JP2017072570A - Method of manufacturing magnetic sensor and method of manufacturing current sensor - Google Patents

Method of manufacturing magnetic sensor and method of manufacturing current sensor Download PDF

Info

Publication number
JP2017072570A
JP2017072570A JP2015201574A JP2015201574A JP2017072570A JP 2017072570 A JP2017072570 A JP 2017072570A JP 2015201574 A JP2015201574 A JP 2015201574A JP 2015201574 A JP2015201574 A JP 2015201574A JP 2017072570 A JP2017072570 A JP 2017072570A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive
manufacturing
magnetic
long pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015201574A
Other languages
Japanese (ja)
Other versions
JP6506671B2 (en
Inventor
井出 洋介
Yosuke Ide
洋介 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015201574A priority Critical patent/JP6506671B2/en
Publication of JP2017072570A publication Critical patent/JP2017072570A/en
Application granted granted Critical
Publication of JP6506671B2 publication Critical patent/JP6506671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetic sensor having a small offset and offset temperature characteristics, and to provide a method of manufacturing a current sensor using such the magnetic sensor.SOLUTION: There is provided a method of manufacturing a magnetic sensor 12 having a magnetic field detection bridge circuit constituted of four magnetoresistance effect elements 122a-122d. Each of the magnetoresistance effect elements has a meander shaped long pattern and the pattern has a ferromagnetic fixed layer. The four magnetoresistance effect elements are constituted of first magnetoresistance effect elements GMR1 and second magnetoresistance effect elements GMR2 having long patterns with a common aspect ratio and different widths W, and are simultaneously formed through a series of film-forming processes.SELECTED DRAWING: Figure 1

Description

本発明は、磁気センサの製造方法および当該磁気センサを用いる電流センサの製造方法に関する。   The present invention relates to a method for manufacturing a magnetic sensor and a method for manufacturing a current sensor using the magnetic sensor.

特許文献1には、被測定電流からの誘導磁界の印加により抵抗値が変化する4つの磁気抵抗効果素子で構成され、2つの磁気抵抗効果素子間の出力を備える磁界検出ブリッジ回路を有する電流センサであって、前記4つの磁気抵抗効果素子は、抵抗変化率が同じであり、反平行結合膜を介して第1の強磁性膜と第2の強磁性膜とを反強磁性的に結合させてなるセルフピン止め型の強磁性固定層と、非磁性中間層と、軟磁性自由層とを有し、前記出力を与える2つの磁気抵抗効果素子の強磁性固定層の磁化方向が互いに180°異なる方向であり、前記磁気検出ブリッジ回路は、電源供給点に対して対称である配線を有する電流センサが開示されている。   Patent Document 1 discloses a current sensor including a magnetic field detection bridge circuit that includes four magnetoresistive elements whose resistance values change when an induction magnetic field is applied from a current to be measured, and includes an output between the two magnetoresistive elements. The four magnetoresistive elements have the same rate of change in resistance, and antiferromagnetically couple the first ferromagnetic film and the second ferromagnetic film via the antiparallel coupling film. The magnetization directions of the ferromagnetic pinned layers of the two magnetoresistive effect elements that give the output are 180 ° different from each other. The self-pinned ferromagnetic pinned layer, the nonmagnetic intermediate layer, and the soft magnetic free layer A current sensor having a wiring that is directional and the magnetic detection bridge circuit is symmetric with respect to a power supply point is disclosed.

特許文献1に開示される磁気検出ブリッジ回路を備えることにより、線形応答性に優れる磁気センサが得られ、この特性を活かすことにより、測定精度の高い電流センサを得ることができる。   By providing the magnetic detection bridge circuit disclosed in Patent Document 1, a magnetic sensor with excellent linear response can be obtained, and by utilizing this characteristic, a current sensor with high measurement accuracy can be obtained.

特開2014−81384号公報JP 2014-81384 A

このように磁気センサの線形応答性が高くなると、これまでは相対的に影響が少なかったオフセット値(外部から磁界が印加されていない状態での出力値)や、オフセット温度特性(オフセットの温度依存性)を、さらに低減することが求められるようになる可能性がある。   Thus, when the linear response of the magnetic sensor increases, the offset value (output value when no magnetic field is applied from the outside) and offset temperature characteristics (temperature dependence of the offset) have been relatively small until now. May be required to be further reduced.

本発明は、上記のオフセットやオフセット温度特性が小さい磁気センサの製造方法およびかかる磁気センサを用いる電流センサの製造方法を提供することを目的とする。   It is an object of the present invention to provide a method of manufacturing a magnetic sensor having a small offset and offset temperature characteristic and a method of manufacturing a current sensor using such a magnetic sensor.

上記課題を解決すべく本発明者が検討した結果、次のような知見を得た。
(a)オフセットやオフセット温度特性を増加させる要因の一つとして、磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子の製造段階でのばらつきが挙げられる。
(b)この4つの磁気抵抗効果素子の製造段階でのばらつきは、これらの磁気抵抗効果素子を一連の製造プロセスで同時に製造することにより低減させることができる。
(c)そのように同時に製造される場合であっても、4つの磁気抵抗効果素子を、感度(外部磁界に対する抵抗変化率)が異なる一対の磁気抵抗効果素子の2組とすることにより、印加された磁界に対して線形的に応答する出力を有する磁界検出ブリッジ回路が得られる。
(d)抵抗値は等しく感度が異なる一対の磁気抵抗効果素子を同時に製造するためには、一対の磁気抵抗効果素子を、アスペクト比(ミアンダ形状の長尺パターンの全長/長尺パターンの幅)は等しいが長尺パターンの幅は相違するようすればよい。
As a result of investigation by the present inventor to solve the above problems, the following knowledge was obtained.
(A) As one of the factors that increase the offset and offset temperature characteristics, there are variations in the manufacturing stage of the four magnetoresistive elements provided in the magnetic field detection bridge circuit.
(B) Variation in the manufacturing stage of the four magnetoresistive elements can be reduced by simultaneously manufacturing these magnetoresistive elements in a series of manufacturing processes.
(C) Even in such a case of simultaneous manufacture, four magnetoresistive elements are applied by making two sets of a pair of magnetoresistive elements having different sensitivities (resistance change rates with respect to an external magnetic field). A magnetic field detection bridge circuit having an output that linearly responds to the applied magnetic field.
(D) In order to simultaneously manufacture a pair of magnetoresistive elements having the same resistance value and different sensitivities, the aspect ratio (the total length of the meander-shaped long pattern / the width of the long pattern) Are equal, but the widths of the long patterns may be different.

以上の知見に基づき完成された本発明は、一態様において、外部磁界の変化に応じて抵抗値が変化する4つの磁気抵抗効果素子で構成され、直列に接続された2つの磁気抵抗効果素子からなる部分回路を2つ備える磁界検出ブリッジ回路を有する磁気センサの製造方法であって、前記4つの磁気抵抗効果素子は、いずれも、帯状の長尺パターンが折り返されたミアンダ形状であって、前記長尺パターンは、強磁性固定層と、非磁性中間層と、軟磁性自由層とを有する積層構造を備え、前記4つの磁気抵抗効果素子は、前記長尺パターンの全長を前記長尺パターンの幅で除したアスペクト比は共通するが、前記長尺パターンの幅が相違する2種類の磁気抵抗効果素子である第1の磁気抵抗効果素子および第2の磁気抵抗効果素子から構成され、前記磁界検出ブリッジ回路の前記部分回路の一方では、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記磁界検出ブリッジ回路の前記部分回路の他方では、第2の磁気抵抗効果素子および第1の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記4つの磁気抵抗効果素子を一連の製膜プロセスで同時に形成することを特徴とする磁気センサの製造方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, composed of four magnetoresistive effect elements whose resistance values change in accordance with changes in the external magnetic field, and are connected in series. A method of manufacturing a magnetic sensor having a magnetic field detection bridge circuit including two partial circuits, wherein each of the four magnetoresistive elements has a meander shape in which a strip-like long pattern is folded, The long pattern includes a laminated structure having a ferromagnetic pinned layer, a nonmagnetic intermediate layer, and a soft magnetic free layer, and the four magnetoresistive elements have the total length of the long pattern of the long pattern. The aspect ratio divided by the width is the same, but is composed of a first magnetoresistive effect element and a second magnetoresistive effect element, which are two types of magnetoresistive effect elements having different widths of the long pattern, In one of the partial circuits of the magnetic field detection bridge circuit, the first magnetoresistive element and the second magnetoresistive element are connected in series in this order from the side proximal to the power supply point, and the magnetic field detection In the other of the partial circuits of the bridge circuit, the second magnetoresistive effect element and the first magnetoresistive effect element are connected in series from the side proximal to the power supply point in this order, and the four magnetoresistive effect elements are connected. A method of manufacturing a magnetic sensor, wherein elements are simultaneously formed by a series of film forming processes.

