JP2009236620A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP2009236620A
JP2009236620A JP2008081618A JP2008081618A JP2009236620A JP 2009236620 A JP2009236620 A JP 2009236620A JP 2008081618 A JP2008081618 A JP 2008081618A JP 2008081618 A JP2008081618 A JP 2008081618A JP 2009236620 A JP2009236620 A JP 2009236620A
Authority
JP
Japan
Prior art keywords
probe
wave
probes
calibration
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008081618A
Other languages
Japanese (ja)
Inventor
Yasuhiro Otani
靖弘 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2008081618A priority Critical patent/JP2009236620A/en
Publication of JP2009236620A publication Critical patent/JP2009236620A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method which enables the precise inspection of a flaw by a simple constitution. <P>SOLUTION: The method for detecting the flaw of piping using an ultrasonic wave has the step of circumferentially providing a plurality of probes 60, which throws an SH wave on the region 30 to be inspected of the piping 10 to receive the reflected wave from the region 30 to be inspected, along a pipe in parallel to each other and respectively arranging calibration probes 70 between the respective probes 60 and the region 30 to be inspected in adjacent relation to the respective probes 60 to throw the SH wave on the region to be inspected while changing over a plurality of the probes 60 to operate them, the step of allowing the probes 60 on which the SH wave is thrown to receive the reflected wave of the SH wave, the correction step of correcting the receiving waveform of the probes 60 using the receiving waveform of the calibration probes 70 adjacent to the probes 60 on which the SH wave is thrown, and the detection step of detecting the flaw of the region 30 to be inspected on the basis of the results of the correction step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波を用いて配管の欠陥を検出する方法に関するものである。   The present invention relates to a method for detecting defects in piping using ultrasonic waves.

従来、超音波探傷装置に関し、『超音波探触子を被検査体上で移動させることなく、所定範囲の検査を行うことができるようにする。』ことを目的とした技術として、『被検査体1に対して超音波を発信すると共に、その超音波の反射波を受信する超音波探触子sを、複数、各々からの超音波の発信方向が同方向となるように並設し、前記複数の超音波探触子sを切り替えて作動させる切替部11を設けてある。』というものが提案されている(特許文献1)。   2. Description of the Related Art Conventionally, regarding an ultrasonic flaw detector, “a test within a predetermined range can be performed without moving an ultrasonic probe on an inspection object. As a technology for the purpose of "transmitting ultrasonic waves from each of a plurality of ultrasonic probes s that transmit ultrasonic waves to the inspected object 1 and receive reflected waves of the ultrasonic waves," A switching unit 11 is provided that is arranged in parallel so that the directions are the same, and switches and operates the plurality of ultrasonic probes s. Is proposed (Patent Document 1).

また、超音波探傷装置に関し、『超音波探傷装置の大型化を抑制しながら、接触媒質の膜厚を所望の反射波強度が得られる膜厚に維持し易い超音波探傷装置を提供する。』ことを目的とした技術として、『超音波探触子1の探触面を被検査体表面に接触媒質7を介して押し付けて被検査体Aを探傷するように構成してある超音波探傷装置であって、探触面の被検査体表面への押し付け圧力を検出する圧力センサ10と、検出した押し付け圧力を表示する表示手段12とを設けてある。』というものが提案されている(特許文献2)。   The present invention also relates to an ultrasonic flaw detector, which provides an ultrasonic flaw detector which can easily maintain the film thickness of a contact medium at a film thickness at which a desired reflected wave intensity can be obtained while suppressing an increase in size of the ultrasonic flaw detector. As a technology for the purpose of the above, “the ultrasonic flaw detection is configured such that the inspection surface of the ultrasonic probe 1 is pressed against the surface of the inspection object via the contact medium 7 to detect the inspection object A”. The apparatus is provided with a pressure sensor 10 that detects a pressing pressure of the probe surface against the surface of the object to be inspected, and a display unit 12 that displays the detected pressing pressure. Is proposed (Patent Document 2).

また、溶接部の検査方法に関し、『溶接構造体の溶接部の検査において、接触媒質で検査対象の周辺を汚染せず、溶接部の空隙の有無を精度良く知ること』を目的とした技術として、『超音波探触子1は超音波送受信面に接触媒質10と薄くて且つ柔軟性のあるシート15を有している。応力を付加する手段27により超音波探触子に応力を付加しながら、垂直超音波が対抗面で反射した垂直反射波の信号強度と応力の相関を得る。応力の増加に伴う信号強度の増加の程度が緩やかになった時点の応力を維持して、SH波の送受信を行う。溶接部13に存在する空隙14で反射したSH反射波の信号検出の有無から空隙14の有無を知り、空隙が有れば溶接不良、無ければ健全であると判断する。』というものが提案されている(特許文献3)。   In addition, regarding the inspection method of the welded part, as a technique aimed at "accurately know the presence or absence of voids in the welded part without infecting the periphery of the inspection target with the contact medium in the inspection of the welded part of the welded structure" “The ultrasonic probe 1 has a contact medium 10 and a thin and flexible sheet 15 on the ultrasonic transmission / reception surface. While applying stress to the ultrasonic probe by means 27 for applying stress, a correlation is obtained between the signal intensity of the vertical reflected wave reflected by the opposing surface of the vertical ultrasonic wave and the stress. The SH wave is transmitted / received while maintaining the stress at the time when the increase in signal intensity accompanying the increase in stress becomes moderate. The presence or absence of the air gap 14 is known from the presence or absence of signal detection of the SH reflected wave reflected by the air gap 14 existing in the welded portion 13. Is proposed (Patent Document 3).

