JP2017096435A - Resin helical gear - Google Patents

Resin helical gear Download PDF

Info

Publication number
JP2017096435A
JP2017096435A JP2015230245A JP2015230245A JP2017096435A JP 2017096435 A JP2017096435 A JP 2017096435A JP 2015230245 A JP2015230245 A JP 2015230245A JP 2015230245 A JP2015230245 A JP 2015230245A JP 2017096435 A JP2017096435 A JP 2017096435A
Authority
JP
Japan
Prior art keywords
tooth
helical gear
modification
width direction
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015230245A
Other languages
Japanese (ja)
Other versions
JP6624904B2 (en
Inventor
憲仕 近江
Kenshi Oumi
憲仕 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2015230245A priority Critical patent/JP6624904B2/en
Publication of JP2017096435A publication Critical patent/JP2017096435A/en
Application granted granted Critical
Publication of JP6624904B2 publication Critical patent/JP6624904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin helical gear of superior accuracy in rotation transmission capable of reducing rotation transmission error caused by misalignment of gear shafts.SOLUTION: This invention relates to a resin helical gear 1 having a three-dimensional tooth surface modification part 12 at a tooth surface 11 of a tooth 2 of involute tooth profile. The three-dimensional tooth surface modification part 12 of the tooth surface 11 is a composite surface composed of an addendum modification surface 16, a dedendum modification surface 17 and an arc crowning surface 18. Then, the addendum modification surface 16 has a tooth thickness gradually decreased from a reference pitch circle toward an addendum 13. The dedendum modification surface 17 has a tooth thickness gradually decreased from the reference pitch circle toward the dedendum 14. The arc crowning surface 18 has a tooth thickness gradually decreased from a center in tooth width direction toward both ends in a tooth width direction. An intersection point P0 among a starting position of the addendum modification surface 16, a starting position of the dedendum modification surface 17 and the arc crowning surface 18 is a point on the tooth surface 11 of the tooth 2 of involute tooth profile.SELECTED DRAWING: Figure 1

Description

この発明は、回転伝達に使用される樹脂製はすば歯車に関し、特に歯車軸のミスアライメントに起因する回転伝達誤差の減少を目的として歯形修整が施された樹脂製はすば歯車に関するものである。   The present invention relates to a resin helical gear used for rotation transmission, and more particularly to a resin helical gear whose tooth profile has been modified for the purpose of reducing rotation transmission errors caused by misalignment of gear shafts. is there.

従来から、はすば歯車を使用した動力伝達装置の技術分野において、歯車軸のミスアライメントに起因する回転伝達誤差を減少させる様々な技術が開発されてきた。例えば、はすば歯車は、歯当たりを歯幅中央部に集中させるために、歯すじ方向に適当なふくらみをつけるような加工(クラウニング)を施し、歯車軸のミスアライメントに起因する回転伝達誤差を減少させるようにした技術が知られている(特許文献1、2参照)。   Conventionally, in the technical field of power transmission devices using helical gears, various techniques have been developed to reduce rotation transmission errors caused by gear shaft misalignment. For example, helical gears are processed (crowning) in order to concentrate the tooth contact at the center of the width of the teeth, so that the gears are properly swelled (crowning), and rotation transmission errors due to gear shaft misalignment. There is known a technique for reducing the above (see Patent Documents 1 and 2).

特開平8−197332号公報(特に、段落0001〜0006、図17)JP-A-8-197332 (particularly paragraphs 0001 to 0006, FIG. 17) 特開2014−89483号公報(特に、図5〜6)JP 2014-89483 A (particularly FIGS. 5 to 6)

しかしながら、上記従来のクラウニングを施した樹脂製はすば歯車は、歯車軸のミスアライメントに起因する回転伝達誤差を十分に減少させることができなかった。   However, the above-described conventional resin helical gear subjected to crowning cannot sufficiently reduce the rotation transmission error caused by the misalignment of the gear shaft.

そこで、本発明は、歯車軸のミスアライメントに起因する回転伝達誤差を減少させることができる回転伝達精度の良い樹脂製はすば歯車を提供する。   Accordingly, the present invention provides a resin helical gear with high rotation transmission accuracy that can reduce rotation transmission errors caused by misalignment of gear shafts.

本発明は、インボリュート歯形形状の歯2の歯面11に三次元的歯面修整部分12を有する樹脂製はすば歯車1に関するものである。この発明において、前記歯面11の三次元的歯面修整部分12は、歯先13と歯元14の間の位置から歯先13に向けて歯厚を漸減させる歯先修整面16と、歯先13と歯元14の間の位置から歯元14に向けて歯厚を漸減させる歯元修整面17と、歯幅方向一端と歯幅方向他端の間の位置から前記歯幅方向両端に向けて歯厚を漸減させる円弧クラウニング面18と、の合成面である。そして、前記インボリュート歯形形状の歯2の歯面11は、前記歯先修整面16の開始位置、前記歯元修整面17の開始位置、及び前記円弧クラウニング面18の頂点位置との交点として残っている。   The present invention relates to a resin helical gear 1 having a three-dimensional tooth surface modified portion 12 on a tooth surface 11 of an involute tooth-shaped tooth 2. In the present invention, the three-dimensional tooth surface modification portion 12 of the tooth surface 11 includes a tooth tip modification surface 16 that gradually decreases the tooth thickness from the position between the tooth tip 13 and the tooth root 14 toward the tooth tip 13, and the tooth From the position between the tip 13 and the tooth base 14 toward the tooth base 14, the tooth base modification surface 17, and from the position between one end in the tooth width direction and the other end in the tooth width direction to both ends in the tooth width direction. This is a composite surface with the arc crowning surface 18 that gradually decreases the tooth thickness. The tooth surface 11 of the tooth 2 having the involute tooth shape remains as an intersection of the start position of the tooth tip modification surface 16, the start position of the tooth root modification surface 17, and the vertex position of the arc crowning surface 18. Yes.

本発明に係る樹脂製はすば歯車は、歯形修整を施さない樹脂製はすば歯車と比較し、歯車軸のミスアライメントに起因する回転伝達誤差を減少させ、歯車軸のミスアライメントがあった場合でも回転伝達精度を向上させることができる。   The resin helical gear according to the present invention reduces the rotation transmission error caused by the misalignment of the gear shaft and has the misalignment of the gear shaft, compared with the resin helical gear that is not subjected to tooth profile modification. Even in this case, the rotation transmission accuracy can be improved.