上記のとおり、ミアンダ形状を有する磁気抵抗効果素子について、アスペクト比を共通としつつ長尺パターンの幅を変化させることによって、感度の異なる2種類の磁気抵抗効果素子を同時に製造することができる。このように、上記の本発明の一態様に係る製造方法では、磁界検出ブリッジを構成する4つの磁気抵抗効果素子は同時に製造されるため、これらの磁気抵抗効果素子は特性ばらつきが生じにくい。したがって、外部から磁界が印加されていない状態での抵抗値と抵抗温度係数のばらつきも生じにくくなり、その結果オフセットやオフセット温度特性が小さい磁気センサが得られやすい。   As described above, two types of magnetoresistive effect elements having different sensitivities can be simultaneously manufactured by changing the width of the long pattern with a common aspect ratio for the magnetoresistive effect element having a meander shape. As described above, in the manufacturing method according to one aspect of the present invention, since the four magnetoresistive elements constituting the magnetic field detection bridge are manufactured at the same time, characteristic variations of these magnetoresistive elements are unlikely to occur. Accordingly, variations in resistance value and resistance temperature coefficient in a state where no magnetic field is applied from the outside are less likely to occur, and as a result, a magnetic sensor having a small offset and offset temperature characteristic can be easily obtained.

前記強磁性固定層は、反強磁性膜と交換結合している第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなる積層フェリ型であってもよいし、第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなるセルフピン型であってもよい。   The ferromagnetic pinned layer is a laminated ferrimagnetic layer formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film exchange-coupled to an antiferromagnetic film through an antiparallel coupling film. It may be of a type, or may be a self-pin type in which the first ferromagnetic film and the second ferromagnetic film are antiferromagnetically coupled via an antiparallel coupling film.

上記の磁気センサの製造方法において、前記4つの磁気抵抗効果素子の近傍に配置され、被測定磁界を相殺するキャンセル磁界を発生するフィードバックコイルをさらに具備し、前記磁気検出ブリッジ回路が備える前記2つの部分回路のそれぞれが有する2つの前記磁気抵抗効果素子の間に設けられた出力の電圧差により前記フィードバックコイルに通電して前記被測定磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて前記被測定磁界を測定可能とされてもよい。このようにフィードバックコイルを用いることにより、被測定磁界の測定精度を高めることができる。   In the method for manufacturing the magnetic sensor, the magnetic sensor bridge circuit further includes a feedback coil that is disposed in the vicinity of the four magnetoresistive elements and generates a canceling magnetic field that cancels the magnetic field to be measured. When the feedback coil is energized by an output voltage difference provided between the two magnetoresistive elements included in each of the partial circuits and the measured magnetic field and the canceling magnetic field cancel each other. The measured magnetic field may be measurable based on a current flowing through the feedback coil. By using the feedback coil in this way, the measurement accuracy of the magnetic field to be measured can be increased.

上記のようにフィードバックコイルを用いる場合において、前記被測定磁界および前記キャンセル磁界が前記長尺パターンの延びる方向に直交する方向に沿うように印加可能に、前記フィードバックコイルは配置されることにより、キャンセル磁界の印加方向を磁気抵抗効果素子の感度軸方向に沿った方向とすることができる。このため、上記のようにフィードバックコイルを配置することは、被測定磁界の測定精度を高める観点から好ましい。   In the case where the feedback coil is used as described above, the feedback coil is arranged so that the measured magnetic field and the cancellation magnetic field can be applied so as to be along a direction orthogonal to the extending direction of the long pattern. The application direction of the magnetic field can be a direction along the sensitivity axis direction of the magnetoresistive effect element. For this reason, it is preferable to arrange the feedback coil as described above from the viewpoint of increasing the measurement accuracy of the magnetic field to be measured.

前記4つの磁気抵抗効果素子が前記長尺パターンの延びる方向に沿って並置されることにより、4つの磁気抵抗効果素子の感度軸の方向を揃えることが容易となる。したがって、上記のように4つの磁気抵抗効果素子が並置されることは、被測定磁界の測定精度を高める観点から好ましい。   By arranging the four magnetoresistive elements along the direction in which the elongated pattern extends, it becomes easy to align the directions of the sensitivity axes of the four magnetoresistive elements. Therefore, it is preferable that the four magnetoresistive elements are juxtaposed as described above from the viewpoint of increasing the measurement accuracy of the magnetic field to be measured.

本発明は、他の一態様において、上記の本発明の一態様に係る製造方法により製造された磁気センサを用いて、前記磁気抵抗効果素子の前記長尺パターンの長手方向に沿った方向に流れる被測定電流により生じた誘導磁界を測定して、前記被測定電流を定量的に測定することを特徴とする電流センサの製造方法である。上記のとおり、本発明の一実施形態に係る製造方法により製造された磁気センサは、オフセットやオフセット温度特性が小さいため、被測定電流により生じた誘導磁界をかかる磁気センサを用いて測定することにより、被測定電流を高精度に定量測定することが可能である。   In another aspect, the present invention flows in a direction along the longitudinal direction of the long pattern of the magnetoresistive effect element using the magnetic sensor manufactured by the manufacturing method according to the above aspect of the present invention. A method for manufacturing a current sensor, comprising: measuring an induced magnetic field generated by a current to be measured, and quantitatively measuring the current to be measured. As described above, since the magnetic sensor manufactured by the manufacturing method according to the embodiment of the present invention has small offset and offset temperature characteristics, the induced magnetic field generated by the current to be measured is measured using the magnetic sensor. The measured current can be quantitatively measured with high accuracy.

本発明によれば、オフセットやオフセット温度特性が小さい磁気センサの製造方法が提供される。また、かかる磁気センサを用いる電流センサの製造方法も提供される。   According to the present invention, a method for manufacturing a magnetic sensor with small offset and offset temperature characteristics is provided. A method of manufacturing a current sensor using such a magnetic sensor is also provided.

本発明の一実施形態に係る製造方法により製造された磁気センサを用いてなる磁気平衡式電流センサの一例を示す図である。It is a figure which shows an example of the magnetic balance type current sensor which uses the magnetic sensor manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法により製造された磁気センサが備える2種類の磁気抵抗効果素子の一方(第1の磁気抵抗効果素子)の平面図である。It is a top view of one (1st magnetoresistive effect element) of two types of magnetoresistive effect elements with which the magnetic sensor manufactured by the manufacturing method which concerns on one Embodiment of this invention is provided. 本発明の一実施形態に係る製造方法により製造された磁気センサが備える2種類の磁気抵抗効果素子の他方(第2の磁気抵抗効果素子)の平面図である。It is a top view of the other (2nd magnetoresistive effect element) of two types of magnetoresistive effect elements with which the magnetic sensor manufactured by the manufacturing method which concerns on one Embodiment of this invention is provided. 本発明の実施例1に係る製造方法により製造された2種類の磁気抵抗効果素子(GMR1,GMR2)の素子抵抗の印加磁界に対する応答性を示すグラフである。It is a graph which shows the response with respect to the applied magnetic field of element resistance of two types of magnetoresistive effect elements (GMR1, GMR2) manufactured by the manufacturing method which concerns on Example 1 of this invention. 本発明の実施例1に係る製造方法により製造された磁気センサの中点電位差からなる出力電圧の印加磁界に対する応答性を示すグラフである。It is a graph which shows the response with respect to the applied magnetic field of the output voltage which consists of a midpoint potential difference of the magnetic sensor manufactured by the manufacturing method which concerns on Example 1 of this invention. 図2に示すI−I線における矢視断面図である。It is arrow sectional drawing in the II line | wire shown in FIG. 本発明の一実施形態に係る製造方法により製造された磁気センサを用いてなる比例式電流センサの他の一例を示す図である。It is a figure which shows another example of the proportional type current sensor which uses the magnetic sensor manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の比較例1に係る製造方法により製造された磁気抵抗効果素子の積層構造を概念的に示す断面図である。It is sectional drawing which shows notionally the laminated structure of the magnetoresistive effect element manufactured by the manufacturing method which concerns on the comparative example 1 of this invention. 本発明の実施例に係る製造方法により製造された磁気センサのオフセット値に関するヒストグラムである。It is a histogram regarding the offset value of the magnetic sensor manufactured by the manufacturing method which concerns on the Example of this invention. 本発明の実施例に係る製造方法により製造された磁気センサのオフセット温度特性に関するヒストグラムである。It is a histogram regarding the offset temperature characteristic of the magnetic sensor manufactured by the manufacturing method which concerns on the Example of this invention.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。本発明の一実施形態に係る電流センサは、磁気平衡式の磁気センサを備える磁気平衡式電流センサである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. A current sensor according to an embodiment of the present invention is a magnetic balance type current sensor including a magnetic balance type magnetic sensor.

