JP2017057489A - FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR - Google Patents

FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2017057489A
JP2017057489A JP2015201526A JP2015201526A JP2017057489A JP 2017057489 A JP2017057489 A JP 2017057489A JP 2015201526 A JP2015201526 A JP 2015201526A JP 2015201526 A JP2015201526 A JP 2015201526A JP 2017057489 A JP2017057489 A JP 2017057489A
Authority
JP
Japan
Prior art keywords
alloy
magnetostrictive material
fega
based magnetostrictive
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015201526A
Other languages
Japanese (ja)
Inventor
佳明 鈴木
Yoshiaki Suzuki
佳明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2015201526A priority Critical patent/JP2017057489A/en
Publication of JP2017057489A publication Critical patent/JP2017057489A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a FeGa alloy-based magnetostrictive material showing magnetostriction property, large in magnetostriction amount and useful as a material of a magnetostriction element or the like and a manufacturing method with a more simplified process than conventional ones and industrially useful.SOLUTION: There are provided a FeGa alloy-based magnetostrictive material represented by FeGa(21≤x≤33) (1) and a manufacturing method of the FeGa alloy-based magnetostrictive material including a step (A) for preparing alloy molten metal containing Fe and Ga and a step (B) for solidifying the alloy molten metal obtained in the step (A) to obtain a master alloy and a step (C) for heat treating the master alloy obtained in the step (B) at 1000 to 1200°C for 12 to 72 hours.SELECTED DRAWING: None

Description

本発明は、センサやアクチュエータなどに用いることが期待されているFeGa合金系磁歪材料、及び製造方法に関するものである。  The present invention relates to an FeGa alloy-based magnetostrictive material expected to be used for sensors, actuators, and the like, and a manufacturing method.

磁性体に外部磁場を作用させることで、磁性体に伸びあるいは縮みが発生する「磁歪現象」が起きる。この磁歪現象は例えば、駆動用アクチュエータや超音波発生用磁歪振動子、さらにはトルクセンサなどの各種センサ等への応用が期待されている。  By applying an external magnetic field to the magnetic material, a “magnetostriction phenomenon” occurs in which the magnetic material expands or contracts. This magnetostriction phenomenon is expected to be applied to various actuators such as a driving actuator, an ultrasonic generation magnetostrictive vibrator, and a torque sensor.

これまで磁歪材料の研究は数多く行われており、非特許文献1には希土類元素を用いたTbDyFe系磁歪材料が開示されている。
非特許文献2には単結晶及び方向性多結晶であり、Fe−xat%Ga(15<x<21)の組成を有するFeGa磁歪材料及びその製造方法が開示されている。
さらに特許文献1にはFe−xat%Ga(15<x<17)の組成を有する材料を急冷凝固することによって多結晶材料よりも微細で、かつ高強度であり、強い配向を持つ組織が得られることが開示されている。
Many studies on magnetostrictive materials have been conducted so far, and Non-Patent Document 1 discloses a TbDyFe-based magnetostrictive material using rare earth elements.
Non-Patent Document 2 discloses a FeGa magnetostrictive material which is a single crystal and a directional polycrystal and has a composition of Fe-xat% Ga (15 <x <21) and a method for producing the same.
Further, Patent Document 1 discloses that a material having a composition of Fe-xat% Ga (15 <x <17) is rapidly solidified to obtain a microstructure that is finer and higher in strength than a polycrystalline material and has a strong orientation. Is disclosed.

