JP2017069808A - 検出方法、検出装置および投射装置 - Google Patents

検出方法、検出装置および投射装置 Download PDF

Info

Publication number
JP2017069808A
JP2017069808A JP2015194246A JP2015194246A JP2017069808A JP 2017069808 A JP2017069808 A JP 2017069808A JP 2015194246 A JP2015194246 A JP 2015194246A JP 2015194246 A JP2015194246 A JP 2015194246A JP 2017069808 A JP2017069808 A JP 2017069808A
Authority
JP
Japan
Prior art keywords
light
modulation element
light source
ratio
video data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015194246A
Other languages
English (en)
Other versions
JP6569440B2 (ja
Inventor
岡本 直也
Naoya Okamoto
直也 岡本
直哉 会津
Naoya Aizu
直哉 会津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2015194246A priority Critical patent/JP6569440B2/ja
Priority to US15/209,997 priority patent/US10724898B2/en
Publication of JP2017069808A publication Critical patent/JP2017069808A/ja
Application granted granted Critical
Publication of JP6569440B2 publication Critical patent/JP6569440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

【課題】反射型光変調素子を用いた場合に、光源からの光の光量を高精度に検出可能とする。【解決手段】光源11から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子13に照射させ、光変調素子に反射された光を投射する。光変調素子から光源に向けて戻る戻り光の、光変調素子に照射される光に対する比率を映像データに基づき光源光量算出ブロック32で算出する。算出した比率と、光源と光変調素子との間に設けられる光センサ10の検出出力とを用いて光源から射出された光の光量を算出する。【選択図】図4

