JP2017101308A - Production method of melting metal plate steel strip and continuous melting metal plate equipment - Google Patents

Production method of melting metal plate steel strip and continuous melting metal plate equipment Download PDF

Info

Publication number
JP2017101308A
JP2017101308A JP2015237670A JP2015237670A JP2017101308A JP 2017101308 A JP2017101308 A JP 2017101308A JP 2015237670 A JP2015237670 A JP 2015237670A JP 2015237670 A JP2015237670 A JP 2015237670A JP 2017101308 A JP2017101308 A JP 2017101308A
Authority
JP
Japan
Prior art keywords
steel strip
molten metal
gas
per unit
unit length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015237670A
Other languages
Japanese (ja)
Other versions
JP6394578B2 (en
Inventor
優 寺崎
Masaru Terasaki
優 寺崎
高橋 秀行
Hideyuki Takahashi
秀行 高橋
悠祐 安福
Yusuke Yasufuku
悠祐 安福
琢実 小山
Takumi Koyama
琢実 小山
亮一 向
Ryoichi Mukai
亮一 向
裕二 國島
Yuji Kunishima
裕二 國島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015237670A priority Critical patent/JP6394578B2/en
Publication of JP2017101308A publication Critical patent/JP2017101308A/en
Application granted granted Critical
Publication of JP6394578B2 publication Critical patent/JP6394578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a melting metal plate steel strip which significantly suppresses cast wrinkles, and by which a high quality melting metal plate steel is produced with low cost.SOLUTION: In the production method of the melting metal plate steel strip of the invention, when gas is blown to a steel strip P pulled up from a melting metal bath 14 from a pair of gas wiping nozzles 20A and 20B, to adjust a coating amount of the melting metal of both faces of the steel strip P, the number of unevenness per unit length in the long direction of the steel strip of the melting metal surface, which flows down on a surface of the steel strip P under a collision part of the gas and the steel strip P, is measured. On the basis of the measured number of the unevenness per unit length Wand a steel strip speed Lat measuring time, gas wiping condition is feedback controlled.SELECTED DRAWING: Figure 1

Description

本発明は、溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備に関し、特に、鋼帯表面の溶融金属の付着量(以下、「めっき付着量」ともいう。)を調整するガスワイピングに関するものである。   The present invention relates to a method for producing a molten metal-plated steel strip and a continuous molten metal plating facility, and more particularly to gas wiping for adjusting the amount of molten metal deposited on the surface of the steel strip (hereinafter also referred to as “plated deposit”). It is.

連続溶融金属めっきラインでは、図2に示すように、還元雰囲気の連続焼鈍炉で焼鈍された鋼帯Pは、スナウト10内を通過して、めっき槽12内の溶融金属浴14中に連続的に導入される。その後鋼帯Pは、溶融金属浴14中のシンクロール16、サポートロール18を介して溶融金属浴14の上方に引き上げられ、ガスワイピングノズル20A,20Bで所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。ガスワイピングノズル20A,20Bは、めっき槽12上方に、鋼帯Pを挟んで対向して配置され、その噴射口から鋼帯Pの両面に向けてガスを吹き付ける。このガスワイピングにより、余剰な溶融金属が掻き取られて、鋼帯表面のめっき付着量が調整されるとともに、鋼帯表面に付着した溶融金属が板幅方向及び板長手方向で均一化される。ガスワイピングノズル20A,20Bは、多様な鋼帯幅に対応するとともに、鋼帯引き上げ時の幅方向の位置ズレなどに対応するため、通常、鋼帯幅より幅広く構成され、鋼帯の幅方向端部より外側まで延びている。   In the continuous molten metal plating line, as shown in FIG. 2, the steel strip P annealed in a continuous annealing furnace in a reducing atmosphere passes through the snout 10 and continuously into the molten metal bath 14 in the plating tank 12. To be introduced. Thereafter, the steel strip P is pulled up above the molten metal bath 14 via the sink roll 16 and the support roll 18 in the molten metal bath 14, adjusted to a predetermined plating thickness by the gas wiping nozzles 20A and 20B, and then cooled. Then, it is led to the subsequent process. The gas wiping nozzles 20 </ b> A and 20 </ b> B are disposed above the plating tank 12 so as to face each other with the steel strip P interposed therebetween, and spray gas toward both surfaces of the steel strip P from the injection port. By this gas wiping, excess molten metal is scraped off, the amount of plating adhesion on the steel strip surface is adjusted, and the molten metal adhering to the steel strip surface is made uniform in the plate width direction and the plate longitudinal direction. The gas wiping nozzles 20A and 20B are generally configured wider than the steel strip width in order to cope with various steel strip widths and to correspond to positional deviations in the width direction when the steel strip is pulled up. It extends to the outside from the part.

このようなガスワイピング方式では、ガスの吹き付けにより鋼帯が微小振動したり、ワイピング直前の鋼帯上で溶融金属が不規則に流れたりするために、製造された溶融金属めっき鋼帯のめっき表面に波形流紋状の湯ジワ(湯ダレ)が発生しやすい。このような湯ジワが生じためっき鋼板は、外装板の用途において、そのめっき表面を塗装下地表面とした場合に、塗膜の表面性状、特に平滑性を阻害する。そのため、湯ジワが生じためっき鋼板は、外観の優れた塗装処理が求められる外装板に用いることができず、めっき鋼板の歩留まりに大きな影響を及ぼす。   In such a gas wiping method, the steel strip slightly vibrates due to gas blowing, or the molten metal flows irregularly on the steel strip immediately before wiping. Wave wavy ripples are easily generated. The plated steel sheet in which such hot water wrinkles are produced impairs the surface properties, particularly the smoothness, of the coating film when the plating surface is used as the coating base surface in the use of the exterior plate. Therefore, the plated steel sheet in which hot water wrinkles is generated cannot be used for an exterior plate that requires a coating process with an excellent appearance, and has a great influence on the yield of the plated steel sheet.

湯ジワというめっき表面欠陥を抑制する方法としては、以下の方法が知られている。特許文献1には、めっき後の工程である調質圧延に際して、調質圧延ロールの表面性状や圧延条件を変えることで、湯ジワを目立たなくする方法が記載されている。特許文献2には、鋼板を溶融亜鉛めっき浴中に導入する前に、スキンパスミル及びテンションレベラー等を用いて鋼板表面の粗さをめっき付着量に応じて調整して、湯ジワの発生を抑制する方法が記載されている。   The following methods are known as a method for suppressing plating surface defects called hot water wrinkles. Patent Document 1 describes a method of making hot water wrinkles inconspicuous by changing the surface properties and rolling conditions of a temper rolling roll during temper rolling, which is a process after plating. In Patent Document 2, before the steel sheet is introduced into the hot dip galvanizing bath, the surface roughness of the steel sheet is adjusted according to the amount of plating applied using a skin pass mill, a tension leveler, etc. to suppress the generation of hot water wrinkles. How to do is described.

特開2004−27263号公報JP 2004-27263 A 特開昭55−21564号公報JP-A-55-21564

しかしながら、本発明者らが検討したところによれば、特許文献1に示された方法では、軽微な湯ジワは改善されるが、重度の湯ジワに対しては効果が見られなかった。また、特許文献2に示された方法では、溶融亜鉛めっき浴の前工程にスキンパスミル、テンションレベラー等を設置する必要性からコスト的な問題がある。また、これらを設置した場合も、前処理設備及び焼鈍炉での酸洗及び再結晶化に伴う亜鉛めっき被膜の化学的・物理的変化によって、理想とする表面粗度が得られにくく、湯ジワ発生を十分に抑制することが困難であると考えられる。   However, according to a study by the present inventors, the method disclosed in Patent Document 1 improves minor hot water wrinkles, but has no effect on severe hot water wrinkles. In addition, the method disclosed in Patent Document 2 has a problem in terms of cost because it is necessary to install a skin pass mill, a tension leveler, etc. in the pre-process of the hot dip galvanizing bath. In addition, even when these are installed, the ideal surface roughness is difficult to obtain due to chemical and physical changes in the galvanized film accompanying pickling and recrystallization in the pretreatment equipment and annealing furnace. It is considered difficult to sufficiently suppress the occurrence.