A.E.クラーク及び江田弘著、「超磁歪材料」、日刊工業新聞社(1995)、p94−100、p143及びp170A. E. Clark and Hiroshi Eda, “Super Magnetostrictive Materials”, Nikkan Kogyo Shimbun (1995), p94-100, p143 and p170 A.E.Clark,J.B.Restorff,M.Wun−Fogle,T.A.Lagrasso and D.L.Schlagel,IEEE Trans.Magn.,36,2000,239−244A. E. Clark, J. et al. B. Restorff, M.M. Wun-Fogle, T.W. A. Lagrasso and D.M. L. Schlagel, IEEE Trans. Magn. 36, 2000, 239-244

国際公開第2005/087963号International Publication No. 2005/087963

しかしながら、非特許文献1に開示されたTbDyFe系磁歪材料は希少な重希土類元素を含むため高コストであり汎用性が低く、かつ延性が低いため使用環境が限定されてしまうといった問題がある。
非特許文献2に開示された単結晶のFeGa系磁歪材料は大きな磁歪値を有しているものの、記載の製造方法で単結晶や方向性多結晶材料を作製するにはコストが掛かり過ぎるため、汎用性が低いという問題がある。
特許文献1に開示された急冷凝固法によって製造された急冷凝固材は高性能であるものの、微細で、かつ高強度であり、強い配向を持つ組織を活かすために、放電焼結法でバルク化合金とする必要があるなど手間とコストが掛かるという問題がある。
また非特許文献2や特許文献1ではいずれもGaが21at%未満の材料であり、21at%以上の材料は、磁歪特性が低くなるという問題があると述べている。
However, since the TbDyFe-based magnetostrictive material disclosed in Non-Patent Document 1 contains a rare heavy rare earth element, there is a problem that the cost is low, versatility is low, and the use environment is limited because the ductility is low.
Although the single crystal FeGa-based magnetostrictive material disclosed in Non-Patent Document 2 has a large magnetostriction value, it is too costly to produce a single crystal or a directional polycrystalline material by the manufacturing method described above. There is a problem that versatility is low.
Although the rapidly solidified material manufactured by the rapid solidification method disclosed in Patent Document 1 has high performance, it is bulked by the spark sintering method in order to make use of a fine, high-strength, highly oriented structure. There is a problem that it takes time and cost, for example, it is necessary to use an alloy.
Further, both Non-Patent Document 2 and Patent Document 1 state that Ga is a material having a content of less than 21 at%, and a material having a content of 21 at% or more has a problem that the magnetostriction characteristics are lowered.

本発明は、このような従来技術に存在する問題点に着目してなされたものである。Gaを21原子%以上含有する組成領域において、優れた磁歪量を有する多結晶FeGa合金系磁歪材料を提供することにある。
本発明の別の課題は、従来よりも工程を簡略化し、かつ工業的にも有用で、優れた磁歪量を有する多結晶FeGa合金系磁歪材料を得ることが可能な製造方法を提供することにある。
The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide a polycrystalline FeGa alloy-based magnetostrictive material having an excellent magnetostriction amount in a composition region containing 21 atomic% or more of Ga.
Another object of the present invention is to provide a production method capable of obtaining a polycrystalline FeGa alloy-based magnetostrictive material that has a simplified process than before and is industrially useful and has an excellent magnetostriction amount. is there.

本発明によれば、式(1)で表される組成を有することを特徴とするFeGa合金系磁歪材料が提供される。
Fe100−xGa(21≦x≦33)…(1)
(式中の100、xは、それぞれ対応する金属元素の原子%を示す。)
また本発明によれば、FeとGaを含有する合金溶湯を準備する工程(A)と、
工程(A)で得られた合金溶湯を凝固して母合金を得る工程(B)と、
工程(B)で得られた母合金を1000〜1200℃で、12〜72時間熱処理する工程(C)と、を含むFeGa合金系磁歪材料の製造方法が提供される。
According to the present invention, there is provided an FeGa alloy-based magnetostrictive material having a composition represented by the formula (1).
Fe 100-x Ga x (21 ≦ x ≦ 33) (1)
(100 and x in the formula respectively represent atomic% of the corresponding metal element.)
According to the present invention, a step (A) of preparing a molten alloy containing Fe and Ga,
A step (B) of solidifying the molten alloy obtained in the step (A) to obtain a master alloy;
And a step (C) of heat-treating the mother alloy obtained in the step (B) at 1000 to 1200 ° C. for 12 to 72 hours, to provide an FeGa alloy-based magnetostrictive material manufacturing method.

