JP2017095751A - 金属ナノ粒子の製造装置および製造方法 - Google Patents

金属ナノ粒子の製造装置および製造方法 Download PDF

Info

Publication number
JP2017095751A
JP2017095751A JP2015227658A JP2015227658A JP2017095751A JP 2017095751 A JP2017095751 A JP 2017095751A JP 2015227658 A JP2015227658 A JP 2015227658A JP 2015227658 A JP2015227658 A JP 2015227658A JP 2017095751 A JP2017095751 A JP 2017095751A
Authority
JP
Japan
Prior art keywords
wire
chamber
particle generation
generation chamber
communication path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015227658A
Other languages
English (en)
Other versions
JP6716234B2 (ja
Inventor
修一 赤岩
Shuichi Akaiwa
修一 赤岩
優矢 上嶋
Yuya Ueshima
優矢 上嶋
淳一 野間
Junichi Noma
淳一 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2015227658A priority Critical patent/JP6716234B2/ja
Publication of JP2017095751A publication Critical patent/JP2017095751A/ja
Application granted granted Critical
Publication of JP6716234B2 publication Critical patent/JP6716234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】アークプラズマにより金属を加熱蒸発させることにより金属ナノ粒子を生成する金属ナノ粒子の製造装置において、金属ナノ粒子の原料をチャンバー内に安全かつ効率良く供給すること。【解決手段】アークプラズマにより金属を加熱蒸発させることによって金属ナノ粒子を生成するための粒子生成室2と、粒子生成室2内に熱蒸発される金属となる線材24を送給する線材送給装置5と、線材送給装置5を収容した材料供給室4と、粒子生成室2と材料供給室4とを連通する連通路13と、連通路13を開閉する連通路開閉弁14と、を備える。線材送給装置5は、連通路13を介して粒子生成室2内に線材24を送給する。【選択図】図1