特開2004−20333号公報(要約)JP 2004-20333 A (summary) 特開2004−20334号公報(要約)JP 2004-20334 A (summary) 特開2004−212308号公報(要約)JP 2004-212308 A (summary)

超音波を用いて欠陥検出を行う場合、反射や屈折時にモード変換を生じないため明瞭な波形が得られ易く、エネルギーの損失が少ないという利点から、SH(Shear Horizontal)波が用いられる場合がある。
SH波を被検査物に伝達させるには、せん断方向の振動を被検査物との接触面から伝える必要がある。そのため、探触子と被検査物の接触面に用いる接触媒質は、一般的なものより粘性が高い専用のものを用いる必要がある。
When performing defect detection using ultrasonic waves, SH (Shear Horizontal) waves may be used because of the advantages that a clear waveform is easily obtained because mode conversion does not occur during reflection and refraction, and energy loss is small. .
In order to transmit the SH wave to the inspection object, it is necessary to transmit the vibration in the shearing direction from the contact surface with the inspection object. Therefore, the contact medium used for the contact surface between the probe and the object to be inspected needs to use a dedicated medium having a higher viscosity than a general medium.

上記のようなSH波の発生手法の特性により、発生させるSH波、およびその受信感度は、接触媒質の粘性の変化、被検査物の表面状態、探触子の取付状態、などの測定環境によって大きく異なる可能性がある。また、同一の被検査物であっても、計測点を変更する際に感度が変化してしまう可能性がある。   Due to the characteristics of the generation method of the SH wave as described above, the generated SH wave and its reception sensitivity depend on the measurement environment such as the change in the viscosity of the contact medium, the surface state of the inspection object, the mounting state of the probe, and the like. It can be very different. Moreover, even if it is the same to-be-inspected object, a sensitivity may change when changing a measurement point.

上記特許文献1に記載の技術では、上述の点を考慮しておらず、探触子の接触状態によっては検出精度が異なる場合がある。
上記特許文献2に記載の技術では、押し付け圧力以外の要素、例えば接触媒質7の粘性に起因する音響結合状態の変化を考慮しておらず、検出精度について同様の課題がある。
上記特許文献3に記載の技術では、応力を付加する手段27を設けるため、装置が大型になってしまう。
The technique described in Patent Document 1 does not consider the above points, and the detection accuracy may vary depending on the contact state of the probe.
The technique described in Patent Document 2 does not consider changes in the acoustic coupling state caused by factors other than the pressing pressure, for example, the viscosity of the contact medium 7, and has a similar problem with respect to detection accuracy.
In the technique described in Patent Document 3, since the means 27 for applying stress is provided, the apparatus becomes large.

本発明は、上記のような課題を解決するためになされたものであり、簡易な構成で精度良い欠陥検査を行うことのできる超音波探傷方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an ultrasonic flaw detection method capable of accurately performing defect inspection with a simple configuration.

本発明に係る超音波探傷方法は、超音波を用いて配管の欠陥を検出する方法であって、前記配管の被検査部位にSH波を入射してその反射波を受信する探触子を管周方向に複数並設するとともに、各前記探触子と前記被検査部位の間に各前記探触子と隣接して較正用探触子をそれぞれ配設しておき、前記複数の探触子を切り替えて動作させながら前記被検査部位にSH波を入射するステップと、SH波を入射した探触子がそのSH波の反射波を受信するステップと、SH波を入射した探触子に隣接する較正用探触子の受信波形を用いて当該探触子の受信波形を補正する補正ステップと、前記補正ステップの結果に基づき前記被検査部位の欠陥を検出する検出ステップと、を有するものである。   An ultrasonic flaw detection method according to the present invention is a method for detecting a defect in a pipe using ultrasonic waves, and a probe for receiving an SH wave and receiving the reflected wave on a portion to be inspected of the pipe. A plurality of probes are arranged side by side in the circumferential direction, and a calibration probe is disposed adjacent to each probe between each probe and the site to be inspected, and the plurality of probes. The step of making the SH wave incident on the inspected site while switching and operating the probe, the step of receiving the reflected wave of the SH wave by the probe receiving the SH wave, and the probe adjacent to the SH wave incident A correction step of correcting the reception waveform of the probe using the reception waveform of the calibration probe, and a detection step of detecting a defect in the inspection site based on the result of the correction step. is there.

本発明に係る超音波探傷方法によれば、探触子と較正用探触子を隣接して配設するという簡易な構成で、較正用探触子の受信波形を用いて、探触子が受信した受信波形を補正することができ、精度良い欠陥検出を行うことができる。   According to the ultrasonic flaw detection method according to the present invention, the probe is arranged in a simple configuration in which the probe and the calibration probe are disposed adjacent to each other using the received waveform of the calibration probe. The received waveform received can be corrected, and accurate defect detection can be performed.

実施の形態1.
図1は、本発明の実施の形態1に係る超音波探傷方法の実施対象を示す断面図である。
図1において、配管10は、橋桁50の底面に配設されており、橋台40を貫通して地中に埋設されている。配管10のうち、橋桁50の底面に敷設されている部分は、検査者が接触することができるが、橋台40を貫通している部分は橋台40内に埋没しているため、検査者が接触することはできない。
したがって、配管10のうち、橋台40を貫通している部分に存在する腐食20等の欠陥は、橋台40の外部から検査を実施しなければならない。ここでは、橋台40の外部から超音波を入射して腐食20を検出することを考える。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing an object to be subjected to the ultrasonic flaw detection method according to Embodiment 1 of the present invention.
In FIG. 1, the pipe 10 is disposed on the bottom surface of the bridge girder 50 and penetrates the abutment 40 and is buried in the ground. The portion of the pipe 10 that is laid on the bottom surface of the bridge girder 50 can contact the inspector, but the portion that penetrates the abutment 40 is buried in the abutment 40, so that the inspector makes contact. I can't do it.
Therefore, a defect such as corrosion 20 existing in a portion of the pipe 10 penetrating the abutment 40 must be inspected from the outside of the abutment 40. Here, it is assumed that the corrosion 20 is detected by entering an ultrasonic wave from the outside of the abutment 40.