本発明の実施形態に係る樹脂製はすば歯車を示す図であり、図1(a)が樹脂製はすば歯車の正面図、図1(b)が図1(a)のA1−A1線に沿って切断して示す樹脂製はすば歯車の断面図、図1(c)が樹脂製はすば歯車の歯を斜め上方から見て示す斜視図である。It is a figure which shows the resin helical gears which concern on embodiment of this invention, FIG. 1 (a) is a front view of a resin helical gear, FIG.1 (b) is A1-A1 of Fig.1 (a). FIG. 1C is a sectional view of a resin helical gear cut along a line, and FIG. 1C is a perspective view showing the teeth of the resin helical gear as viewed obliquely from above. 歯車軸にミスアライメントが生じた場合の歯の噛み合い状態と、歯車軸にミスアライメントが生じない場合の歯の噛み合い状態とを模式的に示す図である。It is a figure which shows typically the meshing state of the tooth | gear when a misalignment arises in a gear shaft, and the meshing state of a tooth | gear when a misalignment does not arise in a gear shaft. ラック形工具であるホブの刃の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the blade of the hob which is a rack type tool. 図2(a−2)、(b−2)、(c−2)に示した歯の噛み合い状態を設定し、負荷トルクが0.1Nm作用する条件下において、本発明の実施形態に係る樹脂製はすば歯車(本発明品)の回転伝達誤差(かみ合い一次成分)を片歯面噛み合い試験で測定した結果と、無修整はすば歯車の回転伝達誤差(かみ合い一次成分)を片歯面噛み合い試験で測定した結果と、クラウニングを施した樹脂製はすば歯車(比較例)の回転伝達誤差(かみ合い一次成分)を片歯面かみ合い試験で測定した結果と、を対比して示す図である。The resin according to the embodiment of the present invention is set under the condition in which the meshing state of the teeth shown in FIGS. 2 (a-2), (b-2), and (c-2) is set and the load torque acts 0.1 Nm. Rotational transmission error (meshing primary component) of a helical gear manufactured according to the present invention was measured in a single tooth meshing test and rotation transmission error (meshing primary component) of an unmodified helical gear was measured on a single tooth surface. The figure which shows in comparison the result measured by the meshing test and the result of measuring the rotation transmission error (meshing primary component) of the crowned resin helical gear (comparative example) by the single tooth meshing test. is there. 図2(a−2)、(b−2)、(c−2)に示した歯の噛み合い状態を設定し、負荷トルクが0.15Nm作用する条件下において、本発明の実施形態に係る樹脂製はすば歯車(本発明品)の回転伝達誤差(かみ合い一次成分)を片歯面噛み合い試験で測定した結果と、無修整はすば歯車の回転伝達誤差(かみ合い一次成分)を片歯面噛み合い試験で測定した結果と、クラウニングを施した樹脂製はすば歯車(比較例)の回転伝達誤差(かみ合い一次成分)を片歯面かみ合い試験で測定した結果と、を対比して示す図である。The resin according to the embodiment of the present invention is set under the condition where the meshing state of the teeth shown in FIGS. 2 (a-2), (b-2), and (c-2) is set and the load torque acts on 0.15 Nm. Rotational transmission error (meshing primary component) of a helical gear manufactured according to the present invention was measured in a single tooth meshing test and rotation transmission error (meshing primary component) of an unmodified helical gear was measured on a single tooth surface. The figure which shows in comparison the result measured by the meshing test and the result of measuring the rotation transmission error (meshing primary component) of the crowned resin helical gear (comparative example) by the single tooth meshing test. is there. 図6(a)は歯幅が同一のはすば歯車同士のかみ合い状態を示す図であり、図6(b)は図6(a)のかみ合った歯同士を拡大して示す図である。FIG. 6A is a diagram showing the meshing state of helical gears having the same tooth width, and FIG. 6B is a diagram showing the meshed teeth of FIG. 6A in an enlarged manner. 図7(a)は歯幅が異なるはすば歯車同士のかみ合い状態を示す図であり、図7(b)は図7(a)のかみ合った歯同士を拡大して示す図である。FIG. 7A is a diagram showing the meshing state of helical gears having different tooth widths, and FIG. 7B is an enlarged diagram showing the meshed teeth of FIG. 7A. 本発明の樹脂製はすば歯車を備えたトナーカートリッジの側面図である。FIG. 3 is a side view of a toner cartridge including a resin helical gear according to the present invention.

以下、本発明の実施形態を図面に基づき詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る樹脂製はすば歯車1を示す図である。なお、図1(a)は、本実施形態に係る樹脂製はすば歯車1の正面図である。また、図1(b)は、図1(a)のA1−A1線に沿って切断して示す樹脂製はすば歯車1の断面図である。また、図1(c)は、本実施形態に係る樹脂製はすば歯車1の歯2を斜め上方から見て示す斜視図である。   FIG. 1 is a view showing a resin helical gear 1 according to an embodiment of the present invention. FIG. 1A is a front view of the resin helical gear 1 according to the present embodiment. FIG. 1B is a cross-sectional view of the resin helical gear 1 cut along the line A1-A1 in FIG. Moreover, FIG.1 (c) is a perspective view which shows the tooth | gear 2 of the resin helical gear 1 which concerns on this embodiment seeing from diagonally upward.

この図1に示すように、樹脂製はすば歯車1は、軸に嵌合される軸穴3が形成された円筒状のボス4と、このボス4の外周面4aから径方向外方へ延びる円板状のウェブ5と、このウェブ5の外周端に形成された円筒状のリム6と、リム6の外周側に複数形成された歯2と、を有している。また、この樹脂製はすば歯車1は、ボス4の外周面4aとリム6の内周面6aとを接続するウェブ5がボス4の中心軸7に沿った中央部に位置している。また、この樹脂製はすば歯車1は、中心軸7に直交する第1の仮想平面8上に、ボス4の一方の側面4b(図1(b)における左側面)、リム6の一方の側面6b(図1(b)における左側面)、及び歯2の歯幅方向の一端面2a(図1(b)における左側端面)が位置するように形成されている。また、この樹脂製はすば歯車1は、中心軸7に直交し且つ第1の仮想平面8と平行の第2の仮想平面10上に、ボス4の他方の側面4c(図1(b)における右側面)、リム6の他方の側面6c(図1(b)における右側面)、及び歯2の歯幅方向の他端面2b(図1(b)における右側端面)が位置するように形成されている。そして、このような樹脂製はすば歯車1は、ポリアセタール(POM)、ポリアミド(PA)等のプラスチックを使用して形作られている。   As shown in FIG. 1, a resin helical gear 1 includes a cylindrical boss 4 in which a shaft hole 3 fitted to a shaft is formed, and an outer circumferential surface 4a of the boss 4 radially outward. It has an extending disk-shaped web 5, a cylindrical rim 6 formed on the outer peripheral edge of the web 5, and a plurality of teeth 2 formed on the outer peripheral side of the rim 6. Further, in the resin helical gear 1, the web 5 that connects the outer peripheral surface 4 a of the boss 4 and the inner peripheral surface 6 a of the rim 6 is located at the central portion along the central axis 7 of the boss 4. In addition, the resin helical gear 1 has one side surface 4b (left side surface in FIG. 1B) of the boss 4 and one side of the rim 6 on the first virtual plane 8 orthogonal to the central axis 7. The side surface 6b (left side surface in FIG. 1 (b)) and one end surface 2a in the tooth width direction of the tooth 2 (left side end surface in FIG. 1 (b)) are positioned. Also, the resin helical gear 1 is placed on the second imaginary plane 10 orthogonal to the central axis 7 and parallel to the first imaginary plane 8, on the other side surface 4 c of the boss 4 (FIG. 1B). The right side surface of the rim 6, the other side surface 6 c of the rim 6 (the right side surface of FIG. 1B), and the other end surface 2 b of the tooth 2 in the tooth width direction (the right side end surface of FIG. 1B). Has been. Such a helical gear 1 made of resin is formed using a plastic such as polyacetal (POM) or polyamide (PA).