Description

本発明は、アークプラズマによる金属の加熱蒸発と凝縮過程を利用して金属ナノ粒子を生成する技術に関する。特に、金属ナノ粒子を効率的に生成するための技術に関する。
この種の技術は、例えば特許文献1に開示されている。同文献に開示された「プラズマアーク装置」では、微粒子を発生させるチャンバー(14)内に、微粒子の原料となる前駆体物質(12)が挿入される。同文献によれば、この前駆体物質(12)は、直径約0.0625〜2インチ(1.59〜50.8mm)のロッド状のものであり、連続供給されるものとされている。
特許第3383608号公報
上記特許文献1では、ロッド状の前駆体物質がチャンバーに設けられた孔を通してチャンバー内に連続供給されるが、ロッド状の前駆体物質とチャンバーに設けられた孔との隙間を完全にシールすることは容易ではない。このため、当該隙間からチャンバー内のガスが漏出したり、あるいは、当該隙間から酸素を含む空気がチャンバー内に入り込んだりする可能性が高い。したがって、チャンバー内に用いられるガスが、水素などのように燃焼・爆発しやすいものであると、安全性を確保することが困難となる。
本発明は、かかる課題に鑑みて創案されたものであり、所定の雰囲気ガスを充填したチャンバー(粒子生成室)内で、アークプラズマにより金属を加熱蒸発させることにより金属ナノ粒子を生成する金属ナノ粒子の製造装置および製造方法において、金属ナノ粒子を安全に効率良く製造することが可能な金属ナノ粒子の製造装置および製造方法を提供することを目的とする。
本発明に係る金属ナノ粒子の製造装置は、アークプラズマにより金属を加熱蒸発させることによって金属ナノ粒子を生成するための粒子生成室と、前記粒子生成室内に前記加熱蒸発される金属となる線材を送給する線材送給装置と、前記線材送給装置を収容した材料供給室と、前記粒子生成室と前記材料供給室とを連通する連通路と、前記連通路を開閉する連通路開閉装置と、を備え、前記線材送給装置は、前記連通路を介して前記粒子生成室内に前記線材を送給するものである。
かかる構成を備える金属ナノ粒子の製造装置によれば、外と隔離された空間内、つまり、粒子生成室、連通路および材料供給室内で線材が送給されるので、従来例に係る装置のように、線材の送給中に、粒子生成室内の雰囲気ガスが外に漏出したり、外から酸素を含む空気が粒子生成室内に入り込むおそれがない。また、線材供給装置に線材を補充する必要が生じた場合には、連通路を閉鎖することで、粒子生成室内の雰囲気ガスの排出等を行うことなく、線材供給装置に線材を補充することができるので、効率良く金属ナノ粒子を製造することができる。
好ましくは、前記構成を備える金属ナノ粒子の製造装置において、前記材料供給室に、前記線材送給装置に前記線材を補充するための開閉扉が設けられた、ものとする。
かかる構成を備える金属ナノ粒子の製造装置によれば、前記開閉扉により、線材供給装置への線材の補充が容易に行える。
好ましくは、前記構成を備える金属ナノ粒子の製造装置において、前記材料供給室内の気体を排気し、排気した当該気体と別の気体を材料供給室内に給気する給排気装置を備える、ものとする。
かかる構成を備える金属ナノ粒子の製造装置によれば、線材供給装置に線材を補充する際に、給排気装置により、材料供給室内の気体を排気し、例えば、不活性ガス等を材料供給室内に給気することにより、より安全に線材供給装置への線材の補充が行える。
例えば、前記構成を備える金属ナノ粒子の製造装置において、前記線材送給装置は、前記線材が巻き付けられるドラム部と、前記ドラム部から線材を繰り出す線材繰出部と、前記線材繰出部から繰り出される線材を前記粒子生成室内に案内する案内部と、前記案内部が前記連通路に挿通され当該案内部の先端部が前記粒子生成室内に配置される第1位置と、前記案内部が前記連通路の開閉位置よりも前記材料供給室側に配置される第2位置との間で、前記案内部を移動させる移動装置と、を備えるもの、とすることができる。