図2は、探触子60の配置を説明する斜視図である。
本実施の形態1では、配管10の管周方向に沿って複数の探触子60を配設し、被検査部位30に向けて超音波を入射する。なお、探触子60と隣接して、後述の図3で説明する較正用探触子70(図2では図示せず)を配設する。
このように、複数の探触子60を配設するのは、1つの探触子を用いる場合、管周方向に沿って探触子60を移動させて管周方向に走査する必要があるからである。
特に超音波としてSH波を用いる場合、高粘度の接触媒質を用いるため、探触子60を効率良く移動させ難く、探触子60を移動させて管周方向に走査すると、検査に時間がかかる。
そこで本実施の形態1では、図2のように配管10の管周方向に沿って複数の探触子60を配設することとした。なお、探触子60の数は、必要に応じて適宜定める。
FIG. 2 is a perspective view for explaining the arrangement of the probe 60.
In the first embodiment, a plurality of probes 60 are arranged along the pipe circumferential direction of the pipe 10, and ultrasonic waves are incident toward the inspected site 30. A calibration probe 70 (not shown in FIG. 2) described later with reference to FIG. 3 is disposed adjacent to the probe 60.
In this way, the plurality of probes 60 are arranged because, when one probe is used, it is necessary to move the probe 60 along the tube circumferential direction and scan in the tube circumferential direction. It is.
In particular, when an SH wave is used as an ultrasonic wave, a contact medium having a high viscosity is used. Therefore, it is difficult to efficiently move the probe 60. If the probe 60 is moved and scanned in the tube circumferential direction, the inspection takes time. .
Therefore, in the first embodiment, a plurality of probes 60 are arranged along the pipe circumferential direction of the pipe 10 as shown in FIG. Note that the number of probes 60 is appropriately determined as necessary.

探触子60は、被検査部位30の検査に際し、SH波を用いる。
各探触子60を動作させてSH波を送受信する際には、動作させる探触子60を切り替えながら検査を行う。
欠陥位置は、管軸方向、管周方向、深さの3つの座標値をもって特定する。
The probe 60 uses SH waves when inspecting the part 30 to be inspected.
When each probe 60 is operated and SH waves are transmitted and received, the inspection is performed while switching the probe 60 to be operated.
The defect position is specified by three coordinate values of the tube axis direction, the tube circumferential direction, and the depth.

(1)管軸方向:配管10の長さ方向である。
(2)管周方向:配管10の円周方向である。
(3)深さ方向:配管10の厚さ方向である。
(1) Pipe axis direction: The length direction of the pipe 10.
(2) Pipe circumferential direction: The circumferential direction of the pipe 10.
(3) Depth direction: The thickness direction of the pipe 10.

図3は、探触子60の配設状態の詳細を示す図である。
図3(a)は探触子60の側面図、図3(b)は配管10の断面図を示す。
探触子60の前方(SH波を入射する方向=被検査部位30が存在する方向)には、探触子60に隣接して、較正用探触子70が配設される。較正用探触子70は、後述の手法により、探触子60の受信感度を補正するためのものである。
較正用探触子70は、各探触子60毎に設けられる。
FIG. 3 is a diagram showing details of the arrangement state of the probe 60.
3A is a side view of the probe 60 and FIG. 3B is a cross-sectional view of the pipe 10.
A calibration probe 70 is disposed adjacent to the probe 60 in front of the probe 60 (the direction in which the SH wave is incident = the direction in which the region to be inspected 30 exists). The calibration probe 70 is for correcting the reception sensitivity of the probe 60 by a method described later.
The calibration probe 70 is provided for each probe 60.

また、センサモジュールは、エアシリンダ80によって探触子60と較正用探触子70を配管10の表面に押し付ける押付機構を備えている。
エアシリンダ80は、空気圧で探触子60と較正用探触子70を配管10の表面に押し付ける機能を有する。
The sensor module also includes a pressing mechanism that presses the probe 60 and the calibration probe 70 against the surface of the pipe 10 by the air cylinder 80.
The air cylinder 80 has a function of pressing the probe 60 and the calibration probe 70 against the surface of the pipe 10 with air pressure.

図4は、本実施の形態1に係る超音波検査装置の全体構成図である。
図4において、コンピュータ200は、超音波送受信装置210および切替器220の動作を制御し、超音波送受信装置210が受信した超音波信号を記録、画面表示する。
超音波送受信装置210は、コンピュータ200の指示に基づきパルス信号を生成して切替器220を介し探触子60に入力し、探触子60が受信した超音波信号を切替器220を介し受信してコンピュータ200に出力する。
切替器220は、コンピュータ200の指示に基づき、複数の探触子60のうち、動作させるものを切り替える。
探触子60は、超音波送受信装置210が供給するパルス電圧によって励振され、被検査部位30にSH波を入射する。併せて、欠陥等で反射したSH波を受信し、電気信号として超音波送受信装置210に出力する。
FIG. 4 is an overall configuration diagram of the ultrasonic inspection apparatus according to the first embodiment.
In FIG. 4, the computer 200 controls the operations of the ultrasonic transmission / reception device 210 and the switcher 220, records the ultrasonic signals received by the ultrasonic transmission / reception device 210, and displays them on the screen.
The ultrasonic transmission / reception device 210 generates a pulse signal based on an instruction from the computer 200 and inputs the pulse signal to the probe 60 via the switch 220, and receives the ultrasonic signal received by the probe 60 via the switch 220. To the computer 200.
The switcher 220 switches a plurality of probes 60 to be operated based on an instruction from the computer 200.
The probe 60 is excited by the pulse voltage supplied from the ultrasonic transmission / reception device 210 and makes the SH wave incident on the inspected site 30. In addition, the SH wave reflected by the defect or the like is received and output to the ultrasonic transmission / reception apparatus 210 as an electrical signal.

