JP2017025806A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2017025806A
JP2017025806A JP2015145925A JP2015145925A JP2017025806A JP 2017025806 A JP2017025806 A JP 2017025806A JP 2015145925 A JP2015145925 A JP 2015145925A JP 2015145925 A JP2015145925 A JP 2015145925A JP 2017025806 A JP2017025806 A JP 2017025806A
Authority
JP
Japan
Prior art keywords
injection
fuel
fuel pressure
passage
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015145925A
Other languages
Japanese (ja)
Other versions
JP6451539B2 (en
Inventor
航 小松
Ko Komatsu
航 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015145925A priority Critical patent/JP6451539B2/en
Priority to DE102016110309.8A priority patent/DE102016110309A1/en
Publication of JP2017025806A publication Critical patent/JP2017025806A/en
Application granted granted Critical
Publication of JP6451539B2 publication Critical patent/JP6451539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the estimation accuracy of an injection state.SOLUTION: A fuel injection valve 10 comprises a body 11 in which a main passage 11a for making fuel circulate into an injection hole is formed; a valve body 12 which opens and closes the main passage 11a; and a fuel pressure sensor 20 which is attached to the body 11, and detects a fuel pressure waveform. Branch passages 11e, 21b which are branched from the main passage 11a, and introduce fuel to the fuel pressure sensor 20 are formed in the body 11. A frequency component of fuel pressure pulsation which is propagated to the branch passages 11e, 21b from the main passage 11a accompanied by a valve-opening/closing operation out of frequency components which are included in the fuel pressure waveform is called as an injection wave component, and a frequency component of fuel pressure pulsation which reciprocates in the branch passages 11e, 21b is called as a reflection wave component. Then, lengths L1, L2 of the branch passages 11e, 21b are set so that a frequency band (reflection band) of the reflection wave component is deviated from a frequency band (injection band) of the injection wave component.SELECTED DRAWING: Figure 1

Description

本発明は、燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel.

従来より、噴孔へ燃料を流通させるメイン通路を内部に形成するボデーと、メイン通路を開閉して噴孔からの燃料噴射と停止を制御する弁体と、を備える燃料噴射弁が知られている。   2. Description of the Related Art Conventionally, there has been known a fuel injection valve that includes a body that internally forms a main passage through which fuel flows to an injection hole, and a valve body that opens and closes the main passage to control fuel injection and stop from the injection hole. Yes.

この種の燃料噴射弁では、弁体が開弁作動または閉弁作動することに伴い、メイン通路内で燃圧変化(脈動)が生じる。この点に着目した特許文献1では、燃圧力変化を検出する燃圧センサをボデーに取り付け、メイン通路から分岐して燃圧センサへ燃料を導く分岐通路をボデー内部に形成している。これによれば、弁体の開閉弁作動に伴い生じた燃圧変化を取得でき、燃圧波形に特定の変化点が出現する時期を検出することで、その出現時期から噴射開始時期や終了時期等の噴射状態を高精度で推定できる。   In this type of fuel injection valve, a change in fuel pressure (pulsation) occurs in the main passage as the valve element opens or closes. In Patent Document 1 focusing on this point, a fuel pressure sensor that detects a change in fuel pressure is attached to the body, and a branch passage that branches off from the main passage and guides fuel to the fuel pressure sensor is formed inside the body. According to this, it is possible to acquire the change in fuel pressure caused by the opening / closing valve operation of the valve body, and by detecting the time when a specific change point appears in the fuel pressure waveform, the injection start time, end time, etc. The injection state can be estimated with high accuracy.

特開2011−47280号公報JP 2011-47280 A

しかしながら、特許文献1に記載の構成では、開閉弁作動に伴いメイン通路から分岐通路へ伝播される燃圧脈動(噴射脈動)とは別に、メイン通路と分岐通路の境界で反射して分岐通路内を往復移動する燃圧脈動(反射脈動)が生じる。そのため、燃圧センサで検出される燃圧波形には、噴射脈動による周波数成分に加えて、反射脈動による周波数成分が含まれるので、燃圧波形に現れる噴射脈動による変化点の出現時期の検出精度が悪くなり、噴射状態の推定精度低下を招いていた。   However, in the configuration described in Patent Document 1, in addition to the fuel pressure pulsation (injection pulsation) that is propagated from the main passage to the branch passage in accordance with the opening / closing valve operation, the light is reflected at the boundary between the main passage and the branch passage and passes through the branch passage. A reciprocating fuel pressure pulsation (reflection pulsation) occurs. Therefore, the fuel pressure waveform detected by the fuel pressure sensor includes the frequency component due to the reflection pulsation in addition to the frequency component due to the injection pulsation, so the detection accuracy of the change point appearance time due to the injection pulsation appearing in the fuel pressure waveform is deteriorated. As a result, the estimation accuracy of the injection state was lowered.

