JP2017078699A - Residual stress evaluation method - Google Patents

Residual stress evaluation method Download PDF

Info

Publication number
JP2017078699A
JP2017078699A JP2015208080A JP2015208080A JP2017078699A JP 2017078699 A JP2017078699 A JP 2017078699A JP 2015208080 A JP2015208080 A JP 2015208080A JP 2015208080 A JP2015208080 A JP 2015208080A JP 2017078699 A JP2017078699 A JP 2017078699A
Authority
JP
Japan
Prior art keywords
wave
residual stress
propagation
surface layer
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015208080A
Other languages
Japanese (ja)
Other versions
JP6529887B2 (en
Inventor
利英 福井
Toshihide Fukui
利英 福井
弘行 高枩
Hiroyuki Takamoku
弘行 高枩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015208080A priority Critical patent/JP6529887B2/en
Publication of JP2017078699A publication Critical patent/JP2017078699A/en
Application granted granted Critical
Publication of JP6529887B2 publication Critical patent/JP6529887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a residual stress of a surface layer of an inspected object with high accuracy even when residual stresses are present ununiformly distributed in a depth direction of the inspected object.SOLUTION: A residual stress evaluation method according to the invention evaluates residual stresses on a surface layer of an inspected object W based on propagation time of a supersonic wave propagating on the surface layer of the inspected object W. The method includes: a transmitting step of exciting two kinds of supersonic waves to the surface layer of the inspected object W; a receiving step of receiving the two kind of supersonic waves propagating on the surface layer of the inspected object W; a propagation time calculation step of calculating propagation time of the two kinds of supersonic waves received by the receiving step; and an evaluation step of evaluating residual stresses present on the surface layer of the inspected object W based on correction propagation time of the two kinds of supersonic waves calculated by the propagation time calculation step. The transmitting step sets the frequency of at least one of the two kinds of supersonic waves to be variable, and the positions of propagation paths of the two kinds of supersonic waves in a depth direction to be substantially equal to each other.SELECTED DRAWING: Figure 4

Description

本発明は、金属材料などの被検査体の表層に存在する残留応力を、当該被検査体の表層を伝搬する超音波の音速値(伝搬時間)に基づいて評価する残留応力評価方法に関する。   The present invention relates to a residual stress evaluation method for evaluating a residual stress existing on a surface layer of an object to be inspected such as a metal material based on a sound velocity value (propagation time) of an ultrasonic wave propagating through the surface layer of the object to be inspected.

各種機械部品や構造体の非破壊での残留応力の測定は、これら部品や構造体の劣化診断等において極めて重要である。従来から、非破壊での残留応力の測定(評価)には、主にX線回折法が用いられているが、X線回折法では、測定対象である被検査体の表層のうち極めて浅い領域(〜数μm)しか評価できないといった制約がある。
そこで、これら制約や懸念を解消可能な超音波を用いた残留応力評価手段(音弾性法)として、特許文献1,2に開示される超音波式応力測定装置及び超音波式応力測定方法が提案されている。
Measurement of non-destructive residual stresses of various machine parts and structures is extremely important for deterioration diagnosis of these parts and structures. Conventionally, the X-ray diffraction method has been mainly used for the measurement (evaluation) of non-destructive residual stress. However, in the X-ray diffraction method, an extremely shallow region of the surface layer of the object to be inspected is used. There is a restriction that only (˜several μm) can be evaluated.
Therefore, ultrasonic stress measuring devices and ultrasonic stress measuring methods disclosed in Patent Documents 1 and 2 are proposed as residual stress evaluation means (acoustic elasticity method) using ultrasonic waves that can eliminate these restrictions and concerns. Has been.

特許文献1に開示の超音波式応力測定装置は、応力測定対象材料の内部を、縦波超音波と、振動方向が互いに直交する2つの横波超音波とが伝搬した際に得られる超音波データを用いて、前記応力測定対象材料の残留応力の解析を行う超音波式応力測定装置であって、前記縦波超音波を送受信する縦波探触子P0を中心に配設し、この縦波探触子P0の水平方向両側に振動方向が水平方向である横波超音波を送受信する第1及び第2の水平方向横波探触子P1,P2を配設すると共に、この縦波探触子P0の垂直方向両側に振動方向が垂直方向である横波超音波を送受信する第1及び第2の垂直方向横波探触子P3,P4を配設して成る探触子組立体と、前記探触子組立体の各探触子に対する超音波の送受信制御を行う超音波送受信制御部と、前記超音波送受信制御部から前記各探触子の超音波データを入力し、各超音波の音速度データを求めて前記応力測定対象材料の残留応力の解析を行う測定データ解析部と、を備えたことを特徴とする。   The ultrasonic stress measurement device disclosed in Patent Document 1 is ultrasonic data obtained when longitudinal wave ultrasonic waves and two transverse wave ultrasonic waves whose vibration directions are orthogonal to each other propagate through the stress measurement target material. Is an ultrasonic stress measurement device for analyzing the residual stress of the material to be stress-measured, and is arranged around a longitudinal wave probe P0 that transmits and receives the longitudinal wave ultrasonic waves. First and second horizontal transverse wave probes P1, P2 that transmit and receive transverse wave ultrasonic waves having a horizontal vibration direction are arranged on both sides in the horizontal direction of the probe P0, and the longitudinal wave probe P0. A probe assembly comprising first and second vertical transverse wave probes P3 and P4 for transmitting and receiving transverse wave ultrasonic waves whose vibration directions are perpendicular to each other on both sides of the vertical direction, and the probe An ultrasonic transmission / reception control unit for performing ultrasonic transmission / reception control on each probe of the assembly; A measurement data analysis unit that inputs ultrasonic data of each probe from the ultrasonic transmission / reception control unit, obtains sound velocity data of each ultrasonic wave, and analyzes the residual stress of the stress measurement target material; It is characterized by that.

また、特許文献2に開示の超音波式応力測定装置は、応力測定対象材料の表面上に配置可能な縦波超音波探触子及び横波超音波探触子と、前記両探触子を前記材料の表面に沿って移動又は回転させることが可能な探触子駆動機構と、前記両探触子のうちの一方の探触子に前記材料の測定対象部位に対する超音波の発信・受信動作を行わせた後、前記探触子駆動機構に対する前記移動の制御により一方の探触子と他方の探触子との配置を切り換え、他方の探触子に同一測定対象部位に対する超音波の発信・受信動作を行わせるようにし、前記横波超音波探触子については180°/N(N:2以上の整数)の回転角度毎のN回の回転を行わせ、各回転位置において発信・受信動作を行わせる探触子制御手段と、前記両探触子の発信・受信動作により得られる弾性表面波の音速度データから表面組織音響異方性の定数を求め、この求めた定数に基づき応力測定対象材料の残留応力を演算する測定データ解析手段と、を備えたことを特徴とする。   In addition, an ultrasonic stress measuring device disclosed in Patent Document 2 includes a longitudinal wave ultrasonic probe and a transverse wave ultrasonic probe that can be disposed on the surface of a stress measurement target material, and both the probes. A probe driving mechanism capable of moving or rotating along the surface of the material, and transmitting and receiving ultrasonic waves to and from the measurement target portion of the material on one of the probes. After that, the arrangement of one probe and the other probe is switched by controlling the movement with respect to the probe driving mechanism, and the other probe transmits ultrasonic waves to the same measurement target part. The reception operation is performed, and the transverse wave ultrasonic probe is rotated N times for each rotation angle of 180 ° / N (N: integer of 2 or more), and the transmission / reception operation is performed at each rotation position. For the probe control means to perform the transmission and reception operation of both the probes Measurement data analysis means for calculating a surface tissue acoustic anisotropy constant from the acoustic velocity data of the surface acoustic wave obtained, and calculating a residual stress of the stress measurement target material based on the obtained constant. And