以上、本実施の形態1に係る超音波探傷方法およびその装置の概略構成を説明した。
次に、本実施の形態1に係る超音波探傷方法における受信波形の較正手法を説明する。
Heretofore, the schematic configuration of the ultrasonic flaw detection method and apparatus according to the first embodiment has been described.
Next, a received waveform calibration method in the ultrasonic flaw detection method according to the first embodiment will be described.

図5は、配管10の欠陥検査に先立ち評価基準の作成を行う様子を示す図である。
図5(a)は評価基準を作成する様子、図5(b)は図5(a)で作成した評価基準に基づき配管10の欠陥検査を行う様子を示す。
FIG. 5 is a diagram showing how the evaluation criteria are created prior to the defect inspection of the pipe 10.
FIG. 5A shows a state where an evaluation standard is created, and FIG. 5B shows a state where a defect inspection of the pipe 10 is performed based on the evaluation standard created in FIG.

図5(a)において、300は腐食の評価基準を作成するための試験片、310は評価基準用反射源である。
探触子60は、図5(a)の矢印で示す方向に超音波を送信し、評価基準用反射源310で反射した超音波を受信して、その波形を計測することができる。また、探触子60が送信した超音波は、較正用探触子70でも直接受信する。
以下、図5の構成の下で評価基準の作成を行う手順を、ステップ(1)〜(9)で説明する。
In FIG. 5A, reference numeral 300 denotes a test piece for creating an evaluation standard for corrosion, and 310 denotes a reflection source for evaluation standard.
The probe 60 can transmit an ultrasonic wave in the direction indicated by the arrow in FIG. 5A, receive the ultrasonic wave reflected by the evaluation reference reflection source 310, and measure the waveform. Further, the ultrasonic wave transmitted by the probe 60 is also received directly by the calibration probe 70.
Hereinafter, the procedure for creating the evaluation criteria under the configuration of FIG. 5 will be described in steps (1) to (9).

(1)図5(a)で説明した評価基準用の試験片300を準備し、探触子60を配置する。試験片300には、欠陥による超音波の反射を模擬的に再現するための、評価基準用反射源310を設けておく。
(2)探触子60と評価基準用反射源310の間に、較正用探触子70を配置する。較正用探触子70は、実計測時と同様の固定方法で試験片300に固定する。
(1) The test piece 300 for the evaluation standard described in FIG. 5A is prepared, and the probe 60 is arranged. The test piece 300 is provided with an evaluation reference reflection source 310 for simulating the reflection of ultrasonic waves due to defects.
(2) The calibration probe 70 is disposed between the probe 60 and the evaluation reference reflection source 310. The calibration probe 70 is fixed to the test piece 300 by the same fixing method as in actual measurement.

(3)探触子60から試験片300にSH波を送信し、評価基準用反射源310で反射した超音波を探触子60で受信する。この際、探触子60から送信されたSH波を較正用探触子70でも受信しておく。 (3) The SH wave is transmitted from the probe 60 to the test piece 300, and the ultrasonic wave reflected by the evaluation reference reflection source 310 is received by the probe 60. At this time, the SH wave transmitted from the probe 60 is also received by the calibration probe 70.

(4)較正用探触子70における透過波のピーク値を取得して、これを後の実計測時の基準として用いる。詳細は後述する。
なお、ここでいう透過波とは、探触子60から較正用探触子70に直接入射した超音波のことである。較正用の超音波が試験片300や被検査物を伝搬する距離が短くなるが、その方が探触子の接触状況の影響のみを確認するには適していると考えられるため、このような手法を用いている。
(4) The peak value of the transmitted wave in the calibration probe 70 is acquired and used as a reference for actual measurement later. Details will be described later.
The transmitted wave here is an ultrasonic wave that is directly incident on the calibration probe 70 from the probe 60. Although the distance that the ultrasonic wave for calibration propagates through the test piece 300 and the inspection object is shortened, it is considered that this is suitable for confirming only the influence of the contact state of the probe. The method is used.

(5)腐食検査を行う際(図5(b):実計測時)は、探触子60と較正用探触子70の間の距離が試験片300における計測時(図5(a))と同一になるように配置する。
(6)なお、較正用探触子70を被検査物に固定する際の取付状態は、試験片300上における較正用探触子70の取付状態と同一にする。
(5) When performing a corrosion test (FIG. 5B: during actual measurement), the distance between the probe 60 and the calibration probe 70 is measured at the test piece 300 (FIG. 5A). To be the same.
(6) Note that the mounting state when the calibration probe 70 is fixed to the object to be inspected is the same as the mounting state of the calibration probe 70 on the test piece 300.

(7)探触子60から被検査部位30に向けてSH波を入射する。腐食20で反射した超音波を、探触子60で受信する。併せて、探触子60から送信されたSH波を較正用探触子70で受信する。
(8)較正用探触子70における透過波の受信レベルを測定し、ピーク値を取得する。
(7) An SH wave is incident from the probe 60 toward the inspection site 30. The ultrasonic wave reflected by the corrosion 20 is received by the probe 60. At the same time, the SH wave transmitted from the probe 60 is received by the calibration probe 70.
(8) The reception level of the transmitted wave in the calibration probe 70 is measured, and the peak value is acquired.