図1(c)に示す樹脂製はすば歯車1の歯2は、インボリュート歯形形状(標準歯形形状)の歯2の両歯面11,11に三次元的歯面修整を施すことによって形成されている。すなわち、本実施形態の樹脂製はすば歯車1において、歯面11の三次元的歯面修整部分12は、歯先13と歯元14の間の歯面11上の位置(基準ピッチ円15上の点P0を通る歯幅方向の線分)L0から歯先13に向けて歯厚を漸減させる歯先修整面16と、歯先13と歯元14の間の歯面11上の位置(基準ピッチ円15上の点P0を通る歯幅方向の線分)L0から歯元14に向けて歯厚を漸減させる歯元修整面17と、歯幅方向一端と歯幅方向他端の間の歯面11上の位置(歯幅方向中央に位置し且つ歯先13から歯元14に向かう歯面11上の線分L1)から前記歯幅方向両端に向けて歯厚を漸減させる円弧クラウニング面18と、の合成面になっている。そして、歯先修整面16の開始位置と、歯元修整面17の開始位置と、円弧クラウニング面18の頂点位置との交点(基準ピッチ円上の点で且つ歯幅方向中央の点P0)は、インボリュート歯形形状の歯2の歯面11上の点である。すなわち、インボリュート歯形形状の歯2の歯面11は、歯先修整面16の開始位置と、歯元修整面17の開始位置と、円弧クラウニング面18の頂点位置との交点P0として残っている。また、この樹脂製はすば歯車1は、歯先修整面16の歯先13における歯形修整量をΔ1とし、歯元修整面17の歯元14における歯形修整量をΔ2とし、円弧クラウニング面18の歯幅方向両端における歯形修整量をΔ3とすると、歯先13で且つ歯幅方向両端における歯形修整量Δ4がΔ1とΔ3の和(Δ1+Δ3)となり、歯元14で且つ歯幅方向両端における歯形修整量Δ5がΔ2とΔ3の和(Δ2+Δ3)となる。なお、この図1(c)に基づく樹脂製はすば歯車1の歯2の説明は、歯2の両歯面11,11が同様に三次元的歯面修整を施されたものであるため、両歯面11,11のうちの一方について詳述し、両歯面11,11のうちの他方については省略した。   The tooth 2 of the helical helical gear 1 shown in FIG. 1 (c) is formed by modifying the tooth surfaces 11 and 11 of the tooth 2 of the involute tooth profile (standard tooth profile) 3D. ing. That is, in the resin helical gear 1 of the present embodiment, the three-dimensional tooth surface modification portion 12 of the tooth surface 11 is positioned on the tooth surface 11 between the tooth tip 13 and the tooth base 14 (reference pitch circle 15 A line segment in the tooth width direction passing through the upper point P0) A tooth tip modification surface 16 that gradually reduces the tooth thickness from L0 toward the tooth tip 13, and a position on the tooth surface 11 between the tooth tip 13 and the tooth root 14 ( A line segment in the tooth width direction passing through the point P0 on the reference pitch circle 15) between the tooth base surface 17 for gradually reducing the tooth thickness from L0 toward the tooth base 14, and between one end in the tooth width direction and the other end in the tooth width direction. An arc crowning surface that gradually decreases the tooth thickness from a position on the tooth surface 11 (a line segment L1 on the tooth surface 11 that is located in the center in the tooth width direction and extends from the tooth tip 13 toward the tooth root 14) toward both ends in the tooth width direction. 18 and a composite surface. The intersection of the start position of the tooth tip modification surface 16, the start position of the tooth root modification surface 17, and the vertex position of the arc crowning surface 18 (a point P0 on the reference pitch circle and in the center in the tooth width direction) is The point on the tooth surface 11 of the tooth 2 having an involute tooth shape. That is, the tooth surface 11 of the involute tooth-shaped tooth 2 remains as the intersection point P 0 between the start position of the tooth tip modification surface 16, the start position of the tooth root modification surface 17, and the vertex position of the arc crowning surface 18. Further, in the resin helical gear 1, the tooth profile modification amount at the tooth tip 13 of the tooth tip modification surface 16 is Δ1, the tooth profile modification amount at the tooth root 14 of the tooth root modification surface 17 is Δ2, and the arc crowning surface 18. When the tooth profile modification amount at both ends in the tooth width direction is Δ3, the tooth shape modification amount Δ4 at the tooth tip 13 and both ends in the tooth width direction is the sum of Δ1 and Δ3 (Δ1 + Δ3), and the tooth profile at the tooth root 14 and at both ends in the tooth width direction is The modification amount Δ5 is the sum of Δ2 and Δ3 (Δ2 + Δ3). The description of the tooth 2 of the resin helical gear 1 based on FIG. 1C is that both tooth surfaces 11 and 11 of the tooth 2 are similarly subjected to three-dimensional tooth surface modification. One of the tooth surfaces 11 and 11 was described in detail, and the other of the tooth surfaces 11 and 11 was omitted.