特開2010−236892号公報JP 2010-236882 A 特開2008−76387号公報JP 2008-76387 A

特許文献1,2に開示の技術は、被検査体を伝搬する超音波の音速が残留応力に応じて変化するという音弾性効果に基づいている。しかし、一般に金属材料における音速の応力依存性(音弾性係数)は小さいため、残留応力の評価の精度を高めるには、被検査体を伝搬する超音波の音速を高精度に且つ安定して測定しなくてはならないという課題がある。
具体的には、音速を測定するためには超音波の送信時間及び受信時間(伝搬時間)と共に超音波の伝搬距離が必要であるが、被検査体の不均一な形状などに起因して超音波の伝搬距離を一定に保つことは困難であり不確定な伝搬距離は誤差の要因となる。そこで、特許文献1,2は、いずれも縦波超音波及び横波超音波を用いてこれら超音波の音速を測定し、測定された音速の値に基づいて被検査体である材料中の残留応力を評価しようとして
いる。
The technologies disclosed in Patent Documents 1 and 2 are based on the acoustoelastic effect that the sound velocity of the ultrasonic wave propagating through the object to be inspected changes according to the residual stress. However, since the stress dependence (acoustic elastic coefficient) of sound speed in metal materials is generally small, the sound speed of ultrasonic waves propagating through the object to be measured can be measured with high accuracy and stability in order to improve the accuracy of residual stress evaluation. There is a problem that must be done.
Specifically, in order to measure the speed of sound, it is necessary to have an ultrasonic propagation distance as well as an ultrasonic transmission time and reception time (propagation time). It is difficult to keep the propagation distance of the sound wave constant, and the uncertain propagation distance causes an error. Therefore, Patent Documents 1 and 2 both measure longitudinal acoustic waves and transverse acoustic waves to measure the ultrasonic velocity of these ultrasonic waves, and based on the measured acoustic velocity values, residual stress in the material that is the object to be inspected. Trying to evaluate.

この特許文献1,2は、縦波の音速測定と横波の音速測定のそれぞれにおいて、異なる別の超音波探触子を用いることを前提としている。このように縦波の音速測定と横波の音速測定とで異なる超音波探触子を用いる場合、縦波及び横波の音速を、同時に同一位置で測定することはできない。さらに、音速を測定する際の超音波の伝搬時間は、被検査体中における超音波の伝搬距離の他、超音波探触子と被検査体との接触状態にも依存する。従って、特許文献1,2に示されるような異なる超音波探触子を用いた異なる位置での超音波の測定は、測定の度に探触子と被検査体との接触状態が変化してしまい、この変化による測定誤差が発生してしまうという課題が存在する。   These Patent Documents 1 and 2 are based on the premise that different ultrasonic probes are used for longitudinal wave velocity measurement and transverse wave velocity measurement. Thus, when different ultrasonic probes are used for longitudinal wave sound velocity measurement and shear wave sound velocity measurement, the sound velocity of the longitudinal wave and the transverse wave cannot be measured simultaneously at the same position. Furthermore, the propagation time of the ultrasonic wave when measuring the speed of sound depends not only on the propagation distance of the ultrasonic wave in the inspection object but also on the contact state between the ultrasonic probe and the inspection object. Therefore, in the measurement of ultrasonic waves at different positions using different ultrasonic probes as shown in Patent Documents 1 and 2, the contact state between the probe and the object to be inspected changes at each measurement. Therefore, there is a problem that a measurement error due to this change occurs.

上記した問題を解決するため、本願出願人は、「特願2014−255128」を出願している。この出願における技術(残留応力評価方法)は、「振動形態の異なる複数種類の超音波を被検査体(被検査試料)の表層へ送出することで、被検査体の表層に振動形態の異なる複数種類の伝搬超音波(レーリ波、表面SH波)を励振する送出ステップと、被検査体の表層を伝搬する複数種類の伝搬超音波(レーリ波、表面SH波)を受信する受信ステップと、受信ステップで受信された複数種類の伝搬超音波の各々の伝搬時間を算出し、当該算出された伝搬時間に基づいて残留応力を評価する評価ステップと、を備える」ものであり、被検査体の表層内部にレーリ波と表面SH波とを伝搬させているため「2モード法」と呼ばれるものである。この「2モード法」の技術は、特許文献1,2の技術が有する問題を解決可能としている。   In order to solve the above problem, the applicant of the present application has applied for “Japanese Patent Application No. 2014-255128”. The technique (residual stress evaluation method) in this application is “a plurality of types of ultrasonic waves having different vibration forms are sent to the surface layer of the object to be inspected (sample to be inspected), so A sending step for exciting different kinds of propagating ultrasonic waves (Rayleigh waves, surface SH waves), a receiving step for receiving plural kinds of propagating ultrasonic waves (Rayleigh waves, surface SH waves) propagating through the surface layer of the object to be inspected, and receiving An evaluation step of calculating the propagation time of each of the plurality of types of propagation ultrasonic waves received in the step and evaluating the residual stress based on the calculated propagation time ”, and the surface layer of the object to be inspected Since the Rayleigh wave and the surface SH wave are propagated inside, it is called “two-mode method”. This “two-mode method” technique can solve the problems of the techniques of Patent Documents 1 and 2.

しかしながら、上記した「2モード法」にも以下に述べる課題が存在することを、本願出願人は知見するに至った。
すなわち、図3に示すように、「2モード法」で用いるレーリ波と表面SH波の伝搬経路は、同じ経路ではなく、被検査体の伝搬深さが異なることを知見するに至った。
レーリ波と表面SH波は表層を伝搬する超音波と言われているが、深さ方向における波動伝搬状況はそれぞれ異なる。例えば、レーリ波は、主に深さ方向に1波長程度を伝搬するのに対して、表面SH波は、主に深さ方向に数波長程度(例えば、3波長程度)を伝搬する。伝搬距離が大きくなるにつれて、表面SH波の伝搬深さは深くなることも知られている。
However, the applicant of the present application has found that the above-described “two-mode method” also has the following problems.
That is, as shown in FIG. 3, the propagation path of the Rayleigh wave and the surface SH wave used in the “two-mode method” is not the same path, and it has been found that the propagation depth of the test object is different.
Rayleigh waves and surface SH waves are said to be ultrasonic waves propagating on the surface layer, but the wave propagation conditions in the depth direction are different. For example, the Rayleigh wave mainly propagates about one wavelength in the depth direction, whereas the surface SH wave mainly propagates about several wavelengths (for example, about three wavelengths) in the depth direction. It is also known that the propagation depth of the surface SH wave increases as the propagation distance increases.