Description

本発明は、検出方法、検出装置および投射装置に関する。
光源からの光を、映像データに基づき反射型光変調素子により反射させて変調し、変調された光を反射型の偏光板により選択的に反射させて被投射媒体に画像を投射する投射装置が知られている。このような投射装置において、光源から射出される光の光路などに光センサを配置して光源の光量を検出し、検出した光量に基づき光源をフィードバック制御することで、光源の光量を安定させることができる。
特許文献1には、固定光源から射出された光が入射される回転蛍光板と、回転蛍光板から射出される光が入射される液晶光変調素子との間の光路に近接させて光センサを配置して、光センサの検知結果に応じて固定光源または液晶光変調素子を制御する構成が記載されている。
特開2012−47951号公報
反射型光変調素子を用いた投射装置では、反射型光変調素子で反射された光の一部が、映像データに応じて反射型偏光板を透過して光源側に戻る。そのため、光源と反射型光変調素子との間の光路に近接させて配置した光センサは、この反射型光変調素子から光源側に戻る光を、光源から射出された光と共に検出することになる。したがって、反射型光変調素子を用いた場合には、光源からの光の光量を正しく検出することが困難であるという問題点があった。
本発明は、上記に鑑みてなされたものであって、反射型光変調素子を用いた場合に、光源からの光の光量を高精度に検出可能とすることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子に照射させ、光変調素子に反射された光を投射する投射装置の光源からの光を検出する検出方法であって、光変調素子から光源に向けて戻る戻り光の、光変調素子に照射される光に対する比率を映像データに基づき算出する比率算出ステップと、光源と光変調素子との間に設けられる光センサの検出出力と、比率算出ステップにより算出された比率とを用いて光源から射出された光の光量を算出する光量算出ステップとを有することを特徴とする検出方法である。
本発明によれば、反射型光変調素子を用いた場合に、光源からの光の光量を高精度に検出可能となる効果を奏する。
図1は、各実施形態に共通して適用可能な、投射装置における光学系の構成の例を示す図である。 図2は、各実施形態に適用可能な光源部の一例の構成を示す図である。 図3は、各実施形態に適用可能な蛍光体ホイールの一例の構成を示す図である。 図4は、第1の実施形態に係る投射装置の一例の構成を、信号処理系を中心に示すブロック図である。 図5は、第1の実施形態に係る光源光量算出ブロックの一例の構成を示すブロック図である。 図6は、第1の実施形態に係る画素毎の戻り光の光量Lrqの算出方法について説明するための図である。 図7は、第1の実施形態に係る画素毎の戻り光の光量Lrqの算出方法について説明するための図である。 図8は、第1の実施形態に適用可能な、階調値と光センサによる検出出力との関係を示すテーブルの例を示す図である。 図9は、第1の実施形態に係る、反射型光変調素子の面内における照射強度の分布の例を示す図である。 図10は、第1の実施形態に係る、光センサの位置に応じた検出出力Dtの分布の違いについて説明するための図である。 図11は、第1の実施形態に係る、光センサの位置に応じた検出出力Dtの分布の違いについて説明するための図である。 図12は、光源からの光と同方向に進む戻り光について説明するための図である。 図13は、光センサに戻り光が検出されないようにすることを説明するための図である。 図14は、第1の実施形態の第1の変形例に係る照明光学系の例を示す図である。 図15は、第1の実施形態の第2の変形例に係る照明光学系の例を示す図である。 図16は、第2の実施形態に係る投射装置の一例の構成を、信号処理系を中心に示すブロック図である。 図17は、第2の実施形態に係る光源光量算出ブロックの一例の構成を示すブロック図である。 図18は、第2の実施形態の変形例に係る照明光学系の例を示す図である。
以下に添付図面を参照して、検出方法、検出装置および投射装置の好適な実施形態を詳細に説明する。係る実施形態に示す具体的な数値および外観構成などは、本発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本発明に直接関係のない要素は詳細な説明および図示を省略している。
本発明の各実施形態では、光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型光変調素子に照射させ、反射型光変調素子に反射された光を偏光板を介して投射する投射装置において、反射型光変調素子と光源との間に配置された光センサの検出出力を用いて、光源からの光の光量を求める。このとき、映像データに基づき、反射型光変調素子から、投射に寄与せずに光源に向けて戻る戻り光の、反射型光変調素子に照射される光に対する比率を算出する。そして、光センサの検出出力と算出した比率とに基づき、光源の光量を算出する。
各実施形態に係る検出方法および検出装置は、上述したような構成を有するため、光センサの検出出力に対する戻り光の影響を抑制することができ、光源からの光の光量をより高精度に取得することが可能となる。
(各実施形態に共通の構成)
図1は、各実施形態に共通して適用可能な、投射装置1における光学系の構成の例を示す。なお、以下において、適宜、青色の光をB光、緑色の光をG光、赤色の光をR光、黄色の光をY光、白色の光をW光と記述する。
図1において、投射装置1は、光学系の構成として、光源部2と照明光学部3aとを含む。光源部2は、例えば1以上のレーザ素子を含み青色として視認される所定の波長帯の光(B光)を射出する光源500と、光源500から射出されたB光に励起されて黄色光(Y光)を発光する蛍光体が塗布された蛍光体ホイール600とを含み、B光およびY光を射出する。なお、光源部2から射出される光は、実際には、B光とY光とが合成された白色光(W光)である。光源部2の構成については、後述する。
光源部2から射出されたB光およびY光は、照明光学部3aに入射され、ミラー110で反射され方向を変更される。なお、光源部2および照明光学部3aのレイアウトによっては、このミラー110は省略することができる。
ミラー110から射出されたY光およびB光は、フライアイレンズ111および112、ならびに、偏光変換素子113を介してレンズ114に入射される。フライアイレンズ111および112は、Y光およびB光に基づく各光を後述する各光変調素子119、125および128に照射する際に、各光が各光変調素子119、125および128に均一に照射されるように分散させる均一照明光学系を構成する。
偏光変換素子113は、偏光ビームスプリッタとλ/2板を組み合わせて構成され、通常光を偏光光に変換したり、偏光光の偏光を揃えるものである。この例では、偏光変換素子113は、入射された光をS偏光の偏光光に変換するものとする。また、図1の例では、偏光変換素子113の側面に近接させて、光を検出する光センサ10が設けられる。光センサ10は、可視光の波長領域の全域にわたって感度を有する白色受光センサである。図1の光センサ10は、偏光変換素子113に入射されたB光およびY光が偏光変換素子113から漏れた光を検出し、検出した光の光量に応じた検出出力Dtを出力する。
S偏光の偏光光に変換されたY光およびB光は、偏光変換素子113から射出され、レンズ114を介してB光とY光とを分離する光分離器115に入射される。光分離器115は、例えばB光の波長帯域の光を反射しY光の波長帯域の光を透過させる第1のダイクロイックミラーと、Y光の波長帯域の光を反射しB光の波長帯域の光を透過させる第2のダイクロイックミラーとを含む。光分離器115で分離されたB光は、光分離器115から射出されてミラー116に入射される。また、光分離器115で分離されたY光は、光分離器115から射出されてミラー121に入射される。
ミラー116に入射されたB光は、レンズ117を介して反射型偏光板118に入射される。反射型偏光板118は、S偏光およびP偏光のうち一方の偏光を透過し、他方の偏光を反射する。ここでは、レンズ117から射出されたB光がS偏光であり、後述するRGB各色の映像データのうちB色の映像データに基づいて駆動される反射型光変調素子119において白レベル(最大階調)で反射された光がP偏光であって、反射型偏光板118がS偏光を透過し、P偏光を反射する特性を有するものとする。
反射型偏光板118を透過したB光は、反射型光変調素子119に入射される。反射型光変調素子119は、B色の映像データに従い駆動され、入射された光を画素毎に変調および反射して射出する。反射型光変調素子119としては、例えばLCOS(Liquid crystal on silicon)などの反射型液晶素子を適用することができる。これは、後述する他の反射型光変調素子125および128でも同様である。
反射型光変調素子119でB色の映像データに応じて画素毎に変調されたB光は、反射型偏光板118で反射されて方向を変更されて射出され、光合成プリズム120に第1の面から入射される。
光分離器115で分離されミラー121に入射されたY光は、ミラー121で反射され方向を変更されてミラー121から射出される。ミラー121から射出されたY光は、色成分分離器122に入射され、Y光から緑色光成分と赤色光成分とが分離される。例えば、色成分分離器122は、緑色光の波長帯域の光を反射し、赤色光の波長帯域の光を透過させるダイクロイックミラーを用いて構成される。