図2は、歯車軸20,21にミスアライメントが生じた場合の歯22,23の噛み合い状態と、歯車軸20,21にミスアライメントが生じない場合の歯22,23の噛み合い状態とを模式的に示す図である。なお、図2(a−1)は、駆動側はすば歯車24の歯車軸20が被動側はすば歯車25の歯車軸21に対して−θだけずれて組み付けられた状態を示している。そして、図2(a−2)は、図2(a−1)における駆動側はすば歯車24の歯22と被動側はすば歯車25の歯23の噛み合い状態を示している。また、図2(b−1)は、駆動側はすば歯車24の歯車軸20が被動側はすば歯車25の歯車軸21にずれを生じることなく(ミスアライメントを生じることなく)組み付けられた状態を示している。そして、図2(b−2)は、図2(b−1)における駆動側はすば歯車24の歯22と被動側はすば歯車25の歯23の噛み合い状態を示している。また、図2(c−1)は、駆動側はすば歯車24の歯車軸20が被動側はすば歯車25の歯車軸21に対して+θだけずれて組み付けられた状態を示している。そして、図2(c−2)は、図2(c−1)における駆動側はすば歯車24の歯22と被動側はすば歯車25の歯23の噛み合い状態を示している。また、図2(a−1)、図2(b−1)及び図2(c−1)に示す駆動側はすば24と被動側はすば歯車25は、両者の違いを明確にするため、便宜的に駆動側はすば歯車24の歯幅を被動側はすば歯車25の歯幅よりも小さくしてある。   FIG. 2 schematically shows the meshing state of the teeth 22 and 23 when the gear shafts 20 and 21 are misaligned and the meshing state of the teeth 22 and 23 when the gear shafts 20 and 21 are not misaligned. FIG. FIG. 2A-1 shows a state where the gear shaft 20 of the driving-side helical gear 24 is assembled with being shifted by -θ with respect to the gear shaft 21 of the driven-side helical gear 25. . FIG. 2A-2 shows a state where the tooth 22 of the helical gear 24 on the driving side and the tooth 23 of the helical gear 25 on the driven side in FIG. FIG. 2B-1 shows that the gear shaft 20 of the driving-side helical gear 24 is assembled without causing the gear shaft 21 of the driven-side helical gear 25 to shift (without causing misalignment). Shows the state. FIG. 2B-2 shows a state in which the teeth 22 of the helical gear 24 on the driving side and the teeth 23 of the helical gear 25 on the driven side in FIG. FIG. 2C-1 shows a state in which the gear shaft 20 of the driving-side helical gear 24 is assembled with a shift of + θ with respect to the gear shaft 21 of the driven-side helical gear 25. FIG. 2C-2 shows a state where the teeth 22 of the helical gear 24 on the driving side and the teeth 23 of the helical gear 25 on the driven side in FIG. Further, the driving side helical gear 24 and the driven side helical gear 25 shown in FIGS. 2 (a-1), 2 (b-1) and 2 (c-1) clarify the difference between them. Therefore, for convenience, the tooth width of the helical gear 24 on the driving side is made smaller than the tooth width of the helical gear 25 on the driven side.

図3は、ラック形工具であるホブ26の刃27の断面形状を示す図である。この図3に示す刃27を備えたホブ26は、図1に示した樹脂製はすば歯車1の射出成形用金型の放電加工用マスタを創成加工するために使用されるものであり、図中において二点鎖線で示す部分が標準歯形部(インボリュート歯形部)29であり、基準ピッチ円に対応する位置28から刃先30側が歯元修整面形成部31であって、基準ピッチ円に対応する位置28から刃元32側が歯先修整面形成部33である。そして、この図3に示す刃27を備えたホブ26は、歯先30における標準歯形部29と歯元修整面形成部31とのずれ量(Δa)が歯形修整量Δ2及び放電加工間隙等を考慮して決定され、刃元32における標準歯形部29と歯先修整面形成部33とのずれ量(Δb)が歯形修整量Δ1及び放電加工間隙等を考慮して決定される。そして、放電加工用マスタは、図3に示す刃27を備えたホブ26によって、樹脂製はすば歯車1の三次元的歯面修整部分12に対応する部分を含めた全体形状が、樹脂製はすば歯車1と同様の形状に創成加工される。   FIG. 3 is a diagram showing a cross-sectional shape of the blade 27 of the hob 26 that is a rack-shaped tool. The hob 26 provided with the blade 27 shown in FIG. 3 is used for creating an electric discharge master of the injection mold of the resin helical gear 1 shown in FIG. In the drawing, a portion indicated by a two-dot chain line is a standard tooth profile portion (involute tooth profile portion) 29, and a position 28 corresponding to the reference pitch circle from the blade tip 30 side is a tooth base modified surface forming portion 31, corresponding to the reference pitch circle. The tooth tip 32 is on the side of the blade base 32 from the position 28 where it is to be processed. In the hob 26 having the blade 27 shown in FIG. 3, the deviation amount (Δa) between the standard tooth profile portion 29 and the tooth root modification surface forming portion 31 in the tooth tip 30 is the tooth profile modification amount Δ2, the electric discharge machining gap, and the like. The amount of deviation (Δb) between the standard tooth profile portion 29 and the tooth tip modification surface forming portion 33 at the blade base 32 is determined in consideration of the tooth profile modification amount Δ1, the electric discharge machining gap, and the like. Then, the electrical discharge machining master has a resin-made overall shape including a portion corresponding to the three-dimensional tooth surface modification portion 12 of the resin helical gear 1 by the hob 26 provided with the blade 27 shown in FIG. It is created into the same shape as the helical gear 1.