本発明は、上記問題を鑑みてなされたもので、その目的は、噴射状態の推定精度向上を図った燃料噴射弁を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel injection valve that improves the estimation accuracy of the injection state.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. .

開示される発明のひとつは、燃料を噴射する噴孔(11b)を形成するとともに、噴孔へ燃料を流通させるメイン通路(11a)を内部に形成するボデー(11)と、メイン通路を開閉する弁体であって、開弁作動して噴孔から燃料を噴射させ、閉弁作動して噴孔からの燃料噴射を停止させる弁体(12)と、ボデーに取り付けられ、燃料の圧力変化を表した燃圧波形を検出する燃圧センサ(20)と、を備え、ボデーの内部には、メイン通路から分岐して燃圧センサへ燃料を導く分岐通路(11e、21b)が設けられ、燃圧波形に含まれる周波数成分のうち、開弁作動または閉弁作動に伴いメイン通路から分岐通路へ伝播された燃圧脈動の周波数成分を噴射波成分(Wi)と呼び、メイン通路と分岐通路の境界で反射して分岐通路内を往復移動する燃圧脈動の周波数成分を反射波成分と呼び、噴射波成分の周波数帯域を噴射帯域(Bi)と呼び、反射波成分の周波数帯域を反射帯域(Br1、Br2、Br3)と呼ぶ場合に、反射帯域が噴射帯域から外れることとなるように、分岐通路の長さが設定されていることを特徴とする。   One of the disclosed inventions is to form a nozzle hole (11b) for injecting fuel, and to open and close the main passage, and a body (11) that internally forms a main channel (11a) through which fuel flows to the nozzle hole. A valve body (12) for opening the fuel to inject fuel from the nozzle hole and closing the valve to stop the fuel injection from the nozzle hole; A fuel pressure sensor (20) for detecting the fuel pressure waveform shown, and a branch passage (11e, 21b) for branching from the main passage to guide the fuel to the fuel pressure sensor is provided inside the body, and is included in the fuel pressure waveform. The frequency component of the fuel pressure pulsation propagated from the main passage to the branch passage with the valve opening operation or the valve closing operation is called an injection wave component (Wi) and reflected at the boundary between the main passage and the branch passage. Going through the branch passage When the frequency component of the moving fuel pressure pulsation is called a reflected wave component, the frequency band of the injection wave component is called an injection band (Bi), and the frequency band of the reflected wave component is called a reflection band (Br1, Br2, Br3), The length of the branch passage is set so that the reflection band deviates from the injection band.

この発明によれば、燃圧センサで検出される燃圧波形に含まれる反射波成分の反射帯域が噴射波成分の噴射帯域から外れることとなる。そのため、噴射波成分中に特定の変化点が出現する時期を検出するにあたり、反射波成分が噴射波成分に重畳することにより上記検出の精度が低下することを抑制できる。よって、上記検出の結果に基づき噴射開始時期等の噴射状態を推定する精度を向上できる。   According to this invention, the reflection band of the reflected wave component included in the fuel pressure waveform detected by the fuel pressure sensor deviates from the injection band of the injection wave component. Therefore, when detecting the time when a specific change point appears in the ejection wave component, it is possible to suppress the detection accuracy from being lowered due to the reflected wave component being superimposed on the ejection wave component. Therefore, it is possible to improve the accuracy of estimating the injection state such as the injection start timing based on the detection result.

本発明の第1実施形態に係る燃料噴射弁の断面図に、コモンレールや制御装置や模式的に記入した、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system which filled in the cross-sectional view of the fuel-injection valve which concerns on 1st Embodiment of this invention with a common rail, a control apparatus, and typically. 図1に示す制御装置が噴射指令信号を設定するよう機能している時の状態を示す機能ブロック図。The functional block diagram which shows a state when the control apparatus shown in FIG. 1 is functioning to set an injection command signal. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサによる検出値に基づく燃圧波形を示す図。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in the fuel injection rate caused by the injection command signal, and (c) is detected by the fuel pressure sensor shown in FIG. The figure which shows the fuel pressure waveform based on a value. 反射波成分が除去された状態の燃圧波形であって、噴射波成分による燃圧波形を示す図。The fuel pressure waveform in the state from which the reflected wave component was removed, The figure which shows the fuel pressure waveform by an injection wave component. 噴射波成分および反射波成分を含んだ状態の燃圧波形を示す図。The figure which shows the fuel pressure waveform of the state containing the injection wave component and the reflected wave component. 第1実施形態に係る反射波成分の周波数帯域(反射帯域)と、噴射波成分の周波数帯域(噴射帯域)との関係を示す図。The figure which shows the relationship between the frequency band (reflection band) of the reflected wave component which concerns on 1st Embodiment, and the frequency band (injection band) of an injection wave component. 本発明の第2実施形態に係る反射帯域と噴射帯域との関係を示す図。The figure which shows the relationship between the reflection zone and injection zone which concern on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料噴射弁の断面図。Sectional drawing of the fuel injection valve which concerns on 3rd Embodiment of this invention.