(9)試験片300上で測定した際の較正用探触子70における受信ピーク値と、実計測時の較正用探触子70における受信ピーク値とを比較する。その比較結果に基づき、探触子60における受信レベルを補正することができる。
補正方法は、例えば試験片300上での受信ピーク値と実計測時の受信ピーク値の比に基づく方法、差分に基づく方法、などが考えられる。例えば比に基づき補正する場合は、その比の値を探触子60における受信レベルに乗算して、受信レベルを補正する。
(9) The reception peak value of the calibration probe 70 when measured on the test piece 300 is compared with the reception peak value of the calibration probe 70 during actual measurement. Based on the comparison result, the reception level in the probe 60 can be corrected.
As a correction method, for example, a method based on a ratio between a reception peak value on the test piece 300 and a reception peak value at the time of actual measurement, a method based on a difference, and the like can be considered. For example, when correcting based on the ratio, the reception level is corrected by multiplying the reception level in the probe 60 by the value of the ratio.

以上の(1)〜(9)で述べたような手順によれば、探触子60の取付状態等の測定環境が、試験片300上における探触子60の取付状態等の測定環境と異なっていても、評価基準作成時の較正用探触子70の受信ピーク値と、実計測時の較正用探触子70の受信ピーク値を比較することにより、探触子60の受信レベルを補正することができる。
したがって、探触子60において、測定環境によらず正確な受信レベルが得られるので、その受信レベルに基づき、探触子60の受信波形を補正し、腐食20の大きさ等の状態を正確に把握することができる。
According to the procedures described in the above (1) to (9), the measurement environment such as the mounting state of the probe 60 is different from the measurement environment such as the mounting state of the probe 60 on the test piece 300. Even so, the reception level of the probe 60 is corrected by comparing the reception peak value of the calibration probe 70 at the time of creating the evaluation standard with the reception peak value of the calibration probe 70 at the time of actual measurement. can do.
Therefore, since an accurate reception level can be obtained in the probe 60 regardless of the measurement environment, the reception waveform of the probe 60 is corrected based on the reception level, and the state such as the size of the corrosion 20 is accurately determined. I can grasp it.

また、試験片300上における較正用探触子70の測定値は、値のみ取得しておけば後の感度補正処理を実行可能であるので、実計測を行う場所に試験片300を都度持っていく必要がなく、携帯する測定機器等を軽量化することができ、検査員の便宜に資する。   Further, if the measurement value of the calibration probe 70 on the test piece 300 is obtained only, the sensitivity correction process can be executed later. Therefore, the test piece 300 is held every time the actual measurement is performed. There is no need to go and the weight of the measuring instrument to be carried can be reduced, which contributes to the convenience of the inspector.

以上、本実施の形態1に係る超音波探傷方法における受信波形の較正手法を説明した。
次に、腐食20の位置の特定手順について説明する。
The reception waveform calibration method in the ultrasonic flaw detection method according to the first embodiment has been described above.
Next, a procedure for specifying the position of the corrosion 20 will be described.

(1)管軸方向の位置
腐食20の管軸方向の位置は、探触子60がSH波を入射してから反射波を受信するまでの時間と、SH波が配管10を伝搬する速度とに基づき特定することができる。
(1) The position in the tube axis direction The position of the corrosion 20 in the tube axis direction is the time from when the probe 60 receives the SH wave until it receives the reflected wave, and the speed at which the SH wave propagates through the pipe 10. Can be identified.

(2)管周方向の位置
腐食20の円周方向の位置は、腐食20に対応した受信波形が受信された探触子60の配置位置から推定することができる。即ち、腐食20から反射された受信波形は、腐食20の大きさ等に応じて信号強度が局所的に変化しているため、そのような受信波形を受信した探触子60の前方に腐食20が存在するものと推定することが可能である。
ただし、超音波は伝搬距離が長くなるにつれて円周方向に拡がっていくため、腐食20の正面以外の探触子60でも、信号強度が変化した受信波形が検出される場合がある。
そこで、腐食20の位置が探触子60から外れるほど、超音波の路程が長くなり、検出位置が遠くなる特性を考慮して、管周方向の計測位置が異なる複数の探触子60の受信波形データを比較しながら腐食20の位置を特定するとよい。
(2) Pipe circumferential position The circumferential position of the corrosion 20 can be estimated from the arrangement position of the probe 60 from which the received waveform corresponding to the corrosion 20 has been received. That is, since the signal intensity of the received waveform reflected from the corrosion 20 locally changes in accordance with the magnitude of the corrosion 20 or the like, the corrosion 20 is placed in front of the probe 60 that has received such a received waveform. Can be assumed to exist.
However, since the ultrasonic wave spreads in the circumferential direction as the propagation distance becomes longer, a received waveform with a changed signal intensity may be detected even in the probe 60 other than the front surface of the corrosion 20.
Therefore, in consideration of the characteristic that the ultrasonic path becomes longer and the detection position becomes farther as the position of the corrosion 20 moves away from the probe 60, the reception of a plurality of probes 60 having different measurement positions in the pipe circumferential direction is considered. The position of the corrosion 20 may be specified while comparing the waveform data.

(3)深さ方向の位置
腐食20の深さは、腐食20から反射する信号の強さで評価することができる。
例えば、腐食20を想定した人工きずを用いて管径別に評価基準データを作成しておき、この値を基に腐食20の深さを推定する閾値を定める。実計測時は、この閾値と信号強度に基づき、腐食20の深さを特定する。
(3) Position in the depth direction The depth of the corrosion 20 can be evaluated by the strength of the signal reflected from the corrosion 20.
For example, evaluation standard data is created for each pipe diameter using an artificial flaw that assumes corrosion 20, and a threshold value for estimating the depth of corrosion 20 is determined based on this value. During actual measurement, the depth of the corrosion 20 is specified based on the threshold value and the signal intensity.

以上、腐食20の管軸方向、管周方向、深さ方向の位置の特定手順について説明した。   The procedure for specifying the position of the corrosion 20 in the pipe axis direction, pipe circumferential direction, and depth direction has been described above.

