮影画像(不良品データ)である。
判定用の識別器の学習に十分な量だけ不良品データとしての学習データが与えられている場合には、良品データ及び不良品データの両方を用いて、判別用の識別器を学習することができる。しかしながら、不良品データが少量の場合には、少量の不良品データに過学習した識別器となり、良品データと不良品データの分離精度が低下する可能性がある。これに対し、第2の実施形態に係る情報処理装置100は、第1の実施形態に係る情報処理装置100と同様に、良品データとして与えられた学習データを、良品データセットと不良品候補データセットとに分類し、処理を行う。以下、第2の実施形態に係る情報処理装置100について、第1の実施形態に係る情報処理装置100と異なる点について説明する。
図3を参照しつつ、第2の実施形態に係る情報処理装置100による学習処理について説明する。第2の実施形態においては、S301において、良品データとした与えられた学習データと、不良品データとして与えられた少量の学習データとを含む学習データセットを受け付ける。以下、良品データとして与えられた学習データを良品の学習データと称する。また、不良品データとして与えられた学習データを不良品の学習データと称する。
なお、学習データセットに含まれる良品データとした与えられた学習データには、良品データのグループを表すラベル(li=+1)が付与されている。また、不良品データとして与えられた学習データには、不良品データのグループを表すラベル(li=−1)が付与されている。なお、学習データにラベルが付与されていない場合には、受付部201は、各学習データにラベルを付与(設定)するものとする。
次に、特徴量抽出処理(S302)においては、特徴量抽出部202は、良品の学習データを処理対象として、第1の実施形態において説明したのと同様に特徴量を抽出する処理を行う。続く、学習データ分類処理(S303)においても、分類部203は、良品の学習データを処理対象として、第1の実施形態において説明したのと同様に、良品の学習データを、良品データセット及び不良品候補データセットに分類する。
続く、パラメータ決定処理(S304)については、図5を参照しつつ説明する。第2の実施形態においては、パラメータ決定部204は、不良品候補データセットの学習データだけでなく、不良品の学習データを用いてパラメータ候補の評価を行う。具体的には、S504において、パラメータ決定部204は、良品グループDOK(K-1)と不良品候補グループDNGC(K-1)を良品データとして識別器の学習を行う。次に、S505において、パラメータ決定部204は、不良品候補グループDNGC(1)と、不良品データ群DNGを不良品データとして、分離度を算出することにより、パラメータ候補を評価する。なお、第2の実施形態に係る情報処理装置100のこれ以外の構成及び処理は、第1の実施形態に係る情報処理装置100の構成及び処理と同様である。
以上のように、第2の実施形態に係る情報処理装置100は、不良品の学習データが十分でない場合に、第1の実施形態において説明したのと同様に、良品データセットの学習データの一部を不良品データとみなして判定用の識別器を学習する。このため、不良品の学習データの過学習となっていない、適切なパラメータを決定することができる。
なお、情報処理装置100は、不良品データを用いてパラメータを決定すればよく、そのための具体的な処理は、実施形態に限定されるものではない。例えば、S505において、パラメータ決定部204は、良品グループDOK(1)と不良品候補グループDNGC(1)との分離度
Figure 2017102906
を算出する。パラメータ決定部204は、さらに、良品グループDOK(1)と不良品データ群DNGとの分離度
Figure 2017102906
を算出する。そして、パラメータ決定部204は、(式5)により2つの分離度の積L'を、評価値として用いてもよい。
Figure 2017102906
また、他の例としては、パラメータ決定部204は、(式6)に示すように、上記2つの分離度の線形和を評価値として用いてもよい。
Figure 2017102906
また、他の例としては、不良品候補グループは、良品データとして与えられた学習データであることに鑑み、パラメータ決定部204は、(式7)又は(式8)に示すような分離度の積を評価値として用いてもよい。
Figure 2017102906
また、パラメータ決定部204は、(式9)又は(式10)に示すように、分離度の線形和を評価値として用いてもよい。
Figure 2017102906
以上、上述した各実施形態によれば、十分な不良品データを用いることができない場合であっても、識別器の適切なパラメータを決定することができる。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100 情報処理装置
202 特徴量抽出部
203 分類部
204 パラメータ決定部
205 学習部
206 識別部

Claims (14)