本発明に係る金属ナノ粒子の製造方法は、アークプラズマにより金属を加熱蒸発させることによって金属ナノ粒子を生成するための粒子生成室と、前記粒子生成室とは別に設けられた別室と、前記粒子生成室と前記別室とを連通する連通路と、前記連通路を開閉する連通路開閉装置と、を備える金属ナノ粒子の製造装置を用いて行うものであって、前記連通路開閉装置により、前記連通路を開状態として、前記別室から前記粒子生成室内に前記加熱蒸発される金属となる線材を送給する線材送給ステップと、前記連通路開閉装置により、前記連通路を閉状態として、前記別室内の気体を排気し、当該室内に不活性ガス又は空気を給気する換気ステップと、を含むものである。
かかる構成を含む金属ナノ粒子の製造方法によれば、外と隔離された空間内、つまり、粒子生成室、連通路および別室内で線材が送給されるので、従来例に係る装置のように、線材の送給中に、粒子生成室内の雰囲気ガスが外に漏出したり、外から酸素を含む空気が粒子生成室内に入り込むおそれがない。また、別室内に線材を補充する必要が生じた場合には、連通路開閉装置により連通路を閉状態し、別室内の気体を排気し、当該室内に不活性ガス又は空気を給気するようにすることで、安全に別室内に線材を補充することができ、しかも、線材の補充に際して粒子生成室内の雰囲気ガスの排出等を行う必要がないので効率良く金属ナノ粒子を製造することができる。
好ましくは、前記構成を含む金属ナノ粒子の製造方法において、前記線材送給ステップにおける線材の送給は、前記別室内に設置された線材送給装置により行われるものであり、前記換気ステップの後、前記別室内の線材送給装置に線材を補充する線材補充ステップをさらに含む、ものとする。
好ましくは、前記構成を含む金属ナノ粒子の製造方法において、前記別室には、前記線材送給装置に前記線材を補充するための開閉扉が設けられており、前記線材補充ステップでは、前記換気ステップの後、前記開閉扉を開けることにより、形成される開口を通じて前記別室内の線材送給装置に線材を補充する、ものとする。
本発明によれば、金属ナノ粒子の原料を粒子生成室内に安全かつ効率良く供給することが可能となり、金属ナノ粒子の量産化が図られる。
本発明の実施形態に係る金属ナノ粒子の製造装置を示す図であって、線材送給装置が第1位置(粒子生成室側の位置)にある状態を示す図である。 本発明の実施形態に係る材料供給室、線材送給装置、連通路等を示す図である。 本発明の実施形態に係る金属ナノ粒子の製造装置を示す図であって、線材送給装置が第2位置(粒子生成室と反対側の位置)にある状態を示す図である。 本発明の実施形態に係る金属ナノ粒子の製造装置および製造方法が実施する処理動作等の手順を示すフローチャートである。
以下、本発明の実施形態に係る金属ナノ粒子の製造装置と、該装置を用いた金属ナノ粒子の製造方法について図面を参照しつつ説明する。図1に示すように、本発明の実施形態に係る金属ナノ粒子の製造装置1は、粒子生成室2、ガス循環装置3、材料供給室4、線材送給装置5等で構成されている。
粒子生成室2は、アークプラズマにより金属を加熱蒸発させることにより金属ナノ粒子を生成するためのものである。この粒子生成室2には、プラズマトーチ7と水冷銅ハース8が設置されており、室2内には、所定の雰囲気ガス(本実施形態では、水素75%とアルゴン25%の混合ガス)が充填される。水冷銅ハース8上には、金属ナノ粒子の原料9が供給される。水冷銅ハース8上の原料9とプラズマトーチ7間には、図示しない直流電源により電圧が印加されてアークプラズマが発生する。このアークプラズマにより原料9が加熱蒸発し、加熱蒸発により発生した金属蒸気が粒子生成室2内で飛散しながら凝縮して金属ナノ粒子となる。なお、粒子生成室2には、同室2内のガスを真空排気し、あるいは、同室2内に上記雰囲気ガス、不活性ガスもしくは低濃度酸素等を給気するための図示しない配管、ポンプ類等が設けられている。
ガス循環装置3は、粒子生成室2に配管16aを介して接続された粒子捕集タンク11と、粒子捕集タンク11と粒子生成室2との間に配管16b,16cを介して接続されたガス循環ポンプ12とで主に構成されている。ガス循環ポンプ12が駆動すると、粒子生成室2内で生成された金属ナノ粒子は、雰囲気ガスとともに配管16aを通じて粒子捕集タンク11に入り、同タンク11内に設けられたフィルタに金属ナノ粒子が捕集される。雰囲気ガスは、フィルタを通過して、粒子生成室2および配管16a〜16c内を循環する。