図1は、本発明の一実施形態に係る磁気平衡式電流センサを示す図である。本実施の形態においては、図1に示す磁気平衡式電流センサは、被測定電流が流れる導体11の近傍に配設される。この磁気平衡式電流センサは、導体11に流れる被測定電流による誘導磁界Aを打ち消す磁界(キャンセル磁界)Bを生じさせるフィードバック回路を備える磁気センサ12からなる。このフィードバック回路は、直線的に流れる被測定電流によって発生する磁界を打ち消す方向に巻回されたフィードバックコイル121と、4つの磁気抵抗効果素子122a〜122dを備える磁界検出ブリッジ回路とを有する。   FIG. 1 is a diagram showing a magnetic balanced current sensor according to an embodiment of the present invention. In the present embodiment, the magnetic balanced current sensor shown in FIG. 1 is disposed in the vicinity of the conductor 11 through which the current to be measured flows. This magnetic balance type current sensor includes a magnetic sensor 12 including a feedback circuit that generates a magnetic field (cancellation magnetic field) B that cancels the induced magnetic field A caused by the current to be measured flowing through the conductor 11. This feedback circuit includes a feedback coil 121 wound in a direction to cancel a magnetic field generated by a current to be measured that flows linearly, and a magnetic field detection bridge circuit including four magnetoresistive elements 122a to 122d.

フィードバックコイル121は平面コイルで構成されている。この構成においては、磁気コアを有しないので、低コストでフィードバックコイルを作製することができる。また、トロイダルコイルの場合に比べて、フィードバックコイルから生じるキャンセル磁界が広範囲に拡がることを防止でき、周辺回路に影響を与えることを回避できる。さらに、トロイダルコイルの場合に比べて、被測定電流が交流の場合に、フィードバックコイルによるキャンセル磁界の制御が容易であり、制御のために流す電流もそれほど大きくならない。これらの効果については、被測定電流が交流で高周波になるほど大きくなる。フィードバックコイル121は平面コイルで構成する場合において、平面コイルの形成面と平行な面内で誘導磁界Aとキャンセル磁界Bの両方が生じるように平面コイルが設けられていることが好ましい。   The feedback coil 121 is a planar coil. In this configuration, since there is no magnetic core, the feedback coil can be manufactured at low cost. Further, as compared with the case of the toroidal coil, it is possible to prevent the canceling magnetic field generated from the feedback coil from spreading over a wide range and to avoid affecting the peripheral circuits. Furthermore, compared to the toroidal coil, when the current to be measured is an alternating current, the cancellation magnetic field can be easily controlled by the feedback coil, and the current flowing for the control is not so large. About these effects, it becomes so large that a to-be-measured electric current becomes a high frequency by alternating current. When the feedback coil 121 is constituted by a planar coil, the planar coil is preferably provided so that both the induction magnetic field A and the canceling magnetic field B are generated in a plane parallel to the plane of formation of the planar coil.

磁気抵抗効果素子122a〜122dは、被測定電流からの誘導磁界Aの印加により抵抗値が変化する。この4つの磁気抵抗効果素子122a〜122dにより磁界検出ブリッジ回路を構成している。このように磁気抵抗効果素子を有する磁界検出ブリッジ回路を用いることにより、高感度の磁気平衡式電流センサを実現することができる。   The resistance values of the magnetoresistive elements 122a to 122d change due to the application of the induced magnetic field A from the current to be measured. The four magnetoresistive effect elements 122a to 122d constitute a magnetic field detection bridge circuit. By using a magnetic field detection bridge circuit having a magnetoresistive effect element as described above, a highly sensitive magnetic balance type current sensor can be realized.

この磁界検出ブリッジ回路は、被測定電流により生じた誘導磁界Aに応じた電圧差を生じる2つの出力を備える。図1に示す磁界検出ブリッジ回路においては、磁気抵抗効果素子122bと磁気抵抗効果素子122cとの間の接続点に電源給電点である電源端子Vddが接続されており、磁気抵抗効果素子122aと磁気抵抗効果素子122dとは一方の端部がそれぞれグランド(Gnd2,Gnd1)に接続されている。さらに、この磁界検出ブリッジ回路においては、直列に接続された磁気抵抗効果素子122bと磁気抵抗効果素子122dと間の接続点から一つの出力(Out1)を取り出し、直列に接続された磁気抵抗効果素子122aと磁気抵抗効果素子122cと間の接続点から一つの出力(Out2)を取り出している。これらの2つの出力における電位差(Out1−Out2、中点電位差)は増幅器で増幅され、フィードバックコイル121に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界Aに応じた中点電圧差に対応する。このとき、フィードバックコイル121には、誘導磁界Aを相殺するキャンセル磁界Bが発生する。そして、誘導磁界Aとキャンセル磁界Bとが相殺される平衡状態となったときのフィードバックコイル121に流れる電流に基づいて検出部(具体的には検出用抵抗を用いればよい。)で誘導磁界Aの大きさを測定し、その結果に基づいて被測定電流を算出する。   This magnetic field detection bridge circuit has two outputs that generate a voltage difference according to the induced magnetic field A generated by the current to be measured. In the magnetic field detection bridge circuit shown in FIG. 1, a power supply terminal Vdd as a power supply point is connected to a connection point between the magnetoresistive effect element 122b and the magnetoresistive effect element 122c. One end of the resistance effect element 122d is connected to the ground (Gnd2, Gnd1). Further, in this magnetic field detection bridge circuit, one output (Out1) is taken out from the connection point between the magnetoresistive effect element 122b and the magnetoresistive effect element 122d connected in series, and the magnetoresistive effect element connected in series One output (Out2) is taken out from the connection point between 122a and the magnetoresistive effect element 122c. The potential difference between these two outputs (Out 1 -Out 2, midpoint potential difference) is amplified by an amplifier and applied to the feedback coil 121 as a current (feedback current). This feedback current corresponds to a midpoint voltage difference corresponding to the induced magnetic field A. At this time, a cancellation magnetic field B that cancels the induction magnetic field A is generated in the feedback coil 121. Then, based on the current flowing through the feedback coil 121 when the induced magnetic field A and the canceling magnetic field B are in an equilibrium state, the induced magnetic field A is detected by the detection unit (specifically, a detection resistor may be used). The current to be measured is calculated based on the result.

本発明の一実施形態に係る電流センサが備える磁気センサ12が有する磁気抵抗効果素子122a〜122dは、いずれも図2や図3に示すように、その長手方向が互いに平行になるように配置された複数の帯状の長尺パターン(ストライプ)SPが折り返してなる形状(ミアンダ形状)を有するGMR素子である。複数の長尺パターンSPは、両端部で電極ELにより直列に連結される。このミアンダ形状において、感度軸方向(Pin方向)は、長尺パターンSPの長手方向(ストライプ長手方向)に対して直交する幅方向(ストライプ幅方向)である。このミアンダ形状においては、誘導磁界Aおよびキャンセル磁界Bが長尺パターンSPの幅方向(ストライプ幅方向)に沿うように印加される。   The magnetoresistive effect elements 122a to 122d included in the magnetic sensor 12 included in the current sensor according to the embodiment of the present invention are all arranged so that their longitudinal directions are parallel to each other, as shown in FIGS. In addition, the GMR element has a shape (a meander shape) formed by folding a plurality of strip-like long patterns (stripes) SP. The plurality of long patterns SP are connected in series by electrodes EL at both ends. In this meander shape, the sensitivity axis direction (Pin direction) is a width direction (stripe width direction) orthogonal to the longitudinal direction (stripe longitudinal direction) of the long pattern SP. In this meander shape, the induction magnetic field A and the cancellation magnetic field B are applied along the width direction (stripe width direction) of the long pattern SP.

このミアンダ形状においては、線形応答性を高める観点から、ピン(Pin)方向の幅が1μm〜10μmであることが好ましい。この場合において、リニアリティを考慮すると、長手方向が誘導磁界Aの方向およびキャンセル磁界Bの方向に対して共に垂直になることが望ましい。このようなミアンダ形状にすることにより、ホール素子よりも少ない端子数(2端子)で磁気抵抗効果素子の出力を採ることができる。   In this meander shape, it is preferable that the width in the pin direction is 1 μm to 10 μm from the viewpoint of improving linear response. In this case, considering the linearity, it is desirable that the longitudinal direction is both perpendicular to the direction of the induction magnetic field A and the direction of the cancellation magnetic field B. By adopting such a meander shape, the output of the magnetoresistive effect element can be taken with a smaller number of terminals (two terminals) than the Hall element.