図4は、図2(a−2)、(b−2)、(c−2)に示した歯22,23の噛み合い状態を設定し、負荷トルクが0.1Nm作用する条件下において、本発明の実施形態に係る樹脂製はすば歯車1(本発明品と略称する)の回転伝達誤差としてのかみ合い一次成分を片歯面噛み合い試験で測定した結果と、一般的に使用される歯面修整を施さない樹脂製はすば歯車(無修整はすば歯車)の回転伝達誤差としてのかみ合い一次成分を片歯面噛み合い試験で測定した結果と、クラウニング(クラウニング量20μm)を施した樹脂製はすば歯車(比較例)の回転伝達誤差(かみ合い一次成分)を片歯面かみ合い試験で測定した結果と、を対比して示す図(第1実験結果を示す図)である。この本発明品は、歯先修整面16の歯幅方向中央の歯先13における歯形修整量Δ1が10μmであり、歯元修整面17の歯幅方向中央の歯元14における歯形修整量Δ2が5μmであり、円弧クラウニング面18の歯幅方向両端における歯形修整量Δ3が5μmであり、歯先13で且つ歯幅方向両端における歯形修整量Δ4(Δ4=Δ1+Δ3)が15μmであり、歯元14で且つ歯幅方向両端における歯形修整量Δ5(Δ5=Δ2+Δ3)が10μmである。なお、図4において、横軸が後述する駆動側はすば歯車のねじれ角βを表し、縦軸が回転伝達誤差のうちのかみ合い一次成分(sec)を表している。また、以下の説明において、回転伝達誤差としてのかみ合い一次成分を回転伝達誤差と適宜略称する。   FIG. 4 shows a state where the meshing states of the teeth 22 and 23 shown in FIGS. 2 (a-2), (b-2), and (c-2) are set, and the load torque is 0.1 Nm. Results of measuring primary component of meshing as rotation transmission error of resin helical gear 1 (abbreviated as product of the present invention) according to an embodiment of the present invention in a one-tooth meshing test, and commonly used tooth surfaces Non-modified resin helical gear (unmodified helical gear) meshing primary component as a rotation transmission error measured in a single tooth meshing test, and a resin made crowning (crowning amount 20 μm) It is a figure (figure which shows 1st experiment result) which compares with the result which measured the rotation transmission error (meshing primary component) of the helical gear (comparative example) by the single tooth face meshing test. In the product of the present invention, the tooth profile modification amount Δ1 at the tooth tip 13 at the center of the tooth width direction of the tooth tip modification surface 16 is 10 μm, and the tooth profile modification amount Δ2 at the tooth base 14 at the center of the tooth width direction of the tooth base modification surface 17 is Δ2. The tooth profile modification amount Δ3 at both ends in the tooth width direction of the arc crowning surface 18 is 5 μm, the tooth profile modification amount Δ4 (Δ4 = Δ1 + Δ3) at both ends of the tooth tip 13 in the tooth width direction is 15 μm, and the tooth root 14 The tooth profile modification amount Δ5 (Δ5 = Δ2 + Δ3) at both ends in the tooth width direction is 10 μm. In FIG. 4, the horizontal axis represents the torsion angle β of the helical gear on the drive side, which will be described later, and the vertical axis represents the meshing primary component (sec) of the rotation transmission error. In the following description, the meshing primary component as a rotation transmission error is abbreviated as a rotation transmission error as appropriate.

図5は、図2(a−2)、(b−2)、(c−2)に示した歯22,23の噛み合い状態を設定し、負荷トルクが0.15Nm作用する条件下において、本発明の実施形態に係る樹脂製はすば歯車1(本発明品と略称する)の回転伝達誤差としてのかみ合い一次成分を片歯面噛み合い試験で測定した結果と、一般的に使用される歯面修整を施さない樹脂製はすば歯車(無修整はすば歯車)の回転伝達誤差としてのかみ合い一次成分を片歯面噛み合い試験で測定した結果と、クラウニング(クラウニング量20μm)を施した樹脂製はすば歯車(比較例)の回転伝達誤差(かみ合い一次成分)を片歯面かみ合い試験で測定した結果と、を対比して示す図(第2実験結果を示す図)である。   FIG. 5 shows a state where the meshing states of the teeth 22 and 23 shown in FIGS. 2 (a-2), (b-2), and (c-2) are set, and the load torque is 0.15 Nm. Results of measuring primary component of meshing as rotation transmission error of resin helical gear 1 (abbreviated as product of the present invention) according to an embodiment of the present invention in a one-tooth meshing test, and commonly used tooth surfaces Non-modified resin helical gear (unmodified helical gear) meshing primary component as a rotation transmission error measured in a single tooth meshing test, and a resin made crowning (crowning amount 20 μm) It is a figure (figure which shows a 2nd experimental result) which compares with the result which measured the rotation transmission error (meshing primary component) of the helical gear (comparative example) by the one-tooth surface meshing test.

片歯面噛み合い試験は、株式会社小笠原プレシジョンラボラトリー製の片歯面噛み合い試験機(MEATA−4)を使用して行った。この片歯面噛み合い試験に使用される駆動側はすば歯車24及び被動側はすば歯車25の歯車諸元は、歯数(Z)36、モジュール(m)0.7、圧力角(α)20°、ねじれ角(β)20°、歯幅7mm、並歯となっている。また、歯車軸20,21のアライメント誤差(図2(a)及び図2(c)に示すθ)は、本実施形態に係る樹脂製はすば歯車1が使用される条件を考慮して0.25°と0.5°とした。また、片歯面噛み合い試験は、本実施形態に係る樹脂製はすば歯車1が使用される条件(主に、0.1〜0.15Nmの負荷トルクが作用した状態で使用される)を考慮して、0.1Nm、0.15Nmの負荷トルクを付与して行った。そして、標準歯形(インボリュート歯形)を有する駆動側はすば歯車24は、樹脂(POM(M25相当))製のはすば歯車(無修整はすば歯車)が使用された。また、被動側はすば歯車25は、回転伝達誤差の良否判断の基準となる樹脂(POM(M25相当))製の無修整はすば歯車(図示せず)、クラウニング(クラウニング量20μm)を施した樹脂(POM(M25相当))製はすば歯車(比較例)、本発明品に係る樹脂(POM(M25相当))製はすば歯車1が使用される。なお、片歯面噛み合い試験機は、歯車軸20,21のアライメント誤差を付与できないため(駆動側はすば歯車24の歯車軸20を被動側はすば歯車25の歯車軸21に対して傾けた状態で取り付けることができない構造であるため)、基準の駆動側はすば歯車24(β=20°)を歯22のねじれ角(β)が19.5°(θ=0.5°)と19.75°(θ=0.25°)の駆動側はすば歯車24に代えることにより、図2(a−2)に示す噛み合い状態を構成し、また、基準の駆動側はすば歯車24(β=20°)を歯22のねじれ角(β)が20.25°(θ=0.25°)と20.5°(θ=0.5°)の駆動側はすば歯車24に代えることにより、図2(c−2)に示す噛み合い状態を構成するようになっている。また、片歯面噛み合い試験機は、駆動側はすば歯車24の歯車軸20と被動側はすば歯車25の歯車軸21の試験時の軸間距離が、理論軸間距離にバックラッシ確保のための0.25mmを加えた距離になっている。ここで、POM(M25)は、ポリプラスチックス株式会社製の商品名「ジュラコン」(登録商標)のグレードM25を示している。   The single tooth surface meshing test was performed using a single tooth surface meshing tester (MEATA-4) manufactured by Ogasawara Precision Laboratories. The gear specifications of the driving-side helical gear 24 and the driven-side helical gear 25 used in this one-tooth engagement test are as follows: number of teeth (Z) 36, module (m) 0.7, pressure angle (α ) 20 °, torsion angle (β) 20 °, tooth width 7 mm, parallel teeth. Further, the alignment error (θ shown in FIGS. 2A and 2C) of the gear shafts 20 and 21 is 0 in consideration of the condition in which the resin helical gear 1 according to the present embodiment is used. .25 ° and 0.5 °. In addition, the one-tooth engagement test is performed under conditions in which the resin helical gear 1 according to this embodiment is used (mainly used in a state where a load torque of 0.1 to 0.15 Nm is applied). In consideration, a load torque of 0.1 Nm and 0.15 Nm was applied. A helical gear (unmodified helical gear) made of resin (POM (equivalent to M25)) was used as the driving-side helical gear 24 having a standard tooth profile (involute tooth profile). The driven helical gear 25 is made of an unmodified helical gear (not shown) made of a resin (POM (equivalent to M25)) and a crowning (crowning amount 20 μm), which are used as criteria for judging whether the rotation transmission error is good or bad. A helical gear (comparative example) made of applied resin (POM (equivalent to M25)) and a helical gear 1 made of resin (POM (equivalent to M25)) according to the present invention are used. In addition, since the single-tooth meshing tester cannot give an alignment error between the gear shafts 20 and 21 (the drive side is inclined with respect to the gear shaft 21 of the helical gear 25 and the driven side is inclined with respect to the gear shaft 21 of the helical gear 25). Therefore, the reference drive side has a helical gear 24 (β = 20 °) and the torsion angle (β) of the tooth 22 is 19.5 ° (θ = 0.5 °). And 19.75 ° (θ = 0.25 °) on the driving side is replaced with the helical gear 24 to form the meshing state shown in FIG. 2 (a-2), and the reference driving side is the helical side. The drive side helical gear of the gear 24 (β = 20 °) with the twist angle (β) of the teeth 22 being 20.25 ° (θ = 0.25 °) and 20.5 ° (θ = 0.5 °). By changing to 24, the meshing state shown in FIG. 2 (c-2) is configured. In addition, the single-tooth surface meshing tester ensures that the inter-axis distance during the test of the gear shaft 20 of the helical gear 24 on the driving side and the gear shaft 21 of the helical gear 25 on the driven side is backlash to the theoretical inter-axis distance. For this reason, the distance is 0.25 mm. Here, POM (M25) indicates grade M25 of trade name “Duracon” (registered trademark) manufactured by Polyplastics Co., Ltd.