色成分分離器122でY光から分離された緑色成分の光(緑色光。以下、G光)は、レンズ123を介して反射型偏光板124に入射される。上述のB光と同様に、G光がS偏光であるものとし、G光は、反射型偏光板124を透過して、G色の映像データに従い駆動される反射型光変調素子125に入射される。反射型光変調素子125は、入射されたG光をG色の映像データに応じて画素毎に変調および反射して射出する。反射型光変調素子125から射出されたG光は、反射型偏光板124で反射されて光合成プリズム120に第2の面から入射される。
色成分分離器122でY光から分離された赤色成分の光(赤色光。以下、R光)は、レンズ126を介して反射型偏光板127に入射される。上述のB光と同様に、R光がS偏光であるものとし、R光は、反射型偏光板127を透過して、R色の映像データに従い駆動される反射型光変調素子128に入射される。反射型光変調素子128は、入射されたR光をR色の映像データに応じて画素毎に変調および反射して射出する。反射型光変調素子128から射出されたR光は、反射型偏光板127で反射されて光合成プリズム120に第3の面から入射される。
光合成プリズム120は、それぞれ第1の面、第2の面および第3の面から入射されたB光、G光およびR光を合成して、ひとまとまりの光束として第4の面から射出する。光合成プリズム120から射出されたR光、G光およびB光を含む光束は、投射光学系129を介して外部に射出される。
図2は、各実施形態に適用可能な光源部2の一例の構成を示す。図2(a)は、当該主要部分の正面図、図2(b)は、図2(a)の構成を矢印「A」の方向から見た側面図である。以下、特に記載の無い限り、図2(a)および図2(b)を纏めて図2として説明する。
図2において、1以上の青色レーザ素子を含む光源500から射出されたB光は、集光レンズ501を介して分割ミラー502に入射する。分割ミラー502は、入射されたB光を、第1のB光および第2のB光に分割する。以下では、図面において識別容易なように、第1のB光をB1光、第2のB光をB2光と記述する。
分割ミラー502で反射されて分割されたB2光は、レンズ503、ミラー504、ミラー506、レンズ507およびミラー508により構成されるリレー光学系を介してダイクロイックミラー505の第2面に入射される。このリレー光学系上の光路は、第1の平面上に構成される。これに限らず、リレー光学系上の光路を、第1の平面上と、第1の平面と平行な他の平面上とに構成してもよい。
ダイクロイックミラー505は、上述した第1のダイクロイックミラーと対応するもので、B光の波長帯域の光を反射し、B光の波長帯域よりも長波長の帯域の光(例えば赤色光や緑色光)を透過させる特性を備える。
一方、分割ミラー502を透過して分割されたB1光は、ダイクロイックミラー505の第1面に入射される。
ダイクロイックミラー505は、入射された光を、第1の平面に対して交わる方向に反射するように設けられる。図2(a)の例では、ダイクロイックミラー505は、光源500から射出され分割ミラー502で透過して分割されたB1光が反射された反射光が、図2(a)の手前側から奥側に向けた光路に沿って進むように設けられる。すなわち、ダイクロイックミラー505で反射された光による光路は、第1の平面に対して互いに交わる第2の平面上に構成される。
ダイクロイックミラー505で反射されたB1光は、集光レンズ509および510を介して蛍光体ホイール600に入射される。図3は、各実施形態に適用可能な蛍光体ホイール600の一例の構成を示す。蛍光体ホイール600は、ミラー状の表面に、同心円状に蛍光体面601が形成される。蛍光体面601は、B光の波長帯域の光により励起されて、黄色光(Y光)を発光する蛍光体が塗布されてなる。なお、加色法において黄色は緑色と赤色とを混合して得られるので、蛍光体面601で発光される黄色光は、赤色成分と緑色成分とを含む。蛍光体ホイール600は、回転軸603を中心としてモータ602により回転駆動される。
蛍光体面601で発光されたY光は、集光レンズ510および509を介してダイクロイックミラー505の第1面に入射される。このY光は、ダイクロイックミラー505を透過して、ダイクロイックミラー505の第2面から射出される。図2(a)の例では、ダイクロイックミラー505の位置において、奥側から手前側に向けてY光が射出されることになる。
ここで、上述したように、ダイクロイックミラー505の第2面には、B2光がリレー光学系を介して入射されている。このB2光は、ダイクロイックミラー505の第2面により反射され、Y光と同じ方向に射出される。すなわち、B2光の光路は、ダイクロイックミラー505により、第1の平面上の光路から第2の平面上の光路へと、方向が変換される。
このようにしてダイクロイックミラー505から射出されたY光およびB2光は、図1に示すように、B光およびY光として光源部2から射出され、ミラー110に入射される。
(第1の実施形態)
図4は、第1の実施形態に係る投射装置1の一例の構成を、信号処理系を中心に示す。なお、図4に示される光学系の構成において、光源11は、図1の光源500に対応し、図4においては、図1の光源部2の他の構成は省略されている。また、図4において、反射型光変調素子13は、図1におけるB光が照射される反射型光変調素子119に対応し、反射型偏光板12は、図1における反射型偏光板118に対応するものとする。また、図4における投射光学系14は、図1における投射光学系129に対応する。
図4において、例えば1以上のレーザ素子を含む光源11から射出された光20が、反射型偏光板12の第1面から入射される。ここで、図1の反射型偏光板118において説明した通り、反射型偏光板12は、S偏光の光を透過し、P偏光の光を反射する。光20をS偏光としたとき、光20は、反射型偏光板12を透過して反射型光変調素子13に照射される。反射型光変調素子13は、後述する表示素子駆動部31により映像データに従い駆動され、映像データに応じて入射された光20を変調して反射し光21として射出する。
このとき、光21は、RGB各色の映像データに基づいて駆動される反射型光変調素子13による映像データに応じた変調により、映像データが白レベル(最大階調)の場合には、P偏光で射出される。また、映像データが黒レベル(最小階調)の場合には、光21はS偏光で射出される。さらに、映像データが白レベルと黒レベルの中間のグレーレベルの階調の場合には、光21は、P偏光およびS偏光の各成分が階調に応じて混合されて射出される。
光21は、反射型偏光板12の第2面に入射され、反射型光変調素子13の変調に応じてP偏光の成分が光22として投射光学系14に入射され、スクリーンなどの被投射媒体15に投射される。光21のS偏光の成分は、反射型偏光板12を透過して、光23として光源11に向けて戻る。この反射型偏光板12を透過して光源11に向けて戻る光23を、以下では、「戻り光」と呼ぶ。戻り光は、上述したように、映像データの階調が白レベル以外で発生する。
上述した図1の例では、例えば反射型光変調素子119で反射された光のうちS偏光の成分の光が、戻り光として、反射型偏光板118を透過してレンズ117に入射され、以下、入射の際の光路を逆に辿ってミラー116、光分離器115、レンズ114、偏光変換素子113、フライアイレンズ112および111を介してミラー110に入射され、ミラー110で反射されて光源部2に向けて射出される。この戻り光の光路中の偏光変換素子113において、戻り光の漏れ光が、光源部2からの光の漏れ光と共に、光センサ10に検出される。
図4において、投射装置1は、信号処理系の構成として、映像処理部30と、表示素子駆動部31と、光源光量算出ブロック32と、光源駆動制御部33と、光源駆動部34と、光量記憶部35とを含む。これらのうち、例えば映像処理部30、光源光量算出ブロック32および光源駆動制御部33は、投射装置1が搭載するCPU(Central Processing Unit)上でプログラムが動作することにより構成してもよいし、一部または全部を、互いに協働して動作するハードウェア回路により構成してもよい。
映像処理部30は、例えば投射装置1の外部の機器から投射装置1に入力された入力映像データが供給される。入力映像データは、例えば、R、GおよびBの各色の画素のデータを含み、所定のフレームレートにてフレーム単位で入力される。映像処理部30は、供給された入力映像データに対して、ガンマ値γを用いたガンマ補正処理など所定の映像処理を施して出力する。映像処理部30から出力された映像データは、表示素子駆動部31および光源光量算出ブロック32に供給される。
表示素子駆動部31は、映像処理部30から供給された映像データに基づき、反射型光変調素子13を駆動するための駆動信号を生成する。この駆動信号は、反射型光変調素子13に供給される。反射型光変調素子13は、表示素子駆動部31から供給された駆動信号に従い画素毎に駆動される。
光源光量算出ブロック32は、映像処理部30から映像データが供給されると共に、光を検出する光センサ10から検出出力Dtが供給される。検出出力Dtは、センサ10が検出した光の光量に応じた信号である。ここで、光センサ10は、光源11から射出された光20と、反射型光変調素子13で反射され反射型偏光板12を透過した光23とを検出する。検出出力Dtは、これら光20の光量と、光23の光量とを合計した光量に応じた信号となる。