本発明の一実施形態に係る磁気センサ12が有する4つの磁気抵抗効果素子122a〜122dは、印加された磁界に対する線形応答性に優れる信号をこれらの磁気抵抗効果素子を備える磁気ブリッジ回路から出力可能としつつ、一連の製膜プロセスで同時に製造されうるように、次に説明するような2種類の磁気抵抗効果素子(第1の磁気抵抗効果素子GMR1、第2の磁気抵抗効果素子GMR2)から構成されている。   The four magnetoresistive elements 122a to 122d included in the magnetic sensor 12 according to the embodiment of the present invention can output a signal excellent in linear response to an applied magnetic field from a magnetic bridge circuit including these magnetoresistive elements. However, it is composed of two types of magnetoresistive effect elements (first magnetoresistive effect element GMR1 and second magnetoresistive effect element GMR2) as described below so that they can be simultaneously manufactured in a series of film forming processes. Has been.

2種類の磁気抵抗効果素子の一方である第1の磁気抵抗効果素子GMR1は、図1に示されるように、磁気抵抗効果素子122cおよび磁気抵抗効果素子122dを構成し、相対的に高感度の素子からなる。図2は、第1の磁気抵抗効果素子GMR1の平面図である。   As shown in FIG. 1, the first magnetoresistive effect element GMR1 which is one of the two types of magnetoresistive effect elements constitutes a magnetoresistive effect element 122c and a magnetoresistive effect element 122d, and has a relatively high sensitivity. It consists of elements. FIG. 2 is a plan view of the first magnetoresistive element GMR1.

2種類の磁気抵抗効果素子の他方である第2の磁気抵抗効果素子GMR2は、図1に示されるように、磁気抵抗効果素子122aおよび磁気抵抗効果素子122bを構成し、相対的に低感度の素子からなる。図2は、第2の磁気抵抗効果素子GMR2の平面図である。   As shown in FIG. 1, the second magnetoresistive element GMR2, which is the other of the two types of magnetoresistive elements, constitutes a magnetoresistive element 122a and a magnetoresistive element 122b, and has a relatively low sensitivity. It consists of elements. FIG. 2 is a plan view of the second magnetoresistive element GMR2.

磁気抵抗効果素子の感度は長尺パターンSPの幅Wに依存し、基本的な傾向として、当該幅Wが広いほど感度が高い。第1の磁気抵抗効果素子GMR1の幅と第2の磁気抵抗効果素子GMR2の幅とを対比すると、第1の磁気抵抗効果素子GMR1の幅の方が広い。したがって、第1の磁気抵抗効果素子GMR1の方が第2の磁気抵抗効果素子GMR2よりも感度が高い。   The sensitivity of the magnetoresistive element depends on the width W of the long pattern SP. As a basic tendency, the wider the width W, the higher the sensitivity. When the width of the first magnetoresistive element GMR1 is compared with the width of the second magnetoresistive element GMR2, the width of the first magnetoresistive element GMR1 is wider. Therefore, the sensitivity of the first magnetoresistive element GMR1 is higher than that of the second magnetoresistive element GMR2.

ここで、4つの磁気抵抗効果素子122a〜122dから構成される磁界検出ブリッジ回路の2つの中点電位差(Out1−Out2)が、磁界が印加されていない状態で0Vとなるようにする観点から、第1の磁気抵抗効果素子GMR1の素子抵抗は第2の磁気抵抗効果素子GMR2の素子抵抗と等しいことが好ましい。上記のように第1の磁気抵抗効果素子GMR1と第2の磁気抵抗効果素子GMR2とは幅が異なることから、素子抵抗を等しくする要請に応えるために、第1の磁気抵抗効果素子GMR1と第2の磁気抵抗効果素子GMR2とは次に説明するアスペクト比が等しくなるように長尺パターンSPの全長が調整されている。本明細書においてアスペクト比とは、ミアンダ形状を有する磁気抵抗効果素子の長尺パターンSPの全長Ltを長尺パターンSPの幅Wで除した値を意味する。磁気抵抗効果素子の素子抵抗Rは、シート抵抗Rs、長尺パターンSPの全長Ltおよび長尺パターンSPの幅Wを用いて、次の式で表される。
R = Rs×Lt/W
Here, from the viewpoint of setting the two midpoint potential differences (Out1−Out2) of the magnetic field detection bridge circuit composed of the four magnetoresistive elements 122a to 122d to 0 V when no magnetic field is applied, The element resistance of the first magnetoresistance effect element GMR1 is preferably equal to the element resistance of the second magnetoresistance effect element GMR2. As described above, since the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 have different widths, the first magnetoresistive element GMR1 and the second magnetoresistive element GMR1 are the same as the first magnetoresistive element GMR1 and the second magnetoresistive element GMR1. The total length of the long pattern SP is adjusted so that the aspect ratio described below is equal to the magnetoresistive effect element GMR2 of No. 2. In this specification, the aspect ratio means a value obtained by dividing the total length Lt of the long pattern SP of the magnetoresistive effect element having a meander shape by the width W of the long pattern SP. The element resistance R of the magnetoresistive effect element is expressed by the following equation using the sheet resistance Rs, the total length Lt of the long pattern SP, and the width W of the long pattern SP.
R = Rs × Lt / W

したがって、同じ材料であってシート抵抗Rsが等しい場合には、アスペクト比が等しければ素子抵抗Rが等しくなる。したがって、アスペクト比を等しくしつつ、長尺パターンSPの幅Wを変化させることにより、素子抵抗Rが等しく感度が異なる磁気抵抗効果素子を同時に製造することができる。   Therefore, when the same material is used and the sheet resistances Rs are equal, the element resistances R are equal if the aspect ratios are equal. Therefore, by changing the width W of the long pattern SP while maintaining the same aspect ratio, it is possible to simultaneously manufacture magnetoresistive elements having the same element resistance R and different sensitivities.

第1の磁気抵抗効果素子GMR1のアスペクト比は、第1の磁気抵抗効果素子GMR1が長尺パターンSPを6本有するため、6×L1/W1となる。一方、第2の磁気抵抗効果素子GMR2のアスペクト比は、第2の磁気抵抗効果素子GMR2が長尺パターンSPを3本有するため、3×L2/W2となる。したがって、第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、6×L1/W1=3×L2/W2の関係を満たすように長尺パターンSPの形状が設定されている。   The aspect ratio of the first magnetoresistive element GMR1 is 6 × L1 / W1 because the first magnetoresistive element GMR1 has six long patterns SP. On the other hand, the aspect ratio of the second magnetoresistive element GMR2 is 3 × L2 / W2 because the second magnetoresistive element GMR2 has three long patterns SP. Therefore, the shape of the long pattern SP is set so that the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 satisfy the relationship of 6 × L1 / W1 = 3 × L2 / W2.

このような関係を有する第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2として、次のような形状を有する磁気抵抗効果素子を試作した。   As the first magnetoresistive effect element GMR1 and the second magnetoresistive effect element GMR2 having such a relationship, magnetoresistive effect elements having the following shapes were prototyped.

第1の磁気抵抗効果素子GMR1
長尺パターンSPの全長Lt:540μm
(長尺パターンSPの長手方向の長さL1:90μm)
長尺パターンSPの幅W1:3.0μm
アスペクト比:180
First magnetoresistance effect element GMR1
Total length Lt of the long pattern SP: 540 μm
(Longitudinal pattern SP length L1: 90 μm)
Long pattern SP width W1: 3.0 μm
Aspect ratio: 180

第2の磁気抵抗効果素子GMR2
長尺パターンSPの全長Lt:144μm
(長尺パターンSPの長手方向の長さL2:48μm)
長尺パターンSPの幅W2:0.8μm
アスペクト比:180
Second magnetoresistive element GMR2
Total length Lt of long pattern SP: 144 μm
(Longitudinal pattern SP length L2: 48 μm)
Width W2 of long pattern SP: 0.8 μm
Aspect ratio: 180

これらの第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、いずれも外部磁界がゼロの状態での素子抵抗は2250Ωであり、素子抵抗の印加磁界に対する応答性プロファイルは、図4に示されるとおりであった。すなわち、長尺パターンSPの幅Wが広い第1の磁気抵抗効果素子GMR1の方が、長尺パターンSPの幅Wが狭い第2の磁気抵抗効果素子GMR2よりも、印加磁界に対してより高感度であった。   Each of the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 has an element resistance of 2250Ω when the external magnetic field is zero, and the response profile of the element resistance to the applied magnetic field is shown in FIG. As shown in FIG. That is, the first magnetoresistive element GMR1 having the long width SP of the long pattern SP is higher in the applied magnetic field than the second magnetoresistive element GMR2 having the narrow width W of the long pattern SP. It was sensitivity.