以上のように、本実施の形態1によれば、管周方向に複数の探触子60を配設し、動作させる探触子60を切り替えながら被検査部位30にSH波を入射するので、探触子60を移動させる必要がなく、効率良く欠陥検査を行うことができる。   As described above, according to the first embodiment, a plurality of probes 60 are arranged in the tube circumferential direction, and the SH wave is incident on the inspected site 30 while switching the probe 60 to be operated. It is not necessary to move the probe 60, and defect inspection can be performed efficiently.

また、本実施の形態1では、較正用探触子70を探触子60の近くに隣接して配置しているので、探触子60を被検査部位30の近くに配設することができる。
超音波探傷の特性上、被検査部位30からの距離が遠くなると欠陥検出の精度が低下するので、上述のように探触子60を被検査部位30の近くに配設することができる構成を採用することが好ましい。
In the first embodiment, since the calibration probe 70 is disposed adjacent to the probe 60 and adjacent thereto, the probe 60 can be disposed near the site to be inspected 30. .
Due to the characteristics of ultrasonic flaw detection, the accuracy of defect detection decreases as the distance from the inspection site 30 increases. Therefore, the probe 60 can be disposed near the inspection site 30 as described above. It is preferable to adopt.

また、本実施の形態1では、SH波を用いて欠陥検査を行う。そのため、反射や屈折時にモード変換を生じず、明瞭な波形が得られ易く、エネルギーの損失が少ないという利点があり、精度良い欠陥検出を行うことができる。   In the first embodiment, defect inspection is performed using SH waves. Therefore, mode conversion does not occur during reflection and refraction, and there is an advantage that a clear waveform can be easily obtained, and there is little energy loss, and accurate defect detection can be performed.

また、本実施の形態1では、あらかじめ評価基準用の試験片300上で評価基準用反射源310を用いて評価基準データを作成しておき、実計測時は評価基準データと較正用探触子70の受信波形とを比較することで、探触子60の受信感度を補正する。
これにより、接触媒質や押付強度などの探触子60の取付状態に起因する受信波形の変化を補正し、精度良い欠陥検出を行うことができる。
特に、受信波形そのものを用いて較正を行うので、例えば押付圧力のように間接的なパラメータを用いて較正や感度管理を行う手法と比較して、より直接的で精度の良い較正と欠陥検出を行うことができる。
In the first embodiment, evaluation reference data is created in advance on the evaluation reference test piece 300 using the evaluation reference reflection source 310, and the evaluation reference data and the calibration probe are used during actual measurement. The reception sensitivity of the probe 60 is corrected by comparing the received waveform with 70.
Thereby, the change of the received waveform resulting from the attachment state of the probe 60, such as a contact medium and pressing strength, is correct | amended, and a defect detection with sufficient precision can be performed.
In particular, since the calibration is performed using the received waveform itself, more direct and accurate calibration and defect detection are possible compared to the method of performing calibration and sensitivity management using indirect parameters such as pressing pressure. It can be carried out.

また、本実施の形態1では、探触子60と較正用探触子70とエアシリンダ80をモジュール化し、配管10の外周に配設されたリングフレーム90に配設したので、超音波探傷装置全体の軽量化と、メカニカルな機構の削減を達成することができる。
また、エアシリンダ80の空気圧により簡便に押付圧力を調整できるので、探触子60と較正用探触子70の取付状態の調整が容易である。
In the first embodiment, since the probe 60, the calibration probe 70, and the air cylinder 80 are modularized and arranged on the ring frame 90 arranged on the outer periphery of the pipe 10, the ultrasonic flaw detection apparatus. Overall weight reduction and reduction of mechanical mechanism can be achieved.
Further, since the pressing pressure can be easily adjusted by the air pressure of the air cylinder 80, the mounting state of the probe 60 and the calibration probe 70 can be easily adjusted.

実施の形態2.
実施の形態1では、SH波を用いて配管10の欠陥検査を行うことを説明した。
より遠方の欠陥検査を行う場合は、SHガイド波を用いる。
Embodiment 2. FIG.
In Embodiment 1, it demonstrated that the defect inspection of the piping 10 was performed using SH wave.
In the case of performing a far-inspection defect inspection, an SH guide wave is used.

ガイド波とは、板厚、周波数、音速、入射角の諸条件を整えることで境界面(板の表面と裏面)の影響を積極的に利用した超音波の種類の総称である。ガイド波は、物理的な境界により形成された導波路に沿って伝搬する。   A guide wave is a general term for the types of ultrasonic waves that positively utilize the influence of the boundary surface (the surface and the back surface of the plate) by adjusting various conditions of the plate thickness, frequency, sound velocity, and incident angle. The guide wave propagates along the waveguide formed by the physical boundary.

ガイド波は、エネルギーの散逸が少なく遠方まで伝搬可能なことから、これを用いて欠陥検査を行うことで、より遠方まで検査が可能となる。そのため、配管等の欠陥検査手法に用いるものとして、近年注目されている。そこで、伝搬媒質の形状に沿って伝搬するSHガイド波を用いて欠陥検査を行うことを考える。   Since the guide wave has little energy dissipation and can be propagated far away, the inspection can be performed farther away by performing defect inspection using the guide wave. Therefore, it has been attracting attention in recent years as one used for defect inspection methods for piping and the like. Therefore, consider performing defect inspection using an SH guide wave propagating along the shape of the propagation medium.

SHガイド波は、伝搬媒質の形状に沿って、板厚全体にわたり水平方向に振動しながら、伝搬していく。
SHガイド波は、遠方まで伝搬可能な特性を有する。例えば1m程度の先にある検査範囲に対してSHガイド波を入射してその反射波を受信することで、欠陥検査を行うことが可能である。
The SH guide wave propagates along the shape of the propagation medium while vibrating in the horizontal direction over the entire plate thickness.
The SH guide wave has a characteristic capable of propagating far. For example, it is possible to inspect a defect by making an SH guide wave incident on an inspection range ahead of about 1 m and receiving the reflected wave.