このように、レーリ波と表面SH波の深さ方向における伝搬経路が異なる場合、被検査体の厚み方向に残留応力分布が存在すると、計測誤差が増え、残留応力の正確な評価ができなくなる場合がある。被検査体における残留応力の存在深さが、レーリ波と表面SH波の伝搬深さに比べ深い場合には測定誤差は生じにくいが、伝搬深さと同等程度かそれ以下(浅い)であれば測定値に影響を与えると考えられる。   As described above, when the propagation paths in the depth direction of the Rayleigh wave and the surface SH wave are different, if there is a residual stress distribution in the thickness direction of the object to be inspected, the measurement error increases, and the residual stress cannot be accurately evaluated. There is. Measurement errors are less likely to occur if the depth of residual stress in the object to be inspected is deeper than the propagation depth of Rayleigh waves and surface SH waves, but if the depth is equal to or less than the propagation depth (shallow) It is thought to affect the value.

そこで本発明は、上記問題点に鑑み、被検査体の厚み方向に不均一で分布するように残留応力が存在していたとしても、被検査体の表層の残留応力を高い精度で測定することができる残留応力評価方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention measures the residual stress of the surface layer of the inspection object with high accuracy even if the residual stress exists so as to be unevenly distributed in the thickness direction of the inspection object. It is an object of the present invention to provide a method for evaluating residual stress.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明の残留応力評価方法は、被検査体の表層に存在する残留応力を、前記被検査体の表層を伝搬する超音波の伝搬時間に基づいて評価する残留応力評価方法であって、前記被検査体の表層に2種類の超音波を励振する送出ステップと、前記被検査体の表層を伝搬した2種類の超音波を受信する受信ステップと、前記受信ステップで受信された前記2種類の超音波の伝搬時間を算出する伝搬時間算出ステップと、前記伝搬時間算出ステップで算出された前記2種類の超音波の補正伝搬時間に基づいて、前記被検査体の表層に存在する残留応力を評価する評価ステップと、を有しており、前記送出ステップは、前記2種類の超音波の少なくとも一方の周波数を可変とし、前記2種類の超音波の伝搬経路の深さ方向の位置を略同じ位置とすることを特徴とする。
In order to achieve the above-described object, the present invention takes the following technical means.
The residual stress evaluation method of the present invention is a residual stress evaluation method for evaluating residual stress existing on a surface layer of an object to be inspected based on a propagation time of an ultrasonic wave propagating through the surface layer of the object to be inspected. A transmitting step for exciting two types of ultrasonic waves on the surface layer of the inspection object, a receiving step for receiving two types of ultrasonic waves propagated on the surface layer of the inspection object, and the two types of ultrasonic waves received in the receiving step Based on the propagation time calculating step for calculating the propagation time of the sound wave and the corrected propagation times of the two types of ultrasonic waves calculated in the propagation time calculating step, the residual stress existing on the surface layer of the object to be inspected is evaluated. An evaluation step, wherein in the sending step, at least one frequency of the two types of ultrasonic waves is variable, and the positions in the depth direction of the propagation paths of the two types of ultrasonic waves are substantially the same position. To do And features.

好ましくは、前記送出ステップにおいて、前記2種類の超音波の少なくとも一方の周波数を変更することで、前記2種類の超音波の伝搬経路の深さ位置を可変とし、前記伝搬時間算出ステップは、伝搬経路の深さ位置が可変とされた2種類の超音波の伝搬時間を算出し、前記評価ステップでは、伝搬経路の深さ位置が可変とされた2種類の超音波の伝搬時間を基に、前記被検査体に存在する残留応力の深さ方向の分布を計算するとよい。   Preferably, in the sending step, the depth position of the propagation path of the two types of ultrasonic waves is made variable by changing the frequency of at least one of the two types of ultrasonic waves, and the propagation time calculating step includes: The propagation time of two types of ultrasonic waves whose path depth position is variable is calculated. In the evaluation step, based on the propagation time of two kinds of ultrasonic waves whose depth position of the propagation path is variable, It is preferable to calculate the distribution of the residual stress existing in the inspection object in the depth direction.

好ましくは、前記2種類の超音波が、表面SH波とレーリ波とであるとよい。   Preferably, the two types of ultrasonic waves are a surface SH wave and a Rayleigh wave.

本発明によれば、被検査体の厚み方向に不均一で分布するように残留応力が存在していたとしても、被検査体の表層の残留応力を高い精度で測定することができる。   According to the present invention, even if the residual stress exists so as to be unevenly distributed in the thickness direction of the inspection object, the residual stress on the surface layer of the inspection object can be measured with high accuracy.

本発明の実施形態による残留応力評価装置の概略構成を示す図である。It is a figure which shows schematic structure of the residual stress evaluation apparatus by embodiment of this invention. 本実施形態による残留応力評価装置の送信探触子及び受信探触子の概略構成を拡大して示す図である。It is a figure which expands and shows schematic structure of the transmission probe of the residual stress evaluation apparatus by this embodiment, and a receiving probe. 被検査体の表層をレーリ波と表面SH波とが伝搬する様子を模式的に示した図である(レーリ波と表面SH波とが同一周波数)。It is the figure which showed typically a mode that a Rayleigh wave and surface SH wave propagated through the surface layer of a to-be-inspected object (Rayleigh wave and surface SH wave are the same frequency). 被検査体の表層をレーリ波と表面SH波とが伝搬する様子を模式的に示した図である(レーリ波と表面SH波とが異なる周波数)。It is the figure which showed typically a mode that a Rayleigh wave and a surface SH wave propagated through the surface layer of a to-be-inspected object (frequency from which a Rayleigh wave and a surface SH wave differ). 被検査体の表層をレーリ波と表面SH波とが伝搬する様子を模式的に示した図である(レーリ波と表面SH波とが異なる周波数であり、その周波数を可変とした)。It is the figure which showed typically a mode that a Rayleigh wave and a surface SH wave propagated on the surface layer of a to-be-inspected object (The Rayleigh wave and the surface SH wave are different frequencies, The frequency was made variable). 被検査体に形成されたスリットの深さと、受信ステップにおける超音波の受信強度との関係を示した図である(レーリ波と表面SH波とが同一周波数)。It is the figure which showed the relationship between the depth of the slit formed in the to-be-inspected object, and the receiving intensity of the ultrasonic wave in a receiving step (the Rayleigh wave and the surface SH wave have the same frequency). 被検査体に形成されたスリットの深さと、受信ステップにおける超音波の受信強度との関係を示した図である(レーリ波と表面SH波とが異なる周波数)。It is the figure which showed the relationship between the depth of the slit formed in the to-be-inspected object, and the reception intensity | strength of the ultrasonic wave in a receiving step (The frequency from which a Rayleigh wave and a surface SH wave differ).

以下、図面を参照し、本発明の実施形態を説明する。
まず、図1及び図2を参照しつつ、本発明の実施形態に用いられる残留応力評価装置1の基本的な構成について、説明する。
なお、本発明は、例えば、機械部品や構造体などの被検査体Wの表層に存在する残留応力を計測・評価する方法に関する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a basic configuration of the residual stress evaluation apparatus 1 used in the embodiment of the present invention will be described with reference to FIGS. 1 and 2.
The present invention relates to a method for measuring and evaluating a residual stress existing on a surface layer of an object to be inspected W such as a machine part or a structure.