これらの第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2を図1に示されるように組み込んで磁界検出ブリッジ回路を得た。図1に示されるように、第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2のいずれも、強磁性固定層は長尺パターンSPの幅方向に沿った向き(例えばY1Y2方向Y2向き)となるように磁化され、軟磁性自由層は外部から磁界が印加されていない状態で長尺パターンSPの長手方向に沿った向き(例えばX1X2方向X2向き)となるように磁化された。この磁界検出ブリッジ回路の中点電位差(Out1−Out2)の出力電圧の印加磁界に対する応答性は、図5に示されるようになった。具体的には、第1の磁気抵抗効果素子GMR1の印加磁界に対して線形的に応答する範囲(±4mT程度の範囲)で、出力電圧の印加磁界に対する応答性プロファイルも線形性を示した。   These first magnetoresistive element GMR1 and second magnetoresistive element GMR2 were incorporated as shown in FIG. 1 to obtain a magnetic field detection bridge circuit. As shown in FIG. 1, in both the first magnetoresistive effect element GMR1 and the second magnetoresistive effect element GMR2, the ferromagnetic fixed layer is oriented in the width direction of the long pattern SP (for example, Y1Y2 direction Y2 The soft magnetic free layer was magnetized so as to be oriented along the longitudinal direction of the long pattern SP (for example, the X1X2 direction X2 direction) in a state where no magnetic field was applied from the outside. The responsiveness of the output voltage of the midpoint potential difference (Out1-Out2) of this magnetic field detection bridge circuit to the applied magnetic field is as shown in FIG. Specifically, the response profile of the output voltage with respect to the applied magnetic field also showed linearity in a range that linearly responds to the applied magnetic field of the first magnetoresistive element GMR1 (a range of about ± 4 mT).

本発明の一実施形態に係る磁気抵抗効果素子122a〜122dの長尺パターンSPの積層構造(磁気抵抗効果膜)について、図6を用いて説明する。長尺パターンSPは、図6に示すように、基板29に設けられた積層構造を有する。長尺パターンSPは、シード層20、反強磁性膜21aと第1の強磁性膜21bと反平行結合膜21cと第2の強磁性膜21dとからなる積層フェリ型の強磁性固定層21、非磁性中間層22、軟磁性自由層(フリー磁性層)23、および保護層25を含む。   A laminated structure (magnetoresistance effect film) of the long pattern SP of the magnetoresistance effect elements 122a to 122d according to one embodiment of the present invention will be described with reference to FIG. The long pattern SP has a laminated structure provided on the substrate 29 as shown in FIG. The long pattern SP includes a seed ferrule 20, a laminated ferrimagnetic fixed layer 21 including an antiferromagnetic film 21a, a first ferromagnetic film 21b, an antiparallel coupling film 21c, and a second ferromagnetic film 21d. A nonmagnetic intermediate layer 22, a soft magnetic free layer (free magnetic layer) 23, and a protective layer 25 are included.

シード層20は、NiFeCrあるいはCrなどで構成される。なお、上記積層構造において、基板29とシード層20との間に、例えば、Ta,Hf,Nb,Zr,Ti,Mo,Wのうち少なくとも1つの元素などの非磁性材料で構成される下地層を設けてもよい。   The seed layer 20 is made of NiFeCr or Cr. In the laminated structure, an underlayer composed of a nonmagnetic material such as at least one element of Ta, Hf, Nb, Zr, Ti, Mo, and W, for example, between the substrate 29 and the seed layer 20. May be provided.

強磁性固定層21は、反強磁性膜21aと第1の強磁性膜21bとが交換結合し、第1の強磁性膜21bと第2の強磁性膜21dとが反平行結合膜21cを介して反強磁性的に結合することにより、一方の向きに磁化が固定されている。   In the ferromagnetic pinned layer 21, the antiferromagnetic film 21a and the first ferromagnetic film 21b are exchange-coupled, and the first ferromagnetic film 21b and the second ferromagnetic film 21d are interposed via the antiparallel coupling film 21c. Thus, the magnetization is fixed in one direction by antiferromagnetic coupling.

反強磁性膜21aを構成する材料として、IrMn系の材料やPtMn系の材料が例示される。第1の強磁性膜21bおよび第2の強磁性膜21dを構成する材料として、いずれもCoFe合金が例示される。第1の強磁性膜21bと第2の強磁性膜21dと間に位置する反平行結合膜21cはRuなどにより構成される。   Examples of the material constituting the antiferromagnetic film 21a include an IrMn-based material and a PtMn-based material. As the material constituting the first ferromagnetic film 21b and the second ferromagnetic film 21d, a CoFe alloy is exemplified. The antiparallel coupling film 21c located between the first ferromagnetic film 21b and the second ferromagnetic film 21d is made of Ru or the like.

非磁性中間層22は、Cuなどにより構成される。軟磁性自由層(フリー磁性層)23は、CoFe合金、NiFe合金、CoFeNi合金などの磁性材料で構成される。保護層25は、Taなどで構成される。   The nonmagnetic intermediate layer 22 is made of Cu or the like. The soft magnetic free layer (free magnetic layer) 23 is made of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy. The protective layer 25 is made of Ta or the like.

シード層20、強磁性固定層21を構成する反強磁性膜21a、第1の強磁性膜21b、反平行結合膜21cおよび第2の強磁性膜21d、非磁性中間層22、軟磁性自由層(フリー磁性層)23、ならびに保護層25はいずれもスパッタリング等の方法により製膜される。   Seed layer 20, antiferromagnetic film 21 a constituting ferromagnetic pinned layer 21, first ferromagnetic film 21 b, antiparallel coupling film 21 c and second ferromagnetic film 21 d, nonmagnetic intermediate layer 22, soft magnetic free layer (Free magnetic layer) 23 and protective layer 25 are both formed by a method such as sputtering.

ここで、反強磁性膜21aと強磁性固定層21は磁気抵抗効果膜(長尺パターンを構成する積層構造)を成膜後に磁場中で熱処理することにより、強磁性固定層21の磁化を強く固定することができる。本発明の一実施形態に係る磁気センサの製造方法では、磁界検出ブリッジ回路を構成する磁気抵抗効果素子122a〜122dは、一連の製膜プロセスで同時に製造される。このため、4つの磁気抵抗効果素子122a〜122dは、強磁性固定層21がいずれも一方の向き(例えばY1Y2方向Y2向き)に磁化される。また、4つの磁気抵抗効果素子122a〜122dは、ミアンダ形状に伴う形状異方性によって外部から磁界が印加されていない状態で軟磁性自由層(フリー磁性層)23がいずれも一方の向き(例えばX1X2方向X2向き)となるように磁化される。このように、4つの磁気抵抗効果素子122a〜122dにおける強磁性固定層21および軟磁性自由層(フリー磁性層)23は、それぞれの磁化の向きが揃った状態で製造される。このように製造されても、4つの磁気抵抗効果素子122a〜122dは、素子抵抗が等しく感度が異なる2種類の磁気抵抗効果素子GMR1,GMR2から構成されるため、磁界検出ブリッジ回路の中点電位差を印加磁界に対して線形的に応答させることが実現されている。   Here, the antiferromagnetic film 21a and the ferromagnetic pinned layer 21 are formed by magnetoresistive film (laminated structure constituting a long pattern) and then heat-treated in a magnetic field, thereby strengthening the magnetization of the ferromagnetic pinned layer 21. Can be fixed. In the magnetic sensor manufacturing method according to the embodiment of the present invention, the magnetoresistive effect elements 122a to 122d constituting the magnetic field detection bridge circuit are simultaneously manufactured by a series of film forming processes. Therefore, in the four magnetoresistive effect elements 122a to 122d, the ferromagnetic fixed layer 21 is magnetized in one direction (for example, the Y1Y2 direction Y2 direction). Further, the four magnetoresistive elements 122a to 122d have the soft magnetic free layer (free magnetic layer) 23 in one direction (for example, with no magnetic field applied from the outside due to the shape anisotropy associated with the meander shape (for example, X1X2 direction X2 direction). In this manner, the ferromagnetic pinned layer 21 and the soft magnetic free layer (free magnetic layer) 23 in the four magnetoresistive effect elements 122a to 122d are manufactured in a state in which the respective magnetization directions are aligned. Even if manufactured in this way, the four magnetoresistive elements 122a to 122d are composed of two types of magnetoresistive elements GMR1 and GMR2 having the same element resistance and different sensitivities. Is linearly responded to the applied magnetic field.