図4に示す片歯面噛み合い試験の結果(第1実験結果)及び図5に示す片歯面噛み合い試験の結果(第2実験結果)によれば、本発明品は、アライメント誤差が無い状態(駆動側はすば歯車24のねじれ角βが20°の状態)、及びアライメント誤差がある状態(駆動側はすば歯車24のねじれ角βが19.5°、19.75°、20.25°、20.5°の状態)において、回転伝達誤差が無修整はすば歯車よりも小さく、歯形修整の効果が大きく現れている。比較例は、無修整はすば歯車と比較し、アライメント誤差が無い状態(駆動側はすば歯車24のねじれ角βが20°の状態)、及びアライメント誤差がある状態(駆動側はすば歯車24のねじれ角βが19.75°の状態)で回転伝達誤差が大きく(悪く)なっている。したがって、比較例は、無修整はすば歯車によって生じる回転伝達誤差を減少させるために、無修整はすば歯車に代えて使用することができない。   According to the result of the one-tooth contact test shown in FIG. 4 (first experiment result) and the result of the one-tooth contact test shown in FIG. 5 (second experiment result), the product of the present invention has no alignment error ( The driving side is a state in which the helical angle of the helical gear 24 is 20 °), and there is an alignment error (the helical side of the helical gear 24 on the driving side is 19.5 °, 19.75 °, 20.25). In the state of 2 ° and 20.5 °, the rotation transmission error is smaller than that of the helical gear, and the effect of the tooth profile correction is significant. In the comparative example, compared with an unmodified helical gear, there is no alignment error (drive side helical gear 24 has a twist angle β of 20 °), and there is an alignment error (drive side is helical). When the twist angle β of the gear 24 is 19.75 °), the rotation transmission error is large (bad). Accordingly, the comparative example cannot be used in place of the non-modified helical gear in order to reduce the rotation transmission error caused by the non-modified helical gear.

以上の説明から明らかなように、本実施形態に係る樹脂製はすば歯車1(本発明品)は、主に使用される条件下(負荷トルクが0.1〜0.15Nmの場合)において、歯形修整を施さない樹脂製はすば歯車と比較し、歯車軸20,21のミスアライメントに起因する回転伝達誤差を減少させ、歯車軸20,21のミスアライメントがあった場合でも回転伝達精度を向上させることができる。   As is clear from the above description, the resin helical gear 1 according to the present embodiment (the product of the present invention) is mainly used under the conditions (when the load torque is 0.1 to 0.15 Nm). Compared with resin helical gears without tooth profile modification, the rotation transmission error caused by misalignment of the gear shafts 20 and 21 is reduced, and even if there is a misalignment of the gear shafts 20 and 21, the rotation transmission accuracy Can be improved.

なお、本実施形態に係る樹脂製はすば歯車1は、上記実施形態に限定されず、負荷トルクの大きさに応じて、歯先修整面16及び歯元修整面17の開始位置と円弧クラウニング面18の頂点位置とを適宜変更し、歯形修整量Δ1〜Δ3を適宜変更してもよい。   Note that the resin helical gear 1 according to the present embodiment is not limited to the above-described embodiment, and depending on the magnitude of the load torque, the start positions of the tooth tip modification surface 16 and the tooth base modification surface 17 and the arc crowning. The apex position of the surface 18 may be changed as appropriate, and the tooth profile modification amounts Δ1 to Δ3 may be changed as appropriate.