そこで本発明は、上記課題に鑑み、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造可能な溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備を提供することを目的とする。   Therefore, in view of the above problems, the present invention provides a method for producing a molten metal plated steel strip and a continuous molten metal plating facility capable of sufficiently suppressing generation of hot water wrinkles and producing a high quality molten metal plated steel strip at low cost. The purpose is to do.

上記課題を解決するべく、本発明者らは、ワイピング前の鋼帯表面を流下している溶融金属表面の凹凸状態に着目した。そして、ワイピング前の鋼帯表面を流下している溶融金属表面の鋼帯長手方向における単位長さ当たりの凹凸数及び鋼帯速度(通板速度)と、その部位にその後発生する湯ジワの程度との間に相関があるとの知見を本発明者らは見出した。   In order to solve the above-mentioned problems, the present inventors paid attention to the uneven state of the molten metal surface flowing down the surface of the steel strip before wiping. And the number of unevenness per unit length in the longitudinal direction of the steel strip on the surface of the molten metal flowing down the surface of the steel strip before wiping, the steel strip speed (sheet feeding speed), and the degree of hot water wrinkles that subsequently occur at that part The present inventors have found that there is a correlation with the above.

上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
(1)溶融金属浴に連続的に鋼帯を浸漬し、
前記溶融金属浴から引き上げられる鋼帯に、該鋼帯を挟んで配置される一対のガスワイピングノズルからガスを吹き付けて、該鋼帯の両面の溶融金属の付着量を調整して、
連続的に溶融金属めっき鋼帯を製造する溶融金属めっき鋼帯の製造方法であって、
前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数を測定し、
測定された単位長さ当たりの凹凸数Wmと、当該測定時の鋼帯速度Lmとに基づいて、ガスワイピング条件をフィードバック制御することを特徴とする溶融金属めっき鋼帯の製造方法。
The gist configuration of the present invention completed based on the above findings is as follows.
(1) A steel strip is continuously immersed in a molten metal bath,
By blowing gas from a pair of gas wiping nozzles placed across the steel strip to the steel strip pulled up from the molten metal bath, adjusting the amount of molten metal deposited on both sides of the steel strip,
A method for producing a molten metal plated steel strip that continuously produces a molten metal plated steel strip,
Measure the number of irregularities per unit length in the steel strip longitudinal direction of the molten metal surface flowing down on the surface of the steel strip below the collision site of the gas and the steel strip,
A method for producing a hot-dip metal-plated steel strip, comprising feedback-controlling gas wiping conditions based on the measured number of irregularities W m per unit length and the steel strip speed L m at the time of the measurement.

(2)前記測定されたWmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値に基づいて、その後、前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数W(m-1)と鋼帯速度L(m/s)との比W/Lが60(s/m2)以下となるように、前記ガスワイピングノズルの操業条件をフィードバック制御する上記(1)に記載の溶融金属めっき鋼帯の製造方法。 (2) Based on the value of the ratio W m / L m between the measured W m and the steel strip speed L m at the time of measurement, the steel on the surface of the molten metal flowing down on the surface of the steel strip The gas wiping so that the ratio W / L of the number of irregularities W (m -1 ) per unit length in the longitudinal direction of the belt and the steel strip speed L (m / s) is 60 (s / m 2 ) or less. The method for producing a molten metal-plated steel strip according to the above (1), wherein the operation condition of the nozzle is feedback controlled.

(3)前記ガスが不活性ガスである上記(1)又は(2)に記載の溶融金属めっき鋼帯の製造方法。   (3) The manufacturing method of the hot-dip metal-plated steel strip according to (1) or (2), wherein the gas is an inert gas.

(4)前記ワイピングノズルの先端から吐出した直後の前記ガスの温度T(℃)が、前記溶融金属の融点TM(℃)との関係で、TM−150≦T≦TM+250を満たすように制御される上記(1)〜(3)のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。 (4) The temperature T (° C.) of the gas immediately after being discharged from the tip of the wiping nozzle satisfies T M −150 ≦ T ≦ T M +250 in relation to the melting point T M (° C.) of the molten metal. The manufacturing method of the hot-dip metal-plated steel strip according to any one of (1) to (3), which is controlled as described above.

(5)前記溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる上記(1)〜(4)のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。   (5) The component of the molten metal contains Al: 1.0 to 10% by mass, Mg: 0.2 to 1% by mass, Ni: 0.005 to 0.1% by mass, and the balance consisting of Zn and inevitable impurities (1) The manufacturing method of the hot-dip metal-plated steel strip as described in any one of-(4).

(6)溶融金属を収容し、溶融金属浴を形成しためっき槽と、
前記溶融金属浴から連続的に引き上げられる鋼帯を挟んで配置され、前記鋼帯に向けてガスを吹き付け、前記鋼帯の両面のめっき付着量を調整する一対のガスワイピングノズルと、
前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数を測定する測定装置と、
前記測定装置により測定された単位長さ当たりの凹凸数Wmと、当該測定時の鋼帯速度Lmとに基づいて、ガスワイピング条件をフィードバック制御する制御装置と、
を有することを特徴とする連続溶融金属めっき設備。
(6) a plating tank containing molten metal and forming a molten metal bath;
A pair of gas wiping nozzles arranged across a steel strip that is continuously pulled up from the molten metal bath, spraying gas toward the steel strip, and adjusting the amount of plating on both sides of the steel strip,
A measuring device for measuring the number of irregularities per unit length in the steel strip longitudinal direction of the molten metal surface flowing down on the surface of the steel strip below the collision site between the gas and the steel strip;
A control device that feedback-controls gas wiping conditions based on the number of irregularities W m per unit length measured by the measuring device and the steel strip speed L m at the time of the measurement;
A continuous molten metal plating facility characterized by comprising:

(7)前記測定装置は、前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面を撮影する撮影装置と、該撮影装置により撮影された画像に基づいて、前記単位長さ当たりの凹凸数を算出する画像処理装置と、を有する上記(6)に記載の連続溶融金属めっき設備。   (7) The measuring device is based on an imaging device that images the surface of the steel strip below the collision site between the gas and the steel strip, and the unit length based on the image captured by the imaging device. The continuous molten metal plating facility according to (6), further comprising: an image processing device that calculates the number of projections and depressions.

本発明の溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備によれば、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造できる。   According to the manufacturing method and continuous molten metal plating equipment of the present invention, the production of hot metal wrinkles can be sufficiently suppressed, and a high quality molten metal plated steel strip can be manufactured at low cost.

本発明の一実施形態による連続溶融金属めっき設備100の構成を示す模式図である。It is a mimetic diagram showing composition of continuous hot metal plating equipment 100 by one embodiment of the present invention. 従来の連続溶融金属めっき設備の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional continuous molten metal plating equipment.

図1を参照して、本発明の一実施形態による溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備100(以下、単に「めっき設備」とも称する。)を説明する。   With reference to FIG. 1, the manufacturing method of the molten metal plating steel strip by one Embodiment of this invention and the continuous molten metal plating equipment 100 (henceforth only a "plating equipment") are demonstrated.