このように、本発明の一実施形態に係る製造方法では、磁気抵抗効果素子122a〜122dが一連の製膜プロセスで同時に形成されるため、磁気抵抗効果素子122a〜122dをそれぞれ別の製膜プロセスで形成する場合に比べて、膜厚や組成のばらつきが抑制される。その結果、4つの磁気抵抗効果素子122a〜122dの特性ばらつきが抑制される。それゆえ、4つの磁気抵抗効果素子122a〜122dを備える磁気センサ12のオフセットやオフセット温度特性が小さくなり、この磁気センサ12を用いてなる電流センサの測定精度が高くなる。   As described above, in the manufacturing method according to the embodiment of the present invention, since the magnetoresistive effect elements 122a to 122d are simultaneously formed by a series of film forming processes, the magnetoresistive effect elements 122a to 122d are respectively formed in different film forming processes. As compared with the case of forming by, the variation in film thickness and composition is suppressed. As a result, variations in characteristics of the four magnetoresistive elements 122a to 122d are suppressed. Therefore, the offset and offset temperature characteristics of the magnetic sensor 12 including the four magnetoresistive elements 122a to 122d are reduced, and the measurement accuracy of a current sensor using the magnetic sensor 12 is increased.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、図7に示されるように、磁気センサ12’がフィードバックコイルを備えず、電流センサは磁気比例式電流センサであってもよい。また、磁気抵抗効果膜の強磁性固定層は、反強磁性材料を用いなくても磁化を固定できるセルフピン型であっても良い。反強磁性膜を用いる積層フェリ型の強磁性固定層は、強磁場耐性が高いものの耐熱性が低い傾向がある。これに対し、セルフピン型の強磁性固定層は、積層フェリ型とは逆に、強磁場耐性が低いが耐熱性が高いという傾向がある。したがって、磁気センサの使用環境などに応じて、強磁性固定層の種類を設定すればよい。   For example, as shown in FIG. 7, the magnetic sensor 12 'may not include a feedback coil, and the current sensor may be a magnetic proportional current sensor. Further, the ferromagnetic pinned layer of the magnetoresistive film may be a self-pin type that can pin the magnetization without using an antiferromagnetic material. A laminated ferrimagnetic fixed layer using an antiferromagnetic film has a high resistance to a strong magnetic field but tends to have a low heat resistance. On the other hand, the self-pinned ferromagnetic pinned layer, contrary to the laminated ferrimagnetic type, tends to have high heat resistance but low resistance to strong magnetic fields. Therefore, the type of the ferromagnetic pinned layer may be set according to the usage environment of the magnetic sensor.

以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, the scope of the present invention is not limited to these Examples etc.

(実施例1)
図1に示される磁界検出ブリッジ回路およびフィードバックコイルを備える磁気センサを基板上に複数個製造した。磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子122a〜122dは、いずれも帯状の長尺パターンを複数備えるミアンダ形状を有し、これらのうち、2つの磁気抵抗効果素子122c,122dについては、相対的に感度が高い第1の磁気抵抗効果素子GMR1を用いた。残りの2つの磁気抵抗効果素子122a,122bについては、相対的に感度が低い第2の磁気抵抗効果素子GMR2を用いた。第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は次の形状的特徴を有していた。
Example 1
A plurality of magnetic sensors including the magnetic field detection bridge circuit and the feedback coil shown in FIG. 1 were manufactured on the substrate. The four magnetoresistive effect elements 122a to 122d included in the magnetic field detection bridge circuit each have a meander shape including a plurality of strip-like long patterns. Among these, the two magnetoresistive effect elements 122c and 122d are relative to each other. The first magnetoresistive element GMR1 having high sensitivity is used. For the remaining two magnetoresistive elements 122a and 122b, the second magnetoresistive element GMR2 having relatively low sensitivity was used. The first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 had the following shape characteristics.

第1の磁気抵抗効果素子GMR1
長尺パターンSPの全長Lt:540μm
(長尺パターンSPの長手方向の長さL1:90μm)
長尺パターンSPの幅W1:3.0μm
アスペクト比:180
First magnetoresistance effect element GMR1
Total length Lt of the long pattern SP: 540 μm
(Longitudinal pattern SP length L1: 90 μm)
Long pattern SP width W1: 3.0 μm
Aspect ratio: 180

第2の磁気抵抗効果素子GMR2
長尺パターンSPの全長Lt:144μm
(長尺パターンSPの長手方向の長さL2:48μm)
長尺パターンSPの幅W2:0.8μm
アスペクト比:180
Second magnetoresistive element GMR2
Total length Lt of long pattern SP: 144 μm
(Longitudinal pattern SP length L2: 48 μm)
Width W2 of long pattern SP: 0.8 μm
Aspect ratio: 180

第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2はいずれも外部磁界がゼロの状態での素子抵抗は2250Ωであり、素子抵抗の印加磁界に対する応答性は、図4に示されるとおりであった。また、磁界検出ブリッジ回路の中点電位差(Out1−Out2)の出力電圧の印加磁界に対する応答性は、図5に示されるようになった。   Both the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 have an element resistance of 2250Ω when the external magnetic field is zero, and the response of the element resistance to the applied magnetic field is shown in FIG. It was as follows. Further, the response of the output voltage of the midpoint potential difference (Out1-Out2) of the magnetic field detection bridge circuit to the applied magnetic field is as shown in FIG.

第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、いずれも、ミアンダ形状における長尺パターンについて、絶縁層を有する基板上に、下からシード層;NiFeCr(42)/強磁性固定層[反強磁性層;Ir22Mn78(60)/第1の強磁性膜;Co70Fe30(15)/反平行結合膜;Ru(8.5)/第2の強磁性膜;Co90Fe10(20)]/非磁性中間層;Cu(20)/軟磁性自由層[Co90Fe10(10)/Ni82.5Fe17.5(70)]/保護層;Ta(100)の順にスパッタリングにより積層されたものであった。なお、括弧内の数値は層厚を示し単位はÅである。 Each of the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 has a meander-shaped long pattern on a substrate having an insulating layer on a seed layer from below; NiFeCr (42) / ferromagnetic Fixed layer [antiferromagnetic layer; Ir 22 Mn 78 (60) / first ferromagnetic film; Co 70 Fe 30 (15) / antiparallel coupling film; Ru (8.5) / second ferromagnetic film; Co 90 Fe 10 (20)] / nonmagnetic intermediate layer; Cu (20) / soft magnetic free layer [Co 90 Fe 10 (10) / Ni 82.5 Fe 17.5 (70)] / protective layer; Ta ( 100) in this order. The numbers in parentheses indicate the layer thickness and the unit is Å.

4つの磁気抵抗効果素子は同時に製造された。磁気抵抗効果膜の製膜後に磁場中で熱処理することで、反強磁性層と強磁性固定層の間に強い交換結合が生じ、強磁性固定層の磁化は一方の向きに磁化された。また、軟磁性自由層は、磁場中製膜と形状異方性により、ミアンダ形状における長尺パターンの長手方向の一方の向きに磁化された。したがって、4つの磁気抵抗効果素子122a〜122dは、強磁性固定層の磁化の向きが等しく、外部磁界が印加されていない状態における軟磁性自由層の磁化の向きが等しかった。   Four magnetoresistive elements were manufactured simultaneously. By heat-treating in the magnetic field after forming the magnetoresistive film, strong exchange coupling was generated between the antiferromagnetic layer and the ferromagnetic pinned layer, and the magnetization of the ferromagnetic pinned layer was magnetized in one direction. The soft magnetic free layer was magnetized in one direction of the longitudinal direction of the long pattern in the meander shape by film formation in a magnetic field and shape anisotropy. Therefore, in the four magnetoresistive elements 122a to 122d, the magnetization directions of the ferromagnetic pinned layers are equal, and the magnetization directions of the soft magnetic free layers in the state where no external magnetic field is applied are equal.

基板上に製造された複数の磁気センサから任意に300個以上を選び出し、オフセット値(外部から磁界が印加されていない状態でのキャンセル電流の大きさ(以下同じ)、単位:mA)を測定した。また、温度が85℃の場合のオフセット値OF1(単位:mA)と温度が25℃の場合のオフセット値OF2(単位:mA)とを測定して、次の式によりオフセット温度特性OT(単位:μA/℃)を測定した。
OT = (OF1−OF2)/(85℃−25℃)
Arbitrarily 300 or more were selected from a plurality of magnetic sensors manufactured on the substrate, and the offset value (the magnitude of the cancellation current when no magnetic field was applied from the outside (hereinafter the same), unit: mA) was measured. . Further, the offset value OF1 (unit: mA) when the temperature is 85 ° C. and the offset value OF2 (unit: mA) when the temperature is 25 ° C. are measured, and the offset temperature characteristic OT (unit: μA / ° C.) was measured.
OT = (OF1-OF2) / (85 ° C.-25 ° C.)

得られたオフセット値およびオフセット温度特性OTのヒストグラムを求めた。その結果を図9および図10に示す。   A histogram of the obtained offset value and offset temperature characteristic OT was obtained. The results are shown in FIG. 9 and FIG.

(比較例1)
図1に示される磁界検出ブリッジ回路およびフィードバックコイルを備える磁気センサを基板上に複数個製造した。磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子122a〜122dは、いずれも帯状の長尺パターンを複数備えるミアンダ形状であってそのミアンダ形状が共通の形状的特徴を有する第3の磁気抵抗効果素子GMR3から構成された。第3の磁気抵抗効果素子GMR3は、図8に示されるように、ミアンダ形状における帯状の長尺パターンC−SPは、固定磁性層21が反強磁性膜21aを備えず、RKKY相互作用に基づくピン止め構造を有していた。
(Comparative Example 1)
A plurality of magnetic sensors including the magnetic field detection bridge circuit and the feedback coil shown in FIG. 1 were manufactured on the substrate. Each of the four magnetoresistive elements 122a to 122d provided in the magnetic field detection bridge circuit has a meander shape including a plurality of strip-like long patterns, and the meander shape has a common geometric feature. It consisted of GMR3. As shown in FIG. 8, the third magnetoresistive element GMR3 has a meander-shaped strip-like long pattern C-SP in which the pinned magnetic layer 21 does not include the antiferromagnetic film 21a and is based on the RKKY interaction. It had a pinning structure.