  1. 対象データが特定カテゴリデータ及び非特定カテゴリデータのいずれであるかを判定する判定用の識別器を生成するために利用する複数の学習データを受け付ける受付手段と、
    前記学習データが前記特定カテゴリデータであることの確からしさを示す第1の尤度を求める第1のデータ評価手段と、
    複数の学習データそれぞれの前記第1の尤度に基づいて、前記判定用の識別器のパラメータを決定するパラメータ決定手段と
    を有することを特徴とする情報処理装置。
  2. 前記第1のデータ評価手段は、前記学習データの特徴量に基づいて、前記第1の尤度を求めることを特徴とする請求項1に記載の情報処理装置。
  3. 複数のパラメータそれぞれと、前記学習データと、を用いて、複数の学習用の識別器を生成する第1の学習手段と、
    前記複数の学習用の識別器それぞれを用いて、前記学習データが前記特定カテゴリデータであることの確からしさを示す、前記学習用の識別器に依存した第2の尤度を求める第2のデータ評価手段と
    をさらに有し、
    前記第1のデータ評価手段は、前記学習データに対して前記第2のデータ評価手段により得られた、複数の第2の尤度に基づいて、前記学習データの前記第1の尤度を求めることを特徴とする請求項1に記載の情報処理装置。
  4. 前記第1の学習手段は、前記複数のパラメータそれぞれと、前記学習データの特徴量と、を用いて、前記学習用の識別器を生成することを特徴とする請求項3に記載の情報処理装置。
  5. 前記第1の尤度に基づいて、前記複数の学習データを第1のデータセットと、前記第1のデータセットに比べて前記特定カテゴリデータであることの確からしさの低い第2のデータセットと、に分類する分類手段をさらに有し、
    前記パラメータ決定手段は、前記第1のデータセットと前記第2のデータセットとに基づいて、前記パラメータを決定することを特徴とする請求項1に記載の情報処理装置。
  6. 前記第1のデータセット及び前記第2のデータセットの両方の学習データを正解データとみなして、複数のパラメータそれぞれを用いて、学習用の識別器を生成する第2の学習手段と、
    前記第1のデータセットの学習データを正解データ、前記第2のデータセットの学習データを不正解データとみなして、前記第2の学習手段による学習に用いられた各パラメータを評価するパラメータ評価手段と
    をさらに有し、
    前記パラメータ決定手段は、前記パラメータ評価手段による評価結果に基づいて、前記複数のパラメータの中から前記判定用の識別器のパラメータを決定することを特徴とする請求項5に記載の情報処理装置。
  7. 前記パラメータ評価手段は、前記第1のデータセットの学習データと前記第2のデータセットの学習データの分離度に基づいて、前記パラメータを評価することを特徴とする請求項6に記載の情報処理装置。
  8. 前記受付手段は、不正解データとして与えられた不正解の学習データをさらに受け付け、
    前記パラメータ評価手段は、さらに不正解の学習データを用いて、前記パラメータを評価することを特徴とする請求項6に記載の情報処理装置。
  9. 前記パラメータ評価手段は、前記第1のデータセットの学習データと前記第2のデータセットの学習データの分離度と、前記第1のデータセットの学習データと不正解の学習データの分離度と、に基づいて、前記パラメータを評価することを特徴とする請求項8に記載の情報処理装置。
  10. 前記パラメータ評価手段は、前記第2のデータセットの学習データと不正解の学習データの分離度に基づいて、前記パラメータを評価することを特徴とする請求項9に記載の情報処理装置。
  11. 前記パラメータ評価手段は、前記第1のデータセットの学習データと不正解の学習データの分離度と、前記第2のデータセットの学習データと不正解の学習データの分離度に基づいて、前記パラメータを評価することを特徴とする請求項8に記載の情報処理装置。
  12. 前記パラメータ決定手段により決定されたパラメータに基づいて、前記判定用の識別器を学習する第3の学習手段をさらに有することを特徴とする請求項1乃至11の何れか1項に記載の情報処理装置。
  13. 情報処理装置が実行する情報処理方法であって、
    対象データが特定カテゴリデータ及び非特定カテゴリデータのいずれであるかを判定する判定用の識別器を生成するために利用する複数の学習データを受け付ける受付ステップと、
    前記学習データが前記特定カテゴリデータであることの確からしさを示す第1の尤度を求める第1のデータ評価ステップと、
    複数の学習データそれぞれの前記第1の尤度に基づいて、前記判定用の識別器のパラメータを決定するパラメータ決定ステップと
    を含むことを特徴とする情報処理方法。
  14. コンピュータを、請求項1乃至12の何れか1項に記載の情報処理装置の各手段として機能させるためのプログラム。
JP2016205462A 2015-11-25 2016-10-19 情報処理装置、情報処理方法及びプログラム Pending JP2017102906A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/358,580 US20170147909A1 (en) 2015-11-25 2016-11-22 Information processing apparatus, information processing method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229735 2015-11-25
JP2015229735 2015-11-25

Publications (1)

Publication Number Publication Date
JP2017102906A true JP2017102906A (ja) 2017-06-08