残留応力評価装置1は、被検査体Wの表層に超音波を伝搬させて当該伝搬した超音波の伝搬時間を測定し、この超音波の伝搬時間に基づいて、被検査体Wの表層に存在する残留応力を評価(測定)装置である。
ここで、表層とは、被検査体Wの表面下の所定の深さ範囲の領域であり、例えば深さ数mm〜数十mmより浅い範囲の領域である。また、残留応力評価装置1が測定しようとする応力は、被検査体Wの表層に残存する残留応力であって、意図せず残存した応力の場合もあれば、設計者が圧延などにより意図的に付与した(印加した)応力の場合もある。特に、本実施形態の残留応力評価装置1は、被検査体Wの深さ方向に所定の分布を有するような残留応力を、正確に測定することが可能である。
The residual stress evaluation apparatus 1 propagates an ultrasonic wave to the surface layer of the inspection object W, measures the propagation time of the propagated ultrasonic wave, and exists on the surface layer of the inspection object W based on the propagation time of the ultrasonic wave. This is an apparatus for evaluating (measuring) residual stress.
Here, the surface layer is a region in a predetermined depth range below the surface of the inspection object W, for example, a region in a range shallower than a depth of several mm to several tens mm. Further, the stress to be measured by the residual stress evaluation apparatus 1 is a residual stress remaining on the surface layer of the object W to be inspected. In some cases, the residual stress may remain unintentionally. In some cases, the stress is applied (applied) to. In particular, the residual stress evaluation apparatus 1 according to the present embodiment can accurately measure the residual stress having a predetermined distribution in the depth direction of the inspection object W.

図1に示すように、残留応力評価装置1は、送信探触子2と、受信探触子3と、パルス発生器4と、波形採取装置7とを備える。
図2に示すように、送信探触子2は、例えば平板状の圧電素子20が超音波伝搬媒体の内部に装備された超音波プローブであり、被検査体Wの表面上に配置される。送信探触子2は、パルス発生器4から圧電素子20に所定電圧のパルス電圧が加えられると、所定周波数の超音波を出力し、その超音波を被検査体Wの表面へ送出する。
As shown in FIG. 1, the residual stress evaluation apparatus 1 includes a transmission probe 2, a reception probe 3, a pulse generator 4, and a waveform collection device 7.
As shown in FIG. 2, the transmission probe 2 is an ultrasonic probe in which, for example, a plate-like piezoelectric element 20 is mounted inside an ultrasonic propagation medium, and is arranged on the surface of the inspection object W. When a pulse voltage of a predetermined voltage is applied from the pulse generator 4 to the piezoelectric element 20, the transmission probe 2 outputs an ultrasonic wave having a predetermined frequency, and sends the ultrasonic wave to the surface of the inspection object W.

送信探触子2は、超音波として、横波の水平成分であるSH波を出力すると共に、SH波の振動方向に対して垂直方向に振動する横波の垂直成分であるSV波を出力する。出力されたSH波及びSV波は、被検査体Wの表層に振動形態の異なる超音波、すなわち表面SH波及びレーリ波を励振する。本発明の送信探触子2は、表面SH波、レーリ波のそれぞれの周波数を変更可能なものとされている。   The transmission probe 2 outputs, as an ultrasonic wave, an SH wave that is a horizontal component of a transverse wave, and an SV wave that is a vertical component of a transverse wave that vibrates in a direction perpendicular to the vibration direction of the SH wave. The output SH waves and SV waves excite ultrasonic waves having different vibration forms, that is, surface SH waves and Rayleigh waves, on the surface layer of the inspected object W. The transmission probe 2 of the present invention can change the frequencies of the surface SH wave and the Rayleigh wave.

一方、受信探触子3は、例えば平板状の圧電素子30が超音波伝搬媒体の内部に装備された超音波プローブであり、被検査体Wの表面上で送信探触子2と異なる位置に配置される。受信探触子3は、圧電素子30に入射した表面SH波及びレーリ波(伝搬超音波)を、振動形態の異なる複数種類の伝搬超音波として受信し、受信によって発生した電圧をレーリ波及び表面SH波の検出信号(伝搬信号)として外部に出力する。   On the other hand, the reception probe 3 is an ultrasonic probe in which, for example, a plate-like piezoelectric element 30 is mounted inside the ultrasonic propagation medium, and is located at a position different from the transmission probe 2 on the surface of the inspection object W. Be placed. The receiving probe 3 receives surface SH waves and Rayleigh waves (propagating ultrasonic waves) incident on the piezoelectric element 30 as a plurality of types of propagating ultrasonic waves having different vibration forms, and the voltages generated by the reception are transmitted to the Rayleigh waves and the surface. Output as an SH wave detection signal (propagation signal) to the outside.

波形採取装置7は、増幅器5,6から出力された表面SH波及びレーリ波の検出信号を受信して当該検出信号の波形を採取するものであり、トリガ信号の受信からレーリ波の検出信号の受信までの時間を計測してレーリ波の伝搬時間Tを算出すると共に、トリガ信号の受信から表面SH波の検出信号の受信までの時間を計測して表面SH波の伝搬時間Tを算出する。 The waveform sampling device 7 receives the surface SH wave and Rayleigh wave detection signals output from the amplifiers 5 and 6, and collects the waveform of the detection signal. calculates the propagation time T R for by measuring the time until receiving Rayleigh waves, calculates the propagation time T S of measuring the time until reception surface SH wave surface SH wave detection signal from the reception of the trigger signal To do.

算出されたレーリ波の伝搬時間Tと表面SH波の伝搬時間Tを基に、式(3)により、送信探触子2と受信探触子3との間の表層に存在する残留応力の値σを求めることができる。
まず、伝搬時間T、Tは、次の関係を有する。
=L/(V(1+C×σ)) (1)
=L/(V(1+C×σ)) (2)
ここで、
L:送信探触子2と受信探触子3との間の距離(超音波の伝搬距離)
:表面SH波の音速
:レーリ波の音速
:表面SH波の音弾性係数
:レーリ波の音弾性係数
式(1)、式(2)を組み合わせた上で、Lを無くすような式変形を行うと、以下の式(3)導出することができる。
Based on the propagation time T S of the propagation time of the calculated Rayleigh wave T R and the surface SH wave by the equation (3), present in the surface layer between the receiving probe 3 and the transmission probe 2 Residual Stress Can be obtained.
First, the propagation times T S and T R have the following relationship.
T S = L / (V S (1 + C S × σ)) (1)
T R = L / (V R (1 + C R × σ)) (2)
here,
L: Distance between transmission probe 2 and reception probe 3 (ultrasonic propagation distance)
V S : sound velocity of surface SH wave V R : sound velocity of Rayleigh wave C S : sound elasticity coefficient of surface SH wave C R : sound elasticity coefficient of Rayleigh wave After combining Equations (1) and (2), L If the equation is modified so as to eliminate the following equation (3), the following equation (3) can be derived.

σ=((T/T)×(V/V)−1)/(C−C) (3)
式(3)に示すように、被検査体Wの表層に存在する残留応力σは、表面SH波の伝搬時間T、レーリ波の伝搬時間Tの値から一意に算出することができる。この測定方法(残留応力の評価方法)は、2種類の波動(表面SH波、レーリ波)を励起・伝搬させる手法であるため、「2モード法」と呼ばれる。
σ = ((T S / T R) × (V S / V R) -1) / (C R -C S) (3)
As shown in equation (3), the residual stress σ present in the surface layer of the object to be inspected W can be uniquely calculated propagation time T S of the surface SH waves, from the value of the propagation time T R of Rayleigh wave. This measurement method (residual stress evaluation method) is a method of exciting and propagating two kinds of waves (surface SH wave, Rayleigh wave), and is therefore called a “two-mode method”.