光源光量算出ブロック32は、映像処理部30から供給される映像データに基づき戻り光の光量を示す値を算出し、算出した戻り光光量を示す値と、光センサ10の検出出力Dtとを用いて、光源11からの光20の光量Loを求める。そして、光源光量算出ブロック32は、光量Loを光源駆動制御部33に供給する。
光源駆動制御部33は、光源11の光量を制御するための駆動制御信号を生成し、生成した駆動制御信号を光源駆動部34に供給する。光源駆動部34は、この駆動制御信号に従い光源11を駆動し、光20を駆動制御信号に応じた光量で射出させる。
ここで、光源駆動制御部33に対して、光量記憶部35が接続される。光量記憶部35は、例えば投射装置1に内蔵される不揮発性のメモリであって、光源11の基準となる光量を示す基準値Lrefを予め記憶する。光量記憶部35への値の記憶は、例えば、投射装置1の工場出荷時やシステム設定時に行う。
光源駆動制御部33は、光源光量算出ブロック32から供給される光量Loと、光量記憶部35に記憶される光量の基準値Lrefとを比較し、光源11の光量が基準値Lrefに従った光量と等しくなるように、駆動制御信号を生成する。このように、光センサ10による検出出力Dtと、光量記憶部35に記憶される基準値Lrefとに基づき、光源11の光量がフィードバック制御される。
図5は、第1の実施形態に係る光源光量算出ブロック32の一例の構成を示す。図5において、光源光量算出ブロック32は、映像解析部320と、分布補正部321と、戻り光比率算出部322と、光源光量算出部323とを含む。
光源光量算出部323は、光センサ10から検出出力Dtが供給される。また、光源光量算出部323は、後述するようにして戻り光比率算出部322で算出された戻り光比率Raと、光センサ10から供給された検出出力Dtとに基づき光源11の光量Loを算出する。光源光量算出部323は、算出した光源光量Loを光源駆動制御部33に対して出力する。
一方、光源光量算出ブロック32において、映像解析部320に対して、映像処理部30から出力された映像データが供給される。映像解析部320は、供給された映像データを解析し、当該映像データに基づき画素毎の戻り光の光量Lrqを算出する。
図6〜図8を用いて、映像解析部320における画素毎の戻り光の光量Lrqの算出方法について説明する。図6は、戻り光についてより具体的に示す。なお、図6(a)〜図6(c)において、上述した図4と共通する部分には同一の符号を付して、詳細な説明を省略する。
図6(a)は、反射型光変調素子13が白レベルの映像データにより駆動された場合の例を示す。光源11から射出されたS偏光の光20が、反射型偏光板12を透過して反射型光変調素子13に照射される。反射型光変調素子13は、白レベルの映像データに従い、照射されたS偏光の光20を反射させてP偏光の光21に変換して射出する。
反射型光変調素子13から射出されたP偏光の光21は、略全てが反射型偏光板12で反射され、光22として射出される。光22は、図4で示した投射光学系14に入射される。この場合には、反射型光変調素子13で反射された光21の略全てが投射光学系14に入射されるため、被投射媒体15に投射される投射映像は、略白の映像となる。また、光21は、略全てが反射型偏光板12で反射されるため、反射型偏光板12を透過して光源11に向けて戻る戻り光の光量が最小となる。
図6(b)は、反射型光変調素子13が黒レベルの映像データにより駆動された場合の例を示す。上述と同様に、光源11から射出されたS偏光の光20が、反射型偏光板12を透過して反射型光変調素子13に照射される。反射型光変調素子13は、黒レベルの映像データに従い、照射されたS偏光の光20を偏光状態を変えずに反射させてS偏光の光21として射出する。
反射型光変調素子13から射出されたS偏光の光21は、略全てが反射型偏光板12を透過して戻り光の光23となり、光源11の方向に戻る。この場合には、反射型光変調素子13で反射された光21が投射光学系14にほとんど入射されないため、被投射媒体15に投射される投射映像は、略黒の映像となる。また、戻り光となる光23の光量は、最大となる。
図6(c)は、反射型光変調素子13がグレーレベル、すなわち、階調値が最大値および最小値の間の値である映像データに駆動された場合の例を示す。上述と同様に、光源11から射出されたS偏光の光20が、反射型偏光板12を透過して反射型光変調素子13に照射される。反射型光変調素子13は、グレーレベルの映像データに従い、照射されたS偏光の光20を、映像データの階調値に応じてP偏光とS偏光とが混合された光21として射出する。
反射型光変調素子13から射出されたP偏光とS偏光とが混合された光21は、反射型偏光板12に入射される。反射型偏光板12は、入射された光21の成分のうち、P偏光の成分を光22として反射させ、S偏光の成分を光23として透過させる。反射型偏光板12で反射された光22は、投射光学系14に入射され、反射型偏光板12で透過された光23は、戻り光として光源11の方向に戻る。投射光学系14に入射される光22は、光源11からの光20からS偏光の成分を差し引いたものとなり、被投射媒体15に投射される映像は、グレーの映像となる。
図7は、第1の実施形態に係る、光センサ10に光が入射される様子を模式的に示す。なお、図7において、上述した図4と共通する部分には同一の符号を付して、詳細な説明を省略する。
光センサ10は、光源11からの光20の光路16に対し、光20を検出可能なように配置される。一方、例えば上述した図1の構成では、反射型光変調素子13からの戻り光である光23は、光路16を光20とは逆方向に進むことになる。したがって、光センサ10には、光20と戻り光の光23とが同時に入射され、光センサ10の検出出力Dtは、これら光20の光量と光23の光量とを合計した光量を示す値となる。
第1の実施形態においては、上述した図6(a)〜図6(c)の各状態を考慮し、映像解析部320は、映像データの各画素の階調値を取得して、各画素の照射光量に対する反射光量の比率を計算し、戻り光光量の比率(戻り光比率と呼ぶ)を取得する。一例として、映像データのビット深度がnビットであり、階調値がm(0≦m<2n)であれば、画素毎の戻り光比率Raqは、下記の式(1)にて求められる。なお、式(1)において、係数k(q)は、0<k(q)<1の値であって、画素q毎に照射される光20の光量に応じた値とする。また、戻り光比率Raqにおける添字qは、画素qを表す。
Raq=k(q)×Lo×{1−(m/2n)1/γ} …(1)
ここで、一般的に、表示のために用いる映像データは、ディスプレイ(図1の例では、各反射型光変調素子119、125および128を含む照明光学部a3)の特性に応じてガンマ補正処理が施され、階調値と光量との関係がリニアにはならない。したがって、映像解析部320は、図8に例示されるような、階調値と光量すなわち光センサ10による検出出力Dtとの関係を示すテーブルを用いて映像データのガンマ補正の成分を除去して、戻り光比率Raを求める。このテーブルは、例えば、投射装置1が備える不揮発性のメモリに予め記憶させておく。
図8は、映像データのビット深度nが8ビットであり、各画素の階調値が0〜255である場合の例を示しており、横軸が階調値、縦軸が光センサ10の検出出力Dtをそれぞれ示す。なお、この場合、上述したように、映像データが白レベルで戻り光の光量が最小、黒レベルで戻り光の光量が最大となる。したがって、図8の例では、階調値と光量との関係を示す特性線400は、一般的なガンマ曲線とは逆の傾向となる。また、上述した式(1)における係数k(q)は、この図8の特性線400による特性をさらに反映したものとなる。
映像解析部320で算出された各画素の戻り光比率Raqは、分布補正部321に供給される。分布補正部321は、反射型光変調素子13の面内における光20の照射強度の分布と、光センサ10の位置に応じた分布への影響とに基づき、戻り光比率Raqを補正する。
図9は、第1の実施形態に係る、反射型光変調素子13の面内における光20の照射強度の分布の例を示す。ここでは、反射型光変調素子13が長辺および短辺を持つ矩形であるものとする。図9(a)は、反射型光変調素子13を長辺方向に見た場合の照射強度の分布の例(特性線401)、図9(b)は、反射型光変調素子13を短辺方向に見た場合の照射強度の分布の例(特性線402)をそれぞれ示す。また、図9(a)および図9(b)において、横軸は、反射型光変調素子13の中央からの距離をフレームの長辺を基準として、映像の正面に対して左側を負、右側を正の値で示している。また、縦軸は、ピークの値で正規化した照射強度を示す。
なお、図9(a)および図9(b)の例は、それぞれ、光源11からの光20が反射型光変調素子13の中央に照射された場合の照射強度の分布を、光源11の特性と、光源11から反射型光変調素子13までの照射光学系の特性とを考慮したシミュレーションにより求めた例である。図9(a)および図9(b)に、特性線401および402としてそれぞれ示されているように、反射型光変調素子13の素子面内において、照射強度は、反射型光変調素子13の中央付近でピークとなり、周辺に向かうに連れ低下する分布を示す。