具体的には、第3の磁気抵抗効果素子GMR3は、ミアンダ形状における長尺パターンC−SPについて、絶縁層を有する基板上に、下からシード層;NiFeCr(42)/強磁性固定層[第1の強磁性膜;Co40Fe60(19)/反平行結合膜;Ru(3.6)/第2の強磁性膜;Co90Fe10(24)]/非磁性中間層;Cu(20)/軟磁性自由層[Co90Fe10(10)/Ni82.5Fe17.5(70)]/保護層;Ta(100)の順にスパッタリングにより積層されたものであった。なお、括弧内の数値は層厚を示し単位はÅである。 Specifically, the third magnetoresistive element GMR3 has a meander-shaped long pattern C-SP on a substrate having an insulating layer on a seed layer; NiFeCr (42) / ferromagnetic pinned layer [first Co 40 Fe 60 (19) / anti-parallel coupling film; Ru (3.6) / second ferromagnetic film; Co 90 Fe 10 (24)] / nonmagnetic intermediate layer; Cu (20 ) / Soft magnetic free layer [Co 90 Fe 10 (10) / Ni 82.5 Fe 17.5 (70)] / protective layer; Ta (100) in this order. The numbers in parentheses indicate the layer thickness and the unit is Å.

4つの磁気抵抗効果素子は個別に製造された。第1の強磁性膜は、磁場中製膜によりミアンダ形状における長尺パターンC−SPの幅方向の一方の向きに磁化された。具体的には、磁気抵抗効果素子122aの磁化の向き(Y1Y2方向Y1向き)は、これに直列に接続される磁気抵抗効果素子122cの磁化の向きと反対向き(Y1Y2方向Y2向き)とされ、磁気抵抗効果素子122b(Y1Y2方向Y1向き)の磁化の向きは、これに直列に接続される磁気抵抗効果素子122dの磁化の向きと反対向き(Y1Y2方向Y2向き)とされた。磁気抵抗効果素子122aの磁化の向きは磁気抵抗効果素子122bの磁化の向きと等しかった。   Four magnetoresistive elements were manufactured individually. The first ferromagnetic film was magnetized in one direction in the width direction of the long pattern C-SP in a meander shape by film formation in a magnetic field. Specifically, the magnetization direction of the magnetoresistive effect element 122a (the Y1Y2 direction Y1 direction) is opposite to the magnetization direction of the magnetoresistive effect element 122c connected in series (the Y1Y2 direction Y2 direction). The magnetization direction of the magnetoresistive effect element 122b (Y1Y2 direction Y1 direction) is opposite to the magnetization direction of the magnetoresistive effect element 122d connected in series (Y1Y2 direction Y2 direction). The magnetization direction of the magnetoresistive effect element 122a was equal to the magnetization direction of the magnetoresistive effect element 122b.

軟磁性自由層は、磁場中製膜によりミアンダ形状における長尺パターンの長手方向の一方の向きに磁化された。具体的には、磁気抵抗効果素子122aの磁化の向き(X1X2方向X1向き)は、これに直列に接続される磁気抵抗効果素子122cの磁化の向きと反対向き(X1X2方向X2向き)とされ、磁気抵抗効果素子122b(X1X2方向X1向き)の磁化の向きは、これに直列に接続される磁気抵抗効果素子122dの磁化の向きと反対向き(X1X2方向X2向き)とされた。磁気抵抗効果素子122aの磁化の向きは磁気抵抗効果素子122bの磁化の向きと等しかった。   The soft magnetic free layer was magnetized in one direction in the longitudinal direction of the long pattern in the meander shape by film formation in a magnetic field. Specifically, the magnetization direction (X1X2 direction X1 direction) of the magnetoresistive effect element 122a is the opposite direction (X1X2 direction X2 direction) to the magnetization direction of the magnetoresistive effect element 122c connected in series thereto, The magnetization direction of the magnetoresistive effect element 122b (X1X2 direction X1 direction) was opposite to the magnetization direction of the magnetoresistive effect element 122d connected in series (X1X2 direction X2 direction). The magnetization direction of the magnetoresistive effect element 122a was equal to the magnetization direction of the magnetoresistive effect element 122b.

基板上に形成された複数の磁気センサから任意に300個以上を選び出し、オフセット値(キャンセル電流の大きさ、単位:mA)を測定した。また、温度が85℃の場合のオフセット値OF1(キャンセル電流の大きさ、単位:mA)と温度が25℃の場合のオフセット値OF2(キャンセル電流の大きさ、単位:mA)とを測定して、次の式によりオフセット温度特性OT(単位:μA/℃)を測定した。
OT = (OF1−OF2)/(85℃−25℃)
300 or more were arbitrarily selected from a plurality of magnetic sensors formed on the substrate, and an offset value (a magnitude of the cancel current, unit: mA) was measured. Further, the offset value OF1 (the magnitude of the cancellation current, unit: mA) when the temperature is 85 ° C. and the offset value OF2 (the magnitude of the cancellation current, unit: mA) when the temperature is 25 ° C. are measured. The offset temperature characteristic OT (unit: μA / ° C.) was measured by the following formula.
OT = (OF1-OF2) / (85 ° C.-25 ° C.)

得られたオフセット値およびオフセット温度特性OTのヒストグラムを求めた。その結果を図9および図10に示す。   A histogram of the obtained offset value and offset temperature characteristic OT was obtained. The results are shown in FIG. 9 and FIG.

図9および図10に示されるように、実施例1に係る磁気センサは、比較例1に係る磁気センサよりもオフセット値およびオフセット温度特性が小さく、実施例1に係る磁気センサを用いてなる電流センサは、比較例1に係る磁気センサを用いてなる電流センサよりも高精度に電流を測定可能であることが確認された。   As shown in FIG. 9 and FIG. 10, the magnetic sensor according to Example 1 has a smaller offset value and offset temperature characteristics than the magnetic sensor according to Comparative Example 1, and the current formed by using the magnetic sensor according to Example 1 is used. It was confirmed that the sensor can measure current with higher accuracy than the current sensor using the magnetic sensor according to Comparative Example 1.

11・・・導体
12,12’・・・磁気センサ
121・・・フィードバックコイル
122a,122b,122c,122d・・・磁気抵抗効果素子
Vdd・・・電源端子
Out1・・・磁気抵抗効果素子122bと磁気抵抗効果素子122dと間の接続点からの出力
Out2・・・磁気抵抗効果素子122aと磁気抵抗効果素子122bと間の接続点からの出力
Gnd1・・・磁気抵抗効果素子122dの一方の端部に接続されたグランド
Gnd2・・・磁気抵抗効果素子122aの一方の端部に接続されたグランド
GMR1・・・第1の磁気抵抗効果素子
GMR2・・・第2の磁気抵抗効果素子
SP・・・長尺パターン
C−SP・・・第3の磁気抵抗効果素子GMR3の長尺パターン
EL・・・電極
W1・・・第1の磁気抵抗効果素子GMR1の長尺パターンSPの幅
W2・・・第2の磁気抵抗効果素子GMR2の長尺パターンSPの幅
L1・・・第1の磁気抵抗効果素子GMR1の長尺パターンSPの長手方向の長さ
L2・・・第2の磁気抵抗効果素子GMR2の長尺パターンSPの長手方向の長さ
20・・・シード層
21・・・強磁性固定層
21a・・・反強磁性膜
21b・・・第1の強磁性膜
21c・・・反平行結合膜
21d・・・第2の強磁性膜
22・・・非磁性中間層
23・・・軟磁性自由層(フリー磁性層)
25・・・保護層
29・・・基板
11 ... conductor 12, 12 '... magnetic sensor 121 ... feedback coils 122a, 122b, 122c, 122d ... magnetoresistive effect element Vdd ... power supply terminal Out1 ... magnetoresistive effect element 122b Output Out2 from the connection point between the magnetoresistive effect element 122d... Output Gnd1 from the connection point between the magnetoresistive effect element 122a and the magnetoresistive effect element 122b... One end of the magnetoresistive effect element 122d The ground Gnd2 connected to the ground GMR1 connected to one end of the magnetoresistive effect element 122a ... The first magnetoresistive effect element GMR2 ... The second magnetoresistive effect element SP ... Long pattern C-SP ... Long pattern EL of third magnetoresistive element GMR3 ... Electrode W1 ... First magnetoresistive element GM The width W2 of the long pattern SP of R1... The width L1 of the long pattern SP of the second magnetoresistive element GMR2. The length in the longitudinal direction of the long pattern SP of the first magnetoresistive element GMR1. L2: the length 20 in the longitudinal direction of the long pattern SP of the second magnetoresistive element GMR2 ... the seed layer 21 ... the ferromagnetic pinned layer 21a ... the antiferromagnetic film 21b ... the first 1 ferromagnetic film 21c, antiparallel coupling film 21d, second ferromagnetic film 22, nonmagnetic intermediate layer 23, soft magnetic free layer (free magnetic layer)
25 ... Protective layer 29 ... Substrate