図1を参照して、本実施形態のめっき設備100は、スナウト10と、溶融金属を収容するめっき槽12と、シンクロール16と、サポートロール18とを有する。スナウト10は、鋼帯Pが通過する空間を区画する、鋼帯進行方向に垂直な断面が矩形状の部材であり、その先端は、めっき槽12に形成される溶融金属浴14に浸漬されている。一実施形態において、還元雰囲気の連続焼鈍炉で焼鈍された鋼帯Pは、スナウト10内を通過して、めっき槽12内の溶融金属浴14中に連続的に導入される。その後鋼帯Pは、溶融金属浴14中のシンクロール16、サポートロール18を介して溶融金属浴14の上方に引き上げられ、一対のガスワイピングノズル20A,20Bで所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。   With reference to FIG. 1, a plating facility 100 of the present embodiment includes a snout 10, a plating tank 12 that accommodates molten metal, a sink roll 16, and a support roll 18. The snout 10 is a member having a rectangular cross section perpendicular to the traveling direction of the steel strip that defines a space through which the steel strip P passes, and its tip is immersed in a molten metal bath 14 formed in the plating tank 12. Yes. In one embodiment, the steel strip P annealed in a continuous annealing furnace in a reducing atmosphere passes through the snout 10 and is continuously introduced into the molten metal bath 14 in the plating tank 12. Thereafter, the steel strip P is pulled up above the molten metal bath 14 via the sink roll 16 and the support roll 18 in the molten metal bath 14 and adjusted to a predetermined plating thickness by the pair of gas wiping nozzles 20A and 20B. Then, it is cooled and led to a subsequent process.

一対のガスワイピングノズル20A,20B(以下、単に「ノズル」ともいう。)は、めっき槽12上方に、鋼帯Pを挟んで対向して配置される。ノズル20Aは、鋼帯の板幅方向に延在する噴射口(ノズルスリット)から鋼帯Pに向けてガスを吹き付け、鋼帯の表面のめっき付着量を調整する。他方のノズル20Bも同様であり、これら一対のノズル20A,20Bによって、余剰な溶融金属が掻き取られて、鋼帯Pの両面のめっき付着量が調整され、かつ、板幅方向及び板長手方向で均一化される。噴射口の開口幅(ノズルギャップ)は、特に限定されないが0.5〜2.5mm程度とすることができる。   A pair of gas wiping nozzles 20 </ b> A and 20 </ b> B (hereinafter also simply referred to as “nozzles”) are disposed above the plating tank 12 so as to face each other with the steel strip P interposed therebetween. The nozzle 20A blows gas toward the steel strip P from an injection port (nozzle slit) extending in the plate width direction of the steel strip, and adjusts the amount of plating attached to the surface of the steel strip. The same applies to the other nozzle 20B. The pair of nozzles 20A and 20B scrapes off excess molten metal, adjusts the amount of plating deposited on both surfaces of the steel strip P, and also in the plate width direction and the plate longitudinal direction. It is made uniform with. The opening width (nozzle gap) of the injection port is not particularly limited, but can be about 0.5 to 2.5 mm.

図1を参照して、めっき設備100は、撮影装置22、画像処理装置24及び制御装置26をさらに有する。撮影装置22及び画像処理装置24は、ガスと鋼帯Pとの衝突部位より下部の鋼帯Pの表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数W(m-1)を測定する測定装置として機能する。 With reference to FIG. 1, the plating facility 100 further includes a photographing device 22, an image processing device 24, and a control device 26. The photographing device 22 and the image processing device 24 have the number of irregularities W (per unit length in the longitudinal direction of the steel strip on the surface of the molten metal flowing down on the surface of the steel strip P below the collision site between the gas and the steel strip P. It functions as a measuring device that measures m −1 ).

撮影装置22は、例えばノズル20Aの下方に設けられ、ガスと鋼帯Pとの衝突部位より下部の鋼帯Pの表面を撮影し、その画像データを画像処理装置24へと出力する。撮影装置22の形式は特に限定されない。撮像装置22は、鋼帯Pの表面を動画として連続的に撮影して、撮影した動画データを画像処理装置24へと出力してもよいし、鋼帯Pの表面を静止画として間欠的に、好ましくは定期的に撮影して、撮影した静止画データを画像処理装置24へと出力しても良い。   The imaging device 22 is provided, for example, below the nozzle 20 </ b> A, images the surface of the steel strip P below the collision site between the gas and the steel strip P, and outputs the image data to the image processing device 24. The format of the imaging device 22 is not particularly limited. The imaging device 22 may continuously shoot the surface of the steel strip P as a moving image, and output the captured moving image data to the image processing device 24, or intermittently use the surface of the steel strip P as a still image. Preferably, the images may be taken periodically, and the taken still image data may be output to the image processing device 24.

画像処理装置24は、撮影装置22から入力された画像データに基づいて、溶融金属表面の単位長さ当たりの凹凸数を算出し、算出された単位長さ当たりの凹凸数Wm(m-1)を制御装置26へと出力する。画像処理装置24の形式は、PIV方式やオプティカルフロー方式が挙げられるが、特に限定されない。 The image processing device 24 calculates the number of concavities and convexities per unit length of the molten metal surface based on the image data input from the photographing device 22, and calculates the number of concavities and convexities per unit length W m (m −1 ) To the control device 26. Examples of the format of the image processing device 24 include a PIV method and an optical flow method, but are not particularly limited.

画像データが静止画データの場合には、各静止画データから、各静止画で撮影された鋼帯Pにおける、溶融金属表面の単位長さ当たりの凹凸数Wm(m-1)が算出できる。このようにして、溶融金属表面の単位長さ当たりの凹凸数Wm(m-1)を経時的に求めることができる。 When the image data is still image data, the number of irregularities W m (m −1 ) per unit length of the molten metal surface in the steel strip P photographed with each still image can be calculated from each still image data. . In this way, the number of irregularities W m (m −1 ) per unit length of the molten metal surface can be obtained over time.

画像データが動画データの場合には、その中のある瞬間における鋼帯表面の撮影データから、当該瞬間の溶融金属表面の単位長さ当たりの凹凸数Wm(m-1)が算出できる。このようにして、溶融金属表面の単位長さ当たりの凹凸数Wm(m-1)を経時的に求めることができる。 When the image data is moving image data, the number of irregularities W m (m −1 ) per unit length of the molten metal surface at that moment can be calculated from the photographing data of the steel strip surface at a certain moment. In this way, the number of irregularities W m (m −1 ) per unit length of the molten metal surface can be obtained over time.

このように、「溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数W(m-1)」とは、ワイピング直前の鋼帯表面にある溶融金属表面における、鋼帯の長手方向の単位長さ内にある凹凸の数を意味し、溶融金属表面の凹凸を「波」と解釈した場合の「波数」に相当する概念であり、以下単に「波数」と称する。1組の凹部及び凸部で、凹凸数「1」とカウントする。 Thus, “the number of irregularities per unit length W (m −1 ) of the molten metal surface in the longitudinal direction of the steel strip” means the longitudinal direction of the steel strip on the surface of the molten metal immediately before the wiping. Is a concept corresponding to “wave number” when the unevenness on the surface of the molten metal is interpreted as “wave”, and is simply referred to as “wave number” hereinafter. The number of irregularities is counted as “1” in one set of concave and convex portions.