また、照射強度の分布は、光センサ10の位置に応じて異なって検出される。図10および図11を用いて、光センサ10の位置に応じた検出出力Dtの分布の違いについて説明する。図10および図11は、反射型光変調素子13に対して、光20が上述の図9(a)および図9(b)に示される照射強度分布で照射された場合に光センサ10に検出される、光センサ10の位置における、反射型光変調素子13の各画素に対応する光量の分布をシミュレートした例である。
例えば、図10(b)に例示されるように、光センサ10を、戻り光の光21または23、および、光源11からの光20が通過する光路16の、反射型光変調素子13の長辺に対して左側に配置したとする。図10(a)は、図10(b)のように光センサ10を配置した場合の、光センサ10に検出される画素毎の光量の分布の例を示す。この場合、特性線403に示されるように、図9(a)の特性線401が右下がりに傾斜し、ピークの位置が左側にずれる。同様に、図11(b)に例示されるように、光センサ10を、光路16の、反射型光変調素子13の長辺に対して右側に配置した場合、図11(a)に特性線404で示されるように、図9(a)の特性線401が左下がりに傾斜し、ピークの位置が右側にずれる。
戻り光の光23は、反射型光変調素子13の素子面に対応した面光源から射出された光として光センサ10に検出される。そのため、光センサ10に検出される光23の光量は、光センサ10の位置における素子面に対応する面内の、光センサ10からの距離に依存することになる。
分布補正部321は、図9を用いて説明した、反射型光変調素子13の素子面内での照射強度の分布と、図10および図11を用いて説明した、光センサ10の位置における素子面に対応する面内での、戻り光の光23の検出光量の分布とに基づき、各画素の戻り光比率Raqに重み付けを行う。
例えば、図9の特性線401および402で示される分布と、光センサ10の位置に応じて、図10(a)の特性線403、または、図11(a)の特性線404で示される分布とに基づく重みを画素毎に予め求めて、テーブルとして、投射装置1が備える不揮発性のメモリに記憶しておく。分布補正部321は、映像解析部320から供給された各画素の戻り光比率Raqに対して、このテーブルを参照して画素毎に重み付けを行い、重み付けされた各画素の戻り光比率Raq’として出力する。画素毎の重み付けの値は、上述した係数k(q)にさらに含めることができる。
なお、図10(b)および図11(b)の例では、光センサ10が光路16の片側に配置されているが、これはこの例に限定されない。例えば、図10(b)および図11(b)の構成を組み合わせて、2個の光センサ10を、光路16の、反射型光変調素子13の長辺の両側に対応する位置にそれぞれ配置してもよい。これにより、光センサ10の検出光量の、光センサ10からの距離依存を抑制することができる。この場合、分布補正部321は、図10(a)の特性線403、または、図11(a)の特性線404で示される分布を考慮する必要が無い。また、2個の光センサ10による各検出出力Dtを平均して、検出出力Dtとして用いる。
分布補正部321から出力された戻り光比率Raq’は、戻り光比率算出部322に供給される。戻り光比率算出部322は、画素毎の戻り光比率Raq’のフレーム内での平均値を、フレームの戻り光比率Raとして算出する。例えば、フレーム内の画素数を値p、各画素を変数q(1≦q≦p)、各画素の階調値を値m(q)で表した場合、戻り光比率Raは、下記の式(2)により算出できる。
Figure 2017069808
なお、上述した図1の例では、映像データは、R、GおよびBの各色の画素のデータを含んでおり、反射型光変調素子119、125および128により、R、GおよびBの各色の戻り光がそれぞれ発生する。このRGB各色の戻り光は、入射時の光路を逆に辿り、光分離器115で合成されて、光源部2からの光と共に、光センサ10に検出される。この場合、RGB各色の戻り光を考慮したフレームにおける戻り光比率RaRGBは、R色の戻り光比率RaRと、G色の戻り光比率RaGと、B色の戻り光比率RaBと、係数lR、lGおよびlBとを用いて、下記の式(3)にて求めることができる。
RaRGB=(lR×RaR+lG×RaG+lB×RaB)/3 …(3)
ここで、係数lR、lGおよびlBは、光センサ10のR成分、G成分およびB成分の検出値を、RGB各色の戻り光におけるR成分、G成分およびB成分を合成した光の明るさに対して正規化するための係数であって、lR+lG+lB=1の条件を満たす。RGB各色の階調値がそれぞれ最大値の場合は、W光となり、戻り光比率RaRGBは最小値となる。
戻り光比率算出部322で算出された戻り光比率Raは、光源光量算出部323に供給される。光源光量算出部323は、光センサ10から供給された検出出力Dtと、戻り光比率算出部322から戻り光比率Raとに基づき、光源11から射出された光20の光量Loを算出する。
ここで、光源光量算出部323は、光センサ10の検出出力Dtを、例えば投射装置1の不揮発性のメモリに予め記憶されたテーブルなどを参照して、実際に光センサ10に入射された光の光量Lsに変換するものとする。光量Lsと、光源11からの光20の光量Loと、戻り光の光量Lrとの関係は、下記の式(4)で表される。
Ls=Lo+Lr …(4)
ここで、戻り光光量Lrは、下記の式(5)に示されるように、光20の光量Loに戻り光比率Raを乗じた値となる。したがって、上述の式(4)は、式(5)を用いて下記の式(6)のように変形できる。
Lr=Lo×Ra …(5)
Ls=Lo+(Lo×Ra)=Lo×(1+Ra) …(6)
式(6)を変形して、下記の式(7)により、光源11からの光20の光量Loが算出できる。
Lo=Ls/(1+Ra) …(7)
光源光量算出部323は、上述のようにして、光センサ10の検出出力Dtと、映像データなどに基づき計算した戻り光比率Raとから、光20の光量Loを算出する。光源光量算出部323で算出された光量Loは、光源駆動制御部33に供給される。上述したように、光源駆動制御部33は、供給された光量Loと、光量記憶部35に記憶される光量の基準値Lrefとを比較し、光源11の光量が基準値Lrefに従った光量と等しくなるように駆動制御信号を生成し、光源11の光量のフィードバック制御を行う。
このように、第1の実施形態によれば、映像データに基づき反射型光変調素子13からの戻り光の比率Raを求め、求めた比率と光センサ10の検出出力Dtとを用いて、光源11からの光20の光量Loを算出することができる。光量Loを算出することにより、光センサ10に受光された光の光量から、光源11からの光の光量を検出することができる。これにより、光源11の光量を、より高精度に制御することができる。
なお、上述では、光センサ10に対して、反射型光変調素子13からの戻り光が入射されるように説明した。実際には、図12に例示されるように、光源11からの光と同方向に進む戻り光24も発生する。この戻り光24は、反射型光変調素子13からの戻り光23が光源11に到達して光源11および光源11の周囲から反射して光源11からの光20と同様に戻ることで発生する。光センサ10には、この戻り光24が、光20および戻り光23と共に検出されることになる。
この場合、戻り光24の光量は、戻り光23の光量に比例するため、上述と同様な方法を適用することで、光源11からの光20の光量Loを求めることができる。
また、図13に例示されるように、光センサ10の向きを光源11側に向け、反射型光変調素子13からの戻り光23が光センサ10に検出されないようにすることも考えられる。しかしながら、この場合であっても、上述の戻り光24が光センサ10に入射されてしまい、光20を単独で検出することは困難である。
(第1の実施形態の第1の変形例)
次に、第1の実施形態の第1の変形例について説明する。図14は、第1の実施形態の第1の変形例に係る照明光学部の例を示す。なお、図14および後述する図15において、上述した図1と対応する部分には同一の符号を付して、詳細な説明を省略する。また、図14および図15において、図1における光源部2は省略されている。
上述した第1の実施形態では、光センサ10を、偏光変換素子113の側面に近接させて設けられているが、これはこの例に限定されない。第1の実施形態の第1の変形例は、図14に例示されるように、光センサ10を、照明光学部3bにおいてフライアイレンズ111より光源側に配置する例である。図14の例では、ミラー110の位置に光センサ10が配置されている。
このように、フライアイレンズ111よりも光源側に光センサ10を配置することで、仮に光センサ10が光源部2からのW光(B+Y光)を遮る位置に配置されていたとしても、フライアイレンズ111および112により光が分散され、反射型光変調素子119、125および128に照射される光の均一性が保たれる。
(第1の実施形態の第2の変形例)
次に、第1の実施形態の第2の変形例について説明する。図15は、第1の実施形態の第2の変形例に係る照明光学部の例を示す。第1の実施形態の第2の変形例では、図15に例示されるように、照明光学部3cにおいて、W光をR光、G光およびB光に分離した後の、R光、G光およびB光の何れかの光路に対して光センサ10を配置する。図15の例では、Y光をG光およびR光に分離する色成分分離器122のG光の反射側と、G光が照射される反射型光変調素子125に対応する反射型偏光板123との間のレンズ123の側面に、光センサ10を配置している。