(変形例1)
図6は、上記実施形態に係る駆動側はすば歯車24と被動側はすば歯車25の噛み合い状態を示す図である。なお、図6(a)は歯幅W1が同一のはすば歯車24,25同士のかみ合い状態を示す図であり、図6(b)は図6(a)のかみ合った歯22,23同士を拡大して示す図である。
この図6に示すように、駆動側はすば歯車24の歯22と被動側はすば歯車25(本発明品)の歯23は、歯幅W1が同一に形成されており、クラウニングの頂点位置P1が歯23の歯幅方向中央CL1に位置している。
しかしながら、本発明に係る樹脂製はすば歯車1(被動側はすば歯車25)は、図6に示す実施態様に限定されるものでなく、図7に示すように、2段歯車の小径はすば歯車25aであって、この小径はすば歯車25aが駆動側はすば歯車24と噛み合う構成の場合、小径はすば歯車25aの歯23の歯幅W3と駆動側はすば歯車24の歯22の歯幅W2とが異なる(W3>W2)ため、クラウニングの頂点位置P2が駆動側はすば歯車24と噛み合う有効歯幅W2の中央CL2に位置するように形成される。
(Modification 1)
FIG. 6 is a diagram showing a meshing state of the driving-side helical gear 24 and the driven-side helical gear 25 according to the embodiment. FIG. 6A is a diagram showing the meshing state of helical gears 24 and 25 having the same tooth width W1, and FIG. 6B is a diagram of meshing teeth 22 and 23 of FIG. 6A. It is a figure which expands and shows.
As shown in FIG. 6, the tooth 22 of the helical gear 24 on the driving side and the tooth 23 of the helical gear 25 (product of the present invention) on the driven side are formed to have the same tooth width W1, and the apex of the crowning The position P1 is located at the center CL1 of the tooth 23 in the tooth width direction.
However, the resin helical gear 1 (driven side helical gear 25) according to the present invention is not limited to the embodiment shown in FIG. 6, but as shown in FIG. When the helical gear 25a has a configuration in which the small-diameter helical gear 25a meshes with the driving-side helical gear 24, the small-diameter helical gear 25a has a tooth width W3 of the teeth 23 of the helical gear 25a and the driving-side helical gear. Since the tooth width W2 of the 24 teeth 22 is different (W3> W2), the crowning apex position P2 is formed at the center CL2 of the effective tooth width W2 that meshes with the helical gear 24 on the driving side.

(変形例2)
本実施形態に係る樹脂製はすば歯車1は、歯先修整面16及び歯元修整面17の開始位置が基準ピッチ円15上になっているが、これに限られず、歯先修整面16及び歯元修整面17の開始位置を基準ピッチ円15上から歯先13寄り又は歯元14寄りにずらしても良い。また、本実施形態に係る樹脂製はすば歯車1は、円弧クラウニング面18の頂点位置が歯2の歯幅方向中央になっているが、これに限られず、円弧クラウニング面18の頂点位置を歯2の歯幅方向一端寄り又は歯2の歯幅方向他端寄りにずらしても良い。
(Modification 2)
In the resin helical gear 1 according to the present embodiment, the start positions of the tooth tip modification surface 16 and the tooth root modification surface 17 are on the reference pitch circle 15, but the present invention is not limited to this, and the tooth tip modification surface 16. In addition, the start position of the tooth root modification surface 17 may be shifted from the reference pitch circle 15 toward the tooth tip 13 or the tooth root 14. Further, in the resin helical gear 1 according to the present embodiment, the vertex position of the arc crowning surface 18 is the center of the tooth 2 in the width direction of the tooth 2, but the present invention is not limited to this, and the vertex position of the arc crowning surface 18 is determined. The tooth 2 may be shifted toward one end in the tooth width direction or the other end of the tooth 2 in the tooth width direction.

(応用例)
図8は、本発明に係る樹脂製はすば歯車1が回動可能に取り付けられたトナーカートリッジ34を簡略化して示す図である。この図8に示すトナーカートリッジ34は、画像形成装置35(プリンタ、複写機、ファクシミリ装置、これらの複合機等)に着脱可能に取り付けられるようになっており、画像形成装置本体36内のトナーカートリッジ収容スペース37に収容されると、本発明に係る樹脂製はすば歯車1(25)が画像形成装置本体36側に取り付けられた駆動側はすば歯車24と噛み合い、駆動側はすば歯車24の回転を他の歯車38,40に伝達するようになっている。
なお、本発明に係る樹脂製はすば歯車1は、トナーカートリッジ34に取り付けられる場合に限定されず、画像形成装置35の他の動力伝達部分、自動車部品、精密機械等に広く使用することができる。
(Application examples)
FIG. 8 is a diagram schematically showing the toner cartridge 34 to which the resin helical gear 1 according to the present invention is rotatably attached. The toner cartridge 34 shown in FIG. 8 is detachably attached to an image forming apparatus 35 (a printer, a copier, a facsimile machine, a complex machine thereof, or the like). When housed in the housing space 37, the helical gear 1 (25) made of resin according to the present invention meshes with the helical gear 24 attached to the image forming apparatus main body 36 side, and the helical side gear on the driving side. The rotation of 24 is transmitted to the other gears 38 and 40.
Note that the resin helical gear 1 according to the present invention is not limited to the case of being attached to the toner cartridge 34, and can be widely used in other power transmission parts of the image forming apparatus 35, automobile parts, precision machines, and the like. it can.

1……樹脂製はすば歯車、2……歯、11……歯面、12……三次元的歯面修整部分、13……歯先、14……歯元、16……歯先修整面、17……歯元修整面、18……円弧クラウニング面、P0……点(交点)   1 ... Resin helical gear, 2 ... Tooth, 11 ... Tooth surface, 12 ... Three-dimensional tooth surface modification part, 13 ... Tooth tip, 14 ... Tooth base, 16 ... Tooth tip modification Surface, 17 ... Tooth root modified surface, 18 ... Arc crowning surface, P0 ... Point (intersection)

Claims (5)