本発明のFeGa合金系磁歪材料は、Fe及びGaを含み、磁歪特性を示す磁歪量が大きく、磁歪素子等の材料として有用である。
また本発明の製造方法は、工程(A)〜(C)を行うので、上記発明のFeGa合金系磁歪材料を、従来よりも工程を簡略化し、かつ工業的にも有用に得ることが可能となる。
The FeGa alloy-based magnetostrictive material of the present invention contains Fe and Ga, has a large magnetostriction amount showing magnetostriction characteristics, and is useful as a material for a magnetostrictive element or the like.
Moreover, since the manufacturing method of the present invention performs steps (A) to (C), the FeGa alloy-based magnetostrictive material of the above invention can be simplified and more useful industrially than the conventional one. Become.

実施例1の磁歪材料の写真である。2 is a photograph of the magnetostrictive material of Example 1.

以下、本発明を更に詳細に説明する。
本発明の磁歪材料は、式(1)で表される組成を有することを特徴とする多結晶FeGa合金系磁歪材料である。
Fe100−xGa(21≦x≦33)…(1)
xは、Gaの含有量(原子%)を表す。xは21≦x≦33である。Gaが21原子%未満の場合、結晶粒径が粗大化せず大きな結晶配向が得られなくなるおそれがあり好ましくない。逆に、Gaが33原子%を超える場合、磁歪量が極端に低下するおそれがあり好ましくない。Gaは磁歪量の増加に寄与する元素であり、好ましくは23≦x≦30である。
Hereinafter, the present invention will be described in more detail.
The magnetostrictive material of the present invention is a polycrystalline FeGa alloy-based magnetostrictive material having a composition represented by the formula (1).
Fe 100-x Ga x (21 ≦ x ≦ 33) (1)
x represents the Ga content (atomic%). x is 21 ≦ x ≦ 33. When Ga is less than 21 atomic%, the crystal grain size is not coarsened and a large crystal orientation may not be obtained. Conversely, when Ga exceeds 33 atomic%, the amount of magnetostriction may be extremely reduced, which is not preferable. Ga is an element that contributes to an increase in the amount of magnetostriction, and preferably 23 ≦ x ≦ 30.

ここでいう多結晶とは、複数の単結晶から構成されており、互いに隣接する単結晶間に結晶粒界と呼ばれる界面が存在する構造のことである。  The polycrystal here is composed of a plurality of single crystals, and has a structure in which an interface called a crystal grain boundary exists between adjacent single crystals.

なお、Fe及びGa以外に、酸素、窒素、水素及びその他として原料の不可避不純物を含んでもよい。またそれぞれの含有量は、少ない方が好ましいが、微量であれば含有してもよい。  In addition to Fe and Ga, oxygen, nitrogen, hydrogen, and other raw material inevitable impurities may be included. Each content is preferably as small as possible, but may be contained in a small amount.

本発明の磁歪材料は、Cu−Kα線をX線源とするX線回折測定における(110)面の配向度が19%以上である。このときの配向度は後述するX線回折結果に基づく式より算出される。配向度が19%以上のとき、磁歪量が大きくなる。配向度が19%未満のときは磁歪量が小さくなるおそれがあり好ましくない。  The magnetostrictive material of the present invention has an orientation degree of (110) plane of 19% or more in X-ray diffraction measurement using Cu-Kα rays as an X-ray source. The degree of orientation at this time is calculated from an expression based on an X-ray diffraction result to be described later. When the degree of orientation is 19% or more, the amount of magnetostriction increases. When the degree of orientation is less than 19%, the amount of magnetostriction may be reduced, which is not preferable.

本発明の磁歪材料は、Cu−Kα線をX線源とするX線回折測定における(110)面のピーク波形の半値幅が0.15°〜0.40°である。半値幅が0.15°〜0.40°であるとき、(110)面の結晶子サイズが大きく磁歪量が大きくなり好ましい。逆に半値幅が0・40°を超えるとき(110)面の結晶子サイズが小さく磁歪量が小さくなるおそれがあり好ましくない。  In the magnetostrictive material of the present invention, the full width at half maximum of the peak waveform on the (110) plane in the X-ray diffraction measurement using Cu-Kα rays as the X-ray source is 0.15 ° to 0.40 °. When the full width at half maximum is 0.15 ° to 0.40 °, the crystallite size on the (110) plane is large and the amount of magnetostriction is large, which is preferable. On the other hand, when the half width exceeds 0.40 °, the crystallite size on the (110) plane is small and the magnetostriction amount may be small, which is not preferable.