以下、本発明にかかる燃料噴射弁を、車両に搭載された内燃機関の燃料噴射弁に適用した各実施形態について、図面を参照しつつ説明する。上記内燃機関には、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, embodiments in which a fuel injection valve according to the present invention is applied to a fuel injection valve of an internal combustion engine mounted on a vehicle will be described with reference to the drawings. The internal combustion engine is assumed to be a diesel engine that injects high-pressure fuel into a plurality of cylinders # 1 to # 4 and performs compression self-ignition combustion. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.

(第1実施形態)
図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41によりコモンレール42に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped to the common rail 42 by the high-pressure pump 41 and accumulated, and distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、ボデー11、弁体12、アクチュエータ13、制御弁14及び燃圧センサ20等を備える。弁体12、アクチュエータ13及び制御弁14はボデー11の内部に収容されている。ボデー11には、メイン通路11a、噴孔11b、背圧室11c、低圧通路11d、およびボデー側分岐通路11e、着座面11fが形成されている。例えば、低圧通路11dおよびボデー側分岐通路11eは、ボデー11にドリル加工することで形成されている。   The fuel injection valve 10 includes a body 11, a valve body 12, an actuator 13, a control valve 14, a fuel pressure sensor 20, and the like. The valve body 12, the actuator 13 and the control valve 14 are accommodated in the body 11. The body 11 is formed with a main passage 11a, an injection hole 11b, a back pressure chamber 11c, a low pressure passage 11d, a body side branch passage 11e, and a seating surface 11f. For example, the low pressure passage 11 d and the body side branch passage 11 e are formed by drilling the body 11.

弁体12には、ボデー11の着座面11fに離着座するシート面12aが形成されており、弁体12が着座面11fに着座すると、シート面12aによりメイン通路11aが閉弁される。弁体12が着座面11fから離座するとメイン通路11aが開弁される。   The valve body 12 is formed with a seat surface 12a that is separated from and seated on the seating surface 11f of the body 11. When the valve body 12 is seated on the seating surface 11f, the main passage 11a is closed by the seat surface 12a. When the valve body 12 is separated from the seating surface 11f, the main passage 11a is opened.

メイン通路11a及び低圧通路11dは、背圧室11cと接続されている。メイン通路11aと背圧室11cとの連通状態、及び低圧通路11dと背圧室11cとの連通状態は、制御弁14により切り替えられる。   The main passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the main passage 11 a and the back pressure chamber 11 c and the communication state between the low pressure passage 11 d and the back pressure chamber 11 c are switched by the control valve 14.

電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、制御弁14が第1シート面11pから離座して第2シート面11qに着座し、背圧室11cは低圧通路11dと連通する。その結果、背圧室11c内の燃料圧力は低下し、弁体12へ付与される背圧力が低下して、弁体12は開弁作動する。   When the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized and the control valve 14 is pushed down in FIG. 1, the control valve 14 is separated from the first seat surface 11p and is seated on the second seat surface 11q. The back pressure chamber 11c communicates with the low pressure passage 11d. As a result, the fuel pressure in the back pressure chamber 11c decreases, the back pressure applied to the valve body 12 decreases, and the valve body 12 opens.

一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、制御弁14が第2シート面11qから離座して第1シート面11pに着座し(図1参照)、背圧室11cはメイン通路11aと連通する。その結果、背圧室11c内の燃料圧力は上昇し、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。   On the other hand, when the energization of the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the control valve 14 is separated from the second seat surface 11q and is seated on the first seat surface 11p (see FIG. 1). ), The back pressure chamber 11c communicates with the main passage 11a. As a result, the fuel pressure in the back pressure chamber 11c increases, the back pressure applied to the valve body 12 increases, and the valve body 12 is closed.

このように、ECU30がアクチュエータ13への通電を制御することで、制御弁14の開閉作動が制御され、その結果、弁体12の開閉作動が制御される。これにより、コモンレール42からメイン通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出する。さらに、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   In this way, the ECU 30 controls the energization of the actuator 13 to control the opening / closing operation of the control valve 14, and as a result, the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the main passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like. Further, an injection command signal is output to the actuator 13 so as to achieve the calculated target injection state, and the operation of the fuel injection valve 10 is controlled.

次に、図2を用いてECU30の制御内容を説明する。ECU30は、マイクロコンピュータ(マイコン)を有する。マイコンの演算装置が、所定のプログラムにしたがって演算処理を実行することで、以下に説明する目標噴射状態算出手段31および噴射指令信号設定手段33として機能する。噴射指令信号設定手段33については、パラメータ取得手段33aおよび学習手段33bとしての機能も有する。   Next, the control contents of the ECU 30 will be described with reference to FIG. The ECU 30 has a microcomputer. The calculation device of the microcomputer executes calculation processing according to a predetermined program, thereby functioning as target injection state calculation means 31 and injection command signal setting means 33 described below. The injection command signal setting means 33 also has functions as parameter acquisition means 33a and learning means 33b.