Family

ID=59015507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205462A Pending JP2017102906A (ja) 2015-11-25 2016-10-19 情報処理装置、情報処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2017102906A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003408A (ja) * 2017-06-15 2019-01-10 株式会社日立製作所 ハイパーパラメータの評価方法、計算機及びプログラム
CN109800884A (zh) * 2017-11-14 2019-05-24 阿里巴巴集团控股有限公司 模型参数的处理方法、装置、设备和计算机存储介质
WO2019176087A1 (ja) * 2018-03-16 2019-09-19 三菱電機株式会社 学習装置および学習方法
JP2019204232A (ja) * 2018-05-22 2019-11-28 株式会社ジェイテクト 情報処理方法、情報処理装置、及びプログラム
JP2020095702A (ja) * 2018-11-29 2020-06-18 キヤノン株式会社 情報処理装置、撮像装置、情報処理装置の制御方法、および、プログラム
WO2020158630A1 (ja) * 2019-01-31 2020-08-06 株式会社カネカ 検出装置、学習器、コンピュータプログラム、検出方法及び学習器の生成方法
CN111758117A (zh) * 2018-03-14 2020-10-09 欧姆龙株式会社 检查***、识别***以及学习数据生成装置
JP2021064390A (ja) * 2016-10-28 2021-04-22 グーグル エルエルシーGoogle LLC ニューラルアーキテクチャ検索

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7210531B2 (ja) 2016-10-28 2023-01-23 グーグル エルエルシー ニューラルアーキテクチャ検索
US11829874B2 (en) 2016-10-28 2023-11-28 Google Llc Neural architecture search
JP2021064390A (ja) * 2016-10-28 2021-04-22 グーグル エルエルシーGoogle LLC ニューラルアーキテクチャ検索
JP2019003408A (ja) * 2017-06-15 2019-01-10 株式会社日立製作所 ハイパーパラメータの評価方法、計算機及びプログラム
CN109800884A (zh) * 2017-11-14 2019-05-24 阿里巴巴集团控股有限公司 模型参数的处理方法、装置、设备和计算机存储介质
CN109800884B (zh) * 2017-11-14 2023-05-26 阿里巴巴集团控股有限公司 模型参数的处理方法、装置、设备和计算机存储介质
CN111758117B (zh) * 2018-03-14 2023-10-27 欧姆龙株式会社 检查***、识别***以及学习数据生成装置
CN111758117A (zh) * 2018-03-14 2020-10-09 欧姆龙株式会社 检查***、识别***以及学习数据生成装置
WO2019176087A1 (ja) * 2018-03-16 2019-09-19 三菱電機株式会社 学習装置および学習方法
JPWO2019176087A1 (ja) * 2018-03-16 2020-05-28 三菱電機株式会社 学習装置および学習方法
CN111837143A (zh) * 2018-03-16 2020-10-27 三菱电机株式会社 学习装置及学习方法
JP2019204232A (ja) * 2018-05-22 2019-11-28 株式会社ジェイテクト 情報処理方法、情報処理装置、及びプログラム
JP2020095702A (ja) * 2018-11-29 2020-06-18 キヤノン株式会社 情報処理装置、撮像装置、情報処理装置の制御方法、および、プログラム
JPWO2020158630A1 (ja) * 2019-01-31 2021-10-07 株式会社カネカ 検出装置、学習器、コンピュータプログラム、検出方法及び学習器の生成方法
WO2020158630A1 (ja) * 2019-01-31 2020-08-06 株式会社カネカ 検出装置、学習器、コンピュータプログラム、検出方法及び学習器の生成方法

Similar Documents

Publication Publication Date Title
JP2017102906A (ja) 情報処理装置、情報処理方法及びプログラム
Kuncheva et al. PCA feature extraction for change detection in multidimensional unlabeled data
JP6708385B2 (ja) 識別器作成装置、識別器作成方法、およびプログラム
Tharwat Linear vs. quadratic discriminant analysis classifier: a tutorial
Razavi-Far et al. Similarity-learning information-fusion schemes for missing data imputation
WO2018121690A1 (zh) 对象属性检测、神经网络训练、区域检测方法和装置
US10970650B1 (en) AUC-maximized high-accuracy classifier for imbalanced datasets
JP5214760B2 (ja) 学習装置、方法及びプログラム
US9002101B2 (en) Recognition device, recognition method, and computer program product
US9053393B2 (en) Learning method and apparatus for pattern recognition
US20170147909A1 (en) Information processing apparatus, information processing method, and storage medium
Abdelzad et al. Detecting out-of-distribution inputs in deep neural networks using an early-layer output
JP7058941B2 (ja) 辞書生成装置、辞書生成方法、及びプログラム
US9842279B2 (en) Data processing method for learning discriminator, and data processing apparatus therefor
JP2011013732A (ja) 情報処理装置、情報処理方法、およびプログラム
JP6897749B2 (ja) 学習方法、学習システム、および学習プログラム
JP6584250B2 (ja) 画像分類方法、分類器の構成方法および画像分類装置
JP2012128558A (ja) 識別装置
JP5214679B2 (ja) 学習装置、方法及びプログラム
Jung et al. Uncertainty estimation for multi-view data: The power of seeing the whole picture
JPWO2012032889A1 (ja) 物体識別向けの学習装置、学習システム、学習方法、及び学習プログラム
JP2019215728A (ja) 情報処理装置、情報処理方法及びプログラム
Sowkarthika et al. Data complexity-based dynamic ensembling of svms in classification
Kader et al. Effective workflow for high-performance recognition of fruits using machine learning approaches
Sousa et al. The data replication method for the classification with reject option