ところで、「発明が解決しようとする課題」で精説したように、上記した「2モード法」にも以下に述べる課題が存在することを、本願出願人は知見するに至った。
すなわち、図3に示すように、「2モード法」で用いるレーリ波と表面SH波の伝搬経路は、同じ経路ではなく、被検査体Wの深さ方向(表面からの距離)が異なる経路を通ることを知見するに至った。
By the way, as described in detail in “Problems to be Solved by the Invention”, the applicant of the present application has found that the above-described “two-mode method” has the following problems.
That is, as shown in FIG. 3, the propagation path of the Rayleigh wave and the surface SH wave used in the “two-mode method” is not the same path but a path in which the depth direction (distance from the surface) of the object W is different. I came to know that I pass.

レーリ波と表面SH波は被検査体Wの表層を伝搬する波と言われているが、深さ方向における波動の伝搬状況はそれぞれ異なる。例えば、レーリ波は、主に深さ方向に1波長程度を伝搬するのに対して、表面SH波は、主に深さ方向に数波長程度(例えば、3波長程度)を伝搬する。表面SH波は伝搬距離が大きくなるにつれて伝搬深さは深くなることが知られている。   The Rayleigh wave and the surface SH wave are said to be waves that propagate through the surface layer of the object W to be inspected, but the propagation conditions of the waves in the depth direction are different. For example, the Rayleigh wave mainly propagates about one wavelength in the depth direction, whereas the surface SH wave mainly propagates about several wavelengths (for example, about three wavelengths) in the depth direction. It is known that the propagation depth of the surface SH wave increases as the propagation distance increases.

例えば、図6に示すように、本願出願人は、シミュレーションを通じて、レーリ波と表面SH波の伝搬状況の検証を行った。
シミュレーションで用いた被検査体Wの厚みは15mmであり、被検査体Wの下面から水平幅0.1mmのスリットを様々な深さで穿孔したものを用意した。言い換えれば、用意した複数の被検査体Wは、超音波が伝搬する領域の深さが異なるものとされている。
For example, as shown in FIG. 6, the applicant of the present application verified the propagation state of the Rayleigh wave and the surface SH wave through simulation.
The inspected object W used in the simulation had a thickness of 15 mm, and slits with a horizontal width of 0.1 mm were drilled from the lower surface of the inspected object W at various depths. In other words, the prepared plurality of inspected objects W are different in the depth of the region where the ultrasonic wave propagates.

このような複数の被検査体Wを用いて、レーリ波と表面SH波の伝搬状況を検証した結果が、図6である。
図6からわかるように、スリットの穿孔深さが深くなると(言い換えれば、超音波が伝搬する領域深さが薄くなると)、レーリ波に比して表面SH波が伝搬しないようになる。このことは、レーリ波と表面SH波との深さ方向の波動伝搬状況はそれぞれ異なることを如実に示すものである。
FIG. 6 shows the result of verifying the propagation state of the Rayleigh wave and the surface SH wave using such a plurality of inspected objects W.
As can be seen from FIG. 6, when the perforation depth of the slit becomes deep (in other words, when the depth of the region where the ultrasonic wave propagates becomes thin), the surface SH wave does not propagate compared to the Rayleigh wave. This clearly shows that the wave propagation conditions in the depth direction of the Rayleigh wave and the surface SH wave are different from each other.

このように、レーリ波と表面SH波の深さ方向における伝搬経路が異なる場合、被検査体Wの厚み方向に残留応力分布が存在すると、計測誤差が増え、残留応力の正確な評価ができなくなる場合がある。すなわち、残留応力の存在深さに対して、表面SH波とレーリ波の伝搬深さが異なる場合には、それぞれの超音波で測定する領域の応力が異なるため、測定誤差が生じる可能性がある。   Thus, when the propagation paths in the depth direction of the Rayleigh wave and the surface SH wave are different, if there is a residual stress distribution in the thickness direction of the object W to be inspected, the measurement error increases, and the residual stress cannot be accurately evaluated. There is a case. That is, when the propagation depth of the surface SH wave and the Rayleigh wave is different from the existing depth of the residual stress, the measurement error may occur because the stress in the area measured by each ultrasonic wave is different. .

被検査体Wにおける残留応力の存在深さが、レーリ波と表面SH波の伝搬深さに比べ深い場合には測定誤差は生じにくいが、伝搬深さと同等程度であれば測定値に影響を与えると考えられる。
そこで、本発明では、送出ステップは、レーリ波と表面SH波の少なくとも一方の周波数を可変とし、レーリ波と表面SH波の伝搬経路の深さ方向の位置を略同じ位置とし、測定誤差を可及的に少なくするようにした。加えて、被検査体Wの表層における残留応力の存在領域内に、レーリ波と表面SH波の伝搬経路が存在するように、言い換えれば、被検査体Wの表層における残留応力の存在深さよりも、レーリ波と表面SH波の伝搬経路の深さが浅くなるようにすることで、残留応力の測定値を正確なものとしている。
Measurement errors are less likely to occur when the depth of residual stress in the object to be inspected W is deeper than the propagation depth of Rayleigh waves and surface SH waves, but the measured value is affected if the depth is comparable to the propagation depth. it is conceivable that.
Therefore, in the present invention, in the transmission step, the frequency of at least one of the Rayleigh wave and the surface SH wave is made variable, the position in the depth direction of the propagation path of the Rayleigh wave and the surface SH wave is made substantially the same position, and measurement errors are allowed. I tried to reduce it as much as possible. In addition, the propagation path of the Rayleigh wave and the surface SH wave is present in the residual stress existing region in the surface layer of the object W to be inspected, in other words, the depth of the residual stress existing in the surface layer of the object W to be inspected. By making the propagation path of the Rayleigh wave and the surface SH wave shallow, the measured value of the residual stress is made accurate.

例えば、図7に示すように、表面SH波の周波数を5MHz、レーリ波の周波数を1MHzとした場合、スリットの穿孔深さが変化したとしても(言い換えれば、超音波が伝搬する領域深さが変化したとしても)、レーリ波と表面SH波との減衰状況(伝搬状況)がほぼ同じであり、レーリ波と表面SH波との伝搬深さが略同じことを示すものとなっている。
かかる知見に基づいて得られた本発明残留応力評価方法について、以下、具体的に説明する。
[第1実施形態]
本発明における残留応力評価方法の第1実施形態について説明する。
For example, as shown in FIG. 7, when the frequency of the surface SH wave is 5 MHz and the frequency of the Rayleigh wave is 1 MHz, even if the perforation depth of the slit changes (in other words, the depth of the region in which the ultrasonic wave propagates) Even if it changes, the attenuation state (propagation state) of the Rayleigh wave and the surface SH wave is substantially the same, indicating that the propagation depth of the Rayleigh wave and the surface SH wave is substantially the same.
The residual stress evaluation method of the present invention obtained based on this knowledge will be specifically described below.
[First Embodiment]
A first embodiment of the residual stress evaluation method in the present invention will be described.