目標噴射状態算出手段31は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態を噴射状態マップM1にして、メモリ32に予め記憶させておく。記憶される噴射状態の具体例として、噴射段数、噴射開始時期、噴射終了時期、噴射量等が挙げられる。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップM1を参照して目標噴射状態を算出する。   The target injection state calculation means 31 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state corresponding to the engine load and the engine rotation speed is set in the injection state map M1 and stored in the memory 32 in advance. Specific examples of the stored injection state include the number of injection stages, the injection start timing, the injection end timing, and the injection amount. Then, based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map M1.

噴射指令信号設定手段33は、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップM2にして、メモリ32に予め記憶させておく。そして、算出した目標噴射状態に基づき、指令マップM2を参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The injection command signal setting means 33 sets the injection command signals t1, t2, and Tq based on the calculated target injection state. For example, the injection command signal corresponding to the target injection state is set to the command map M2 and stored in the memory 32 in advance. Then, based on the calculated target injection state, an injection command signal is set with reference to the command map M2. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述する燃圧センサ20により検出された燃圧波形に基づき、燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と出力した噴射指令信号との相関関係を学習する。そして、その学習結果に基づき、指令マップM2に記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, based on the fuel pressure waveform detected by the fuel pressure sensor 20 described in detail later, the fuel injection rate waveform is calculated to detect the injection state, and the correlation between the detected injection state and the output injection command signal is learned. . Then, based on the learning result, the injection command signal stored in the command map M2 is corrected. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

図1の説明に戻り、燃圧センサ20は、ボデー11に取り付けられ、ボデー側分岐通路11eの燃料の圧力を検出する。燃圧センサ20は、本体部21、圧力センサ素子22及びモールドIC23等を備えて構成されている。   Returning to the description of FIG. 1, the fuel pressure sensor 20 is attached to the body 11 and detects the pressure of the fuel in the body side branch passage 11 e. The fuel pressure sensor 20 includes a main body 21, a pressure sensor element 22, a mold IC 23, and the like.

圧力センサ素子22及びモールドIC23は本体部21に保持され、本体部21はボデー11に取り付けられている。本体部21は、ボデー側分岐通路11eの燃料が導入される導入通路21bを内部に形成するとともに、導入通路21bの燃料圧力を受けて弾性変形する起歪部21aを有する。起歪部21aは、本体部21のうち導入通路21bの突き当たり部分、つまり導入通路21bの最下流部分に形成されている。本体部21は有底円筒形状であり、本体部21の底部が起歪部21aに相当し、本体部21の円筒開口部が導入通路21bの流入口に相当する。   The pressure sensor element 22 and the mold IC 23 are held by the main body 21, and the main body 21 is attached to the body 11. The main body 21 has an introduction passage 21b into which fuel in the body-side branch passage 11e is introduced, and has a strain generating portion 21a that is elastically deformed by receiving the fuel pressure in the introduction passage 21b. The strain generating portion 21a is formed in the abutting portion of the introduction passage 21b in the main body portion 21, that is, the most downstream portion of the introduction passage 21b. The main body 21 has a bottomed cylindrical shape, and the bottom of the main body 21 corresponds to the strain generating portion 21a, and the cylindrical opening of the main body 21 corresponds to the inlet of the introduction passage 21b.

なお、特許請求の範囲に記載の「分岐通路」は、ボデー側分岐通路11eおよび導入通路21bの両方を含んだ通路であって、メイン通路11aから分岐して燃圧センサ20の起歪部21aへ燃料を導く通路に相当する。図1に示す分岐通路の長さ(分岐通路長L)は、ボデー側分岐通路11eの長さL1に導入通路21bの長さL2を加算した長さである。ボデー側分岐通路11eの長さL1は、導入通路21bの長さL2よりも長い。   The “branch passage” described in the claims is a passage including both the body-side branch passage 11e and the introduction passage 21b, and branches from the main passage 11a to the strain generating portion 21a of the fuel pressure sensor 20. Corresponds to a passage for guiding fuel. The length of the branch passage (branch passage length L) shown in FIG. 1 is a length obtained by adding the length L2 of the introduction passage 21b to the length L1 of the body-side branch passage 11e. The length L1 of the body side branch passage 11e is longer than the length L2 of the introduction passage 21b.

圧力センサ素子22は、起歪部21aに取り付けられており、起歪部21aの弾性変形量に応じた圧力検出信号を出力する。モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路や、圧力検出信号を送信する送信回路等の電子部品を樹脂モールドして形成されている。   The pressure sensor element 22 is attached to the strain generating part 21a, and outputs a pressure detection signal corresponding to the elastic deformation amount of the strain generating part 21a. The mold IC 23 is formed by resin molding electronic components such as an amplification circuit that amplifies the pressure detection signal output from the pressure sensor element 22 and a transmission circuit that transmits the pressure detection signal.