このように、光センサ10をR光、G光およびB光の何れかの光路に配置することで、光センサ10として、単色の感度を有する単色受光センサを用いることができる。単色受光センサは、上述した白色受光センサに対して感度を有する波長帯域が狭く、白色受光センサと比べて安価である。これに限らず、R光、G光およびB光の各光路に光センサ10をそれぞれ配置してもよい。この場合、R光、G光およびB光の各光路に配置した各光センサ10の出力に対して、上述した式(3)を適用することが考えられる。
(第2の実施形態)
次に、第2の実施形態について説明する。図16は、第2の実施形態に係る投射装置1’の一例の構成を、信号処理系を中心に示す。なお、図16において、上述の図4と対応する部分には同一の符号を付して、詳細な説明を省略する。また、第2の実施形態では、図1〜図3を用いて説明した光源部2および照明光学部3aの構成を、そのまま適用できる。
図16に示す投射装置1’において、光源駆動制御部33’は、光源光量算出ブロック32’の出力、および、光源11の光量に対する基準値Lrefを用いずに光源駆動部34を制御して光源11から光20を射出される。すなわち、投射装置1’は、光源11の光量のフィードバック制御を行わない。
一方、投射装置1’は、図4の投射装置1に対してゲイン調整部36およびゲイン記憶部37が追加されている。光源光量算出ブロック32’は、光センサ10の検出出力Dtと映像データとに基づき上述したようにして光源11からの光20の光量Loを算出する。そして、光源光量算出ブロック32’は、算出した光量Loと、光量記憶部35’に予め記憶される光量の基準値Lrefとに基づき、反射型光変調素子13を駆動する際のゲインを調整するためのゲイン調整値Adを求める。光源光量算出ブロック32’は、ゲイン調整値Adを、ゲイン調整部36に供給する。
ゲイン調整部36は、ゲイン調整値Adを用いて、映像データに対するゲインを調整する。
なお、ゲインは、表示素子駆動部31が反射型光変調素子13を駆動する際の、映像データに対するゲインである。例えば、ゲインの値を映像データによる各画素の階調値に加算または乗算することで、当該映像データに基づき被投射媒体15に投射される投射映像の明るさを調整できる。以下では、ゲインの値を映像データによる階調値に乗算するものとして説明する。
例えば、工場出荷時やシステム設定時などに、光源11が所定の光量Loで光20を射出している場合に、被投射媒体15に投射された投射映像が所定の輝度となるようなゲイン値を取得し、取得したゲイン値を初期ゲイン値Grefとしてゲイン記憶部37に記憶させる。例えば、ゲイン調整部36は、初期、例えば投射装置1’の最初の起動時などに、ゲイン記憶部37に予め記憶される初期ゲイン値Grefを、映像データに対するゲイン値に設定する。
図17は、第2の実施形態に係る光源光量算出ブロック32’の一例の構成を示す。なお、図17において、上述した図5と共通する部分には同一の符号を付して、詳細な説明を省略する。
図17において、光源光量算出ブロック32’は、映像解析部320と、分布補正部321と、戻り光比率算出部322と、ゲイン算出部324とを含む。映像解析部320、分布補正部321および戻り光比率算出部322は、図8、図10(a)および図11(a)を用いて説明した各テーブルと、式(1)〜(3)とを用いて、映像データに基づき戻り光比率Raを算出する。戻り光比率Raは、ゲイン算出部324に供給される。
ゲイン算出部324は、戻り光比率Raと、光センサ10の検出出力Dtとを用いて、上述した式(4)〜(7)に従い、光源11の光量Loを算出する。そして、光量記憶部35’から光量の基準値Lrefを取得して、下記の式(8)に従いゲイン調整値Adを算出する。なお、ゲイン調整値Adは、式(8)に対して所定の係数を乗じて求めてもよい。ゲイン算出部324は、算出したゲイン調整値Adを、ゲイン調整部36に供給する。
Ad=Lo/Lref …(8)
ゲイン調整部36は、光源光量算出ブロック32’から供給されたゲイン調整値Adを用いて、映像データのゲインを調整し、ゲインが調整された映像データGaを表示素子駆動部31に供給する。
このように、第2の実施形態に係る投射装置1’では、上述した第1の実施形態に係る投射装置1と同様に、映像データに基づき反射型光変調素子13からの戻り光の比率Raを求め、求めた比率と光センサ10の検出出力Dtとを用いて、光源11からの光20の光量Loを算出している。そして、算出した光源11の光量Loに基づき映像データのゲインを調整しているので、光源11の光量Loの変動に対する、被投射媒体15に投射される投射映像の変動が抑制される。
なお、ゲイン記憶部37に記憶される初期ゲイン値Grefは、例えば「1.0」でもよいし、「0<Gref<1.0」となる値でもよい。初期ゲイン値Grefを値「1.0」とした場合は、最大輝度での投射が可能となる。一方、初期ゲイン値Grefを「0<Gref<1.0」とした場合は、光源11が劣化した場合でも、投射映像の輝度を維持できる。
(第2の実施形態の変形例)
次に、第2の実施形態の変形例について説明する。図1に示した投射装置1では、システムの経時変化により、投射光におけるR色成分、G色成分およびB色成分のバランスが初期状態から変化してしまう場合がある。ここで、システムの経時変化は、図1の例の場合、例えば、蛍光体ホイール600の劣化や、光学部品の分光透過率変化がある。
第2の実施形態の変形例では、R色、G色およびB色それぞれについてゲインを調整可能としている。これにより、RGB各色成分のバランスが変化した場合も含めて、R色成分、G色成分およびB色成分のバランスを初期状態のバランスに復元可能となる。
図18は、第2の実施形態の変形例に係る照明光学部3dの例を示す。第2の実施形態の変形例では、図18に例示されるように、照明光学部3dにおいて、W光をR光、G光およびB光に分離した後の、R光、G光およびB光それぞれの光路に対して光センサ10R、10Gおよび10Bを配置する。図18の例では、レンズ126の側面にR光を検出するための光センサ10Rを配置し、レンズ123の側面にG光を検出するための光センサ10Gを配置し、レンズ117の側面にB光を検出するための光センサ10Bを配置している。これら光センサ10R、10Gおよび10Bは、それぞれ図16に示した光センサ10に対応するものとなる。
また、第2の実施形態の変形例では、上述した図16における光源光量算出ブロック32’と、光量記憶部35’と、ゲイン調整部36と、ゲイン記憶部37とを、R光、G光およびB光それぞれについて設ける。RGB各色の光量記憶部35’は、それぞれ、R光、G光およびB光の光量の初期値を予め記憶する。
例えばR色の光源光量算出ブロック32’は、映像データに含まれるRGB各色の画素データのうちR色の画素データを選択し、選択したR色の画素データと、R色に対応する光センサ10Rの検出出力DtRとに基づき、上述したようにしてR色の光の光量LoRを算出する。R色の光源光量算出ブロック32’は、算出した光量LoRと、光量記憶部35’に予め記憶されるR色の光の光量の初期値とに基づき、図18の反射型光変調素子128に対応するR色の反射型光変調素子13を駆動する際のゲインを調整するためのゲイン調整値AdRを求める。R色の光源光量算出ブロック32’は、求めたゲイン調整値AdRを、R色の反射型光変調素子13を駆動する表示素子駆動部31に供給する。
G色およびB色の各光源光量算出ブロック32’についても同様である。すなわち、G色およびB色の各光源光量算出ブロック32’は、それぞれ、映像データに含まれるRGB各色の画素データのうちG色およびB色の画素データと、G色およびB色に対応する光センサ10Gおよび10Bの検出出力DtGおよびDtBとに基づき、G色およびB色の光の光量LoGおよびLoBをそれぞれ算出する。そして、G色およびB色の各光源光量算出ブロック32’は、算出した各光量LoGおよびLoBと、G色およびB色の各光量記憶部35’に予め記憶されるG色およびB色の光の光量の各初期値とに基づき、図18の反射型光変調素子125および119にそれぞれ対応するG色およびB色の各反射型光変調素子13を駆動する際のゲインを調整するための各ゲイン調整値AdGおよびAdBを求める。そして、G色およびB色の各光源光量算出ブロック32’は、それぞれ、求めた各ゲイン調整値AdGおよびAdBを、G色の反射型光変調素子13を駆動する表示素子駆動部31と、G色の反射型光変調素子13を駆動する表示素子駆動部31に供給する。
このように、第2の実施形態の変形例によれば、照明光学部3dにおいて、RGB各色の反射型光変調素子128、125および119に対するゲインが、RGB各色で独立して調整され、投射光のR色成分、G色成分およびB色成分のバランスを初期状態のバランスに保つことが可能となる。
1,1’ 投射装置
2 光源部
3,3’,3” 照明光学部
10 光センサ
11,500 光源
12,118,124,127 反射型偏光板
13,119,125,128 反射型光変調素子
16 光路
20,21,22,23,24 光
30 映像処理部
31 表示素子駆動部
32,32’ 光源光量算出ブロック
33,33’ 光源駆動制御部
34 光源駆動部
35,35’ 光量記憶部
36 ゲイン調整部
111,112 フライアイレンズ
113 偏光変換素子
320 映像解析部
321 分布補正部
322 戻り光比率算出部
323 光源光量算出部
324 ゲイン算出部