Claims (7)

外部磁界の変化に応じて抵抗値が変化する4つの磁気抵抗効果素子で構成され、直列に接続された2つの磁気抵抗効果素子からなる部分回路を2つ備える磁界検出ブリッジ回路を有する磁気センサの製造方法であって、
前記4つの磁気抵抗効果素子は、いずれも、
帯状の長尺パターンが折り返されたミアンダ形状であって、
前記長尺パターンは、強磁性固定層と、非磁性中間層と、軟磁性自由層とを有する積層構造を備え、
前記4つの磁気抵抗効果素子は、前記長尺パターンの全長を前記長尺パターンの幅で除したアスペクト比は共通するが、前記長尺パターンの幅が相違する2種類の磁気抵抗効果素子である第1の磁気抵抗効果素子および第2の磁気抵抗効果素子から構成され、
前記磁界検出ブリッジ回路の前記部分回路の一方では、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記磁界検出ブリッジ回路の前記部分回路の他方では、第2の磁気抵抗効果素子および第1の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、
前記4つの磁気抵抗効果素子を一連の製膜プロセスで同時に形成することを特徴とする磁気センサの製造方法。
A magnetic sensor having a magnetic field detection bridge circuit that includes two magnetoresistive elements that are composed of four magnetoresistive elements that are connected in series, and that includes four magnetoresistive elements that change in resistance according to changes in an external magnetic field. A manufacturing method comprising:
All of the four magnetoresistive elements are
It is a meander shape in which a strip-like long pattern is folded,
The long pattern comprises a laminated structure having a ferromagnetic pinned layer, a nonmagnetic intermediate layer, and a soft magnetic free layer,
The four magnetoresistive elements are two types of magnetoresistive elements having the same aspect ratio obtained by dividing the total length of the long pattern by the width of the long pattern, but having different widths of the long pattern. A first magnetoresistive element and a second magnetoresistive element;
On one side of the partial circuit of the magnetic field detection bridge circuit, a first magnetoresistive effect element and a second magnetoresistive effect element are connected in series from the side proximal to the power supply point in this order, and the magnetic field detection On the other side of the partial circuit of the bridge circuit, the second magnetoresistive element and the first magnetoresistive element are connected in series from the side proximal to the power supply point in this order,
A method of manufacturing a magnetic sensor, wherein the four magnetoresistive elements are simultaneously formed by a series of film forming processes.
前記強磁性固定層は、反強磁性膜と交換結合している第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなる積層フェリ型である、請求項1に記載の磁気センサの製造方法。   The ferromagnetic pinned layer is a laminated ferrimagnetic layer formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film exchange-coupled to an antiferromagnetic film through an antiparallel coupling film. The manufacturing method of the magnetic sensor of Claim 1 which is a type | mold. 前記強磁性固定層は、第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなるセルフピン型である、請求項1に記載の磁気センサの製造方法。   2. The magnetism according to claim 1, wherein the ferromagnetic pinned layer is a self-pin type formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film. Sensor manufacturing method. 前記4つの磁気抵抗効果素子の近傍に配置され、被測定磁界を相殺するキャンセル磁界を発生するフィードバックコイルをさらに具備し、前記磁気検出ブリッジ回路が備える前記2つの部分回路のそれぞれが有する2つの前記磁気抵抗効果素子の間に設けられた出力の電圧差により前記フィードバックコイルに通電して、前記被測定磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて、前記被測定磁界を測定可能とされる、請求項1から3のいずれか一項に記載の磁気センサの製造方法。   A feedback coil that is disposed in the vicinity of the four magnetoresistive effect elements and generates a canceling magnetic field that cancels out the magnetic field to be measured is further provided, and each of the two partial circuits included in the magnetic detection bridge circuit includes When the feedback coil is energized by the voltage difference of the output provided between the magnetoresistive effect elements, the current flowing in the feedback coil when the measured magnetic field and the canceling magnetic field cancel each other is in an equilibrium state. The magnetic sensor manufacturing method according to claim 1, wherein the magnetic field to be measured can be measured based on the measurement target. 前記被測定磁界および前記キャンセル磁界が前記長尺パターンの延びる方向に直交する方向に沿うように印加可能に、前記フィードバックコイルは配置される、請求項4に記載の磁気センサの製造方法。   The method of manufacturing a magnetic sensor according to claim 4, wherein the feedback coil is arranged so that the measured magnetic field and the canceling magnetic field can be applied along a direction orthogonal to a direction in which the long pattern extends. 前記4つの磁気抵抗効果素子は、前記長尺パターンの延びる方向に沿って並置される、請求項1から5のいずれか一項に記載の磁気センサの製造方法。   The method of manufacturing a magnetic sensor according to claim 1, wherein the four magnetoresistive elements are juxtaposed along a direction in which the long pattern extends. 請求項1から6のいずれか一項に記載される製造方法により製造された磁気センサを用いて、前記磁気抵抗効果素子の前記長尺パターンの長手方向に沿った方向に流れる被測定電流により生じた誘導磁界を測定して、前記被測定電流を定量的に測定することを特徴とする電流センサの製造方法。   Using the magnetic sensor manufactured by the manufacturing method according to any one of claims 1 to 6, it is generated by a measured current flowing in a direction along a longitudinal direction of the long pattern of the magnetoresistive effect element. A method of manufacturing a current sensor, comprising: measuring an induced magnetic field and quantitatively measuring the measured current.
JP2015201574A 2015-10-09 2015-10-09 Method of manufacturing magnetic sensor and method of manufacturing current sensor Active JP6506671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201574A JP6506671B2 (en) 2015-10-09 2015-10-09 Method of manufacturing magnetic sensor and method of manufacturing current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201574A JP6506671B2 (en) 2015-10-09 2015-10-09 Method of manufacturing magnetic sensor and method of manufacturing current sensor

Publications (2)

Publication Number Publication Date
JP2017072570A true JP2017072570A (en) 2017-04-13
JP6506671B2 JP6506671B2 (en) 2019-04-24

Family

ID=58537400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201574A Active JP6506671B2 (en) 2015-10-09 2015-10-09 Method of manufacturing magnetic sensor and method of manufacturing current sensor

Country Status (1)

Country Link
JP (1) JP6506671B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282277A (en) * 1990-02-21 1991-12-12 Hamamatsu Koden Kk Magnetic detection element
JPH05249210A (en) * 1992-03-04 1993-09-28 Ckd Corp Magnetic sensor
JPH0888423A (en) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd Magnetic sensor
JPH08242027A (en) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp Magnetic resistor circuit
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282277A (en) * 1990-02-21 1991-12-12 Hamamatsu Koden Kk Magnetic detection element
JPH05249210A (en) * 1992-03-04 1993-09-28 Ckd Corp Magnetic sensor
JPH0888423A (en) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd Magnetic sensor
JPH08242027A (en) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp Magnetic resistor circuit
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator

Also Published As

Publication number Publication date
JP6506671B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6130775B2 (en) Current sensor
JP5572208B2 (en) Magnetic sensor and magnetic balance type current sensor using the same
JP5411285B2 (en) Magnetic balanced current sensor
WO2012081377A1 (en) Magnetic sensor and method of manufacturing magnetic sensor
JP2011196798A (en) Current sensor
WO2011111536A1 (en) Magnetic-balance current sensor
JP6842741B2 (en) Magnetic sensor
JPWO2012090631A1 (en) Magnetic proportional current sensor
WO2012096211A1 (en) Current sensor
WO2011111537A1 (en) Current sensor
US20130057274A1 (en) Current sensor
JP6529885B2 (en) Magnetic sensor, method of measuring magnetic field, current sensor, and method of measuring current
CN109643755B (en) Magnetic sensor and current sensor
US8476899B2 (en) Magnetic sensor and magnetic balance type current sensor including the same
JP5540326B2 (en) Current sensor
JP6506671B2 (en) Method of manufacturing magnetic sensor and method of manufacturing current sensor
JP6522485B2 (en) Method of manufacturing magnetic sensor
WO2015125699A1 (en) Magnetic sensor
JP7261656B2 (en) Magnetic sensor and manufacturing method thereof
JP2017139269A (en) Magnetic sensor, method for manufacturing magnetic sensor, and current sensor
JP5517315B2 (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150