本実施形態における残留応力評価方法は、送出ステップと、受信ステップと、伝搬時間算出ステップと、補正ステップと、評価ステップと、を有している。
上述の残留応力評価方法を各ステップに基づいて、詳細に説明する。
送出ステップでは、送信探触子2からSH波及びSV波を被検査体Wの表面に対して送出する。被検査体Wの表面へ送出されたSH波は、図2中の破線で示す表面SH波を励振し、SV波は図2の実線で示すレーリ波を励振する。ここで、発生する表面SH波の周波数と、発生するレーリ波の周波数とが異なるように設定する。
The residual stress evaluation method in the present embodiment includes a transmission step, a reception step, a propagation time calculation step, a correction step, and an evaluation step.
The above-described residual stress evaluation method will be described in detail based on each step.
In the sending step, the SH wave and the SV wave are sent from the transmission probe 2 to the surface of the inspection object W. The SH wave transmitted to the surface of the inspection object W excites a surface SH wave indicated by a broken line in FIG. 2, and the SV wave excites a Rayleigh wave indicated by a solid line in FIG. Here, the frequency of the generated surface SH wave is set to be different from the frequency of the generated Rayleigh wave.

周波数の値は、2種類の超音波の伝搬経路の深さ方向の位置を略同じ位置とするものとし、例えば、レーリ波の周波数をf(MHz)、表面SH波の周波数を(2〜6)×f(MHz)とするとよい。また、残留応力が存在する領域(表面からの深さ)よりも、深い位置を超音波が伝搬すると、正確な応力測定が不可能となる。そこで、想定される残留応力の存在領域よりも、超音波の伝搬深さが浅くなるように、表面SH波及びレーリ波の周波数を設定する必要がある。   The frequency value is set so that the positions in the depth direction of the propagation paths of the two types of ultrasonic waves are substantially the same. For example, the frequency of the Rayleigh wave is f (MHz) and the frequency of the surface SH wave is (2-6). ) × f (MHz). In addition, if the ultrasonic wave propagates deeper than the region where the residual stress exists (depth from the surface), accurate stress measurement becomes impossible. Therefore, it is necessary to set the frequencies of the surface SH wave and the Rayleigh wave so that the propagation depth of the ultrasonic wave is shallower than the assumed residual stress existing region.

受信ステップにおいては、被検査体Wの表層を伝搬した表面SH波及びレーリ波を、受信探触子3で受信する。このとき、受信によって発生した電圧を、レーリ波及び表面SH波の検出信号として出力する。出力された検出信号は増幅器5,6で増幅され、増幅された検出信号は波形採取装置7へ出力される。
伝搬時間算出ステップでは、波形採取装置7において、表面SH波及びレーリ波の検出信号の波形が採取すると共に、パルス発生器4から出力されたトリガ信号を受信する。そして、トリガ信号の受信から表面SH波の検出信号の受信までの時間を計測して表面SH波の伝搬時間Tを算出すると共に、トリガ信号の受信からレーリ波の検出信号の受信までの時間を計測してレーリ波の伝搬時間Tを算出する。
In the reception step, the reception probe 3 receives the surface SH wave and the Rayleigh wave propagated through the surface layer of the object W to be inspected. At this time, the voltage generated by reception is output as a detection signal of the Rayleigh wave and the surface SH wave. The output detection signal is amplified by the amplifiers 5 and 6, and the amplified detection signal is output to the waveform sampling device 7.
In the propagation time calculation step, the waveform collection device 7 collects the waveform of the detection signal of the surface SH wave and the Rayleigh wave and receives the trigger signal output from the pulse generator 4. Then, to calculate the propagation time T S of the surface SH wave by measuring the time until the reception of surface SH wave detection signal from the reception of the trigger signal, the time from the reception of the trigger signal and receiving a Rayleigh wave detection signal the measures to calculate the propagation time T R of Rayleigh wave.

評価ステップでは、評価装置8において、伝搬時間算出ステップで算出された表面SH波の伝搬時間Tと、伝搬時間算出ステップで算出されたレーリ波との伝搬時間Tとに基づいて、式(3)を用いて、被検査体Wの表層に存在する残留応力σを評価する。
以上述べたように、本実施形態の残留応力評価方法(残留応力評価装置1の内部で行われる処理)は、被検査体Wの表層に2種類の超音波を励振する送出ステップと、被検査体Wの表層を伝搬した2種類の超音波を受信する受信ステップと、受信ステップで受信された2種類の超音波の伝搬時間を算出する伝搬時間算出ステップと、伝搬時間算出ステップで算出された2種類の超音波の伝搬時間に基づいて、被検査体Wの表層に存在する残留応力を評価する評価ステップと、を有しており、送出ステップは、2種類の超音波の少なくとも一方の周波数を可変としている。
In the evaluation step, the evaluation device 8, on the basis of the propagation time T S of the surface SH wave which is calculated by the propagation time calculating step, the propagation time T R of Rayleigh wave and calculated by the propagation time calculating step, the formula ( 3) is used to evaluate the residual stress σ present on the surface layer of the object W to be inspected.
As described above, the residual stress evaluation method according to the present embodiment (the processing performed inside the residual stress evaluation apparatus 1) includes a sending step of exciting two types of ultrasonic waves on the surface layer of the object W to be inspected, Calculated in the reception step of receiving two types of ultrasonic waves propagated through the surface layer of the body W, the propagation time calculation step of calculating the propagation time of the two types of ultrasonic waves received in the reception step, and the propagation time calculation step An evaluation step for evaluating the residual stress existing on the surface layer of the inspection object W based on the propagation time of the two types of ultrasonic waves, and the sending step includes at least one frequency of the two types of ultrasonic waves Is variable.

2種類の超音波の少なくとも一方の周波数を可変とすることで、両超音波の伝搬経路の深さ方向の位置が略同じ位置となり、被検査体Wの厚み方向に不均一で分布するように残留応力が存在していたとしても、被検査体Wの表層の残留応力を高い精度で測定することが可能となる。
[第2実施形態]
本発明における残留応力評価方法の第2実施形態について説明する。
By making the frequency of at least one of the two types of ultrasonic waves variable, the positions in the depth direction of the propagation paths of both ultrasonic waves become substantially the same position so that they are unevenly distributed in the thickness direction of the object W to be inspected. Even if there is residual stress, it is possible to measure the residual stress on the surface layer of the object W with high accuracy.
[Second Embodiment]
A second embodiment of the residual stress evaluation method in the present invention will be described.

本実施形態における残留応力評価方法は、送出ステップにおいて、2種類の超音波(表面SH波、レーリ波)の少なくとも一方の周波数を変更することで、2種類の超音波の伝搬経路の深さ位置を同じ位置とすると共に、その深さを可変とするものである。その上で、伝搬時間算出ステップは、伝搬経路の深さ位置が可変とされた2種類の超音波の伝搬時間を算出し、評価ステップでは、2種類の超音波の伝搬時間を基に、被検査体Wに存在する残留応力の深さ方向の分布を計算するようにしている。なお、他の構成は、第1実施形態と略同様であるので、説明を省略する。   The residual stress evaluation method in the present embodiment changes the depth position of the propagation path of two types of ultrasonic waves by changing the frequency of at least one of the two types of ultrasonic waves (surface SH wave, Rayleigh wave) in the sending step. Are made the same position and the depth is variable. In addition, the propagation time calculation step calculates the propagation time of two types of ultrasonic waves in which the depth position of the propagation path is variable. In the evaluation step, the propagation time is calculated based on the propagation times of the two types of ultrasonic waves. The distribution of the residual stress existing in the inspection object W in the depth direction is calculated. Other configurations are substantially the same as those in the first embodiment, and thus description thereof is omitted.