Claims (7)

  1. 光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子に照射させ、該光変調素子に反射された光を投射する投射装置の前記光源からの光の光量を検出する検出方法であって、
    前記光変調素子から前記光源に向けて戻る戻り光の、該光変調素子に照射される光に対する比率を前記映像データに基づき算出する比率算出ステップと、
    前記光源と前記光変調素子との間に設けられる光センサの検出出力と、前記比率算出ステップにより算出された前記比率とを用いて前記光源から射出された光の光量を算出する光量算出ステップと
    を有する
    ことを特徴とする検出方法。
  2. 前記比率算出ステップは、
    前記映像データの画素毎の階調値に基づき前記比率を算出する
    ことを特徴とする請求項1に記載の検出方法。
  3. 前記比率算出ステップは、
    前記光変調素子の素子面に前記光源から射出された光が照射された場合の該素子面内における照射光量の分布に従い画素毎に重み付けして前記比率を算出する
    ことを特徴とする請求項2に記載の検出方法。
  4. 前記比率算出ステップは、
    前記分布に対して前記光センサの位置に応じた傾斜を与え、該傾斜が与えられた該分布に従い画素毎に前記重み付けを行う
    ことを特徴とする請求項3に記載の検出方法。
  5. 光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子に照射させ、該光変調素子に反射された光を投射する投射装置の前記光源からの光の光量を検出する検出装置であって、
    前記光源と前記光変調素子との間に設けられた光センサと、
    前記光変調素子から前記光源に向けて戻る戻り光の、該光変調素子に照射される光に対する比率を前記映像データに基づき算出する比率算出部と、
    前記光センサの検出出力と、前記比率算出部で算出された前記比率とを用いて前記光源から射出された光の光量を算出する光量算出部と
    を備える
    ことを特徴とする検出装置。
  6. 光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子と、
    前記光変調素子で変調された光を射出する投射光学部と、
    前記光源と前記光変調素子との間に設けられる光センサと、
    前記光変調素子から前記光源に向けて戻る戻り光の、該光変調素子に照射される光に対する比率を前記映像データに基づき算出する比率算出部と、
    前記光センサの検出出力と、前記比率算出部で算出された前記比率とを用いて前記光源から射出された光の光量を算出する光量算出部と、
    前記光量算出部により算出された前記光量に基づき前記光源の光量を制御する駆動部と
    を備える
    ことを特徴とする投射装置。
  7. 光源から射出された光を、照射された光を映像データに基づき変調して反射させる反射型の光変調素子と、
    前記光変調素子で変調された光を射出する投射光学部と、
    前記光源と前記光変調素子との間に設けられた光センサと、
    前記光変調素子から前記光源に向けて戻る戻り光の、該光変調素子に照射される光に対する比率を前記映像データに基づき算出する比率算出部と、
    前記光センサの検出出力と、前記比率算出部で算出された前記比率とを用いて前記光源から射出された光の光量を算出する光量算出部と、
    前記光量算出部により算出された前記光量に基づき前記映像データのゲインを制御するゲイン制御部と
    を備える
    ことを特徴とする投射装置。
JP2015194246A 2015-09-30 2015-09-30 検出方法、検出装置および投射装置 Active JP6569440B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015194246A JP6569440B2 (ja) 2015-09-30 2015-09-30 検出方法、検出装置および投射装置
US15/209,997 US10724898B2 (en) 2015-09-30 2016-07-14 Detecting method, detecting device, and projecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015194246A JP6569440B2 (ja) 2015-09-30 2015-09-30 検出方法、検出装置および投射装置