材料供給室4は、粒子生成室2とは別室として設けられ、粒子生成室2と連通路13を介して連通している。また、材料供給室4内には、後述する線材送給装置5が収容されている。この材料供給室4には、室外から線材送給装置5に線材を補充するための開閉扉17が設けられている。材料供給室4は、開閉扉17を閉とした状態で、内外の気密性が確保されるものであり、また、所定の内外圧差に十分に耐え得る強度を有するものである。図1に例示する材料供給室4およびその内部の線材送給装置5は、線材24を所定角度で供給するために、水平方向に対して斜め状態(図1に示す例では水平方向に対して30°の角度)で設置されている。なお、材料供給室4には、同室4内のガスを真空排気し、同室内に不活性ガス(本実施形態では窒素)を給気し、あるいは、同室内に粒子生成室2の雰囲気ガスと同じガスを給気するための配管、ポンプ類等からなる給排気装置25が設けられている。
連通路13には、当該連通路13を開閉する連通路開閉装置として連通路開閉弁14が設けられている。
線材送給装置5は、図2に示すように、ドラム部18、線材繰出部19、案内部20、移動装置21等で構成されている。
ドラム部18は、基台23上に設置されている。このドラム部18には、線材24が巻き付けられている。線材24の断面の形状および大きさ並びに材質は特に限定されないが、本実施形態では、鉄からなる略円断面の線材が使用されている。
線材繰出部19は、ドラム部18に巻き付けられた線材を繰り出すものであり、ドラム部18とともに、基台23上に設置されている。本実施形態では、線材繰出部19は、設定速度で線材24を繰り出すようになっている。このような線材繰出部19として、例えば、溶接用ワイヤの送給装置(例えば、実開平7−26063号公報、特開平10−324458号公報)や市販されている溶接用ワイヤの送給装置を適用することができる。
案内部20は、線材繰出部19から繰り出される線材24を粒子生成室2内に案内するものであり、材料供給室4から連通路13を通じて粒子生成室2側に突出可能となっている。
図2に例示する案内部20は、金属製の筒体26、ゴム製のチューブ27、金属製のノズル28等で構成されている。筒体26は、一方(図2において左側)が連通路13を形成する管材13aの内径側に、管材13aと同芯を維持した状態でスライド自在に支持され、他方(図2において右側)が基台23上に設けられたブラケット29に支持固定されている。チューブ27は、その基端部に設けられた継手が線材繰出部の支持ブラケット35に支持されている。ノズル28は、チューブ27の先端部に設けられており、その先端から線材24が延出するようになっている。したがって、線材繰出部19により繰り出される線材24は、案内部20の基端より挿入され、案内部20(ノズル28)の先端から延出する。
移動装置21は、基台23および基台23上に搭載された機器類を第1位置31と第2位置32との間で移動させる。移動装置21により、基台23が第1位置31に移動されると、図1に示すように、案内部20は、連通路13に挿通され、その先端部が粒子生成室2内に配置される。また、移動装置21により、基台23が第2位置32に移動されると、図3に示すように、案内部20の先端部は、連通路13の連通路開閉弁の弁***置(連通路13の開閉位置)よりも材料供給室4側に配置される。
図2に例示する移動装置21は、リニアスライダー33とモータ34で主に構成されている。
リニアスライダー33は、材料供給室4内の底面上に平行に配置された2本のリニアガイドレール36と、このリニアガイドレール36上を移動するテーブル40と、モータ34の回転駆動力をテーブル40の推進力に変換するボールねじ37と、で主に構成されている。