ボデー11にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。そして、増幅された圧力検出信号はECU30に送信されて、ECU30が有する受信回路により受信される。この送受信にかかる通信処理は、各気筒の燃圧センサ20毎に実施される。   The body 11 is provided with a connector 15, and the harness 16 connected to the connector 15 electrically connects the mold IC 23, the actuator 13, and the ECU 30. The amplified pressure detection signal is transmitted to the ECU 30 and received by a receiving circuit included in the ECU 30. This communication process for transmission / reception is performed for each fuel pressure sensor 20 of each cylinder.

ここで、噴孔11bから燃料の噴射を開始することに伴いメイン通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と、単位時間当たりに噴射される噴射量(噴射率)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう、先述した指令マップM2中の噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the main passage 11a decreases as the fuel injection from the nozzle hole 11b starts, and the fuel pressure increases as the injection ends. That is, it can be said that there is a correlation between the change in the fuel pressure and the change in the injection amount (injection rate) injected per unit time, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the injection command signal in the command map M2 described above is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中に燃圧センサ20により検出された圧力の波形である検出波形と、燃料噴射率の変化を表した噴射率波形との相関について、図3を用いて説明する。   Next, the correlation between the detection waveform, which is the waveform of the pressure detected by the fuel pressure sensor 20 during fuel injection, and the injection rate waveform representing the change in the fuel injection rate will be described with reference to FIG.

図3(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して弁体12が開弁作動する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号の通電期間(噴射指令期間Tq)により噴孔11bの開弁時間(噴射時間)を制御することで、噴射量Qを制御している。   FIG. 3A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized and the valve body 12 is opened. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time (injection time) of the nozzle hole 11b according to the energization period (injection command period Tq) of the command signal.

図3(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図3(c)は、燃料噴射中に燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(燃圧波形)を示す。   FIG. 3B shows a change (injection rate waveform) of the fuel injection rate from the injection hole 11b generated in accordance with the injection command, and FIG. 3C is detected by the fuel pressure sensor 20 during the fuel injection. The change (fuel pressure waveform) of the detection pressure which arises with the change of an injection rate is shown.

燃圧波形と噴射率波形とは以下に説明する相関があるため、検出された燃圧波形から噴射率波形を推定(検出)することができる。すなわち、先ず、図3(a)に示すように噴射開始指令がなされたt1時点で制御弁14が作動し、その後、応答遅れ時間経過後に弁体12が開弁作動を開始すると、R1の時点で噴射率が上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。   Since the fuel pressure waveform and the injection rate waveform have a correlation described below, the injection rate waveform can be estimated (detected) from the detected fuel pressure waveform. That is, first, as shown in FIG. 3 (a), when the control valve 14 operates at time t1 when the injection start command is given, and then the valve body 12 starts opening after the response delay time has elapsed, Then, the injection rate starts increasing and injection is started. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2.

次に、噴射終了指令がなされたt2時点で制御弁14が作動し、その後、応答遅れ時間経過後に弁体12が閉弁作動を開始すると、R3の時点で噴射率が下降を開始する。一方、検出圧力は、R3の時点で噴射率が下降を開始してから遅れ時間C3が経過した時点で、変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   Next, when the control valve 14 is operated at time t2 when the injection end command is issued, and then the valve body 12 starts closing after the response delay time has elapsed, the injection rate starts decreasing at the time R3. On the other hand, the detected pressure starts increasing at the change point P3 when the delay time C3 elapses after the injection rate starts decreasing at the time R3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

以上説明したように、燃圧波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、最大噴射率Rh、噴射率上昇速度Rα,噴射率下降速度Rβが表わされている。また、図3(b)中の網点部分の面積は噴射量に相当する。そのため、燃圧波形から噴射率波形を推定することで噴射状態を検出できる。   As explained above, the fuel pressure waveform and the injection rate waveform are highly correlated. The injection rate waveform represents the injection start time (R1 appearance time), the injection end time (R4 appearance time), the maximum injection rate Rh, the injection rate increase rate Rα, and the injection rate decrease rate Rβ. Further, the area of the halftone dots in FIG. 3B corresponds to the injection amount. Therefore, the injection state can be detected by estimating the injection rate waveform from the fuel pressure waveform.