波数W(m-1)は、鋼帯の溶融金属表面を撮影し、この画像を画像処理解析して算出することができる。具体的には、画像処理装置24が、鋼帯表面を撮影した画像データの明度に対して二値化処理を行うことで、溶融金属表面の凹凸(すなわち、波の濃淡、波の腹と節)を明確化・特定して、鋼帯の長手方向に設定した任意の区間の凹凸数を求め、この凹凸数を前記区間の長さで割ることにより、求めることができる。このとき、撮影時の鋼帯表面への光の当たり方で波の見え方が変わるため、光の照射方向や光量は一定に保つようにする。 The wave number W (m -1 ) can be calculated by photographing the molten metal surface of the steel strip and analyzing this image. Specifically, the image processing device 24 performs binarization processing on the brightness of the image data obtained by photographing the surface of the steel strip, so that the unevenness of the molten metal surface (that is, the density of the waves, the antinodes and the nodes of the waves) ) Is clarified and specified, the number of irregularities in an arbitrary section set in the longitudinal direction of the steel strip is obtained, and the number of irregularities is divided by the length of the section. At this time, since the appearance of the wave changes depending on how the light strikes the steel strip surface at the time of photographing, the light irradiation direction and the light amount are kept constant.

制御装置26では、画像処理装置24から入力された溶融金属表面の波数Wmと、当該測定時の鋼帯速度Lmとに応じて、ワイピング条件を制御する機能を有する。ワイピング条件の制御の詳細は後述する。制御装置26についても形式は特に限定されず、流下している溶融金属の周波数に応じて遅滞なくワイピング条件を変更できればよい。 The control device 26 has a function of controlling wiping conditions according to the wave number W m of the molten metal surface input from the image processing device 24 and the steel strip speed L m at the time of the measurement. Details of the control of the wiping condition will be described later. The type of the control device 26 is not particularly limited as long as the wiping conditions can be changed without delay according to the frequency of the molten metal flowing down.

鋼帯速度L(m/s)は、図示しない測定手段によって常時測定され、測定された速度は制御装置26へと出力される。あるいは、鋼帯速度Lを所定期間一定に設定する場合には、当該速度(設定値)を定数として制御装置26へと出力すればよい。設定値を変更した際には、変更後の速度(設定値)を定数として制御装置26へと出力すればよい。   The steel strip speed L (m / s) is constantly measured by a measuring means (not shown), and the measured speed is output to the control device 26. Alternatively, when the steel strip speed L is set to be constant for a predetermined period, the speed (set value) may be output to the control device 26 as a constant. When the set value is changed, the changed speed (set value) may be output to the control device 26 as a constant.

本発明では、上記波数を測定し、測定された波数Wmと、当該測定時の鋼帯速度Lmとに基づいて、ガスワイピング条件をフィードバック制御することを特徴とする。 In the present invention, the wave number is measured, and the gas wiping condition is feedback controlled based on the measured wave number W m and the steel strip speed L m at the time of the measurement.

本発明者らは、ワイピング前の鋼帯表面を流下している溶融金属表面の鋼帯長手方向の単位長さ当たりの凹凸数(波数)を測定し、前記測定されたWmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値と、当該測定した部位にその後発生する湯ジワの程度との関係を調査した。すると、Wm/Lmが100〜200(s/m2)の場合、この部位のめっき鋼帯表面(ワイピング後、調質圧延前)には多数の湯ジワが発生していた。湯ジワの凹凸の波数に関しても、鋼帯速度で除した場合に100〜200(s/m2)と同程度の値となった。一方、Wm/Lmが60(s/m2)以下の場合、この部位のめっき鋼帯表面には湯ジワがほとんど発生しなかった。そこで一実施形態としては、前記測定されたWmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値に基づいて、その後、鋼帯Pの表面上を流下する溶融金属表面の波数W(m-1)と鋼帯速度L(m/s)との比W/Lが60(s/m2)以下となるように、ガスワイピングノズルの操業条件をフィードバック制御する。 The present inventors have found that irregularities per unit length of the steel strip longitudinal direction of the molten metal surface that flows down the steel strip surface before wiping (wave number) is measured, the measured W m and during the measurement The relationship between the value of the ratio W m / L m to the steel strip speed L m and the degree of hot water wrinkles that subsequently occur at the measured site was investigated. Then, when W m / L m was 100 to 200 (s / m 2 ), a large number of hot water wrinkles occurred on the surface of the plated steel strip (after wiping and before temper rolling) at this part. Regarding the wave number of the unevenness of the hot water wrinkle, when it was divided by the steel strip speed, it became a value similar to 100 to 200 (s / m 2 ). On the other hand, when W m / L m was 60 (s / m 2 ) or less, hot water wrinkles were hardly generated on the surface of the plated steel strip in this part. Therefore, as one embodiment, based on the value of the ratio W m / L m between the measured W m and the steel strip speed L m at the time of measurement, the molten metal subsequently flows down on the surface of the steel strip P. The operating condition of the gas wiping nozzle is feedback controlled so that the ratio W / L between the wave number W (m -1 ) of the surface and the steel strip speed L (m / s) is 60 (s / m 2 ) or less.

湯ジワの発生原因としては、ワイピング前の鋼帯の溶融金属表面の初期凹凸の生成が挙げられる。初期凹凸の生成原因は、(1)ガスの衝突圧力により鋼帯が振動すること、(2)溶融金属の酸化/冷却による粘度ムラの結果、鋼帯上で溶融金属が不規則に流れること、であると考えられる。Wm/Lmが100〜200(s/m2)の場合に、流下している溶融金属のWm/Lmと湯ジワの波数/鋼帯速度とが一致する理由は、流下している溶融金属のWm/Lmは、(1)のガスの圧力による鋼帯の振動を捕らえているためと推定される。 As a cause of generation of hot water wrinkles, there is generation of initial irregularities on the surface of the molten metal of the steel strip before wiping. The causes of the formation of the initial irregularities are (1) the steel strip vibrates due to the gas collision pressure, (2) the molten metal flows irregularly on the steel strip as a result of uneven viscosity due to oxidation / cooling of the molten metal, It is thought that. When W m / L m is 100 to 200 (s / m 2 ), the reason why the flowing W m / L m of the molten metal matches the wave number of the molten metal / the steel strip speed is The W m / L m of the molten metal is estimated to be because the vibration of the steel strip due to the gas pressure of (1) is captured.

溶融金属表面の波数を測定する場合、その測定をする前記任意の区間は、ノズル20Aと浴面との中間に設定することが望ましい。ノズル20Aの直下では、流下する溶融金属の表面凹凸(波)が十分に発達しておらず、測定した波数にバラつきがでてしまう。一方、浴面に近い箇所では、浴から引き上げられる際に鋼帯に付随する溶融金属と流下している溶融金属とが合流するため、流下している溶融金属の表面凹凸(波)が崩れて、同じく測定した波数にばらつきが出てしまう。そのため、ノズル20Aの位置よりも100mm下から、浴面の100mm上までの範囲で凹凸数を測定することが望ましい。   When measuring the wave number of the molten metal surface, it is desirable to set the arbitrary section in which the wave number is measured between the nozzle 20A and the bath surface. Immediately below the nozzle 20A, the surface irregularities (waves) of the molten metal flowing down are not sufficiently developed, and the measured wave number varies. On the other hand, at the location close to the bath surface, the molten metal accompanying the steel strip and the flowing molten metal merge when pulled up from the bath, so the surface irregularities (waves) of the flowing molten metal collapse. Similarly, the measured wave number varies. Therefore, it is desirable to measure the number of irregularities in a range from 100 mm below the position of the nozzle 20 </ b> A to 100 mm above the bath surface.