モータ34は、シャフト38を介して上記ボールねじ37と接続されている。シャフト38は、材料供給室4の外壁に設けられた軸受ハウジング39内に軸受(不図示)を介して支持されている。軸受ハウジング39とシャフト38との隙間から材料供給室4内のガスが漏出しないように、当該隙間には図示しないシール材が設けられている。なお、モータ34の本体部は、材料供給室4に設けられた筒状のカバー41内に挿入固定されている。
次に、以上に説明した金属ナノ粒子の製造装置1を使用して金属ナノ粒子を製造する際に実施される手順の一例について図4のフローチャートを参照しながら説明する。
先ず、初期状態として、図3に示すように、連通路開閉弁14が連通路13を閉鎖し、線材送給装置5が第2位置32にあり、開閉扉17が閉じており、ドラム部18には予め線材24が十分に巻設されており、線材24の端部側が線材繰出部19を介して案内部20内に挿通されているものとする。なお、線材送給装置5が第2位置32にあることは、図示しない所定の位置センサの出力信号により検出され、その検出に基づく所定手段(例えば所定のランプの点灯等)によって、操作者は線材送給装置5が第2位置32にあることを把握し得るようになっている。
上記初期状態から、粒子生成室2内および材料供給室4内の空気を真空排気し、その後、所定の雰囲気ガス(本実施形態では水素75%とアルゴン25%の混合ガス)を両室2,4に充填する(ST1)。また、このとき、ガス循環ポンプ12の駆動を開始する。
次に、連通路開閉弁14により閉鎖されている連通路13を開放した後(ST2)、移動装置21のモータ34を駆動して線材送給装置5の基台23および基台23上に搭載された機器類(ドラム部18、線材繰出部19、案内部20等)を粒子生成室2側へ移動させる。そして、基台23上に搭載された機器類が図1に示すように、第1位置31に到達すると、それが位置センサ22により検出され、モータ34が自動停止される。この位置では、案内部20は、連通路13内を挿通し、その先端部が粒子生成室2内の水冷銅ハース8の真上乃至その近傍に配される(ST3)。
次に、線材繰出部19を作動させることにより、線材24を案内部20の先端から設定速度で延出させる。また、適宜のタイミングでプラズマトーチ7と水冷銅ハース8との間に直流電圧を印加してプラズマ放電を開始する。これにより、プラズマアークの熱で案内部20の先端から延出した線材24が水冷銅ハース8上に溶け落ちて液状の原料9として供給される(ST4)。
水冷銅ハース8上に供給された液状の原料9は、プラズマアークの熱により加熱蒸発して金属蒸気となり、粒子生成室2内で飛散しながら凝縮して金属ナノ粒子となる。生成された金属ナノ粒子は、ガス循環装置3により、粒子生成室2の底部に設けられた回収孔42に吸引され、配管16aを通じて粒子捕集タンク11内のフィルタにて捕獲回収される。雰囲気ガスは粒子捕集タンク11内のフィルタを通過するため、配管16a〜16cと粒子生成室2内を循環する。
線材24が案内部20(ノズル28)の先端から設定速度で連続供給されている間は、水冷銅ハース8上の原料9が途絶えることはなく、金属ナノ粒子が連続して生成される。
次に、線材送給装置5が保有する線材24の残量が所定量以下になると(ST5:YES)、線材繰出部19は線材24の繰出動作(送給動作)を停止し(ST6)、モータ34が駆動して線材送給装置5の基台23および基台23に搭載された機器類を粒子生成室2から離反する側へ移動する(つまり、線材供給装置5を材料供給室4へ収納する)。そして、最も粒子生成室2から離れた第2位置32に到達すると、それが位置センサ(不図示)により検出され、モータ34が自動停止され(ST7)、その後、連通路開閉弁14により連通路13が閉鎖される(ST8)。なお、線材送給装置5が保有する線材24の残量が所定量以下になったことは、例えば、ドラム部18の線材24の残量を検知するセンサの出力信号により検出され、その検出に基づく所定手段(例えば所定のランプの点灯等)によって、操作者は線材送給装置5が保有する線材24の残量が所定量以下になったことを把握し得るようになっている。