なお、パイプのような円筒状の形状を持つ伝搬媒質に関しても、探触子を接触させた部分を局部的に板とみなし、板材にSHガイド波を入射する際と同様の手法で、SHガイド波を伝搬させることができる。   For the propagation medium having a cylindrical shape such as a pipe, the portion where the probe is in contact is regarded as a plate locally, and the SH guide is used in the same manner as when the SH guide wave is incident on the plate material. Waves can be propagated.

以上の実施の形態1〜2では、腐食20を超音波で検査する際の構成と手順について説明したが、検査対象の欠陥は、腐食に限られるものではなく、任意の欠陥について適用が可能である。   In the above Embodiments 1 and 2, the configuration and procedure for inspecting the corrosion 20 with ultrasonic waves have been described. However, the defect to be inspected is not limited to corrosion, and can be applied to any defect. is there.

実施の形態1に係る超音波探傷方法の実施対象を示す断面図である。FIG. 3 is a cross-sectional view showing an object to be subjected to the ultrasonic flaw detection method according to the first embodiment. 探触子60の配置を説明する斜視図である。It is a perspective view explaining arrangement | positioning of the probe 60. FIG. 探触子60の配設状態の詳細を示す図である。It is a figure which shows the detail of the arrangement | positioning state of the probe. 実施の形態1に係る超音波検査装置の全体構成図である。1 is an overall configuration diagram of an ultrasonic inspection apparatus according to Embodiment 1. FIG. 配管10の欠陥検査に先立ち評価基準の作成を行う様子を示す図である。It is a figure which shows a mode that the evaluation reference | standard is produced prior to the defect inspection of the piping.

符号の説明Explanation of symbols

10 配管、20 腐食、30 被検査部位、40 橋台、50 橋桁、60 探触子、70 較正用探触子、80 エアシリンダ、90 リングフレーム、200 コンピュータ、210 超音波送受信装置、220 切替器、300 試験片、310 評価基準用反射源。   10 Piping, 20 Corrosion, 30 Site to be inspected, 40 Abutment, 50 Bridge girder, 60 Probe, 70 Calibration probe, 80 Air cylinder, 90 Ring frame, 200 Computer, 210 Ultrasonic transceiver, 220 Switch, 300 Test piece, 310 Evaluation standard reflection source.

Claims (8)

超音波を用いて配管の欠陥を検出する方法であって、
前記配管の被検査部位にSH波を入射してその反射波を受信する探触子を管周方向に複数並設するとともに、
各前記探触子と前記被検査部位の間に各前記探触子と隣接して較正用探触子をそれぞれ配設しておき、
前記複数の探触子を切り替えて動作させながら前記被検査部位にSH波を入射するステップと、
SH波を入射した探触子がそのSH波の反射波を受信するステップと、
SH波を入射した探触子に隣接する較正用探触子の受信波形を用いて当該探触子の受信波形を補正する補正ステップと、
前記補正ステップの結果に基づき前記被検査部位の欠陥を検出する検出ステップと、
を有することを特徴とする超音波探傷方法。
A method for detecting defects in piping using ultrasonic waves,
While arranging a plurality of probes in the pipe circumferential direction in parallel with the SH wave incident on the inspected part of the pipe and receiving the reflected wave,
Between each of the probes and the site to be inspected, a calibration probe is disposed adjacent to each of the probes,
Injecting SH waves into the region to be examined while switching and operating the plurality of probes;
A probe that receives the SH wave receives the reflected wave of the SH wave;
A correction step of correcting the reception waveform of the probe using the reception waveform of the calibration probe adjacent to the probe on which the SH wave is incident;
A detection step of detecting a defect of the inspection site based on a result of the correction step;
An ultrasonic flaw detection method comprising:
前記被検査部位の欠陥検出に先立ち、
評価基準を定めることを目的とした評価基準用試験片上で、
基準反射源と探触子の間に較正用探触子を配置し、
基準反射源の計測と併せて較正用探触子での受信波形も計測しておき、
前記補正ステップでは、
前記評価基準用試験片を用いて測定した較正用探触子の受信波形と、
当該補正ステップで測定した較正用探触子の受信波形とを比較し、
その比較結果により前記探触子の受信波形を補正する
ことを特徴とする請求項1記載の超音波探傷方法。
Prior to defect detection of the inspection site,
On the test piece for evaluation criteria for the purpose of setting the evaluation criteria,
Place a calibration probe between the reference source and the probe,
In addition to measuring the reference reflection source, measure the received waveform with the calibration probe,
In the correction step,
The received waveform of the calibration probe measured using the test piece for evaluation criteria,
Compare the received waveform of the calibration probe measured in the correction step,
The ultrasonic flaw detection method according to claim 1, wherein the received waveform of the probe is corrected based on the comparison result.
前記評価基準用試験片を用いて測定した較正用探触子の受信波形のピーク値と、
前記被検査部位を検査する際に測定した較正用探触子の受信波形のピーク値との比に基づき、
前記探触子の受信波形を補正する
ことを特徴とする請求項2記載の超音波探傷方法。
The peak value of the received waveform of the calibration probe measured using the test piece for evaluation criteria,
Based on the ratio with the peak value of the received waveform of the calibration probe measured when inspecting the inspection site,
The ultrasonic flaw detection method according to claim 2, wherein a received waveform of the probe is corrected.
前記検出ステップでは、
前記探触子がSH波を入射してから反射波を受信するまでの時間とSH波の伝搬速度に基づき管軸方向の欠陥位置を特定し、
各前記探触子の受信波形を比較することで管周方向の欠陥位置を特定する
ことを特徴とする請求項1ないし請求項3のいずれかに記載の超音波探傷方法。
In the detection step,
The defect position in the tube axis direction is specified based on the time from when the probe enters the SH wave until the reflected wave is received and the propagation speed of the SH wave,
The ultrasonic flaw detection method according to any one of claims 1 to 3, wherein a defect position in a pipe circumferential direction is specified by comparing received waveforms of the probes.
前記配管の外周にリングフレームを配設するとともに、
前記探触子と較正用探触子を、エアシリンダを介して前記リングフレームに配設し、
前記エアシリンダの空気圧で前記探触子と較正用探触子を前記配管の表面に押し付けて前記探触子より前記SH波を入射する
ことを特徴とする請求項1ないし請求項4のいずれかに記載の超音波探傷方法。
While arranging a ring frame on the outer periphery of the pipe,
The probe and the calibration probe are arranged on the ring frame via an air cylinder,
5. The SH wave is incident from the probe by pressing the probe and the calibration probe against the surface of the pipe with the air pressure of the air cylinder. 6. The ultrasonic flaw detection method as described in 2.
前記SH波はSHガイド波である
ことを特徴とする請求項1ないし請求項5のいずれかに記載の超音波探傷方法。
The ultrasonic flaw detection method according to any one of claims 1 to 5, wherein the SH wave is an SH guide wave.
前記欠陥として前記配管の腐食を検出する
ことを特徴とする請求項1ないし請求項6のいずれかに記載の超音波探傷方法。
The ultrasonic flaw detection method according to any one of claims 1 to 6, wherein corrosion of the pipe is detected as the defect.
構造物によって遮蔽されている前記欠陥を、
遮蔽物の外部に前記探触子および前記較正用探触子を配設して検出する
ことを特徴とする請求項1ないし請求項7のいずれかに記載の超音波探傷方法。
The defect shielded by the structure,
The ultrasonic flaw detection method according to claim 1, wherein the probe and the calibration probe are arranged and detected outside a shield.
JP2008081618A 2008-03-26 2008-03-26 Ultrasonic flaw detection method Withdrawn JP2009236620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081618A JP2009236620A (en) 2008-03-26 2008-03-26 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081618A JP2009236620A (en) 2008-03-26 2008-03-26 Ultrasonic flaw detection method