例えば、検出した燃圧波形中に変化点P1,P2が出現した時期を検出し、その検出時期から遅れ時間C1,C3を減算して、噴射開始時期R1及び噴射率低下開始時期R3を算出する。また、圧力下降速度Pα及び上昇速度Pβを燃圧波形から検出し、その検出値を所定の変換値で変換して、噴射率上昇速度Rα及び噴射率下降速度Rβを算出する。また、圧力最大降下量P1−P2を燃圧波形から検出し、その検出値を所定の変換値で変換して、最大噴射率Rhを算出する。また、上述の如く算出した噴射率低下開始時期R3及び噴射率下降速度Rβに基づき噴射終了時期R4を算出する。このようにして検出した燃圧波形に基づき噴射率波形のパラメータを算出している時のマイコンの演算装置は、噴射指令信号設定手段33のうちのパラメータ取得手段33aとして機能する。   For example, the timing at which the change points P1, P2 appear in the detected fuel pressure waveform is detected, and the delay times C1, C3 are subtracted from the detected timing to calculate the injection start timing R1 and the injection rate decrease start timing R3. Further, the pressure decrease rate Pα and the increase rate Pβ are detected from the fuel pressure waveform, and the detected values are converted by predetermined conversion values to calculate the injection rate increase rate Rα and the injection rate decrease rate Rβ. Further, the maximum pressure drop P1-P2 is detected from the fuel pressure waveform, and the detected value is converted by a predetermined conversion value to calculate the maximum injection rate Rh. Further, the injection end timing R4 is calculated based on the injection rate decrease start timing R3 and the injection rate decrease speed Rβ calculated as described above. The calculation device of the microcomputer when calculating the parameters of the injection rate waveform based on the detected fuel pressure waveform functions as the parameter acquisition means 33 a of the injection command signal setting means 33.

さらに上記演算装置は、噴射率波形のパラメータ算出に用いた燃圧波形に対応する噴射指令信号と、算出したパラメータとを関連付けする。そして、関連付けられた噴射指令信号及びパラメータである学習値を、指令マップM2に記憶して更新させる。この時の演算装置は、噴射指令信号設定手段33のうちの学習手段33bとして機能する。   Further, the arithmetic device associates the calculated parameter with the injection command signal corresponding to the fuel pressure waveform used for calculating the parameter of the injection rate waveform. Then, the associated injection command signal and the learned value that is a parameter are stored in the command map M2 and updated. The arithmetic device at this time functions as the learning means 33 b of the injection command signal setting means 33.

なお、指令マップM2はコモンレール42内の燃料圧力毎に設けられており、噴射開始時点で燃料噴射弁10に供給されている燃料の圧力毎に分類して、指令マップM2に学習値を記憶更新させる。噴射開始時点での圧力は、変化点P1が出現する直前の圧力(P0参照)に相当する。   The command map M2 is provided for each fuel pressure in the common rail 42. The command map M2 is classified according to the pressure of the fuel supplied to the fuel injection valve 10 at the start of injection, and the learning value is stored and updated in the command map M2. Let The pressure at the start of injection corresponds to the pressure immediately before the change point P1 appears (see P0).

ここで、燃圧センサ20からECU30へ送信される圧力検出信号に基づく燃圧波形には、様々な周波数成分が含まれている。主な周波数成分は、噴孔11bからの噴射開始または噴射停止に伴いメイン通路11aから分岐通路へ伝播された燃圧脈動の周波数成分(噴射波成分Wi)である。この噴射波成分Wiは、図3(c)および図4に示す波形に含まれ、弁体12の開弁作動開始、弁体12の閉弁作動開始、制御弁14の開弁作動開始、および制御弁14の閉弁作動開始に伴い生じる燃圧脈動による周波数成分である。   Here, the fuel pressure waveform based on the pressure detection signal transmitted from the fuel pressure sensor 20 to the ECU 30 includes various frequency components. The main frequency component is a frequency component (injection wave component Wi) of fuel pressure pulsation propagated from the main passage 11a to the branch passage with the start or stop of injection from the nozzle hole 11b. This injection wave component Wi is included in the waveforms shown in FIGS. 3C and 4, and starts the valve opening operation of the valve body 12, starts the valve closing operation of the valve body 12, starts the valve opening operation of the control valve 14, and This is a frequency component due to fuel pressure pulsation that occurs when the control valve 14 starts to close.

上記燃圧波形に含まれる他の周波数成分は、メイン通路11aとボデー側分岐通路11eの境界部分である境界部11hで反射して分岐通路内を往復移動する燃圧脈動の周波数成分(反射波成分)である。また、上記燃圧波形には、電気的ノイズによる高周波数の成分(ノイズ成分)も含まれている。   Other frequency components included in the fuel pressure waveform are reflected by the boundary portion 11h, which is the boundary portion between the main passage 11a and the body side branch passage 11e, and the frequency component of the fuel pressure pulsation (reflected wave component) that reciprocates in the branch passage. It is. The fuel pressure waveform also includes a high frequency component (noise component) due to electrical noise.