本実施形態における残留応力評価方法を具体的に説明する。
まず、第1実施形態の技術では、超音波の伝搬深さに比べ、残留応力の存在深さが大きければ、残留応力の値を正しく測定できるものとされているが、残留応力の存在深さが小さい場合(残留応力が存在しないような深い領域を超音波の伝搬する場合)には、測定値は真の応力値よりも小さくなると考えられる。
The residual stress evaluation method in this embodiment will be specifically described.
First, in the technique of the first embodiment, the residual stress value can be measured correctly if the residual stress is deeper than the ultrasonic wave propagation depth. Is small (when ultrasonic waves propagate in a deep region where no residual stress exists), the measured value is considered to be smaller than the true stress value.

そこで、第2実施形態では、レーリ波の周波数をf1(MHz)、表面SH波の周波数を(2〜6)×f1(MHz)とする。すると、レーリ波と表面SH波の伝搬経路の深さ方向の位置が略同じものとなる。
その上で、周波数をf1→f2(f1>f2)とすることで、超音波の伝搬深さが0mm→1.0mmへと増加したとする。このときの残留応力値は-200MPaと一定であったとする。その後、周波数をf3(f2>f3)とすることで、伝搬深さが1.5mmとなり、その深さでの応力値は-150MPaと変化していることが分かる(表1を参照)。
Therefore, in the second embodiment, the frequency of the Rayleigh wave is f1 (MHz), and the frequency of the surface SH wave is (2-6) × f1 (MHz). Then, the position in the depth direction of the propagation path of the Rayleigh wave and the surface SH wave becomes substantially the same.
Then, it is assumed that the ultrasonic wave propagation depth increases from 0 mm to 1.0 mm by changing the frequency from f1 to f2 (f1> f2). The residual stress value at this time is assumed to be constant at -200 MPa. Thereafter, by setting the frequency to f3 (f2> f3), the propagation depth becomes 1.5 mm, and it can be seen that the stress value at that depth changes to −150 MPa (see Table 1).

この結果から、深さ1.0mmまでは応力値-200MPaで残留応力が存在する(設計者が意図的に印加したものであれば、深さ1.0mmまで安定して応力が印加されている)ことがわかる。加えて、より深い範囲(深さ1.5mm以上)では、残留応力が存在しない、若しくは応力の印加が十分にされていないと判断できる。
以上のように、想定する残留応力の存在深さに対して、超音波の伝搬深さの小さいものを含む複数の伝搬深さで応力を測定し、応力値の変化をみることで、残留応力の深さ方向での分布を評価することができる。
From this result, there is residual stress at a stress value of -200 MPa up to a depth of 1.0 mm (if the designer applied it intentionally, the stress is applied stably up to a depth of 1.0 mm). I understand. In addition, in a deeper range (depth of 1.5 mm or more), it can be determined that there is no residual stress or that stress is not sufficiently applied.
As described above, the residual stress is measured by measuring the stress at multiple propagation depths, including those with a small ultrasonic propagation depth, and looking at the change in the stress value against the assumed residual stress existence depth. The distribution in the depth direction can be evaluated.

なお、上記の説明では、2種類の超音波の伝搬経路の深さ位置を同じ位置とすると共に、その深さを可変とする技術(2モード法)の説明を行ったが、残留応力の深さ方向での分布を評価するにあたっては、1種類の超音波(表面SH波又はレーリ波)のみを用いるようにしてもよい(1モード法)。
なお、今回開示された各実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された各実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
In the above description, a technique (two-mode method) in which the depth positions of two types of ultrasonic wave propagation paths are set to the same position and the depth is variable has been described. In evaluating the distribution in the vertical direction, only one type of ultrasonic wave (surface SH wave or Rayleigh wave) may be used (one-mode method).
Each embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in each embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, etc. of the constituents are within the range normally practiced by those skilled in the art. It does not deviate and employs a value that can be easily assumed by those skilled in the art.

1 残留応力評価装置
2 送信探触子
3 受信探触子
4 パルス発生器
5,6 増幅器
7 波形採取装置
8 評価装置
20,30 圧電素子
W 被検査体
DESCRIPTION OF SYMBOLS 1 Residual stress evaluation apparatus 2 Transmitting probe 3 Reception probe 4 Pulse generator 5,6 Amplifier 7 Waveform sampling apparatus 8 Evaluation apparatus 20, 30 Piezoelectric element W Inspected object

Claims (3)

被検査体の表層に存在する残留応力を、前記被検査体の表層を伝搬する超音波の伝搬時間に基づいて評価する残留応力評価方法であって、
前記被検査体の表層に2種類の超音波を励振する送出ステップと、
前記被検査体の表層を伝搬した2種類の超音波を受信する受信ステップと、
前記受信ステップで受信された前記2種類の超音波の伝搬時間を算出する伝搬時間算出ステップと、
前記伝搬時間算出ステップで算出された前記2種類の超音波の補正伝搬時間に基づいて、前記被検査体の表層に存在する残留応力を評価する評価ステップと、
を有しており、
前記送出ステップは、前記2種類の超音波の少なくとも一方の周波数を可変とし、前記2種類の超音波の伝搬経路の深さ方向の位置を略同じ位置とすることを特徴とする残留応力評価方法。
A residual stress evaluation method for evaluating a residual stress existing on a surface layer of an object to be inspected based on a propagation time of an ultrasonic wave propagating through the surface layer of the object to be inspected,
A sending step of exciting two types of ultrasonic waves on the surface layer of the object to be inspected;
A receiving step of receiving two types of ultrasonic waves propagated through the surface layer of the object to be inspected;
A propagation time calculating step of calculating propagation times of the two types of ultrasonic waves received in the receiving step;
Based on the corrected propagation time of the two types of ultrasonic waves calculated in the propagation time calculation step, an evaluation step for evaluating residual stress existing on the surface layer of the object to be inspected;
Have
Residual stress evaluation method characterized in that in said sending step, at least one frequency of said two types of ultrasonic waves is variable, and the positions in the depth direction of the propagation paths of said two types of ultrasonic waves are substantially the same position. .
前記送出ステップにおいて、前記2種類の超音波の少なくとも一方の周波数を変更することで、前記2種類の超音波の伝搬経路の深さ位置を可変とし、
前記伝搬時間算出ステップは、伝搬経路の深さ位置が可変とされた2種類の超音波の伝搬時間を算出し、
前記評価ステップでは、伝搬経路の深さ位置が可変とされた2種類の超音波の伝搬時間を基に、前記被検査体に存在する残留応力の深さ方向の分布を計算することを特徴とする請求項1に記載の残留応力評価方法。
In the sending step, by changing the frequency of at least one of the two types of ultrasonic waves, the depth position of the propagation path of the two types of ultrasonic waves is variable,
The propagation time calculation step calculates propagation times of two types of ultrasonic waves in which the depth position of the propagation path is variable,
In the evaluation step, the distribution of the residual stress existing in the inspected object in the depth direction is calculated based on the propagation time of two types of ultrasonic waves whose propagation path depth position is variable. The residual stress evaluation method according to claim 1.
前記2種類の超音波が、表面SH波とレーリ波とであることを特徴とする請求項1又は2に記載の残留応力評価方法。   The residual stress evaluation method according to claim 1 or 2, wherein the two types of ultrasonic waves are a surface SH wave and a Rayleigh wave.
JP2015208080A 2015-10-22 2015-10-22 Residual stress evaluation method Expired - Fee Related JP6529887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208080A JP6529887B2 (en) 2015-10-22 2015-10-22 Residual stress evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208080A JP6529887B2 (en) 2015-10-22 2015-10-22 Residual stress evaluation method