次に、材料供給室4内のガスを真空排気(ガスは操作者等に接することのない所定の安全な場所へ排気される。)して、同室4内に不活性ガスを充填(給気)し(ST9)、同室4の内の気圧を大気圧と一致させる。その後、開閉扉17を開放して、線材24の補充作業を行う(ST10)。具体的には、線材送給装置5に組み込まれているドラム部18を取り外し、線材24が十分に巻設された別のドラム部18を組み込む。そして、新たに組み込んだドラム部18から延び出している線材24の先端部を線材繰出部19にセットして案内部20に挿入した後、開放扉17を閉鎖する。なお、上記ST9において、材料供給室4内に不活性ガスを充填する代わりに空気を充填することも可能である。
次に、材料供給室4内のガスを真空排気して、粒子生成室2の雰囲気ガスと同じガスを同室4内に充填する(ST11)。その後、連通路開閉弁14により、連通路13を開放し(ST12)、移動装置21のモータ34を駆動して線材送給装置5の基台23および基台23に搭載されている機器類を、図1に示すように、再び第1位置31まで移動する(ST13)。
そして、再び、線材繰出部19を作動させることにより、線材24を案内部20の先端から設定速度で延出させる。これにより、再び、プラズマアークの熱で案内部20の先端から延出した線材24が水冷銅ハース8上に溶け落ちて液状の原料9として供給される(ST4)。
以上の説明から明なように、本実施形態に係る金属ナノ粒子の製造装置および製造方法によれば、粒子生成室2内の雰囲気ガスを排出することなく、原料9を供給することができるので、金属ナノ粒子を効率良く生産することができる。
仮に、線材送給装置5および材料供給室4を設けず、従来一般に行われてきたように、粒子生成室内の水冷銅ハースにバルク(原料の塊)を載置して、金属ナノ粒子を生成するようにした場合は、バルクを補充する際に、粒子生成室内の雰囲気ガスの排気、同室内への不活性ガスの充填、粒子生成室内に飛散した金属ナノ粒子の徐酸化処理等を行うことが必要である。更にバルクの補充後には、粒子生成室内のガスを真空排気して、雰囲気ガスを再び充填することが必要である。つまり、従来一般に行われてきた手法では、バルクを補充するために多くの時間と労力を費やす必要があったが、本実施形態によれば、そのような時間と労力を費やす必要がなくなる。
また、本実施形態に係る金属ナノ粒子の製造装置および製造方法によれば、水冷銅ハース8上への原料9(線材24)の供給を停止した時(前記ST6)から、水冷銅ハース8上の原料9が使い尽くされるまでに、再び原料9(線材24)の供給を開始するようにすれば、金属ナノ粒子の完全な連続生産が可能となり、更に効率良く金属ナノ粒子を生産することができる。
また、本実施形態に係る金属ナノ粒子の製造装置および製造方法によれば、外と隔離された空間内(つまり、粒子生成室2、連通路13および材料供給室4内)で線材24を送給するようにしているので、線材24の送給中に、粒子生成室2および材料供給室4内の雰囲気ガスが外に漏れ出したり、外から酸素を含む空気が粒子生成室2および材料供給室4内に入り込むおそれがなく、高い安全性を確保することができる。
<他の実施形態>
既述した実施形態において、図4のフローチャートを参照しながら説明した処理動作等の各ステップは、作業者の手動により実施されるものであってもよいし、制御装置を設けて全自動制御または半自動制御により実施されるものであってもよい。
既述した実施形態においては、線材24が設定速度にて連続的に送給されていたが、水冷銅ハース8上の原料9が尽きないようにすることを前提として、線材24を断続的に送給するようにしてもよい。
本発明は、例えば、アークプラズマによる金属の加熱蒸発と凝縮過程を利用して金属ナノ粒子を生成する装置に適用可能である。
1 金属ナノ粒子の製造装置
2 粒子生成室
4 材料供給室(別室)
5 線材送給装置
9 原料
13 連通路
14 連通路開閉弁(連通路開閉装置)
17 開閉扉
18 ドラム部
19 線材繰出部
20 案内部
21 移動装置
24 線材
31 第1位置
32 第2位置