図2に示すフィルタ回路34は、ノイズ成分および反射波成分を燃圧波形から除去して、噴射波成分Wiを抽出する回路である。具体的には、所定の周波数以上の成分を除去するローパスフィルタ回路により、燃圧センサ20から出力された燃圧波形から噴射波成分Wiを抽出する。   The filter circuit 34 shown in FIG. 2 is a circuit that removes the noise component and the reflected wave component from the fuel pressure waveform and extracts the injection wave component Wi. Specifically, the injection wave component Wi is extracted from the fuel pressure waveform output from the fuel pressure sensor 20 by a low-pass filter circuit that removes components having a predetermined frequency or higher.

さて、ノイズ成分の周波数は、噴射波成分Wiの周波数に比べて極めて高い。そのため、フィルタ回路34は、噴射波成分Wiを残しつつノイズ成分を除去することを容易に実現できる。一方、反射波成分の周波数は、分岐通路の長さによっては、噴射波成分Wiの周波数と重なる場合がある。その場合には、フィルタ回路34で反射波成分を除去することが困難になり、反射波成分が図4に示す噴射波成分Wiに重畳して、図5に示す燃圧波形Wになってしまう。   Now, the frequency of the noise component is extremely higher than the frequency of the ejection wave component Wi. Therefore, the filter circuit 34 can easily realize the removal of the noise component while leaving the ejection wave component Wi. On the other hand, the frequency of the reflected wave component may overlap the frequency of the ejection wave component Wi depending on the length of the branch path. In that case, it becomes difficult to remove the reflected wave component by the filter circuit 34, and the reflected wave component is superimposed on the injection wave component Wi shown in FIG. 4, resulting in the fuel pressure waveform W shown in FIG.

図4に示す燃圧波形から変化点P1、P2、P3、P5、下降速度Pαおよび上昇速度Pβを検出した場合には、その検出値と噴射率波形との相関は高いので、噴射状態を高精度で推定できる。しかし、図5に示す燃圧波形から検出した場合には、その検出値と噴射率波形との相関が低くなり、噴射状態を高精度で推定できなくなる。特に、変化点P3および上昇速度Pβについては検出が困難となり、噴射終了時期R4および噴射量の推定が困難となる。したがって、反射波成分の周波数が噴射波成分Wiの周波数と同一になっていなければ、フィルタ回路34により噴射波成分Wiを抽出するにあたり、反射波成分を除去する精度を向上できる。   When the change points P1, P2, P3, P5, the descending speed Pα, and the ascending speed Pβ are detected from the fuel pressure waveform shown in FIG. 4, the correlation between the detected value and the injection rate waveform is high. Can be estimated. However, when detecting from the fuel pressure waveform shown in FIG. 5, the correlation between the detected value and the injection rate waveform becomes low, and the injection state cannot be estimated with high accuracy. In particular, it is difficult to detect the change point P3 and the rising speed Pβ, and it is difficult to estimate the injection end timing R4 and the injection amount. Therefore, when the frequency of the reflected wave component is not the same as the frequency of the ejection wave component Wi, the accuracy of removing the reflected wave component can be improved when the ejection wave component Wi is extracted by the filter circuit 34.

図6は、フィルタ回路34で処理される前の燃圧波形であって、図1に示す本実施形態の燃料噴射弁10から出力された燃圧波形について、該燃圧波形に含まれる各種周波数成分の分布を試験した結果を示す。図6の縦軸は、横軸に示す周波数の成分のエネルギ強度を示す。図中の符号Biは、噴射波成分Wiの周波数帯域(噴射帯域)を示す。図中の符号Br1、Br2、Br3は、反射波成分の周波数帯域(反射帯域)を示す。   FIG. 6 is a fuel pressure waveform before being processed by the filter circuit 34. Regarding the fuel pressure waveform output from the fuel injection valve 10 of the present embodiment shown in FIG. 1, the distribution of various frequency components included in the fuel pressure waveform. The results of testing are shown. 6 indicates the energy intensity of the frequency component indicated on the horizontal axis. Reference sign Bi in the figure indicates the frequency band (injection band) of the injection wave component Wi. Symbols Br1, Br2, and Br3 in the figure indicate the frequency band (reflection band) of the reflected wave component.

反射波成分の周波数は、(2n−1)a/4Lの式で表わされる。式中のLは、起歪部21aを固定端、境界部11hを自由端とする分岐通路の長さ(分岐通路長L)である。式中のaは音速である。式中のnは整数である。したがって、反射帯域Br1、Br2、Br3は、所定ピッチで離散して複数存在することになる。図中の符号Br1は、n=1の場合の反射波成分による周波数帯域を示し、符号Br2は、n=2の場合の反射波成分による周波数帯域を示し、符号Br3は、n=3の場合の反射波成分による周波数帯域を示す。   The frequency of the reflected wave component is expressed by the equation (2n-1) a / 4L. L in the formula is the length of the branch passage (branch passage length L) with the strain generating portion 21a as a fixed end and the boundary portion 11h as a free end. In the formula, a is the speed of sound. N in the formula is an integer. Therefore, a plurality of reflection bands Br1, Br2, and Br3 exist discretely at a predetermined pitch. In the figure, symbol Br1 indicates the frequency band due to the reflected wave component when n = 1, symbol Br2 indicates the frequency band due to the reflected wave component when n = 2, and symbol Br3 indicates when n = 3. The frequency band by the reflected wave component of is shown.