本発明の磁歪材料は、平均結晶粒径が1mm以上、300mm以下である。このときの平均結晶粒径は、500mm×500mm×30mmに切り出した磁歪材料を、40%硝酸溶液で5分間エッチング処理し、組織の界面を腐食させた後、写真撮影し、500mm×500mmの面を5等分する直線を引き、この直線上の粒径の平均値を測定したときの値である。平均結晶粒径が10mm以上、300mm以下であるとき、配向度が高くなり好ましい。逆に、平均結晶粒径が1mm未満の場合、配向度が小さくなるおそれがあり好ましくない。  The magnetostrictive material of the present invention has an average crystal grain size of 1 mm or more and 300 mm or less. The average crystal grain size at this time is that the magnetostrictive material cut out to 500 mm × 500 mm × 30 mm is etched with a 40% nitric acid solution for 5 minutes to corrode the interface of the tissue, then photographed, and a 500 mm × 500 mm surface Is a value obtained by drawing a straight line that divides the line into 5 parts and measuring the average value of the particle diameters on the straight line. When the average crystal grain size is 10 mm or more and 300 mm or less, the degree of orientation is preferably increased. Conversely, when the average crystal grain size is less than 1 mm, the degree of orientation may be reduced, which is not preferable.

本発明の製造方法は、本発明の磁歪材料を従来よりも工程を簡略化し、かつ工業的にも有用に得ることが可能となる方法で、まず、FeとGaを含有する合金溶湯を準備する工程(A)を含む。
工程(A)において、FeとGaを含有する合金溶湯を得る方法は、該溶湯が得られる溶解方法であれば特に限定されないが、例えば、高周波炉中で溶融させる高周波溶解法やアークメルト法などが挙げられる。このときの溶融雰囲気は真空雰囲気下又は不活性ガス雰囲気下が好ましい。
The manufacturing method of the present invention is a method that makes it possible to obtain the magnetostrictive material of the present invention in a simplified manner and industrially usefully. First, a molten alloy containing Fe and Ga is prepared. Including step (A).
In the step (A), a method for obtaining a molten alloy containing Fe and Ga is not particularly limited as long as the molten metal is obtained. For example, a high-frequency melting method or an arc melt method for melting in a high-frequency furnace is used. Is mentioned. The melting atmosphere at this time is preferably a vacuum atmosphere or an inert gas atmosphere.

本発明の製造方法は、次いで、工程(A)で得られた合金溶湯を凝固して母合金を得る工程(B)を含む。
工程(B)において、上記合金溶湯を凝固させる方法は、該母合金が得られる方法であれば特に限定されないが、例えば、金型鋳造法やストリップキャスト法に代表される溶湯急冷法などが挙げられる。後述する熱処理の効果を高めるためには、結晶粒の大きな合金とする必要があるため、冷却速度が遅い金型鋳造法により母合金を得るのが好ましい。
Next, the manufacturing method of the present invention includes a step (B) of solidifying the molten alloy obtained in the step (A) to obtain a master alloy.
In the step (B), the method for solidifying the molten alloy is not particularly limited as long as the master alloy can be obtained, and examples thereof include a molten metal quenching method represented by a die casting method and a strip casting method. It is done. In order to enhance the effect of heat treatment described later, it is necessary to use an alloy with large crystal grains, and therefore it is preferable to obtain a master alloy by a die casting method with a slow cooling rate.

本発明の製造方法は、工程(B)で得られた母合金を1000〜1200℃で、12〜72時間熱処理する工程(C)を含む。
工程(C)において、熱処理条件を1000〜1200℃で、12〜72時間保持することで平均結晶粒径を粗大化させることができ、より単結晶に近い多結晶組織とすることができる。こうした組織とすることで、配向度が大きくすることができ、磁歪量が大きい材料とすることができる。1000℃未満では平均結晶粒径の粗大化が促進されず、配向度も向上しないおそれがあり好ましくない。1200℃を超える温度では、特に大きな問題は生じないが、熱処理温度として最大1200℃あれば効果が得られるため、この温度を超える温度で処理しても効果は同じであり、必要以上に高い温度とする必要はないと考えられる。さらに好ましくは1060〜1140℃である。この熱処理は、雰囲気制御が可能な公知の熱処理炉で行うことができる。また酸化抑制のために、熱処理雰囲気は、真空又は不活性ガス雰囲気であることが好ましい。
The manufacturing method of this invention includes the process (C) which heat-processes the mother alloy obtained at the process (B) at 1000-1200 degreeC for 12 to 72 hours.
In the step (C), the average crystal grain size can be increased by maintaining the heat treatment conditions at 1000 to 1200 ° C. for 12 to 72 hours, and a polycrystalline structure closer to a single crystal can be obtained. With such a structure, the degree of orientation can be increased and a material having a large magnetostriction amount can be obtained. If it is less than 1000 ° C., the coarsening of the average crystal grain size is not promoted, and the orientation degree may not be improved. At temperatures exceeding 1200 ° C., no particular problem arises, but if the maximum heat treatment temperature is 1200 ° C., the effect can be obtained. Even if the temperature is exceeded, the effect is the same, and the temperature is higher than necessary. It is not considered necessary. More preferably, it is 1060-1140 degreeC. This heat treatment can be performed in a known heat treatment furnace capable of controlling the atmosphere. In order to suppress oxidation, the heat treatment atmosphere is preferably a vacuum or an inert gas atmosphere.

本発明の製造方法により得られる磁歪材料は、優れた磁歪量を有する多結晶FeGa合金系磁歪材料である。  The magnetostrictive material obtained by the production method of the present invention is a polycrystalline FeGa alloy-based magnetostrictive material having an excellent magnetostriction amount.

以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.

最終的に得られる合金の組成が表1に示す組成となるように原料を秤量した後、高周波溶解炉にてArガス雰囲気中で溶解し、合金溶融物とした。次に、この合金溶融物を、金型鋳造法により銅鋳型に鋳込み、母合金を得た。得られた母合金をArガス雰囲気中において、1150℃で、30時間熱処理を行い、磁歪材料を作製した。この磁歪材料を切り出した磁歪材料の写真を図1に示す。またその後、さらに縦20mm×横2mm×高さ1mmの直方体を切り出して、磁気特性用評価用試料とした。  The raw materials were weighed so that the finally obtained alloy had the composition shown in Table 1, and then melted in an Ar gas atmosphere in a high-frequency melting furnace to obtain an alloy melt. Next, this alloy melt was cast into a copper mold by a die casting method to obtain a master alloy. The obtained mother alloy was heat-treated at 1150 ° C. for 30 hours in an Ar gas atmosphere to produce a magnetostrictive material. A photograph of the magnetostrictive material cut out from this magnetostrictive material is shown in FIG. Thereafter, a rectangular parallelepiped having a length of 20 mm, a width of 2 mm, and a height of 1 mm was further cut out and used as an evaluation sample for magnetic properties.

得られた評価用試料を用いて、下記のとおりX線回折測定、配向度算出および磁気特性を測定した。その測定結果を表1に示す。
(X線回折及び配向度)
CuKα線をX線源とするX線回折を行った。さらに(110)面の配向度はX線回折結果に基づく下記(1)式より算出した。
配向度=(P−P)/(1−P)……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211)}
=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211)}であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200面)及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI(110)、ΣI(200)及びΣI(211)は、理想的な無配向の試料における(110)面、200面)及び(211)面の回折強度の積分強度を示す。
Using the obtained sample for evaluation, X-ray diffraction measurement, orientation degree calculation, and magnetic properties were measured as described below. The measurement results are shown in Table 1.
(X-ray diffraction and orientation)
X-ray diffraction using CuKα rays as an X-ray source was performed. Further, the degree of orientation of the (110) plane was calculated from the following formula (1) based on the X-ray diffraction result.
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211)}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}, and ΣI (110), ΣI (200), and ΣI (211) are (110) planes. , (200 plane), and (211) plane integrated intensity, respectively, ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) are (110) in an ideal unoriented sample. The integrated intensity of the diffraction intensity of the (plane, 200 plane) and (211) planes is shown.

(磁歪量測定)
磁歪量は一般的に用いられている歪ゲージ法により測定した。なお、ここで示す磁歪量は10000eにおける磁歪量のことである。
(Measurement of magnetostriction)
The magnetostriction amount was measured by a generally used strain gauge method. In addition, the magnetostriction amount shown here is the magnetostriction amount in 10000e.

(実施例2〜4)
最終的に得られる合金の組成が表1に示す組成となるように変更した以外、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。その結果を表1に示す。
(Examples 2 to 4)
A magnetostrictive material was obtained in the same manner as in Example 1 except that the composition of the finally obtained alloy was changed to the composition shown in Table 1, and an evaluation sample was prepared. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample. The results are shown in Table 1.

熱処理条件を1000℃、12時間と変更した以外、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。その結果を表1に示す。  A magnetostrictive material was obtained in the same manner as in Example 1 except that the heat treatment condition was changed to 1000 ° C. and 12 hours, and an evaluation sample was produced. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample. The results are shown in Table 1.

熱処理条件を1200℃、72時間と変更した以外、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。その結果を表1に示す。  A magnetostrictive material was obtained in the same manner as in Example 1 except that the heat treatment conditions were changed to 1200 ° C. and 72 hours, and an evaluation sample was prepared. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample. The results are shown in Table 1.

(比較例1〜5)
最終的に得られる合金の組成が表1に示す組成となるように変更及び熱処理を行わない以外は、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。その結果を表1に示す。
(Comparative Examples 1-5)
A magnetostrictive material was obtained in the same manner as in Example 1 except that the alloy composition finally obtained was changed to the composition shown in Table 1 and heat treatment was not performed, and an evaluation sample was prepared. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample. The results are shown in Table 1.

(比較例6〜7)
最終的に得られる合金の組成が表1に示す組成となるように変更した以外、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。その結果を表1に示す。
(Comparative Examples 6-7)
A magnetostrictive material was obtained in the same manner as in Example 1 except that the composition of the finally obtained alloy was changed to the composition shown in Table 1, and an evaluation sample was prepared. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample. The results are shown in Table 1.

(比較例8)
熱処理条件を900℃、12時間と変更した以外、実施例1と同様に磁歪材料を得て、評価試料を作製した。得られた評価試料を用いて実施例1と同様の評価測定を行った。
その結果を表1に示す。
(Comparative Example 8)
A magnetostrictive material was obtained in the same manner as in Example 1 except that the heat treatment conditions were changed to 900 ° C. and 12 hours, and an evaluation sample was prepared. The same evaluation measurement as in Example 1 was performed using the obtained evaluation sample.
The results are shown in Table 1.

Claims (6)