Claims (7)

  1. アークプラズマにより金属を加熱蒸発させることによって金属ナノ粒子を生成するための粒子生成室と、
    前記粒子生成室内に前記加熱蒸発される金属となる線材を送給する線材送給装置と、
    前記線材送給装置を収容した材料供給室と、
    前記粒子生成室と前記材料供給室とを連通する連通路と、
    前記連通路を開閉する連通路開閉装置と、
    を備え、
    前記線材送給装置は、前記連通路を介して前記粒子生成室内に前記線材を送給するものである、
    ことを特徴とする金属ナノ粒子の製造装置。
  2. 請求項1に記載の金属ナノ粒子の製造装置において、
    前記材料供給室に、前記線材送給装置に前記線材を補充するための開閉扉が設けられた、ことを特徴とする金属ナノ粒子の製造装置。
  3. 請求項1又は2に記載の金属ナノ粒子の製造装置において、
    前記材料供給室内の気体を排気し、排気した当該気体と別の気体を材料供給室内に給気する給排気装置を備える、
    ことを特徴とする金属ナノ粒子の製造装置。
  4. 請求項1〜3の何れか1項に記載の金属ナノ粒子の製造装置において、
    前記線材送給装置は、
    前記線材が巻き付けられるドラム部と、
    前記ドラム部から線材を繰り出す線材繰出部と、
    前記線材繰出部から繰り出される線材を前記粒子生成室内に案内する案内部と、
    前記案内部が前記連通路に挿通され当該案内部の先端部が前記粒子生成室内に配置される第1位置と、前記案内部が前記連通路の開閉位置よりも前記材料供給室側に配置される第2位置との間で、前記案内部を移動させる移動装置と、
    を備えることを特徴とする金属ナノ粒子の製造装置。
  5. アークプラズマにより金属を加熱蒸発させることによって金属ナノ粒子を生成するための粒子生成室と、
    前記粒子生成室とは別に設けられた別室と、
    前記粒子生成室と前記別室とを連通する連通路と、
    前記連通路を開閉する連通路開閉装置と、
    を備える金属ナノ粒子の製造装置を用いて行う金属ナノ粒子の製造方法であって、
    前記連通路開閉装置により、前記連通路を開状態として、前記別室から前記粒子生成室内に前記加熱蒸発される金属となる線材を送給する線材送給ステップと、
    前記連通路開閉装置により、前記連通路を閉状態として、前記別室内の気体を排気し、当該室内に不活性ガス又は空気を給気する換気ステップと、
    を含む、ことを特徴とする金属ナノ粒子の製造方法。
  6. 請求項5に記載の金属ナノ粒子の製造方法において、
    前記線材送給ステップにおける線材の送給は、前記別室内に設置された線材送給装置により行われるものであり、
    前記換気ステップの後、前記別室内の線材送給装置に線材を補充する線材補充ステップをさらに含む、
    ことを特徴とする金属ナノ粒子の製造方法。
  7. 請求項6に記載の金属ナノ粒子の製造方法において、
    前記別室には、前記線材送給装置に前記線材を補充するための開閉扉が設けられており、
    前記線材補充ステップでは、前記換気ステップの後、前記開閉扉を開けることにより、形成される開口を通じて前記別室内の線材送給装置に線材を補充する、ことを特徴とする金属ナノ粒子の製造方法。
JP2015227658A 2015-11-20 2015-11-20 金属ナノ粒子の製造装置および製造方法 Active JP6716234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015227658A JP6716234B2 (ja) 2015-11-20 2015-11-20 金属ナノ粒子の製造装置および製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227658A JP6716234B2 (ja) 2015-11-20 2015-11-20 金属ナノ粒子の製造装置および製造方法