なお、溶融金属表面の波数の測定方法は、上記画像処理には限定されない。例えば、撮影装置22の位置に、これに替えて設置したレーザー変位計によって、非接触で鋼帯長手方向の波数を測定することもできる。具体的には、溶融金属表面に凹凸があれば、鋼帯がその長手方向に移動する過程で、レーザー変位計により出力される値は周期的に変化する。これを捉えることによって、鋼帯長手方向の任意の区間の凹凸数を測定することができ、この凹凸数を前記区間の長さで割ることにより、波数を求めることができる。   Note that the method for measuring the wave number of the molten metal surface is not limited to the image processing. For example, the wave number in the longitudinal direction of the steel strip can be measured in a non-contact manner by a laser displacement meter installed in place of the photographing device 22 instead. Specifically, if the molten metal surface has irregularities, the value output by the laser displacement meter periodically changes in the process of moving the steel strip in the longitudinal direction. By capturing this, the number of irregularities in an arbitrary section in the longitudinal direction of the steel strip can be measured, and the wave number can be obtained by dividing the number of irregularities by the length of the section.

このようにして算出した波数Wmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値に基づいて、ガスワイピング条件を制御する。「ワイピング条件」は、例えばワイピングガス圧力(ノズルヘッダ圧力)P、ワイピングノズルの先端と鋼帯との距離D、ワイピングノズルの浴面からの高さH、鋼帯表面に対するガスの噴射角度θ、ワイピングガスの温度Tが挙げられる。 The gas wiping condition is controlled based on the value of the ratio W m / L m between the wave number W m calculated in this way and the steel strip speed L m at the time of the measurement. “Wiping conditions” include, for example, a wiping gas pressure (nozzle header pressure) P, a distance D between the tip of the wiping nozzle and the steel strip, a height H from the bath surface of the wiping nozzle, a gas injection angle θ with respect to the steel strip surface, A temperature T of the wiping gas can be mentioned.

具体的には、上記知見に基づいて、前記測定されたWmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値をもとに、その後、鋼帯Pの表面上を流下する溶融金属表面の波数W(m-1)と鋼帯速度L(m/s)との比W/Lが60(s/m2)以下となるように、ガスワイピングノズルの操業条件を制御することが好ましい。すなわち、算出したWm/Lmが60(s/m2)以下の場合には、ガスワイピング条件を変更する必要はなく、算出したWm/Lmが60(s/m2)超えの場合には、W/Lが60(s/m2)以下に戻るように、ガスワイピング条件を変更する。あるいは、W/Lが60(s/m2)超えとなることがないように、60(s/m2)より下に閾値(例えば55(s/m2))を設け、算出したWm/Lmが当該閾値を超えた場合には、W/Lが小さくなる方向に、ガスワイピング条件を変更することも好ましい。 Specifically, based on the above knowledge, based on the value of the ratio W m / L m between the measured W m and the steel strip speed L m at the time of measurement, Operating conditions of the gas wiping nozzle so that the ratio W / L of the wave number W (m -1 ) of the molten metal surface flowing down the steel and the steel strip speed L (m / s) is 60 (s / m 2 ) or less Is preferably controlled. That is, when the calculated W m / L m is 60 (s / m 2 ) or less, there is no need to change the gas wiping condition, and the calculated W m / L m exceeds 60 (s / m 2 ). In this case, the gas wiping conditions are changed so that W / L returns to 60 (s / m 2 ) or less. Alternatively, as W / L is not be a more than 60 (s / m 2), 60 a (s / m 2) than the threshold below (e.g. 55 (s / m 2)) provided the calculated W m If the / L m has exceeded the threshold, in a direction W / L decreases, it is also preferable to change the gas wiping conditions.

溶融金属表面のW/Lは、上記ワイピング条件のみならず、ライン速度Lそのものや、目標のめっき付着量、板厚、浴温、浴組成等、種々の影響を受けて経時的に変化する。このため、本実施形態のように、常に鋼板表面を監視して、ワイピング条件のフィードバック制御をする必要があるのである。   The W / L on the surface of the molten metal changes over time due to various influences such as the line speed L itself, the target plating adhesion amount, the plate thickness, the bath temperature, the bath composition, etc., as well as the above wiping conditions. For this reason, as in this embodiment, it is necessary to always monitor the steel sheet surface and perform feedback control of the wiping conditions.

ここで、操業条件の変更指針の一例を説明する。本実施形態では、ワイピング条件として、ワイピングノズルの先端から吐出した直後の前記ガスの温度T(℃)をフィードバック制御することが好ましい。ガスの温度Tを上げることは、溶融金属表面のW/Lを小さくする方向に影響する。よって、算出したWm/Lmが60(s/m2)超え、又は上記閾値超えの場合には、溶融金属表面のW/Lが60m-1以下となるように、又は小さくなるように、ガスの温度Tを上昇させる。 Here, an example of the operation condition change guideline will be described. In the present embodiment, it is preferable to feedback-control the temperature T (° C.) of the gas immediately after being discharged from the tip of the wiping nozzle as a wiping condition. Increasing the gas temperature T affects the direction of decreasing the W / L of the molten metal surface. Therefore, when the calculated W m / L m exceeds 60 (s / m 2 ) or exceeds the above threshold value, the W / L of the molten metal surface is set to 60 m −1 or less or to be small. The gas temperature T is increased.

また、ワイピングガス圧力P及びワイピングノズルの先端と鋼帯との距離Dを共に小さくすることも、溶融金属表面のW/Lを小さくする方向に影響する。よって、他の実施形態として、算出したWm/Lmが60(s/m2)超え、又は上記閾値超えの場合には、溶融金属表面のW/Lが60m-1以下となるように、又は小さくなるように、圧力P及び距離Dを共に小さくする。この場合、圧力Pを小さくしても、距離Dも小さくするため、付着量を一定にすることもできる。 Further, reducing both the wiping gas pressure P and the distance D between the tip of the wiping nozzle and the steel strip also affects the direction of reducing the W / L of the molten metal surface. Therefore, as another embodiment, when the calculated W m / L m exceeds 60 (s / m 2 ) or exceeds the above threshold, the W / L of the molten metal surface is set to 60 m −1 or less. Alternatively, both the pressure P and the distance D are decreased so as to decrease. In this case, even if the pressure P is reduced, the distance D is also reduced, so that the adhesion amount can be made constant.

また、ワイピングノズルの浴面からの高さHを小さくすること、鋼帯表面に対するガスの噴射角度θを小さくすることも、溶融金属表面のW/Lを小さくする方向に影響するため、さらに他の実施形態として、これらのパラメータをフィードバック制御しても良い。   In addition, reducing the height H from the bath surface of the wiping nozzle and reducing the gas injection angle θ with respect to the steel strip surface also affect the direction of reducing the W / L of the molten metal surface. As an embodiment, these parameters may be feedback controlled.

これらの実施形態の一つを行ってもよいし、複数の実施形態を組み合わせて行ってもよい。また、制御装置内でW/Lではなく「L/W」を算出して、その値が1/60(m2/s)以上となるように、ガスワイピングノズルの操業条件をフィードバック制御することでもよい。 One of these embodiments may be performed, or a plurality of embodiments may be combined. Also, calculate “L / W” instead of W / L in the control device, and feedback control the operating condition of the gas wiping nozzle so that the value becomes 1/60 (m 2 / s) or more. But you can.

ノズル20A,20Bから噴射されるガスは、不活性ガスであることが好ましい。不活性ガスにすることで、鋼帯表面上の溶融金属の酸化を防止できるため、溶融金属の粘度ムラをさらに抑制することができる。不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられるが、これらに限定されるものではない。   The gas injected from the nozzles 20A and 20B is preferably an inert gas. By using an inert gas, oxidation of the molten metal on the surface of the steel strip can be prevented, so that viscosity unevenness of the molten metal can be further suppressed. Examples of the inert gas include, but are not limited to, nitrogen, argon, helium, carbon dioxide and the like.