Publications (2)

Publication Number Publication Date
JP2017069808A true JP2017069808A (ja) 2017-04-06
JP6569440B2 JP6569440B2 (ja) 2019-09-04

Family

ID=58409150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015194246A Active JP6569440B2 (ja) 2015-09-30 2015-09-30 検出方法、検出装置および投射装置

Country Status (2)

Country Link
US (1) US10724898B2 (ja)
JP (1) JP6569440B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095920A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095918A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095919A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095921A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
WO2021033581A1 (ja) * 2019-08-21 2021-02-25 株式会社Jvcケンウッド 光量調整装置、投射装置、及び光量調整方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623779B2 (ja) * 2016-01-15 2019-12-25 セイコーエプソン株式会社 プロジェクター、及び、光源制御方法
CN108153089B (zh) * 2016-12-02 2020-08-28 中强光电股份有限公司 照明***及使用其的投影装置
WO2018109995A1 (ja) * 2016-12-12 2018-06-21 オリンパス株式会社 光源装置
CN108957923B (zh) * 2017-05-17 2021-07-23 深圳光峰科技股份有限公司 激发光强度控制***、方法及投影***
CN109424940B (zh) 2017-07-04 2021-05-04 中强光电股份有限公司 光波长转换模块以及照明模块
CN110832396B (zh) * 2017-07-12 2021-12-17 索尼公司 图像显示设备
CN111007690A (zh) * 2019-12-13 2020-04-14 深圳彩翼光电科技有限公司 一种3lcd投影机激光照明***以及3lcd投影机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287250A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 光源装置およびプロジェクションテレビジョン
JP2014132288A (ja) * 2013-01-04 2014-07-17 Seiko Epson Corp プロジェクター及びその制御方法
JP2015154163A (ja) * 2014-02-12 2015-08-24 キヤノン株式会社 投射型表示装置およびその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160374A (ja) * 1994-12-01 1996-06-21 Mitsubishi Electric Corp プロジェクタ装置
US7101047B2 (en) * 2000-03-31 2006-09-05 Sharp Laboratories Of America, Inc. Projection display systems for light valves
US8235534B2 (en) * 2008-05-21 2012-08-07 Panasonic Corporation Projector that projects a correction image between cyclic main image signals
US7826121B2 (en) * 2008-09-15 2010-11-02 Texas Instruments Incorporated Use of an angle-selective retro-reflector to recapture off-state energy
JP5703631B2 (ja) 2010-08-26 2015-04-22 セイコーエプソン株式会社 プロジェクター
US9769439B2 (en) * 2013-01-04 2017-09-19 Seiko Epson Corporation Projector and method for controlling the same the same that adjust light source output based on a corrected detected light brightness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287250A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 光源装置およびプロジェクションテレビジョン
JP2014132288A (ja) * 2013-01-04 2014-07-17 Seiko Epson Corp プロジェクター及びその制御方法
JP2015154163A (ja) * 2014-02-12 2015-08-24 キヤノン株式会社 投射型表示装置およびその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095920A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095918A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095919A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
JP2020095921A (ja) * 2018-12-14 2020-06-18 株式会社Jvcケンウッド 光量調整方法、光量調整装置、及び投射装置
WO2021033581A1 (ja) * 2019-08-21 2021-02-25 株式会社Jvcケンウッド 光量調整装置、投射装置、及び光量調整方法
JP2021032970A (ja) * 2019-08-21 2021-03-01 株式会社Jvcケンウッド 光量調整装置、投射装置、及び光量調整方法

Also Published As

Publication number Publication date
JP6569440B2 (ja) 2019-09-04
US20170089758A1 (en) 2017-03-30
US10724898B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6569440B2 (ja) 検出方法、検出装置および投射装置
US9667929B2 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
US10412351B2 (en) Projector and control method
US7213922B2 (en) Projector
US10291887B2 (en) Projection system and control method therefor
US9961311B2 (en) Projector and control method
JP6519970B2 (ja) 画像表示装置、プロジェクター及びその制御方法
US9621862B2 (en) Projector and method of controlling projector
JP6286825B2 (ja) プロジェクター及びその制御方法
JP7005133B2 (ja) 画像投射装置
US7973750B2 (en) Projector with dual image formation units and greyscale
JP6194865B2 (ja) センサ回路、補正方法およびプロジェクタ装置
JP7035992B2 (ja) 光量調整方法、光量調整装置、及び投射装置
US11676546B2 (en) Display apparatus and method of adjusting display apparatus to display a phase distribution pattern
JP2015079208A (ja) 画像表示装置、及び制御方法
JP7035994B2 (ja) 光量調整方法、光量調整装置、及び投射装置
JP7035993B2 (ja) 光量調整方法、光量調整装置、及び投射装置
JP7024699B2 (ja) 光量調整方法、光量調整装置、及び投射装置
EP4020080B1 (en) Light amount adjusting device, projection device and light amount adjusting method
US10527918B2 (en) Image projection apparatus, control method, and storage medium
JP2018061149A (ja) 画像投射装置
JP4311494B2 (ja) プロジェクタ
JP2021015733A (ja) プロジェクター、及び、プロジェクターの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150