Publications (1)

Publication Number Publication Date
JP2009236620A true JP2009236620A (en) 2009-10-15

Family

ID=41250760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081618A Withdrawn JP2009236620A (en) 2008-03-26 2008-03-26 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP2009236620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232133A (en) * 2010-04-27 2011-11-17 Ihi Inspection & Instrumentation Co Ltd Inspection method by using guide wave using coagulation of liquid layer
CN102288533A (en) * 2011-04-27 2011-12-21 北京工业大学 Device and method for detecting corrosion of conductor of grounding grid of power system based on SH0 (horizontal shear) wave
JP2014178289A (en) * 2013-03-15 2014-09-25 Hitachi-Ge Nuclear Energy Ltd Plate wave inspection method and device
JP2016027321A (en) * 2014-07-03 2016-02-18 Jfeエンジニアリング株式会社 Ultrasonic inspection method and probe installation fixture
CN112684001A (en) * 2020-10-28 2021-04-20 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive detection device for power transmission conductor and damage identification method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232133A (en) * 2010-04-27 2011-11-17 Ihi Inspection & Instrumentation Co Ltd Inspection method by using guide wave using coagulation of liquid layer
CN102288533A (en) * 2011-04-27 2011-12-21 北京工业大学 Device and method for detecting corrosion of conductor of grounding grid of power system based on SH0 (horizontal shear) wave
CN102288533B (en) * 2011-04-27 2013-04-24 北京工业大学 Method for detecting corrosion of conductor of grounding grid of power system based on SH0 (horizontal shear) wave
JP2014178289A (en) * 2013-03-15 2014-09-25 Hitachi-Ge Nuclear Energy Ltd Plate wave inspection method and device
JP2016027321A (en) * 2014-07-03 2016-02-18 Jfeエンジニアリング株式会社 Ultrasonic inspection method and probe installation fixture
CN112684001A (en) * 2020-10-28 2021-04-20 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive detection device for power transmission conductor and damage identification method
CN112684001B (en) * 2020-10-28 2024-03-01 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive testing device and damage identification method for power transmission wire

Similar Documents

Publication Publication Date Title
RU2485388C2 (en) Device and group of sensors for pipeline monitoring using ultrasonic waves of two different types
EP3070467B1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
KR102121821B1 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
RU2019104572A (en) LASER ULTRASONIC SCANNING FOR VISUALIZATION OF DAMAGE OR IMPACT
JP2008122209A (en) Ultrasonic flaw inspection device and method
CN105424804B (en) One kind remanufacturing composite part defect supersonic detection method
US20170108472A1 (en) Airborne ultrasound testing system for a test object
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2013088240A (en) Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
KR101955440B1 (en) Dynamic modulus and residual stress measurement test evaluation device using ultrasonic sound velocity difference
JP2009063372A (en) Aerial ultrasonic flaw detector and detection method
JP2009236620A (en) Ultrasonic flaw detection method
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP5663319B2 (en) Guide wave inspection method and apparatus
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JP2018189550A (en) Ultrasonic video device and method for generating ultrasonic video
KR20180103567A (en) Apparatus and method for detecting defects of structures
JP6371575B2 (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus
JP4784556B2 (en) Sensitivity correction method for ultrasonic inspection
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
JP2001208729A (en) Defect detector
JP2016205858A (en) Defect inspection device and control method thereof, program, and storage medium
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607