上記のようなフィードバック制御に加えて、ワイピングノズルの先端から吐出した直後のガスの温度T(℃)は、前記溶融金属の融点TM(℃)との関係で、TM−150≦T≦TM+250を満たすように制御することが好ましい。ガス温度Tを上記範囲で制御すると、溶融金属の冷却及び凝固を抑制できるため、粘度ムラが生じにくくなり、湯ジワの発生を抑制できる。一方、ガス温度TがTM−150℃未満で低すぎると、溶融金属の流動性に影響を及ぼさないため、湯ジワの発生抑制には効果がない。また、ワイピングガスの温度がTM+250℃で高すぎると、合金化が促進して、鋼板の外観が悪化してしまう。 In addition to the feedback control as described above, the temperature T (° C.) of the gas immediately after being discharged from the tip of the wiping nozzle is related to the melting point T M (° C.) of the molten metal, T M −150 ≦ T ≦ It is preferable to control to satisfy T M +250. When the gas temperature T is controlled within the above range, the cooling and solidification of the molten metal can be suppressed, so that viscosity unevenness hardly occurs and the generation of hot water wrinkles can be suppressed. On the other hand, when the gas temperature T is less than T M −150 ° C. and too low, the fluidity of the molten metal is not affected, and thus there is no effect in suppressing the generation of hot water wrinkles. Further, if the temperature of the wiping gas is too high at T M + 250 ° C., alloying is promoted and the appearance of the steel sheet is deteriorated.

溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなることが好ましい。このようにMgが含まれると、溶融金属表面のW/Lが高い場合に、溶融金属の流動性が悪化して湯ジワが発生しやすくなることが確認されている。そのため、溶融金属が上記成分組成を有する場合に、本発明の湯ジワを抑制する効果が顕著に表れる。   The molten metal component preferably contains Al: 1.0 to 10% by mass, Mg: 0.2 to 1% by mass, Ni: 0.005 to 0.1% by mass, and the balance is made of Zn and inevitable impurities. When Mg is contained in this way, it has been confirmed that when the W / L of the molten metal surface is high, the fluidity of the molten metal deteriorates and hot water wrinkles are likely to occur. Therefore, when a molten metal has the said component composition, the effect which suppresses the hot water wrinkle of this invention appears notably.

本発明の製造方法及びめっき設備で製造される溶融金属めっき鋼帯としては、溶融亜鉛めっき鋼板を挙げることができ、これは、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(GI)と、合金化処理を施すめっき鋼板(GA)のいずれも含む。   Examples of the hot-dip galvanized steel strip produced by the production method and plating equipment of the present invention include hot-dip galvanized steel sheets, which are plated steel sheets (GI) that are not subjected to alloying after hot-dip galvanization. Any of the plated steel sheets (GA) subjected to alloying treatment is included.

溶融亜鉛めっき鋼帯の製造ラインにおいて、溶融亜鉛めっき鋼帯の製造試験を行った。各発明例及び比較例で、図1に示すめっき設備を用いた。ガスワイピングノズルは、ノズルギャップが1.2mmのものを使用した。各発明例及び比較例で、ワイピングノズルの浴面からの高さHは350mmで固定し、鋼帯表面に対するガスの噴射角度θは90度(鋼帯面に直角)で固定した。溶融亜鉛めっき浴温度は460℃とした。めっき層の組成、ワイピングノズルの先端と鋼帯との距離D、ワイピングガス圧力P、ガス種、及びワイピングガスの温度Tは、表1に示すものとした。   In the production line for the hot dip galvanized steel strip, a production test for the hot dip galvanized steel strip was conducted. In each invention example and comparative example, the plating equipment shown in FIG. 1 was used. A gas wiping nozzle having a nozzle gap of 1.2 mm was used. In each invention example and comparative example, the height H from the bath surface of the wiping nozzle was fixed at 350 mm, and the gas injection angle θ with respect to the steel strip surface was fixed at 90 degrees (perpendicular to the steel strip surface). The hot dip galvanizing bath temperature was 460 ° C. Table 1 shows the composition of the plating layer, the distance D between the tip of the wiping nozzle and the steel strip, the wiping gas pressure P, the gas type, and the temperature T of the wiping gas.

ガスワイピングノズルへのガス供給方法として、コンプレッサーで所定圧力に加圧したものを供給する方法を採用した。撮影装置としては家庭用ビデオカメラを用い、ノズルの位置よりも150mm下で、浴面から200mmの高さに設置した。画像処理装置はPIV方式を採用した。こうして、板厚1.2mm×板幅1000mmの鋼帯を、鋼帯速度L(ライン速度)2m/sで通板して、溶融亜鉛めっき鋼帯を製造し、その過程で、画像データから、流下している溶融亜鉛表面の長手方向の波数Wを算出した。結果は表1に示す。   As a gas supply method to the gas wiping nozzle, a method of supplying a gas pressurized to a predetermined pressure by a compressor was adopted. A home video camera was used as the photographing device, and was installed 150 mm below the nozzle position and 200 mm above the bath surface. The image processing device adopts the PIV method. In this way, a steel strip having a thickness of 1.2 mm × width of 1000 mm is passed at a steel strip speed L (line speed) of 2 m / s to produce a hot-dip galvanized steel strip. The wave number W in the longitudinal direction of the molten zinc surface was calculated. The results are shown in Table 1.

また、製造された溶融亜鉛めっき鋼帯の外観と、両面の合計めっき付着量を評価した。鋼板の外観評価については、以下の基準で合否を判断した。結果を表1に示す。
×:不合格=目視で大きな湯ジワが確認できる亜鉛めっき鋼板(1.50<Wa)
△:不合格=目視で小さな湯ジワが確認できる亜鉛めっき鋼板(1.0<Wa≦1.50)
○:合格=目視で湯ジワが確認できない美麗な亜鉛めっき鋼板(0.50<Wa≦1.00)
◎:合格=目視で湯ジワが確認できない非常に美麗な亜鉛めっき鋼板(0<Wa≦0.50)
なお、Waは、JIS B0601-2001の規格に基づいて測定した算術平均うねりWa[μm]の値である。
Moreover, the external appearance of the manufactured hot dip galvanized steel strip and the total plating adhesion amount of both surfaces were evaluated. About the external appearance evaluation of the steel plate, the acceptability was judged according to the following criteria. The results are shown in Table 1.
×: Fail = Galvanized steel sheet with large hot water wrinkles visible (1.50 <Wa)
△: Fail = Galvanized steel sheet that can visually confirm small wrinkles (1.0 <Wa ≦ 1.50)
○: Pass = Beautiful galvanized steel sheet with no visible wrinkles (0.50 <Wa ≤ 1.00)
◎: Pass = Very beautiful galvanized steel sheet with no visible wrinkles (0 <Wa ≦ 0.50)
Wa is a value of arithmetic average waviness Wa [μm] measured based on the standard of JIS B0601-2001.

Figure 2017101308
Figure 2017101308

発明例1は、W/Lが60(s/m2)以下となるように、ガス圧力P、距離Dを調整してワイピングしたため、湯ジワが抑制でき、良好な外観が得られた。湯ジワの発生が抑制できた理由としては、ワイピングガスと鋼帯の衝突位置での溶融亜鉛の凹凸を防止できたためと考えられる。 In Invention Example 1, since wiping was performed by adjusting the gas pressure P and the distance D so that W / L was 60 (s / m 2 ) or less, hot water wrinkles could be suppressed and a good appearance was obtained. The reason why the generation of hot water wrinkles could be suppressed is considered to be that the unevenness of the molten zinc at the collision position of the wiping gas and the steel strip could be prevented.