Publications (2)

Publication Number Publication Date
JP2017078699A true JP2017078699A (en) 2017-04-27
JP6529887B2 JP6529887B2 (en) 2019-06-12

Family

ID=58666175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208080A Expired - Fee Related JP6529887B2 (en) 2015-10-22 2015-10-22 Residual stress evaluation method

Country Status (1)

Country Link
JP (1) JP6529887B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061756A (en) * 2017-12-07 2018-05-22 四川升拓检测技术股份有限公司 Furnace body lining cutting lossless detection method based on impact elasticity ripple
CN108225632A (en) * 2017-12-11 2018-06-29 北京理工大学 A kind of residual stress non-linear ultrasonic detection method
CN108804783A (en) * 2018-05-25 2018-11-13 南昌航空大学 A kind of assessment method of blank initial residual stress
JP2018179718A (en) * 2017-04-12 2018-11-15 株式会社神戸製鋼所 Residual stress measurement method
CN110632177A (en) * 2019-10-24 2019-12-31 大连理工大学 Electromagnetic ultrasonic detection method for plane residual stress
CN111272323A (en) * 2020-03-10 2020-06-12 清华大学 Steel structure residual stress measuring instrument and using method thereof
CN115144112A (en) * 2022-06-23 2022-10-04 武汉中科创新技术股份有限公司 Residual stress detection method and device, electronic equipment and storage medium
CN116183722A (en) * 2023-04-26 2023-05-30 国网天津市电力公司电力科学研究院 Method for eliminating thickness measurement error of epoxy resin insulating part based on double-frequency detection

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121675A (en) * 1977-03-31 1978-10-24 Hitachi Ltd Method and apparatus of measuring surface stress
JPS61254849A (en) * 1985-05-08 1986-11-12 Hitachi Metals Ltd Stress measuring method
JPH06313739A (en) * 1993-03-31 1994-11-08 Sakai Tekkosho:Kk Sensor for measuring sound elastic stress using surface sh wave
US5557048A (en) * 1993-09-28 1996-09-17 Hitachi, Ltd. Stress evaluation method and apparatus therefor
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor
JP2005069782A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Surface state measuring method of surface processed product
JP2007232634A (en) * 2006-03-02 2007-09-13 Toshiba Corp Stress measurement apparatus and its measurement method
JP2009031088A (en) * 2007-07-26 2009-02-12 Daido Steel Co Ltd Hardness distribution measuring method
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
JP2014077708A (en) * 2012-10-11 2014-05-01 Mitsubishi Heavy Ind Ltd Inspection device and inspection method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121675A (en) * 1977-03-31 1978-10-24 Hitachi Ltd Method and apparatus of measuring surface stress
JPS61254849A (en) * 1985-05-08 1986-11-12 Hitachi Metals Ltd Stress measuring method
JPH06313739A (en) * 1993-03-31 1994-11-08 Sakai Tekkosho:Kk Sensor for measuring sound elastic stress using surface sh wave
US5557048A (en) * 1993-09-28 1996-09-17 Hitachi, Ltd. Stress evaluation method and apparatus therefor
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor
JP2005069782A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Surface state measuring method of surface processed product
JP2007232634A (en) * 2006-03-02 2007-09-13 Toshiba Corp Stress measurement apparatus and its measurement method
JP2009031088A (en) * 2007-07-26 2009-02-12 Daido Steel Co Ltd Hardness distribution measuring method
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
JP2014077708A (en) * 2012-10-11 2014-05-01 Mitsubishi Heavy Ind Ltd Inspection device and inspection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179718A (en) * 2017-04-12 2018-11-15 株式会社神戸製鋼所 Residual stress measurement method
CN108061756A (en) * 2017-12-07 2018-05-22 四川升拓检测技术股份有限公司 Furnace body lining cutting lossless detection method based on impact elasticity ripple
CN108225632A (en) * 2017-12-11 2018-06-29 北京理工大学 A kind of residual stress non-linear ultrasonic detection method
CN108804783A (en) * 2018-05-25 2018-11-13 南昌航空大学 A kind of assessment method of blank initial residual stress
CN108804783B (en) * 2018-05-25 2022-06-14 南昌航空大学 Evaluation method for initial residual stress of blank
CN110632177A (en) * 2019-10-24 2019-12-31 大连理工大学 Electromagnetic ultrasonic detection method for plane residual stress
CN111272323A (en) * 2020-03-10 2020-06-12 清华大学 Steel structure residual stress measuring instrument and using method thereof
CN115144112A (en) * 2022-06-23 2022-10-04 武汉中科创新技术股份有限公司 Residual stress detection method and device, electronic equipment and storage medium
CN116183722A (en) * 2023-04-26 2023-05-30 国网天津市电力公司电力科学研究院 Method for eliminating thickness measurement error of epoxy resin insulating part based on double-frequency detection

Also Published As

Publication number Publication date
JP6529887B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6529887B2 (en) Residual stress evaluation method
US8661904B2 (en) Method for investigating a structure for receiving and/or conducting a liquid or soft medium
EP3070467B1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
JP2015500495A (en) Method for measuring elastic properties using ultrasound
JP4746365B2 (en) Surface inspection method
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
JP4673686B2 (en) Surface inspection method and surface inspection apparatus
WO2018190042A1 (en) Method for measuring residual stress
RU2362128C1 (en) Measurement method of homogenous media acoustic resistance and device for its implementation
KR101814462B1 (en) Device and method for measuring yield strength using ultrasonic
KR20220034889A (en) Ultrasonic Inspection Systems and Ultrasonic Inspection Methods
CN110068387B (en) Method for determining a correction value for viscosity-dependent sound speed in a liquid to be examined
JP6529853B2 (en) Residual stress evaluation method
JP4784556B2 (en) Sensitivity correction method for ultrasonic inspection
JP5450177B2 (en) Nondestructive inspection method and nondestructive inspection device for grout filling degree
JP2008076387A (en) Ultrasonic stress measuring method and instrument
JP3793873B2 (en) Apparatus for measuring elastic parameters of material surfaces and coating layers
KR20090116525A (en) Nondestructive testing method of concrete structures using stress wave techniques
JP2009236620A (en) Ultrasonic flaw detection method
CN114112132B (en) System and method for measuring gradient residual stress by laser ultrasonic
EP3329222B1 (en) A method for determining a flow rate for a fluid in a flow tube of a flow measurement system, as well as a corresponding flow measurement system
Verma et al. Surface breaking crack sizing method using pulse-echo Rayleigh waves
US9518959B2 (en) Structural health monitoring system and method
JP2018194358A (en) Ultrasonic inspection method and ultrasonic inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6529887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees