JP2017030529A - Automatic transmission control device and automatic transmission method - Google Patents

Automatic transmission control device and automatic transmission method Download PDF

Info

Publication number
JP2017030529A
JP2017030529A JP2015152225A JP2015152225A JP2017030529A JP 2017030529 A JP2017030529 A JP 2017030529A JP 2015152225 A JP2015152225 A JP 2015152225A JP 2015152225 A JP2015152225 A JP 2015152225A JP 2017030529 A JP2017030529 A JP 2017030529A
Authority
JP
Japan
Prior art keywords
torque
engine
automatic transmission
clutch
propulsion shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152225A
Other languages
Japanese (ja)
Other versions
JP6593016B2 (en
Inventor
達也 大島
Tatsuya Oshima
達也 大島
進 角田
Susumu Tsunoda
進 角田
義久 岸本
Yoshihisa Kishimoto
義久 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015152225A priority Critical patent/JP6593016B2/en
Priority to CN201680044453.1A priority patent/CN107848523B/en
Priority to PCT/JP2016/071580 priority patent/WO2017022528A1/en
Publication of JP2017030529A publication Critical patent/JP2017030529A/en
Application granted granted Critical
Publication of JP6593016B2 publication Critical patent/JP6593016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic transmission control device capable of improving drivability by reducing a ship shock caused by swing-back occurring to a propeller shaft when switching a gear of a mechanical automatic transmission.SOLUTION: An automatic transmission control device 20 is configured to perform control of connecting a clutch device 14 in a half-clutch state and bringing output torque Te of an engine 11 to a first torque Tc after switching an AMT 15 to a target gear Gx, and then bringing the output torque Te of the engine 11 from the first torque Tc to a required torque Tb and connecting the clutch device 14 completely from the half-clutch state after torsion of the propeller shaft 16 is generated by the first torque Tc.SELECTED DRAWING: Figure 1

Description

本発明は、自動変速制御装置および自動変速方法に関し、より詳細には、機械式自動変速機のギアを自動で切り替えるときに生じる変速ショックを抑制して、ギアの切り替え時の時間を短縮しながらドライバビリティを向上する自動変速制御装置および自動変速方法に関する。   The present invention relates to an automatic transmission control device and an automatic transmission method, and more specifically, while suppressing a shift shock that occurs when a gear of a mechanical automatic transmission is automatically switched, while shortening the time when the gear is switched. The present invention relates to an automatic transmission control device and an automatic transmission method that improve drivability.

トラックやバスなどの大型車両には、クラッチ装置や機械式変速機にアクチュエータなどを付設して自動的にギアの切り替えを制御する自動変速制御装置が搭載されているものがある。   Some large vehicles such as trucks and buses are equipped with an automatic transmission control device that automatically controls gear switching by attaching an actuator to a clutch device or a mechanical transmission.

この自動変速制御装置が自動で行う機械式自動変速機(AMT)のギアの切り替えでは、ギアの切り替えが完了した後にクラッチ装置を繋いでエンジンの出力トルクを運転者の所望するトルクにする制御が行われている。しかし、このときに変速ショックが生じることでドライバビリティが悪化するという問題があった。   In the automatic automatic transmission (AMT) gear switching performed automatically by this automatic transmission control device, after the gear switching is completed, the clutch device is connected to control the engine output torque to the torque desired by the driver. Has been done. However, there has been a problem that drivability deteriorates due to a shift shock occurring at this time.

これに関して、機械式自動変速機のギアの切り替え時に、一時的に切り離されたクラッチ装置を繋ぐときにエンジンの出力トルクをそのエンジンの回転抵抗が相殺されるトルクになるように制御する自動変速制御装置が提案されている(例えば、特許文献1参照)。   In this regard, automatic gear shift control that controls the engine output torque so that the rotational resistance of the engine is offset when the clutch device that is temporarily disconnected is connected when the gear of the mechanical automatic transmission is switched. An apparatus has been proposed (see, for example, Patent Document 1).

この装置は、機械式自動変速機のギアの切り替えが完了した後で、エンジン回転数とクラッチ回転数との回転数差が所定値以内の場合に、クラッチ装置を半クラッチ状態にする制御を行う。次いで、エンジンの出力トルクをエンジンの回転抵抗が相殺されるトルクにする制御を行う。次いで、クラッチ装置を完全に繋いだ後に運転者の所望するトルクまで上昇させる制御を行う。   This device performs control to bring the clutch device into a half-clutch state when the difference between the engine speed and the clutch speed is within a predetermined value after the gear change of the mechanical automatic transmission is completed. . Next, control is performed so that the output torque of the engine is a torque that cancels out the rotational resistance of the engine. Next, after the clutch device is completely connected, control is performed to increase the torque desired by the driver.

これにより、ギアの切り替えが完了した後に、燃料をエンジンの回転抵抗を相殺するトルクが生じる程度に噴射することで、エンジンの回転抵抗による減速を回避することで変速ショックを発生させないようにしている。   As a result, after the gear change is completed, fuel is injected to such an extent that a torque that cancels the engine rotation resistance is generated, so that a deceleration shock due to the engine rotation resistance is avoided so as not to generate a shift shock. .

一方、本願発明の発明者らは、変速後にクラッチ装置が完全に繋がってから、車両の走行中に多少捻れた状態になっている推進軸にエンジンからの出力トルクが伝達されると、その推進軸が通常の状態よりも大きく捻じれ、その捻れによって推進軸に揺り戻しが生じ、その揺り戻しが変速ショックの原因であることを見出した。   On the other hand, the inventors of the present invention, when the output torque from the engine is transmitted to the propulsion shaft which is in a slightly twisted state while the vehicle is running after the clutch device is completely connected after the shift, It has been found that the shaft is twisted to a greater extent than usual, and that the twist causes the propulsion shaft to swing back, and that swing back causes the shift shock.

推進軸で生じる揺り戻しは、クラッチ装置を繋いでからエンジンから大きな出力トルクが伝達されたときに推進軸が弾性変形で大きく捻じれ、その捻じれが戻ろうとする反力が増幅されることで生じる現象である。この揺り戻しが生じると、推進軸には駆動輪側からの揺り戻しによって正逆方向のトルク変化が増幅されて現れる。そして、この増幅されたトルク変化により車輪に伝達されるトルクが変動して車輪の回転が変動するために、車両に前後方向の大きな揺動が発生する。特に大型車両では、この推進軸が長くなるために弾性変形量が大きくなり揺り戻しによる振動が大きくなることから変速時に生じる変速ショックは大きなものとなっている。   The backlash that occurs on the propulsion shaft is caused by the reaction force that the propulsion shaft is largely twisted by elastic deformation when a large output torque is transmitted from the engine after the clutch device is connected, and the twisting force to return is amplified. It is a phenomenon that occurs. When this swingback occurs, the torque change in the forward and reverse directions is amplified and appears on the propulsion shaft by the swingback from the drive wheel side. And since the torque transmitted to the wheels fluctuates due to the amplified torque change and the rotation of the wheels fluctuates, a large swing in the front-rear direction occurs in the vehicle. Particularly in a large vehicle, since the propulsion shaft becomes long, the amount of elastic deformation becomes large, and the vibration due to the swing back increases, so that the shift shock generated at the time of shifting is large.

上記の装置では、この変速ショックの要因になっている推進軸に生じる揺り戻しに対しては何ら対策されていない。具体的には、クラッチ装置を完全に繋いだ後に、エンジンの出力トルクを運転者の所望するトルクまで上昇させるときに、推進軸が大きく捻じれ、推
進軸に揺り戻しが生じてしまう。そのため、この推進軸の揺り戻しによる変速ショックを抑制できないという問題がある。
In the above-mentioned device, no countermeasure is taken against the swingback that occurs in the propulsion shaft that is the cause of this shift shock. Specifically, when the output torque of the engine is increased to the torque desired by the driver after the clutch device is completely connected, the propulsion shaft is largely twisted, and the propulsion shaft is shaken back. Therefore, there is a problem that the shift shock due to the swing back of the propulsion shaft cannot be suppressed.

また、推進軸に揺り戻しが発生しないように、エンジンの出力トルクをゆっくりと上昇させると、運転者の所望するトルクまでに上昇する時間が掛かり、変速時間が長くなるという問題がある。   Further, if the engine output torque is slowly increased so that the propulsion shaft does not swing back, there is a problem that it takes time to increase to the torque desired by the driver and the shift time becomes longer.

特開2006−70708号公報JP 2006-70708 A

本発明の目的は、機械式自動変速機のギアを切り替えるときの推進軸に生じる揺り戻しに起因する変速ショックを低減して、ギアの切り替え時の時間を短縮しながらドライバビリティを向上することができる自動変速制御装置および自動変速方法を提供することである。   The object of the present invention is to reduce the shift shock caused by the swing back generated in the propulsion shaft when switching the gear of the mechanical automatic transmission, and to improve the drivability while shortening the time when the gear is switched. An automatic transmission control device and an automatic transmission method are provided.

上記の目的を達成する本発明の自動変速制御装置は、エンジンと、このエンジンからの駆動力を断接するクラッチ装置と、前記エンジンに前記クラッチ装置を介して接続されるとともに駆動輪に動力を伝達する推進軸に接続された機械式自動変速機とのそれぞれに接続され、前記エンジンの出力トルクの増減、前記クラッチ装置の作動、および前記機械式自動変速機のギアの切り替えのそれぞれを制御する手段を有し、前記機械式自動変速機を車両の運転状況に応じた目標ギアに切り替え後に、一時的に切り離していた前記クラッチ装置を繋いで前記エンジンの出力トルクを前記目標ギアに応じて設定された初期トルクから運転者の要求した要求トルクにする制御を行う自動変速制御装置において、前記目標ギアに切り替えた後に、前記クラッチ装置を半クラッチ状態に繋ぐ制御を行うとともに、前記エンジンの出力トルクを前記初期トルクと前記要求トルクとの間に設定された第一トルクにする制御を行い、前記エンジンから前記クラッチ装置および前記機械式自動変速機を経由して伝達された前記第一トルクによる前記推進軸の捻じれが生じた後に、前記エンジンの出力トルクを前記第一トルクから前記要求トルクにするとともに、前記クラッチ装置を半クラッチ状態から完全に繋げる制御を行う構成にしたことを特徴とするものである。   An automatic transmission control device according to the present invention that achieves the above object includes an engine, a clutch device that connects and disconnects a driving force from the engine, and is connected to the engine via the clutch device and transmits power to driving wheels. Each of which is connected to each of the mechanical automatic transmissions connected to the propulsion shaft to control the increase / decrease in the output torque of the engine, the operation of the clutch device, and the switching of the gears of the mechanical automatic transmission. After the mechanical automatic transmission is switched to the target gear according to the driving condition of the vehicle, the output torque of the engine is set according to the target gear by connecting the clutch device that has been temporarily disconnected. In the automatic transmission control device that controls the initial torque to the required torque requested by the driver, after switching to the target gear, the And controlling the output torque of the engine to be a first torque set between the initial torque and the required torque, and from the engine to the clutch device and the clutch After the propulsion shaft is twisted by the first torque transmitted via the mechanical automatic transmission, the output torque of the engine is changed from the first torque to the required torque, and the clutch device is The present invention is characterized in that it is configured to perform control for complete connection from the half-clutch state.

また、上記の目的を達成する本発明の自動変速方法は、機械式自動変速機を車両の運転状況に応じた目標ギアに切り替えた後に、一時的に切り離していたクラッチ装置を繋いでエンジンの出力トルクをその目標ギアに応じて設定された初期トルクから運転者の要求した要求トルクにする自動変速方法において、前記目標ギアに切り替えた後に、前記クラッチ装置を半クラッチ状態に繋ぐとともに、前記エンジンの出力トルクを前記初期トルクと前記要求トルクとの間に設定された第一トルクにするステップと、前記クラッチ装置および前記機械式自動変速機を経由して伝達された前記第一トルクによる推進軸の捻じれが生じた後に、前記エンジンの出力トルクを前記第一トルクから前記要求トルクにするとともに、前記クラッチ装置を半クラッチ状態から完全に繋げるステップと、を含むことを特徴とする方法である。   In addition, the automatic transmission method of the present invention that achieves the above object is achieved by switching the mechanical automatic transmission to a target gear according to the driving condition of the vehicle, and then connecting the clutch device that has been temporarily disconnected to output the engine. In the automatic transmission method that changes the torque from the initial torque set according to the target gear to the required torque requested by the driver, after switching to the target gear, the clutch device is connected to a half-clutch state, and the engine The step of setting the output torque to the first torque set between the initial torque and the required torque, and the propulsion shaft by the first torque transmitted via the clutch device and the mechanical automatic transmission After the twist occurs, the output torque of the engine is changed from the first torque to the required torque, and the clutch device is half-clutched. A step of completely connect the switch state, a method which comprises a.

本発明の自動変速制御装置および自動変速方法によれば、機械式自動変速機を車両の運転状況に応じた目標ギアに切り替えた後に、第一段階として、クラッチ装置を半クラッチ状態に繋ぐとともにエンジンの出力トルクを最初に初期トルクから第一トルクにすることで、推進軸に予め捻じれを生じさせておく。第二段階として、推進軸に捻じれが生じた後
に、エンジンの出力トルクを第一トルクから要求トルクにして、推進軸の捻じれが戻ろうとする反力を第一トルクから要求トルクへの上昇分で相殺する。そして、エンジンの出力トルクを第一トルクから要求トルクに戻すとともに、クラッチ装置を半クラッチ状態から完全に繋げて機械式自動変速機の変速を完了する。
According to the automatic transmission control device and the automatic transmission method of the present invention, after switching the mechanical automatic transmission to the target gear according to the driving state of the vehicle, as a first step, the clutch device is connected to the half-clutch state and the engine The initial torque is first changed from the initial torque to the first torque, so that the propulsion shaft is twisted in advance. As a second step, after the propulsion shaft is twisted, the engine output torque is changed from the first torque to the required torque, and the reaction force to return the propulsion shaft twist is increased from the first torque to the required torque. Offset in minutes. Then, the engine output torque is returned from the first torque to the required torque, and the clutch device is completely connected from the half-clutch state to complete the shift of the mechanical automatic transmission.

このような制御を行うようにしたことで、推進軸の捻じれによって推進軸に生じる揺り戻しを抑制することができる。これにより、揺り戻しを起因するキャリブレーションを回避してギアの切り替えに掛かる時間を短縮できるとともに、その揺り戻しを起因とする変速ショックを低減してドライバビリティを向上することができる。   By performing such control, it is possible to suppress the swing back generated in the propulsion shaft due to the twist of the propulsion shaft. Accordingly, it is possible to reduce the time required for switching the gear by avoiding the calibration caused by the swingback, and it is possible to improve the drivability by reducing the shift shock caused by the swingback.

特に、本発明は機械式自動変速機をシフトアップするときに効果的であり、機械式自動変速機をシフトアップするときに、推進軸に生じる揺り戻しに起因する変速ショックを低減してドライバビリティを向上することができる。   In particular, the present invention is effective when shifting up a mechanical automatic transmission. When shifting up a mechanical automatic transmission, the present invention reduces the shift shock caused by the swingback that occurs on the propulsion shaft and improves drivability. Can be improved.

本発明の実施形態の自動変速制御装置を例示する構成図である。It is a block diagram which illustrates the automatic transmission control apparatus of embodiment of this invention. 本発明の実施形態の自動変速制方法を例示するフローチャートである。It is a flowchart which illustrates the automatic transmission control method of embodiment of this invention. アクセル開度、エンジン回転数、クラッチ回転数、出力トルク、クラッチストロークを時系列で例示した図である。It is the figure which illustrated the accelerator opening degree, the engine speed, the clutch speed, the output torque, and the clutch stroke in time series. 第一トルクマップを例示した図である。It is the figure which illustrated the 1st torque map. 第一トルクの算出方法を例示したフローチャートである。It is the flowchart which illustrated the calculation method of the 1st torque.

以下に、本発明の実施形態について図面を参照して説明する。図1は本発明の実施形態からなる自動変速制御装置20を例示している。この自動変速制御装置20は車両10に搭載されて、機械式自動変速機(以下、AMTという)15を車両10の運転状況に応じて目標ギアGxに自動で切り替える制御を行うものである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 illustrates an automatic transmission control device 20 according to an embodiment of the present invention. The automatic transmission control device 20 is mounted on the vehicle 10 and performs control to automatically switch the mechanical automatic transmission (hereinafter referred to as AMT) 15 to the target gear Gx according to the driving state of the vehicle 10.

車両10はエンジン11がディーゼルエンジンで構成されたバスやトラックなどの大型車両である。この車両10においては、エンジン11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランク軸13が回転駆動される。このクランク軸13の回転動力は、乾式クラッチ装置(以下、クラッチ装置という)14を通じてAMT15に伝達される。   The vehicle 10 is a large vehicle such as a bus or a truck whose engine 11 is a diesel engine. In the vehicle 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine 11. The rotational power of the crankshaft 13 is transmitted to the AMT 15 through a dry clutch device (hereinafter referred to as a clutch device) 14.

AMT15は入力された回転動力を複数段に変速可能な主変速機構と、その主変速機構から伝達された回転動力を低速段と高速段の二段に変速可能な副変速機構とから構成されたものを例に説明するが、その構成は特に限定されない。   The AMT 15 is composed of a main transmission mechanism capable of shifting the input rotational power in a plurality of stages, and an auxiliary transmission mechanism capable of shifting the rotational power transmitted from the main transmission mechanism in two stages, a low speed stage and a high speed stage. Although a thing is demonstrated to an example, the structure is not specifically limited.

AMT15で変速された回転動力は、推進軸16を通じて差動装置17に伝達され、駆動軸18を経由して一対の駆動輪19にそれぞれ駆動力として分配される。   The rotational power shifted by the AMT 15 is transmitted to the differential device 17 through the propulsion shaft 16 and is distributed as a driving force to the pair of driving wheels 19 via the driving shaft 18.

自動変速制御装置20は、エンジン11に接続されて主にエンジン11を制御するエンジン用制御装置21と、クラッチ装置14およびAMT15のそれぞれに接続されて主にクラッチ装置14およびAMT15を制御する変速用制御装置22と、それらの制御装置のデータを相互通信可能にするCANなどの車載ネットワーク23とを有して構成される。   The automatic transmission control device 20 is connected to the engine 11 and mainly controls the engine 11. The automatic transmission control device 20 is connected to each of the clutch device 14 and the AMT 15 to mainly control the clutch device 14 and the AMT 15. It is configured to include a control device 22 and an in-vehicle network 23 such as CAN that enables data of these control devices to communicate with each other.

エンジン用制御装置21は、アクセルペダルP1の踏み込み量をアクセル開度AOとして検出するアクセル開度センサ24と、エンジン回転数Neを検出するクランク角センサ25などのセンサに接続されている。そして、それらの検出値に基づいて電子制御式イン
ジェクタ(以下、インジェクタという)26からの燃料噴射量を調節して、エンジン11の出力トルクTeの増減を制御する。
The engine control device 21 is connected to sensors such as an accelerator opening sensor 24 that detects the depression amount of the accelerator pedal P1 as an accelerator opening AO, and a crank angle sensor 25 that detects the engine speed Ne. Then, the fuel injection amount from an electronically controlled injector (hereinafter referred to as an injector) 26 is adjusted based on those detected values, and the increase / decrease in the output torque Te of the engine 11 is controlled.

変速用制御装置22は、クラッチ用アクチュエータ27によりクラッチ装置14の作動を制御する。このクラッチ装置14の作動制御は、図示しない圧縮空気をクラッチ用アクチュエータ27へ供給することによりそのクラッチ用アクチュエータ27でクラッチ装置14を切り離してエンジン11からの動力の伝達を切断したり、クラッチ用アクチュエータ27から圧縮空気を放出することにより切り離されていたクラッチ装置14を繋いでエンジン11からの動力をAMT15へ伝達したりする制御である。   The transmission control device 22 controls the operation of the clutch device 14 by the clutch actuator 27. The operation control of the clutch device 14 is performed by supplying compressed air (not shown) to the clutch actuator 27 to disconnect the clutch device 14 by the clutch actuator 27 to cut off the transmission of power from the engine 11, or to actuate the clutch actuator. In this control, the clutch device 14 disconnected by releasing compressed air from the engine 27 is connected to transmit power from the engine 11 to the AMT 15.

また、この変速用制御装置22は、推進軸16の推進軸回転数Npを検出したり、その推進軸回転数Npから車速Vを検出したりする推進軸回転数センサ28などのセンサに接続されている。そして、変速用アクチュエータ29によりAMT15の車両10の運転状況に応じた目標ギアGxへの切り替えを制御する。なお、この変速用アクチュエータ29もクラッチ用アクチュエータ27と同様に圧縮空気で動作するが、これらのアクチュエータは電磁石により動作するソレノイドアクチュエータでもよい。   The shift control device 22 is connected to a sensor such as a propulsion shaft rotational speed sensor 28 that detects the propulsion shaft rotational speed Np of the propulsion shaft 16 and detects the vehicle speed V from the propulsion shaft rotational speed Np. ing. Then, switching to the target gear Gx in accordance with the driving state of the vehicle 10 of the AMT 15 is controlled by the shift actuator 29. The speed change actuator 29 is also operated by compressed air like the clutch actuator 27, but these actuators may be solenoid actuators operated by electromagnets.

加えて、この変速用制御装置22は、クラッチ装置14のクラッチ回転数Ncを検出するクラッチ回転数センサ30にも接続されている。なお、クラッチ回転数Ncは、クラッチ装置14からAMT15に入力される回転数であり、このクラッチ回転数Ncをクラッチ回転数センサ30で検出せずに、推進軸回転数NpとAMT15のギア比とから求めてもよい。   In addition, the speed change control device 22 is also connected to a clutch rotational speed sensor 30 that detects the clutch rotational speed Nc of the clutch device 14. The clutch rotational speed Nc is the rotational speed input from the clutch device 14 to the AMT 15. The clutch rotational speed Nc is not detected by the clutch rotational speed sensor 30, and the gear ratio between the propulsion shaft rotational speed Np and the AMT 15 is calculated. You may ask for.

ここで、この車両10の運転状況に応じた目標ギアGxへの切り替え制御を自動変速制御装置20の機能として以下に説明する。まず、変速用制御装置22が車速Vとアクセル開度AOとを取得する。次いで、変速用制御装置22が、車両10の運転状況を車速Vおよびアクセル開度AOから判定して目標ギアGxを選択する、より具体的には、変速用制御装置22に予め記憶されて車速Vおよびアクセル開度AOに対して目標ギアGxが設定されたシフトマップM1を参照し、そのシフトマップM1から目標ギアGxを選択する。   Here, the switching control to the target gear Gx according to the driving state of the vehicle 10 will be described below as a function of the automatic transmission control device 20. First, the shift control device 22 acquires the vehicle speed V and the accelerator opening AO. Next, the shift control device 22 determines the driving state of the vehicle 10 from the vehicle speed V and the accelerator opening AO and selects the target gear Gx. More specifically, the shift control device 22 stores the vehicle speed in advance in the shift control device 22. The shift map M1 in which the target gear Gx is set with respect to V and the accelerator opening AO is referred to, and the target gear Gx is selected from the shift map M1.

次いで、変速用制御装置22がクラッチ用アクチュエータ27によりクラッチ装置14を切り離して、エンジン11とAMT15との動力の伝達を切断する。次いで、エンジン用制御装置21がインジェクタ26の燃料噴射量を調節して、エンジン11の出力トルクTeを選択した目標ギアGxに応じて設定された初期トルクTaにする。   Next, the speed change control device 22 disconnects the clutch device 14 by the clutch actuator 27 to cut off the transmission of power between the engine 11 and the AMT 15. Next, the engine control device 21 adjusts the fuel injection amount of the injector 26 to set the output torque Te of the engine 11 to the initial torque Ta set according to the selected target gear Gx.

例えば、AMT15のシフトアップ時にはクラッチ装置14を切り離してエンジン11の出力トルクTeを初期トルクTaまで低下する。なお、このクラッチ装置14の切り離し制御とエンジン11の出力トルクTeの低下制御とは同時に行って、クラッチ装置14を徐々に切り離しながら、エンジン11の出力トルクTeを徐々に初期トルクTaにするようにしてもよい。   For example, when the AMT 15 is shifted up, the clutch device 14 is disconnected and the output torque Te of the engine 11 is reduced to the initial torque Ta. It should be noted that the clutch device 14 disconnection control and the engine 11 output torque Te decrease control are performed simultaneously so that the clutch device 14 is gradually disconnected and the engine 11 output torque Te is gradually set to the initial torque Ta. May be.

初期トルクTaはAMT15の各ギアのそれぞれに予め設定されたトルクであり、ギア比に比例して大きくなるように設定される。例えば、AMT15の主変速機が六段、副変速機が二段の12段変速の場合には、その12段のそれぞれに設定される。   The initial torque Ta is a preset torque for each gear of the AMT 15 and is set to increase in proportion to the gear ratio. For example, when the main transmission of the AMT 15 is a 6-speed and the auxiliary transmission is a 2-speed 12-speed, the speed is set to each of the 12 speeds.

次いで、変速用制御装置22が変速用アクチュエータ29によりAMT15を目標ギアGxに切り換える、より具体的には変速用アクチュエータ29により現在選択されているギアと同期係合している図示しないシンクロナイザを切り離し、目標ギアGxにシンクロナイザを同期係合する。   Next, the speed change control device 22 switches the AMT 15 to the target gear Gx by the speed change actuator 29, more specifically, the synchronizer (not shown) that is synchronously engaged with the currently selected gear by the speed change actuator 29 is disconnected. A synchronizer is synchronously engaged with the target gear Gx.

次いで、変速用制御装置22がクラッチ用アクチュエータ27によりクラッチ装置14を繋ぎ、エンジン11からAMT15への動力を伝達する。次いで、エンジン用制御装置21がインジェクタ26の燃料噴射量を調節して、エンジン11の出力トルクTeを運転者の要求した要求トルクTbにする、より具体的にはアクセル開度AOに基づいて設定された要求トルクTbにして、AMT15のギアの切り替えが完了する。   Next, the speed change control device 22 connects the clutch device 14 with the clutch actuator 27 to transmit power from the engine 11 to the AMT 15. Next, the engine control device 21 adjusts the fuel injection amount of the injector 26 to set the output torque Te of the engine 11 to the required torque Tb requested by the driver, more specifically, based on the accelerator opening AO. With the required torque Tb, the gear change of the AMT 15 is completed.

例えば、AMT15のシフトアップ時には、つまり運転者がアクセルペダルP1を踏み込んでいて車両10が加速するときには、AMT15を目標ギアGxに切り替えた後にエンジン11の出力トルクTeを要求トルクTbまで上昇して、AMT15のシフトアップが完了する。   For example, when the AMT 15 is shifted up, that is, when the driver depresses the accelerator pedal P1 and the vehicle 10 accelerates, the output torque Te of the engine 11 is increased to the required torque Tb after the AMT 15 is switched to the target gear Gx. AMT15 upshift is complete.

このように、AMT15を車両10の運転状況に応じた目標ギアGxに切り替えるときには、目標ギアGxに切り替えた後に運転者の要求する要求トルクTbまでエンジン11の出力トルクTeにする制御が行われる。しかし、エンジン11の出力を一気に要求トルクTbにして一時的に切り離していたクラッチ装置14を完全に繋ぐと、推進軸16が弾性変形で大きく捻じれて揺り戻しが生じる。   As described above, when the AMT 15 is switched to the target gear Gx corresponding to the driving state of the vehicle 10, the control is performed so that the output torque Te of the engine 11 is increased to the required torque Tb requested by the driver after switching to the target gear Gx. However, if the clutch device 14 that has been temporarily disconnected with the output of the engine 11 at a stretch is temporarily connected, the propulsion shaft 16 is greatly twisted due to elastic deformation and the swing back occurs.

そこで、本発明の自動変速制御装置20は、以下の制御を行うように構成される。第一段階として、車両10の運転状況に応じた目標ギアGxに切り替えた後に、クラッチ装置14を半クラッチ状態に繋ぐ制御を行うとともに、エンジン11の出力トルクTeを初期トルクTaと要求トルクTbとの間に設定された第一トルクTcにする制御を行う。第二段階として、エンジン11からクラッチ装置14およびAMT15を経由して伝達された第一トルクTcによる推進軸16の捻じれが生じた後に、エンジン11の出力トルクTeを第一トルクTcから要求トルクTbにするとともに、クラッチ装置14を半クラッチ状態から完全に繋げる制御を行う。   Therefore, the automatic transmission control device 20 of the present invention is configured to perform the following control. As a first stage, after switching to the target gear Gx corresponding to the driving situation of the vehicle 10, control is performed to connect the clutch device 14 to the half-clutch state, and the output torque Te of the engine 11 is set to the initial torque Ta and the required torque Tb. The first torque Tc set during the period is controlled. As a second stage, after the propulsion shaft 16 is twisted by the first torque Tc transmitted from the engine 11 via the clutch device 14 and the AMT 15, the output torque Te of the engine 11 is changed from the first torque Tc to the required torque. At the same time as Tb, control is performed to completely connect the clutch device 14 from the half-clutch state.

第一トルクTcは、初期トルクTaと要求トルクTbとの間の大きさに設定されたトルクであり、エンジン11の回転抵抗を相殺するトルクよりも大きいトルクである。この第一トルクTcの大きさにより推進軸16の捻じれが戻ったときの反力の大きさが決まる。   The first torque Tc is a torque set to a magnitude between the initial torque Ta and the required torque Tb, and is a torque larger than the torque that cancels the rotational resistance of the engine 11. The magnitude of the first torque Tc determines the magnitude of the reaction force when the twist of the propulsion shaft 16 returns.

この第一トルクTcは、変速用制御装置22によってエンジン回転数Neとクラッチ回転数Ncとの回転数差ΔNec、あるいはエンジン回転数Neと推進軸回転数Npとの回転数差ΔNxに基づいて設定される。例えば、この第一トルクTcは、初期トルクTaと要求トルクTbとの差が大きいときには大きく設定されて捻じれが戻ったときの反力を大きくする一方、初期トルクTaと要求トルクTbとの差が小さいときには小さく設定されて捻じれが戻ったときの反力を小さくする。また、この第一トルクTcは、エンジン回転数Neとクラッチ回転数Ncとの回転数差ΔNecが大きいときには大きく設定されて捻じれが戻ったときの反力を大きくする一方、回転数差ΔNecが小さいときには小さく設定されて捻じれが戻ったときの反力を小さくする。   The first torque Tc is set by the speed change control device 22 based on the rotational speed difference ΔNec between the engine rotational speed Ne and the clutch rotational speed Nc, or the rotational speed difference ΔNx between the engine rotational speed Ne and the propulsion shaft rotational speed Np. Is done. For example, the first torque Tc is set large when the difference between the initial torque Ta and the required torque Tb is large, and increases the reaction force when the twist is returned, while the difference between the initial torque Ta and the required torque Tb. When is small, it is set to a small value to reduce the reaction force when the twist returns. The first torque Tc is set to be large when the rotational speed difference ΔNec between the engine rotational speed Ne and the clutch rotational speed Nc is large, and increases the reaction force when the twist is returned, while the rotational speed difference ΔNec is When it is small, it is set to a small value to reduce the reaction force when the twist returns.

つまり、推進軸16の捻じれが戻ったときの反力はこの第一トルクTcの大きさに比例する。従って、この第一トルクTcはエンジン11の出力トルクTeを要求トルクTbにした後の推進軸16を予め設定された捻れ量Qaにする値に設定することが望ましい。なお、この捻じれ量Qaは車両10の走行中の推進軸16が捻れている量であり、予め実験や試験により求めておく。   That is, the reaction force when the twist of the propulsion shaft 16 returns is proportional to the magnitude of the first torque Tc. Therefore, it is desirable to set the first torque Tc to a value that sets the propulsion shaft 16 after setting the output torque Te of the engine 11 to the required torque Tb to a preset twist amount Qa. The twist amount Qa is an amount by which the propulsion shaft 16 is twisted while the vehicle 10 is traveling, and is obtained in advance by experiments and tests.

このように第一トルクTcを設定することで、エンジン11の出力トルクTeを第一トルクTcにしてその第一トルクTcが伝達された推進軸16の捻じれが戻ったときの反力を、エンジン11の出力トルクTeを第一トルクTcから要求トルクTbにしたときの差分のトルクで相殺して、推進軸16の捻じれを走行中の捻れ量Qaにして推進軸16の揺
り戻しを抑制することができる。
By setting the first torque Tc in this way, the reaction force when the twist of the propulsion shaft 16 to which the output torque Te of the engine 11 is set to the first torque Tc and the first torque Tc is transmitted is returned. The output torque Te of the engine 11 is canceled by the difference torque when the first torque Tc is changed to the required torque Tb, and the twist of the propulsion shaft 16 is set to the twist amount Qa during travel to suppress the swing back of the propulsion shaft 16. can do.

以下、図2に示すフローチャートを参照しながら、本発明の第一実施形態の自動変速方法について、自動変速制御装置20の機能として説明する。なお、以下ではAMT15のシフトアップ時を例に説明する。また、この自動変速方法は、前述した目標ギアGxへの切り替え制御における、クラッチ装置14が切り離され、かつエンジン11の出力トルクTeが目標ギアGxに応じて設定された初期トルクTaまで低下し、AMT15が目標ギアGxに切り替えられた後に開始される。   Hereinafter, the automatic transmission method according to the first embodiment of the present invention will be described as a function of the automatic transmission control device 20 with reference to the flowchart shown in FIG. In the following description, the AMT 15 shift-up is described as an example. Further, in this automatic transmission method, the clutch device 14 in the switching control to the target gear Gx described above is disengaged, and the output torque Te of the engine 11 is reduced to the initial torque Ta set according to the target gear Gx, It starts after the AMT 15 is switched to the target gear Gx.

まず、ステップS10では、変速用制御装置22がクラッチ装置14を半クラッチ状態に繋ぐ。この半クラッチ状態とはクラッチ装置14の締結状態が50%程度の状態であり、クラッチ装置14には多少の滑りが生じる場合もある。   First, in step S10, the transmission control device 22 connects the clutch device 14 to the half-clutch state. The half-clutch state is a state in which the clutch device 14 is engaged about 50%, and the clutch device 14 may be slightly slipped.

次いで、ステップS20では、エンジン用制御装置21がエンジン11の出力トルクTeを第一トルクTcに上昇する。このステップS20により、推進軸16にはクラッチ装置14およびAMT15を経由して第一トルクTcが伝達されて、その第一トルクTcにより推進軸16が走行中の捻れ量Qa以上に捻られる。この第一トルクTcによって推進軸16に生じた捻じれによって、推進軸16にその捻じれが戻ろうとする反力が増幅される。   Next, in step S20, the engine control device 21 increases the output torque Te of the engine 11 to the first torque Tc. By this step S20, the first torque Tc is transmitted to the propulsion shaft 16 via the clutch device 14 and the AMT 15, and the propulsion shaft 16 is twisted by the first torque Tc to a twist amount Qa or more during traveling. Due to the twist generated in the propulsion shaft 16 by the first torque Tc, a reaction force for returning the twist to the propulsion shaft 16 is amplified.

なお、ステップS10およびステップS20は、同時に行われるものとする。次いで、ステップS30では、変速用制御装置22がクラッチ用アクチュエータ27のクラッチストロークCSを、ステップS10で設定した半クラッチ状態に維持する。   In addition, step S10 and step S20 shall be performed simultaneously. Next, in step S30, the transmission control device 22 maintains the clutch stroke CS of the clutch actuator 27 in the half-clutch state set in step S10.

次いで、ステップS40では、変速用制御装置22がエンジン回転数Neとクラッチ回転数Ncとの回転数差ΔNecが予め設定した所定範囲内になったか否かを判定する。   Next, in step S40, the transmission control device 22 determines whether or not the rotational speed difference ΔNec between the engine rotational speed Ne and the clutch rotational speed Nc is within a predetermined range set in advance.

所定範囲は、エンジン11の出力トルクTeが初期トルクTaまで下降することにともなって推進軸16の推進軸回転数Npよりも低くなったエンジン回転数Neが、推進軸回転数Npと同等の回転数になるクラッチ回転数Ncに近づいたことを判定できる範囲に設定される。この所定範囲は、予め実験や試験により設定され、例えば、ゼロの近傍の範囲に設定されることが好ましい。この実施形態では、下限値をゼロとし、上限値をゼロの近傍の値ΔNaとした。なお、回転数差ΔNecは、負の値、すなわちエンジン回転数Neがクラッチ回転数Ncよりも高い場合も含む場合もあり、下限値を負の値に設定してもよい。   The predetermined range is such that the engine rotational speed Ne, which is lower than the propulsion shaft rotational speed Np of the propulsion shaft 16 as the output torque Te of the engine 11 decreases to the initial torque Ta, is equal to the propulsion shaft rotational speed Np. It is set in a range in which it can be determined that the clutch rotational speed Nc is approaching. This predetermined range is set in advance by experiments or tests, and is preferably set to a range near zero, for example. In this embodiment, the lower limit value is set to zero, and the upper limit value is set to a value ΔNa in the vicinity of zero. The rotational speed difference ΔNec may include a negative value, that is, the engine rotational speed Ne may be higher than the clutch rotational speed Nc, and the lower limit value may be set to a negative value.

このステップS40で、回転数差ΔNecが所定範囲外の場合には、ステップS30へ戻る一方、回転数差ΔNecが所定範囲内の場合には、ステップS50へ進む。なお、ステップS40からステップS30へ戻る場合に、回転数差ΔNecを所定範囲内にするように、エンジン回転数Neを制御するとよい。例えば、回転数差ΔNecが下限値よりも小さい場合には、エンジン11の燃料噴射量を増加し、一方、回転数差ΔNecが上限値よりも大きい場合には、エンジン11の燃料噴射量を減少するとよい。   If the rotational speed difference ΔNec is outside the predetermined range in step S40, the process returns to step S30. If the rotational speed difference ΔNec is within the predetermined range, the process proceeds to step S50. When returning from step S40 to step S30, the engine speed Ne may be controlled so that the speed difference ΔNec is within a predetermined range. For example, when the rotational speed difference ΔNec is smaller than the lower limit value, the fuel injection amount of the engine 11 is increased. On the other hand, when the rotational speed difference ΔNec is larger than the upper limit value, the fuel injection amount of the engine 11 is decreased. Good.

このように、エンジン回転数Neとクラッチ回転数Ncとの回転数差ΔNecを所定範囲内に収めることで、推進軸16に減速方向の捻じれが生じることを回避することができる。   As described above, the rotation speed difference ΔNec between the engine rotation speed Ne and the clutch rotation speed Nc falls within a predetermined range, whereby the propulsion shaft 16 can be prevented from being twisted in the deceleration direction.

次いで、ステップS50では、エンジン用制御装置21がエンジン11の出力トルクTeを第一トルクTcから要求トルクTbまで上昇する。このとき、推進軸16の捻れが戻る反力がエンジン11の要求トルクTbまで上昇した出力トルクTeによって相殺され、
推進軸16の捻じれ状態は捻れ量Qaになる。
Next, in step S50, the engine control device 21 increases the output torque Te of the engine 11 from the first torque Tc to the required torque Tb. At this time, the reaction force for returning the twist of the propulsion shaft 16 is offset by the output torque Te increased to the required torque Tb of the engine 11,
The twisted state of the propulsion shaft 16 is the twist amount Qa.

次いで、ステップS60では、変速用制御装置22がクラッチ装置14を完全に繋いで、この自動変速方法は完了する。なお、ステップS50とステップS60とは同時に行われるものとする。   Next, in step S60, the shift control device 22 completely connects the clutch device 14, and this automatic shift method is completed. Note that step S50 and step S60 are performed simultaneously.

図3は、AMT15を目標ギアGxに切り替えるときのアクセル開度AO、エンジン回転数Ne、クラッチ回転数Nc、エンジン11の出力トルクTe、クラッチ用アクチュエータ27のストロークCSを時系列で例示している。   FIG. 3 illustrates in time series the accelerator opening AO, the engine speed Ne, the clutch speed Nc, the output torque Te of the engine 11, and the stroke CS of the clutch actuator 27 when the AMT 15 is switched to the target gear Gx. .

時間t1では、クラッチ装置14の切り離しが開始されるとともに、エンジン11の出力トルクTeの低下が開始される。時間t2では、クラッチ装置14の切り離しが完了するとともに、エンジン11の出力トルクTeが初期トルクTaまで低下する。   At time t1, disconnection of the clutch device 14 is started and a decrease in the output torque Te of the engine 11 is started. At time t2, the disconnection of the clutch device 14 is completed, and the output torque Te of the engine 11 decreases to the initial torque Ta.

時間t3では、時間t2から開始された目標ギアGxへの切り替えが完了するとともに、クラッチ装置14が半クラッチ状態への繋ぎが開始され、さらに、エンジン11の出力トルクTeの上昇が開始される。   At time t3, the switching to the target gear Gx started from time t2 is completed, the clutch device 14 is started to enter the half-clutch state, and the output torque Te of the engine 11 starts to increase.

時間t4では、クラッチ装置14が半クラッチ状態で繋がれて、エンジン11の出力トルクTeが第一トルクTcまで上昇して推進軸16が捻れ量Qa以上に捻られる。時間t5では、エンジン回転数Neとクラッチ回転数Ncとの回転数差ΔNecが所定範囲内になり、その瞬間を狙ってエンジン11の出力トルクTeの上昇を開始する。また、同時にクラッチ装置14を半クラッチ状態から完全に繋ぐようにクラッチ用アクチュエータ27の作動を開始する。   At time t4, the clutch device 14 is engaged in a half-clutch state, the output torque Te of the engine 11 rises to the first torque Tc, and the propulsion shaft 16 is twisted to the twist amount Qa or more. At time t5, the rotational speed difference ΔNec between the engine rotational speed Ne and the clutch rotational speed Nc falls within a predetermined range, and the output torque Te of the engine 11 starts increasing at that moment. At the same time, the operation of the clutch actuator 27 is started so as to completely connect the clutch device 14 from the half-clutch state.

時間t6では、エンジン11の出力トルクTeが要求トルクTbまで上昇し、かつクラッチ装置14の締結状態が100%、つまりクラッチ装置14が完全に繋がれて、この自動変速方法が完了する。   At time t6, the output torque Te of the engine 11 increases to the required torque Tb, and the engaged state of the clutch device 14 is 100%, that is, the clutch device 14 is completely connected, and this automatic transmission method is completed.

このように、車両10の運転状況に応じてAMT15を目標ギアGxに切り替えた後に、第一段階として、クラッチ装置14を半クラッチ状態に繋ぐとともにエンジン11の出力トルクTeを最初に初期トルクTaから第一トルクTcにすることで、推進軸16にその第一トルクTcによる捻じれを生じさせる。第二段階として、推進軸16に捻じれが生じた後に、エンジン11の出力トルクTeを第一トルクTcから要求トルクTbにして、推進軸16の捻じれが戻ろうとする反力を第一トルクTcから要求トルクTbへの上昇分のトルクΔTで相殺する。そして、エンジン11の出力トルクTeが要求トルクTbに到達するとともに、クラッチ装置14を半クラッチ状態から完全に繋げてAMT15の変速を完了する。   As described above, after the AMT 15 is switched to the target gear Gx according to the driving state of the vehicle 10, as a first step, the clutch device 14 is connected to the half-clutch state, and the output torque Te of the engine 11 is first changed from the initial torque Ta. By using the first torque Tc, the propulsion shaft 16 is twisted by the first torque Tc. As a second stage, after the propulsion shaft 16 is twisted, the output torque Te of the engine 11 is changed from the first torque Tc to the required torque Tb, and the reaction force to return the twist of the propulsion shaft 16 is returned to the first torque. It cancels out with the torque ΔT of the increase from Tc to the required torque Tb. Then, the output torque Te of the engine 11 reaches the required torque Tb, and the clutch device 14 is completely connected from the half-clutch state to complete the shift of the AMT 15.

このような制御を行うようにしたことで、推進軸16の捻じれが戻るときの反力をその上昇分のトルクΔTにより相殺することができる。つまり、最初に第一トルクTcにより推進軸16がちょっと捻じれ、その捻じれが戻るときにその反力が相殺するように推進軸16を捻ることで、推進軸16の捻じれに起因する揺り戻しを抑制することができる。   By performing such control, the reaction force when the twist of the propulsion shaft 16 returns can be offset by the torque ΔT corresponding to the increase. That is, the propulsion shaft 16 is first twisted slightly by the first torque Tc, and when the twist returns, the propulsion shaft 16 is twisted so that the reaction force cancels out. Return can be suppressed.

これにより、AMT15を目標ギアGxに切り替えるときの推進軸16に生じる揺り戻しを抑制して、揺り戻しを起因とするキャリブレーションを回避して目標ギアGxの切り替えに掛かる時間t7を短縮することができる。また、その揺り戻しを起因とする変速ショックを低減することができるので、ドライバビリティを向上することができる。   As a result, it is possible to suppress the swingback generated in the propulsion shaft 16 when the AMT 15 is switched to the target gear Gx, avoid the calibration caused by the swingback, and shorten the time t7 required to switch the target gear Gx. it can. Further, since the shift shock caused by the swing back can be reduced, drivability can be improved.

上記の自動変速制御装置20においては、AMT15をシフトアップするときに、エン
ジン11の出力トルクTeを、初期トルクTaから第一トルクTcまで上昇してから、その第一トルクTcによる推進軸16の捻れが生じた後に、要求トルクTbまで上昇するようにしたことで、特に変速ショックが大きくなるシフトアップ時のドライバビリティをより向上することができる。
In the automatic transmission control device 20 described above, when the AMT 15 is shifted up, the output torque Te of the engine 11 is increased from the initial torque Ta to the first torque Tc, and then the propulsion shaft 16 is driven by the first torque Tc. By increasing the torque to the required torque Tb after the torsion has occurred, it is possible to further improve the drivability especially at the time of upshifting in which the shift shock becomes large.

また、上記の自動変速制御装置20は、第一トルクマップM2を有して構成される。この第一トルクマップM2は、縦軸に目標ギアGxがプロットされ、横軸に目標エンジン回転数Naと実際のエンジン回転数Neとの回転数差ΔNxがプロットされたマップである。この第一トルクマップM2は、その目標ギアGxと回転数差ΔNxとに基づいた第一トルクTc(Gx、ΔNx)が設定される。この第一トルクTc(Gx、ΔNx)はエンジン11の出力トルクTeを要求トルクTbにした後の推進軸16を予め設定された捻れ量Qaにする値に設定される。   The automatic transmission control device 20 is configured to have a first torque map M2. The first torque map M2 is a map in which the vertical axis represents the target gear Gx and the horizontal axis represents the rotational speed difference ΔNx between the target engine speed Na and the actual engine speed Ne. In the first torque map M2, the first torque Tc (Gx, ΔNx) based on the target gear Gx and the rotational speed difference ΔNx is set. The first torque Tc (Gx, ΔNx) is set to a value that sets the propulsion shaft 16 after the output torque Te of the engine 11 to the required torque Tb to a preset twist amount Qa.

目標エンジン回転数Naは、推進軸16の推進軸回転数Npおよび目標ギアGxのギア比により算出される。また、実際のエンジン回転数Neはクランク角センサ25で検知される。なお、この目標エンジン回転数Naは、クラッチ回転数Ncに置き換えることも可能であり、第一トルクマップM2は、目標ギアGxと回転数差ΔNecとに基づいた第一トルクTc(Gx、ΔNecx)が設定されてもよい。   The target engine speed Na is calculated from the propulsion shaft speed Np of the propulsion shaft 16 and the gear ratio of the target gear Gx. The actual engine speed Ne is detected by the crank angle sensor 25. The target engine speed Na can be replaced with the clutch speed Nc, and the first torque map M2 is based on the first torque Tc (Gx, ΔNecx) based on the target gear Gx and the speed difference ΔNec. May be set.

図4は第一トルクマップM2を例示している。この第一トルクマップM2は予め実験や試験により作成され、変速用制御装置22に予め記憶されたマップである。   FIG. 4 illustrates the first torque map M2. The first torque map M <b> 2 is a map that is created in advance by experiments and tests and stored in advance in the speed change control device 22.

以下、図5に示すフローチャートを参照しながら、第一トルクTc(Gx、ΔNx)の算出方法について、自動変速制御装置20の機能として説明する。   Hereinafter, the calculation method of the first torque Tc (Gx, ΔNx) will be described as a function of the automatic transmission control device 20 with reference to the flowchart shown in FIG.

まず、ステップS100では、変速用制御装置22が目標ギアGxを決定する。次いで、ステップS110では、変速用制御装置22が、推進軸回転数センサ28から推進軸回転数Npを取得する。   First, in step S100, the shift control device 22 determines the target gear Gx. Next, in step S <b> 110, the speed change control device 22 acquires the propulsion shaft rotation speed Np from the propulsion shaft rotation speed sensor 28.

次いで、ステップS120では、変速用制御装置22が、推進軸16の推進軸回転数Npと目標ギアGxのギア比とから目標エンジン回転数Naを算出する。   Next, in step S120, the speed change control device 22 calculates the target engine speed Na from the propulsion shaft speed Np of the propulsion shaft 16 and the gear ratio of the target gear Gx.

次いで、ステップS130では、エンジン用制御装置21がクランク角センサ25から現時点のエンジン回転数Neを取得し、そのエンジン回転数Neを変速用制御装置22が受信する。次いで、ステップS140では、変速用制御装置22が回転数差ΔNxを算出する。この回転数差ΔNxはシフトアップ時には目標エンジン回転数Naからエンジン回転数Neを減算した値になる。   Next, in step S130, the engine control device 21 acquires the current engine speed Ne from the crank angle sensor 25, and the transmission control device 22 receives the engine speed Ne. Next, in step S140, the speed change control device 22 calculates the rotational speed difference ΔNx. This speed difference ΔNx is a value obtained by subtracting the engine speed Ne from the target engine speed Na at the time of upshifting.

次いで、ステップS150では、変速用制御装置22が第一トルクマップM2を参照する。次いで、ステップS160では、変速用制御装置22が目標ギアGxと回転数差ΔNxとに基づいた第一トルクTc(Gx、ΔNx)を第一トルクマップM2から抽出して、この算出方法は完了する。   Next, in step S150, the shift control device 22 refers to the first torque map M2. Next, in step S160, the transmission control device 22 extracts the first torque Tc (Gx, ΔNx) based on the target gear Gx and the rotation speed difference ΔNx from the first torque map M2, and this calculation method is completed. .

このように、第一トルクマップM2から第一トルクTc(Gx、ΔNx)を算出することで、複雑な計算を行わずに、最初に推進軸16を捻る量と、その捻りが戻るときの捻る量とを容易に算出することができるので、制御の複雑化を回避できる。   Thus, by calculating the first torque Tc (Gx, ΔNx) from the first torque map M2, the amount by which the propulsion shaft 16 is first twisted and the twist when the twist returns without performing complicated calculations. Since the quantity can be easily calculated, complication of control can be avoided.

なお、上記の実施形態のステップS10とステップS20においては、ステップS20をステップS10よりも前に開始してもよい。具体的には、エンジン11の出力トルクTeを第一トルクTcに上昇するステップを開始してから、クラッチ装置14を半クラッチ
状態に繋ぐステップを開始してもよい。このようにすると、より切り替えに掛かる時間を短縮することができる。
In step S10 and step S20 of the above embodiment, step S20 may be started before step S10. Specifically, after starting the step of increasing the output torque Te of the engine 11 to the first torque Tc, the step of connecting the clutch device 14 to the half-clutch state may be started. In this way, the time required for switching can be further shortened.

10 車両
11 エンジン
14 クラッチ装置
16 推進軸
20 自動変速制御装置
Gx 目標ギア
Ta 初期トルク
Tb 要求トルク
Tc 第一トルク
10 Vehicle 11 Engine 14 Clutch device 16 Propulsion shaft 20 Automatic transmission control device Gx Target gear Ta Initial torque Tb Required torque Tc First torque

Claims (5)

エンジンと、このエンジンからの駆動力を断接するクラッチ装置と、前記エンジンに前記クラッチ装置を介して接続されるとともに駆動輪に動力を伝達する推進軸に接続された機械式自動変速機とのそれぞれに接続され、前記エンジンの出力トルクの増減、前記クラッチ装置の作動、および前記機械式自動変速機のギアの切り替えのそれぞれを制御する手段を有し、前記機械式自動変速機を車両の運転状況に応じた目標ギアに切り替え後に、一時的に切り離していた前記クラッチ装置を繋いで前記エンジンの出力トルクを前記目標ギアに応じて設定された初期トルクから運転者の要求した要求トルクにする制御を行う自動変速制御装置において、
前記目標ギアに切り替えた後に、前記クラッチ装置を半クラッチ状態に繋ぐ制御を行うとともに、前記エンジンの出力トルクを前記初期トルクと前記要求トルクとの間に設定された第一トルクにする制御を行い、
前記エンジンから前記クラッチ装置および前記機械式自動変速機を経由して伝達された前記第一トルクによる前記推進軸の捻じれが生じた後に、前記エンジンの出力トルクを前記第一トルクから前記要求トルクにするとともに、前記クラッチ装置を半クラッチ状態から完全に繋げる制御を行う構成にしたことを特徴とする自動変速制御装置。
Each of an engine, a clutch device that connects and disconnects the driving force from the engine, and a mechanical automatic transmission that is connected to the engine via the clutch device and connected to a propulsion shaft that transmits power to the drive wheels Connected to the engine, and each means for controlling increase / decrease in output torque of the engine, operation of the clutch device, and switching of gears of the mechanical automatic transmission, After switching to the target gear according to the control, the clutch device that has been temporarily disconnected is connected to change the engine output torque from the initial torque set according to the target gear to the required torque requested by the driver. In the automatic transmission control device to perform,
After switching to the target gear, control is performed to connect the clutch device to a half-clutch state, and control is performed so that the output torque of the engine is a first torque set between the initial torque and the required torque. ,
After the propulsion shaft is twisted by the first torque transmitted from the engine via the clutch device and the mechanical automatic transmission, the output torque of the engine is changed from the first torque to the required torque. In addition, the automatic transmission control device is configured to perform control for completely connecting the clutch device from the half-clutch state.
前記目標ギアに切り替えた後を、前記機械式自動変速機をシフトアップした後に設定した請求項1に記載の自動変速制御装置。   The automatic transmission control device according to claim 1, wherein after the shift to the target gear is performed, the mechanical automatic transmission is set up after being shifted up. 前記第一トルクによる前記推進軸の捻じれが生じた後で、かつ、エンジン回転数とクラッチ回転数との回転数差が予め設定した所定範囲内になった後に、前記エンジンの出力トルクを前記第一トルクから前記要求トルクにする制御を行う構成にした請求項1または2に記載の自動変速制御装置。   After the propulsion shaft is twisted due to the first torque, and after the rotational speed difference between the engine rotational speed and the clutch rotational speed is within a predetermined range, the engine output torque is The automatic transmission control device according to claim 1, wherein control is performed to change the required torque from a first torque. 前記推進軸の推進軸回転数および前記目標ギアのギア比から目標エンジン回転数を算出し、その目標エンジン回転数と実際のエンジン回転数との回転数差を算出し、前記目標ギアと算出したその回転数差とに対して第一トルクが設定された第一トルクマップから前記第一トルクを算出する手段を有した請求項1〜3のいずれか1項に記載の自動変速制御装置。   The target engine speed is calculated from the propulsion shaft speed of the propulsion shaft and the gear ratio of the target gear, the speed difference between the target engine speed and the actual engine speed is calculated, and the target gear is calculated. The automatic transmission control device according to any one of claims 1 to 3, further comprising means for calculating the first torque from a first torque map in which a first torque is set with respect to the rotational speed difference. 機械式自動変速機を車両の運転状況に応じた目標ギアに切り替えた後に、一時的に切り離していたクラッチ装置を繋いでエンジンの出力トルクをその目標ギアに応じて設定された初期トルクから運転者の要求した要求トルクにする自動変速方法において、
前記目標ギアに切り替えた後に、前記クラッチ装置を半クラッチ状態に繋ぐとともに、前記エンジンの出力トルクを前記初期トルクと前記要求トルクとの間に設定された第一トルクにするステップと、
前記クラッチ装置および前記機械式自動変速機を経由して伝達された前記第一トルクによる推進軸の捻じれが生じた後に、前記エンジンの出力トルクを前記第一トルクから前記要求トルクにするとともに、前記クラッチ装置を半クラッチ状態から完全に繋げるステップと、を含むことを特徴とする自動変速方法。
After switching the mechanical automatic transmission to the target gear according to the driving situation of the vehicle, the clutch output device that was temporarily disconnected is connected and the engine output torque is set to the driver from the initial torque set according to the target gear. In the automatic transmission method to obtain the required torque requested by
After switching to the target gear, connecting the clutch device to a half-clutch state and setting the output torque of the engine to a first torque set between the initial torque and the required torque;
After the propulsion shaft is twisted by the first torque transmitted via the clutch device and the mechanical automatic transmission, the output torque of the engine is changed from the first torque to the required torque. And a step of completely connecting the clutch device from a half-clutch state.
JP2015152225A 2015-07-31 2015-07-31 Automatic transmission control device and automatic transmission method Active JP6593016B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015152225A JP6593016B2 (en) 2015-07-31 2015-07-31 Automatic transmission control device and automatic transmission method
CN201680044453.1A CN107848523B (en) 2015-07-31 2016-07-22 Automatic transmission control device and automatic transmission method
PCT/JP2016/071580 WO2017022528A1 (en) 2015-07-31 2016-07-22 Automatic gearshift control device and automatic gearshift method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152225A JP6593016B2 (en) 2015-07-31 2015-07-31 Automatic transmission control device and automatic transmission method

Publications (2)

Publication Number Publication Date
JP2017030529A true JP2017030529A (en) 2017-02-09
JP6593016B2 JP6593016B2 (en) 2019-10-23

Family

ID=57942850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152225A Active JP6593016B2 (en) 2015-07-31 2015-07-31 Automatic transmission control device and automatic transmission method

Country Status (3)

Country Link
JP (1) JP6593016B2 (en)
CN (1) CN107848523B (en)
WO (1) WO2017022528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013080A1 (en) * 2017-07-14 2019-01-17 いすゞ自動車株式会社 Estimation device and estimation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346958A (en) * 1993-06-04 1994-12-20 Toyota Motor Corp Controller of vehicular automatic transmission
JP2003094987A (en) * 2001-09-20 2003-04-03 Toyota Motor Corp Control device for engine and transmission
JP2004330850A (en) * 2003-05-07 2004-11-25 Hitachi Ltd Automobile controlling device and method, transmission controlling device, and automobile
JP2006283819A (en) * 2005-03-31 2006-10-19 Mitsubishi Fuso Truck & Bus Corp Clutch controller
JP2010053941A (en) * 2008-08-28 2010-03-11 Daihatsu Motor Co Ltd Method for controlling automatic transmission
JP2012031970A (en) * 2010-08-02 2012-02-16 Aisin Ai Co Ltd Vehicular power transmission control apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011318920B2 (en) * 2010-10-22 2015-12-17 Hino Motors, Ltd. Vehicle, control method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346958A (en) * 1993-06-04 1994-12-20 Toyota Motor Corp Controller of vehicular automatic transmission
JP2003094987A (en) * 2001-09-20 2003-04-03 Toyota Motor Corp Control device for engine and transmission
JP2004330850A (en) * 2003-05-07 2004-11-25 Hitachi Ltd Automobile controlling device and method, transmission controlling device, and automobile
JP2006283819A (en) * 2005-03-31 2006-10-19 Mitsubishi Fuso Truck & Bus Corp Clutch controller
JP2010053941A (en) * 2008-08-28 2010-03-11 Daihatsu Motor Co Ltd Method for controlling automatic transmission
JP2012031970A (en) * 2010-08-02 2012-02-16 Aisin Ai Co Ltd Vehicular power transmission control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013080A1 (en) * 2017-07-14 2019-01-17 いすゞ自動車株式会社 Estimation device and estimation method
CN110869729A (en) * 2017-07-14 2020-03-06 五十铃自动车株式会社 Estimation device and estimation method
CN110869729B (en) * 2017-07-14 2022-04-26 五十铃自动车株式会社 Estimation device and estimation method

Also Published As

Publication number Publication date
CN107848523A (en) 2018-03-27
CN107848523B (en) 2020-05-26
JP6593016B2 (en) 2019-10-23
WO2017022528A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US9174644B2 (en) Vehicle shift control device
JP5983675B2 (en) Control device for four-wheel drive vehicle
KR101776890B1 (en) Method for controlling gear shifting in a hybrid driveline by use of an electric machine
JP2015217810A (en) Four-wheel-drive vehicular control apparatus
KR102476379B1 (en) Accellerating control method for vehicle with dct
KR20190134984A (en) Control apparatus for hybrid vehicle
CN111434549B (en) Vehicle control method and system and vehicle
JP5912327B2 (en) Dual clutch automatic transmission
US9855936B2 (en) System and method to improve engagement shift quality in automatic transmissions using engagement brake torque control
JP2010265776A (en) Control device for manual transmission for vehicle
JP5930541B2 (en) Shift control device for electric vehicle
WO2012023206A1 (en) Control device for vehicle engine
CN103180190B (en) The power transmission controller of vehicle
KR102091226B1 (en) Method for controlling hybrid powertrain, hybrid powertrain, and vehicle including such hybrid powertrain
JP6593016B2 (en) Automatic transmission control device and automatic transmission method
JP2014098452A (en) Shift control device for electric car
CN110803155B (en) Gear shift control method for hybrid vehicle with dual clutch transmission
US9878708B2 (en) Control apparatus for vehicle, and vehicle
CN114941708B (en) Multi-speed electric vehicle power-on upshift control
JP2014094596A (en) Gear shift controller for hybrid vehicle
US11635136B2 (en) Method and control unit for operating a power-shift transmission
KR102019322B1 (en) Shift control method for vehicle with dct
JP2022007780A (en) Vehicular control apparatus
JP6354739B2 (en) Powertrain control device with centrifugal pendulum damper
JP2022159916A (en) Drive force control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150