一方、比較例1〜3では、W/Lが60(s/m2)を超えており、湯ジワが発生し、良好な外観が得られなかった。これは、ワイピングガスと鋼帯の衝突位置で、ワイピングガスの衝突圧力の変動が大きくなり、溶融亜鉛の凹凸が大きくなったためだと考えられる。 On the other hand, in Comparative Examples 1 to 3, W / L exceeded 60 (s / m 2 ), hot water wrinkles were generated, and a good appearance was not obtained. This is thought to be because the fluctuation of the collision pressure of the wiping gas increased at the collision position between the wiping gas and the steel strip, and the unevenness of the molten zinc increased.

発明例2では、TM−150≦T≦TM+250を満たすため、発明例1よりもさらに湯ジワが抑制でき、良好な外観が得られた。これは、溶融金属の冷却及び凝固を抑制できるため、鋼帯に付着した溶融亜鉛の粘度ムラを生じず、規則的に流下できたためと考えられる。 In Invention Example 2, since T M −150 ≦ T ≦ T M +250 was satisfied, hot water wrinkles could be further suppressed than in Invention Example 1, and a good appearance was obtained. This is considered to be due to the fact that the molten zinc adhering to the steel strip can be flowed regularly without causing uneven viscosity because it can suppress the cooling and solidification of the molten metal.

発明例3は、発明例2よりもさらにガス温度Tを上昇させたところ、発明例2よりもWaが若干増加した。これはガス温度が高すぎるため、鋼帯表層の亜鉛めっきの合金化が促進されたためと考えられる。   In Invention Example 3, when the gas temperature T was further increased as compared with Invention Example 2, Wa was slightly increased as compared with Invention Example 2. This is thought to be because the alloying of the galvanizing of the steel strip surface layer was promoted because the gas temperature was too high.

発明例4では、ガス種を不活性ガスである窒素にしたため、発明例1と比べてより良好な外観を得られている。   In Invention Example 4, since the gas species was nitrogen, which is an inert gas, a better appearance was obtained compared to Invention Example 1.

また、発明例5及び比較例3では、めっき層の組成を他と異なるものとした。比較例3では比較例1よりも、より大きな湯ジワの発生が確認できた。これは、めっき層成分中のMgが酸化しやすいため、湯ジワが発生しやすくなったと考えられる。発明例5では、W/Lが60(s/m2)以下とすることで、発明例1と同じく湯ジワ欠陥を防止することができた。 In Invention Example 5 and Comparative Example 3, the composition of the plating layer was different from the others. In Comparative Example 3, generation of larger hot water wrinkles than in Comparative Example 1 was confirmed. This is probably because Mg in the plating layer component is easily oxidized, so that hot water wrinkles are easily generated. In Invention Example 5, hot water wrinkle defects could be prevented as in Invention Example 1 by setting W / L to 60 (s / m 2 ) or less.

発明例6では、発明例1よりもさらに溶融亜鉛表面のW/Lを下げ、ガス種を不活性ガスである窒素にし、ガスを適切な温度に調整したため、発明例1と比べてより良好な外観を得られている。   In Invention Example 6, the W / L on the surface of the molten zinc was further lowered than in Invention Example 1, the gas species was changed to nitrogen as an inert gas, and the gas was adjusted to an appropriate temperature. Appearance has been obtained.

以上より、溶融亜鉛表面の波数が60m-1以下の場合に、湯ジワ欠陥防止効果が得られた。溶融金属表面の波数は、ライン速度、目標のめっき付着量、板厚、浴温、浴組成等、種々の影響を受けて経時的に変化する。このため、常に鋼板表面を監視して、常に溶融金属表面の波数が60m-1以下となるように、フィードバック制御をすることが有効であることが理解できる。 From the above, when the wave number on the surface of the molten zinc was 60 m −1 or less, the effect of preventing hot water wrinkle defects was obtained. The wave number on the surface of the molten metal changes over time due to various influences such as line speed, target plating adhesion amount, plate thickness, bath temperature, bath composition and the like. For this reason, it can be understood that it is effective to always monitor the steel plate surface and perform feedback control so that the wave number of the molten metal surface is always 60 m −1 or less.

また、比較例4では、目標のめっき付着量120g/m2に対し、ガス圧力Pを30kPa、距離Dを28mmで操業したが、W/L値が80を超えてしまい、外観不良が発生した。そこで、発明例7の条件(ガス圧力Pを20kPa、距離Dを18mm)に変更したところ、W/Lが60以下になり、同一めっき付着量条件で良好な外観を得ることができた。このため、常に鋼板表面を監視して、W/L値が60以下となるように、フィードバック制御をすることが有効である。 In Comparative Example 4, operation was performed at a gas pressure P of 30 kPa and a distance D of 28 mm with respect to a target plating adhesion amount of 120 g / m 2. However, the W / L value exceeded 80, and appearance defects occurred. . Therefore, when the conditions of Invention Example 7 (the gas pressure P was 20 kPa and the distance D was 18 mm) were changed, the W / L was 60 or less, and a good appearance could be obtained under the same plating coverage conditions. For this reason, it is effective to always monitor the steel plate surface and perform feedback control so that the W / L value is 60 or less.

本発明の溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備によれば、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造できる。   According to the manufacturing method and continuous molten metal plating equipment of the present invention, the production of hot metal wrinkles can be sufficiently suppressed, and a high quality molten metal plated steel strip can be manufactured at low cost.

100 連続溶融金属めっき設備
10 スナウト
12 めっき槽
14 溶融金属浴
16 シンクロール
18 サポートロール
20A,20B ガスワイピングノズル
22 撮影装置
24 画像処理装置
26 制御装置
P 鋼帯
DESCRIPTION OF SYMBOLS 100 Continuous molten metal plating equipment 10 Snout 12 Plating tank 14 Molten metal bath 16 Sink roll 18 Support roll 20A, 20B Gas wiping nozzle 22 Imaging device 24 Image processing device 26 Control device P Steel strip

Claims (7)