Publications (2)

Publication Number Publication Date
JP2017095751A true JP2017095751A (ja) 2017-06-01
JP6716234B2 JP6716234B2 (ja) 2020-07-01

Family

ID=58816927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227658A Active JP6716234B2 (ja) 2015-11-20 2015-11-20 金属ナノ粒子の製造装置および製造方法

Country Status (1)

Country Link
JP (1) JP6716234B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465825B1 (ko) * 2022-09-06 2022-11-09 이용복 열플라즈마를 이용한 금속분말 제조장치 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558304A (en) * 1979-03-19 1980-05-01 Mitsubishi Electric Corp Producing device of metal powder
JPS62103307A (ja) * 1985-10-30 1987-05-13 Hitachi Ltd 超微粒子の製造装置
JP2001150133A (ja) * 1999-11-22 2001-06-05 Matsushita Electric Ind Co Ltd 溶接用ワイヤ送給装置
JP2001181711A (ja) * 1999-12-17 2001-07-03 Murata Mfg Co Ltd 金属微粒子の製造方法および製造装置
JP2003522299A (ja) * 2000-02-10 2003-07-22 テトロニクス リミテッド 微細粉末を製造するためのプラズマアーク反応器
JP2010018825A (ja) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency 金属粒子の製造方法および製造装置、並びに製造された金属粒子
JP2010099710A (ja) * 2008-10-24 2010-05-06 Ihi Corp 溶接ワイヤ送給装置及びレーザ・アークハイブリッド溶接装置
JP2014186943A (ja) * 2013-03-25 2014-10-02 Hitachi High-Tech Science Corp 集束イオンビーム装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558304A (en) * 1979-03-19 1980-05-01 Mitsubishi Electric Corp Producing device of metal powder
JPS62103307A (ja) * 1985-10-30 1987-05-13 Hitachi Ltd 超微粒子の製造装置
JP2001150133A (ja) * 1999-11-22 2001-06-05 Matsushita Electric Ind Co Ltd 溶接用ワイヤ送給装置
JP2001181711A (ja) * 1999-12-17 2001-07-03 Murata Mfg Co Ltd 金属微粒子の製造方法および製造装置
JP2003522299A (ja) * 2000-02-10 2003-07-22 テトロニクス リミテッド 微細粉末を製造するためのプラズマアーク反応器
JP2010018825A (ja) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency 金属粒子の製造方法および製造装置、並びに製造された金属粒子
JP2010099710A (ja) * 2008-10-24 2010-05-06 Ihi Corp 溶接ワイヤ送給装置及びレーザ・アークハイブリッド溶接装置
JP2014186943A (ja) * 2013-03-25 2014-10-02 Hitachi High-Tech Science Corp 集束イオンビーム装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465825B1 (ko) * 2022-09-06 2022-11-09 이용복 열플라즈마를 이용한 금속분말 제조장치 및 그 제조방법

Also Published As

Publication number Publication date
JP6716234B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
US8901465B2 (en) Bonding method and apparatus therefor
WO2013001827A1 (ja) 加熱装置、真空加熱方法及び薄膜製造方法
JP6716234B2 (ja) 金属ナノ粒子の製造装置および製造方法
US10538842B2 (en) Deposition device having cooler with lifting mechanism
KR102268148B1 (ko) 수소 발생 시스템, 발전 시스템, 수소 발생 방법, 및, 발전 방법
TW569271B (en) Operation method of ion source and ion beam irradiation apparatus
JP2022173300A (ja) 粉末供給装置、溶射装置、粉末供給方法及び溶射方法
TWI500469B (zh) 鎖螺絲機
JP5687755B1 (ja) 半田付け装置及び接合部材の製造方法
JP2007063615A (ja) リチウムまたはリチウム合金薄膜の形成方法
CN209702843U (zh) 电子束蒸发式真空镀膜机
EP4088846A1 (en) Deoxidized member production method and deoxidizing device
JP2000271730A5 (ja)
CN105382077B (zh) 全自动气动胀管机构
CN110272049B (zh) 空心硅芯的制备方法和制备装置
CN209664712U (zh) 一种蒸汽发生器传热管缩管设备
US20170333806A1 (en) System and method for evaporating a metal
CN114941062B (zh) 一种大圆机织针真空淬火方法及装置
CN219079626U (zh) 一种等离子喷涂送粉机构
US20240103371A1 (en) Photo treatment device
JP7120544B2 (ja) 金属原子だけからなる金属材料の沸点よりも高い沸点を有した金属原子を含む化合物をプラズマで処理して化合物と異なる生成物を得る製造方法、及び、製造装置
KR101939596B1 (ko) 자동화 주조시스템의 탄소 공급 장치 및 방법
JPH0785991A (ja) 監視手段を備えた高周波誘導熱プラズマ装置
KR20180040830A (ko) 서브머지드 아크 용접용 보조 장치 및 이를 포함하는 서브머지드 아크 용접 장치
WO2020235379A1 (ja) 粉末カートリッジ及び粉末供給方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250