インボリュート歯形形状の歯の歯面に三次元的歯面修整部分を有する樹脂製はすば歯車において、
前記歯面の三次元的歯面修整部分は、歯先と歯元の間の位置から歯先に向けて歯厚を漸減させる歯先修整面と、歯先と歯元の間の位置から歯元に向けて歯厚を漸減させる歯元修整面と、歯幅方向一端と歯幅方向他端の間の位置から前記歯幅方向両端に向けて歯厚を漸減させる円弧クラウニング面と、の合成面であり、
前記インボリュート歯形形状の歯の歯面は、前記歯先修整面の開始位置、前記歯元修整面の開始位置、及び前記円弧クラウニング面の頂点位置との交点として残っている、
ことを特徴とする樹脂製はすば歯車。
In a resin helical gear having a three-dimensional tooth surface modification portion on the tooth surface of an involute tooth shape tooth,
The three-dimensional tooth surface modification portion of the tooth surface includes a tooth tip modification surface that gradually decreases the tooth thickness from the position between the tooth tip and the tooth tip toward the tooth tip, and a tooth from the position between the tooth tip and the tooth root. A tooth base modification surface that gradually decreases the tooth thickness toward the base, and an arc crowning surface that gradually decreases the tooth thickness from the position between one end of the tooth width direction and the other end of the tooth width direction toward both ends of the tooth width direction Surface,
The tooth surface of the tooth of the involute tooth shape remains as an intersection of the start position of the tooth tip modification surface, the start position of the root preparation surface, and the vertex position of the arc crowning surface,
This is a plastic helical gear.
前記歯先修整面及び前記歯元修整面の開始位置は基準ピッチ円であり、前記円弧クラウニング面の頂点位置は歯幅方向中央である、
ことを特徴とする請求項1に記載の樹脂製はすば歯車。
The start position of the tooth tip modification surface and the tooth root modification surface is a reference pitch circle, the vertex position of the arc crowning surface is the center in the tooth width direction,
The resin helical gear according to claim 1.
前記歯先修整面の前記歯先における歯形修整量をΔ1とし、
前記歯元修整面の前記歯元における歯形修整量をΔ2とし、
前記円弧クラウニング面の前記歯幅方向両端における歯形修整量をΔ3とすると、
前記歯先で且つ前記歯幅方向両端における歯形修整量Δ4は、Δ1+Δ3となり、
前記歯元で且つ前記歯幅方向両端における歯形修整量Δ5は、Δ2+Δ3となる、
ことを特徴とする請求項2に記載の樹脂製はすば歯車。
A tooth profile modification amount at the tooth tip of the tooth tip modification surface is Δ1,
The tooth profile modification amount at the root of the root modification surface is Δ2,
When the tooth profile modification amount at both ends in the tooth width direction of the arc crowning surface is Δ3,
The tooth profile modification amount Δ4 at both ends of the tooth tip in the tooth width direction is Δ1 + Δ3,
The tooth profile modification amount Δ5 at the tooth root and both ends in the tooth width direction is Δ2 + Δ3.
The resin helical gear according to claim 2.
前記歯先修整面及び前記歯元修整面の開始位置は基準ピッチ円であり、前記円弧クラウニング面の頂点位置は有効歯幅の中央である、
ことを特徴とする請求項1に記載の樹脂製はすば歯車。
The start position of the tooth tip modification surface and the tooth root modification surface is a reference pitch circle, the vertex position of the arc crowning surface is the center of the effective tooth width,
The resin helical gear according to claim 1.
画像形成装置本体側に取り付けられた駆動側はすば歯車と噛み合う被動側はすば歯車を回動可能に有するトナーカートリッジにおいて、
前記被動側はすば歯車は、前記請求項1に記載の樹脂製はすば歯車である、
ことを特徴とするトナーカートリッジ。
In a toner cartridge having a driven side helical gear that is meshed with a helical gear on the driving side attached to the image forming apparatus main body side, and is rotatable.
The driven side helical gear is the resin helical gear according to claim 1,
A toner cartridge.
JP2015230245A 2015-11-26 2015-11-26 Resin helical gear Active JP6624904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230245A JP6624904B2 (en) 2015-11-26 2015-11-26 Resin helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230245A JP6624904B2 (en) 2015-11-26 2015-11-26 Resin helical gear

Publications (2)

Publication Number Publication Date
JP2017096435A true JP2017096435A (en) 2017-06-01
JP6624904B2 JP6624904B2 (en) 2019-12-25

Family

ID=58816613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230245A Active JP6624904B2 (en) 2015-11-26 2015-11-26 Resin helical gear

Country Status (1)

Country Link
JP (1) JP6624904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076205A (en) * 2019-11-12 2021-05-20 株式会社日立ニコトランスミッション Gear device
WO2022045373A1 (en) * 2020-08-31 2022-03-03 キヤノン株式会社 Photoreceptor unit, cartridge, and electrophotographic image forming device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422799A (en) * 1990-05-16 1992-01-27 Daikin Ind Ltd Speed increasing gear for turbo-compressor
JPH1089442A (en) * 1996-09-18 1998-04-07 Kawasaki Heavy Ind Ltd Three-dimensional tooth flank modified helical/double-helical gear
US6289586B1 (en) * 2000-03-17 2001-09-18 Xerox Corporation Manufacturing of half-crowned gear drives for motion quality improvement
JP2008240793A (en) * 2007-03-26 2008-10-09 Enplas Corp Resin-made gear
JP2011221164A (en) * 2010-04-07 2011-11-04 Canon Inc Image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422799A (en) * 1990-05-16 1992-01-27 Daikin Ind Ltd Speed increasing gear for turbo-compressor
JPH1089442A (en) * 1996-09-18 1998-04-07 Kawasaki Heavy Ind Ltd Three-dimensional tooth flank modified helical/double-helical gear
US6289586B1 (en) * 2000-03-17 2001-09-18 Xerox Corporation Manufacturing of half-crowned gear drives for motion quality improvement
JP2008240793A (en) * 2007-03-26 2008-10-09 Enplas Corp Resin-made gear
JP2011221164A (en) * 2010-04-07 2011-11-04 Canon Inc Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076205A (en) * 2019-11-12 2021-05-20 株式会社日立ニコトランスミッション Gear device
WO2022045373A1 (en) * 2020-08-31 2022-03-03 キヤノン株式会社 Photoreceptor unit, cartridge, and electrophotographic image forming device

Also Published As

Publication number Publication date
JP6624904B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6560578B2 (en) Plastic helical gear
JP2016109289A (en) Resin helical gear
US8128528B2 (en) Planetary gear set and method for producing the same
JP2008240793A (en) Resin-made gear
JP2008032161A (en) Conical involute gear and gear pair
JP5005596B2 (en) Spiral bevel gear and gear device
US10253862B2 (en) Dual-type strain wave gearing
US20140090503A1 (en) Gear and manufacturing method for the same
JP6624904B2 (en) Resin helical gear
KR101846691B1 (en) Vehicle differential
JP2013249846A (en) Worm gear mechanism, and electric power steering device equipped with the same
JP6682228B2 (en) Resin helical gear
KR20180018352A (en) Gear assembly and manufacturing method thereof
JP2008101699A (en) Pair of resin double helical gears
JP4697887B2 (en) A pair of plastic helical gears
JP6179047B1 (en) Gear drive
JP2014185666A (en) Differential mechanism
JP4925309B2 (en) Resin gear
JP7435226B2 (en) gear
JP6963481B2 (en) Gear structure and manufacturing method of gear structure
US20220065339A1 (en) Differential gear mechanism and method for designing the same
JP6783639B2 (en) Geared motor
JP6540520B2 (en) Differential final driven gear
JP2017172666A (en) Gear drive device
JP2023169728A (en) transmission gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R150 Certificate of patent or registration of utility model

Ref document number: 6624904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250