溶融金属浴に連続的に鋼帯を浸漬し、
前記溶融金属浴から引き上げられる鋼帯に、該鋼帯を挟んで配置される一対のガスワイピングノズルからガスを吹き付けて、該鋼帯の両面の溶融金属の付着量を調整して、
連続的に溶融金属めっき鋼帯を製造する溶融金属めっき鋼帯の製造方法であって、
前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数を測定し、
測定された単位長さ当たりの凹凸数Wmと、当該測定時の鋼帯速度Lmとに基づいて、ガスワイピング条件をフィードバック制御することを特徴とする溶融金属めっき鋼帯の製造方法。
Immerse the steel strip continuously in the molten metal bath,
By blowing gas from a pair of gas wiping nozzles placed across the steel strip to the steel strip pulled up from the molten metal bath, adjusting the amount of molten metal deposited on both sides of the steel strip,
A method for producing a molten metal plated steel strip that continuously produces a molten metal plated steel strip,
Measure the number of irregularities per unit length in the steel strip longitudinal direction of the molten metal surface flowing down on the surface of the steel strip below the collision site of the gas and the steel strip,
A method for producing a hot-dip metal-plated steel strip, comprising feedback-controlling gas wiping conditions based on the measured number of irregularities W m per unit length and the steel strip speed L m at the time of the measurement.
前記測定されたWmと当該測定時の鋼帯速度Lmとの比Wm/Lmの値に基づいて、その後、前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数W(m-1)と鋼帯速度L(m/s)との比W/Lが60(s/m2)以下となるように、前記ガスワイピングノズルの操業条件をフィードバック制御する請求項1に記載の溶融金属めっき鋼帯の製造方法。 Based on the value of the ratio W m / L m between the measured W m and the steel strip speed L m at the time of measurement, the steel strip longitudinal direction of the molten metal surface flowing down on the surface of the steel strip Operation of the gas wiping nozzle so that the ratio W / L of the number of irregularities W per unit length W (m -1 ) to the steel strip speed L (m / s) is 60 (s / m 2 ) or less. The manufacturing method of the hot-dip metal-plated steel strip according to claim 1, wherein the conditions are feedback-controlled. 前記ガスが不活性ガスである請求項1又は2に記載の溶融金属めっき鋼帯の製造方法。   The method for producing a hot-dip metal-plated steel strip according to claim 1 or 2, wherein the gas is an inert gas. 前記ワイピングノズルの先端から吐出した直後の前記ガスの温度T(℃)が、前記溶融金属の融点TM(℃)との関係で、TM−150≦T≦TM+250を満たすように制御される請求項1〜3のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。 Control is performed so that the temperature T (° C.) of the gas immediately after being discharged from the tip of the wiping nozzle satisfies T M −150 ≦ T ≦ T M +250 in relation to the melting point T M (° C.) of the molten metal. The manufacturing method of the molten metal plating steel strip as described in any one of Claims 1-3. 前記溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる請求項1〜4のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。   The component of the molten metal contains Al: 1.0 to 10% by mass, Mg: 0.2 to 1% by mass, Ni: 0.005 to 0.1% by mass, and the balance is made of Zn and inevitable impurities. A method for producing a hot-dip metal-plated steel strip according to claim 1. 溶融金属を収容し、溶融金属浴を形成しためっき槽と、
前記溶融金属浴から連続的に引き上げられる鋼帯を挟んで配置され、前記鋼帯に向けてガスを吹き付け、前記鋼帯の両面のめっき付着量を調整する一対のガスワイピングノズルと、
前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面上を流下する溶融金属表面の、鋼帯長手方向における単位長さ当たりの凹凸数を測定する測定装置と、
前記測定装置により測定された単位長さ当たりの凹凸数Wmと、当該測定時の鋼帯速度Lmとに基づいて、ガスワイピング条件をフィードバック制御する制御装置と、
を有することを特徴とする連続溶融金属めっき設備。
A plating tank containing molten metal and forming a molten metal bath;
A pair of gas wiping nozzles arranged across a steel strip that is continuously pulled up from the molten metal bath, spraying gas toward the steel strip, and adjusting the amount of plating on both sides of the steel strip,
A measuring device for measuring the number of irregularities per unit length in the steel strip longitudinal direction of the molten metal surface flowing down on the surface of the steel strip below the collision site between the gas and the steel strip;
A control device that feedback-controls gas wiping conditions based on the number of irregularities W m per unit length measured by the measuring device and the steel strip speed L m at the time of the measurement;
A continuous molten metal plating facility characterized by comprising:
前記測定装置は、前記ガスと前記鋼帯との衝突部位より下部の前記鋼帯の表面を撮影する撮影装置と、該撮影装置により撮影された画像に基づいて、前記単位長さ当たりの凹凸数を算出する画像処理装置と、を有する請求項6に記載の連続溶融金属めっき設備。   The measuring device includes an imaging device that images the surface of the steel strip below a collision site between the gas and the steel strip, and the number of irregularities per unit length based on an image captured by the imaging device. The continuous molten metal plating facility according to claim 6, further comprising: an image processing device that calculates
JP2015237670A 2015-12-04 2015-12-04 Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment Active JP6394578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237670A JP6394578B2 (en) 2015-12-04 2015-12-04 Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237670A JP6394578B2 (en) 2015-12-04 2015-12-04 Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment

Publications (2)

Publication Number Publication Date
JP2017101308A true JP2017101308A (en) 2017-06-08
JP6394578B2 JP6394578B2 (en) 2018-09-26

Family

ID=59017920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237670A Active JP6394578B2 (en) 2015-12-04 2015-12-04 Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment

Country Status (1)

Country Link
JP (1) JP6394578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508777A (en) * 2017-12-26 2021-03-11 ポスコPosco Zinc alloy plated steel with excellent surface quality and corrosion resistance and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583959A (en) * 1981-06-29 1983-01-10 Sumitomo Metal Ind Ltd Method and device for controlling weight of hot dip plated zinc in continuous zinc hot dipping
JPH04136146A (en) * 1990-09-25 1992-05-11 Kawasaki Steel Corp Method for measuring position and shape of running strip and apparatus therefor
WO1996026301A1 (en) * 1995-02-24 1996-08-29 Nisshin Steel Co., Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
JPH10298727A (en) * 1997-04-23 1998-11-10 Nkk Corp Vibration and shape controller for steel sheet
JP2009113389A (en) * 2007-11-07 2009-05-28 Jfe Galvanizing & Coating Co Ltd Precoated steel sheet
JP2011080109A (en) * 2009-10-06 2011-04-21 Nippon Steel Corp Nozzle position controlling device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583959A (en) * 1981-06-29 1983-01-10 Sumitomo Metal Ind Ltd Method and device for controlling weight of hot dip plated zinc in continuous zinc hot dipping
JPH04136146A (en) * 1990-09-25 1992-05-11 Kawasaki Steel Corp Method for measuring position and shape of running strip and apparatus therefor
WO1996026301A1 (en) * 1995-02-24 1996-08-29 Nisshin Steel Co., Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
JPH10298727A (en) * 1997-04-23 1998-11-10 Nkk Corp Vibration and shape controller for steel sheet
JP2009113389A (en) * 2007-11-07 2009-05-28 Jfe Galvanizing & Coating Co Ltd Precoated steel sheet
JP2011080109A (en) * 2009-10-06 2011-04-21 Nippon Steel Corp Nozzle position controlling device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508777A (en) * 2017-12-26 2021-03-11 ポスコPosco Zinc alloy plated steel with excellent surface quality and corrosion resistance and its manufacturing method
US11332816B2 (en) 2017-12-26 2022-05-17 Posco Zinc alloy plated steel material having excellent surface quality and corrosion resistance
US11643714B2 (en) 2017-12-26 2023-05-09 Posco Co., Ltd Method for manufacturing zinc alloy plated steel material having excellent surface quality and corrosion resistance

Also Published As

Publication number Publication date
JP6394578B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
AU2020204123B2 (en) Method for manufacturing molten metal plated steel strip and continuous molten metal plating equipment
AU2016252193B2 (en) Apparatus and method for producing hot-dip metal coated steel strip
KR20110064506A (en) Apparatus and method for manufacturing zero spangle zn-al alloy hot-dip plated steel sheet
WO2020039869A1 (en) Method for manufacturing hot-dip metal plated steel strip, and continuous hot-dip metal plating facility
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP6638872B1 (en) Method for producing hot-dip coated steel strip and continuous hot-dip metal plating equipment
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP2007070663A (en) Hot dip metal coated steel strip manufacturing method, and continuous hot dip coating device
JP6772930B2 (en) Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JP6414360B2 (en) Manufacturing method of molten metal plated steel strip
JP2004269930A (en) Method for manufacturing hot dip metal coated steel sheet
JP2016169430A (en) Method for manufacturing hot-dip galvanized steel sheet
JP4835073B2 (en) Manufacturing method of molten metal plated steel strip
JP6870659B2 (en) Gas wiping nozzle for hot metal plating equipment, gas wiping method for hot metal plating, and manufacturing method for hot metal plated steel sheet
JP2006131983A (en) Method of and device for controlling deposition of continuous hot metal dip coating
JP6439755B2 (en) Method for producing galvannealed steel sheet
JP2010156023A (en) Method for manufacturing hot-dip plated steel strip
JP2981412B2 (en) Method and apparatus for manufacturing hot-dip metal-plated steel sheet
JP2004059945A (en) Method for manufacturing steel sheet hot-dipped with multicomponent metal superior in surface quality
JP2007204783A (en) Hot dip plated metal strip manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250