式(1)で表される組成を有することを特徴とするFeGa合金系磁歪材料。
Fe100−xGa(21≦x≦33)…(1) (式中の100、xは、それぞれ対応する金属元素の原子%を示す。)
An FeGa alloy-based magnetostrictive material having a composition represented by the formula (1).
Fe 100-x Ga x (21 ≦ x ≦ 33) (1) (100 and x in the formula respectively represent atomic% of the corresponding metal element)
CuKα線をX線源とするX線回折測定における(110)面の配向度が19%以上であることを特徴とする請求項1に記載のFeGa合金系磁歪材料。  The FeGa alloy-based magnetostrictive material according to claim 1, wherein the degree of orientation of the (110) plane in X-ray diffraction measurement using CuKα rays as an X-ray source is 19% or more. Cu−Kα特性X線をX線源とするX線回折測定における(110)面のピーク波形の半値幅が0.15°〜0.40°であることを特徴とする請求項1及び2のいずれかに記載のFeGa合金系磁歪材料。  The half width of the peak waveform of the (110) plane in X-ray diffraction measurement using Cu-Kα characteristic X-rays as an X-ray source is 0.15 ° to 0.40 °. Any of the FeGa alloy-based magnetostrictive materials. FeとGaを含有する合金溶湯を準備する工程(A)と、
工程(A)で得られた合金溶湯を凝固して母合金を得る工程(B)と、
工程(B)で得られた母合金を1000〜1200℃で、12〜72時間熱処理する工程(C)と、を含むFeGa合金系磁歪材料の製造方法。
Preparing a molten alloy containing Fe and Ga (A);
A step (B) of solidifying the molten alloy obtained in the step (A) to obtain a master alloy;
And a step (C) of heat-treating the mother alloy obtained in the step (B) at 1000 to 1200 ° C. for 12 to 72 hours, to produce an FeGa alloy-based magnetostrictive material.
工程(C)の熱処理を、1060〜1140℃の温度範囲にて行う請求項5記載のFeGa合金系磁歪材料の製造方法。  The manufacturing method of the FeGa alloy type magnetostrictive material of Claim 5 which performs the heat processing of a process (C) in the temperature range of 1060-1140 degreeC. 請求項4及び5のいずれかに記載の製造方法により得られたFeGa合金系磁歪材料。  An FeGa alloy-based magnetostrictive material obtained by the production method according to claim 4.
JP2015201526A 2015-09-18 2015-09-18 FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR Pending JP2017057489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201526A JP2017057489A (en) 2015-09-18 2015-09-18 FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201526A JP2017057489A (en) 2015-09-18 2015-09-18 FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2017057489A true JP2017057489A (en) 2017-03-23

Family

ID=58389852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201526A Pending JP2017057489A (en) 2015-09-18 2015-09-18 FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2017057489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875694A (en) * 2018-08-30 2020-03-10 松下知识产权经营株式会社 Magnetostrictive element and magnetostrictive vibration power generation device using same
JP2020105033A (en) * 2018-12-26 2020-07-09 住友金属鉱山株式会社 Evaluation method of crystal grain boundary of ferro-gallium alloy crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875694A (en) * 2018-08-30 2020-03-10 松下知识产权经营株式会社 Magnetostrictive element and magnetostrictive vibration power generation device using same
JP2020105033A (en) * 2018-12-26 2020-07-09 住友金属鉱山株式会社 Evaluation method of crystal grain boundary of ferro-gallium alloy crystal
JP7163762B2 (en) 2018-12-26 2022-11-01 住友金属鉱山株式会社 Method for evaluating grain boundaries of iron-gallium alloy crystals

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
JP6973680B2 (en) Pure copper plate
JP5086598B2 (en) Cold work material
JP6984799B1 (en) Pure copper plate, copper / ceramic joint, insulated circuit board
JP6293803B2 (en) Magnetic phase transformation material, method for producing magnetic phase transformation material and use of magnetic phase transformation material
KR101802009B1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
EP3045557A1 (en) Zirconium-based amorphous alloy and preparation method therefor
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP2017057489A (en) FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR
US20080011390A1 (en) Galfenol steel
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
CN109477169B (en) Aluminum alloy plastic working material and method for producing same
JPH0617178A (en) Superplastic aluminum base alloy material and manufacture of superplastic alloy material
JP5531274B2 (en) High strength magnesium alloy
JP2014152355A (en) High temperature shape memory alloy, superelastic alloy and methods of producing them
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JP5929251B2 (en) Iron alloy
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP2016040410A (en) Metal alloy component production method
JP2023142656A (en) Magnetostrictive material and method for producing the same
JP2019186331A (en) Method for manufacturing neodymium-iron-boron based magnet
JP2013185249A (en) Iron alloy
JP2010095787A (en) Magnesium alloy and method for producing the same
JP4146120B2 (en) Magnetostrictive material