図示されるように、本実施形態に係る燃料噴射弁10では、反射帯域Br1、Br2、Br3が噴射帯域Biから外れている。詳細には、複数の反射帯域Br1、Br2、Br3のうち最も低周波数の反射帯域Br1が、噴射帯域Biに対して高周波数の側に外れている。換言すれば、全ての反射帯域Br1、Br2、Br3が噴射帯域Biに対して高周波数の側に外れている。反射帯域Br1と噴射帯域Biとは重複していない。   As illustrated, in the fuel injection valve 10 according to the present embodiment, the reflection bands Br1, Br2, and Br3 are out of the injection band Bi. Specifically, the lowest-frequency reflection band Br1 out of the plurality of reflection bands Br1, Br2, and Br3 is out of the high-frequency side with respect to the injection band Bi. In other words, all the reflection bands Br1, Br2, Br3 are out of the high frequency side with respect to the injection band Bi. The reflection band Br1 and the ejection band Bi do not overlap.

反射波成分の周波数は分岐通路長Lに応じて変化することは先述した通りであり、分岐通路長Lを短くするほど反射波成分の周波数は大きくなる。よって、反射帯域Br1が、噴射帯域Biに対して大きく外れることとなるよう、分岐通路長Lは十分に短く設定されている。   As described above, the frequency of the reflected wave component changes according to the branch path length L. The shorter the branch path length L, the higher the frequency of the reflected wave component. Therefore, the branch passage length L is set to be sufficiently short so that the reflection band Br1 is greatly deviated from the injection band Bi.

反射波成分には、弁体12の開弁作動開始、弁体12の閉弁作動開始、制御弁14の開弁作動開始、および制御弁14の閉弁作動開始に伴い生じる燃圧脈動による周波数成分が存在する。このうち、制御弁14の閉弁作動開始、つまり第1シート面11pへ着座して閉弁する作動を開始したことに伴い生じる燃圧脈動の周波数成分のエネルギ強度が1番高い。そこで本実施形態では、制御弁14の閉弁作動開始に伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしており、図6に示す反射帯域Br1、Br2、Br3は、上記対象の周波数成分の帯域である。   The reflected wave component includes a frequency component due to fuel pressure pulsation caused by starting the valve opening operation of the valve body 12, starting the valve closing operation of the valve body 12, starting the valve opening operation of the control valve 14, and starting the valve closing operation of the control valve 14. Exists. Among these, the energy intensity of the frequency component of the fuel pressure pulsation generated when the valve closing operation of the control valve 14 is started, that is, the operation of sitting and closing on the first seat surface 11p is started is the highest. Therefore, in the present embodiment, the frequency component due to the fuel pressure pulsation generated when the valve closing operation of the control valve 14 starts is targeted for removal from the injection band Bi, and the reflection bands Br1, Br2, Br3 shown in FIG. This is the frequency component band.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

反射帯域Br1、Br2、Br3が噴射帯域Biから外れることとなるように分岐通路長Lが設定されている。そのため、噴射波成分Wi中に特定の変化点が出現する時期を検出するにあたり、反射波成分が噴射波成分Wiに重畳することにより上記検出の精度が低下することを抑制できる。よって、上記検出の結果に基づき噴射開始時期等の噴射状態を推定する精度を向上できる。   The branch passage length L is set so that the reflection bands Br1, Br2, and Br3 deviate from the injection band Bi. Therefore, when detecting the time when a specific change point appears in the ejection wave component Wi, it is possible to suppress the detection accuracy from being lowered due to the reflected wave component being superimposed on the ejection wave component Wi. Therefore, it is possible to improve the accuracy of estimating the injection state such as the injection start timing based on the detection result.

具体的には、上述の如く分岐通路長Lが設定されているので、フィルタ回路34により燃圧波形から噴射波成分Wiを抽出するにあたり、反射波成分を除去する精度を向上できる。よって、フィルタ回路34により抽出された燃圧波形から変化点P1、P2、P3、P5、下降速度Pαおよび上昇速度Pβを検出して得られた検出結果は、噴射率波形との相関が高くなる。よって、上記検出結果から、噴射開始時期R1、噴射終了時期R4および噴射量を推定するにあたり、その推定精度を向上できる。   Specifically, since the branch path length L is set as described above, the accuracy of removing the reflected wave component can be improved when the filter circuit 34 extracts the injection wave component Wi from the fuel pressure waveform. Therefore, the detection results obtained by detecting the change points P1, P2, P3, P5, the descending speed Pα and the ascending speed Pβ from the fuel pressure waveform extracted by the filter circuit 34 have a high correlation with the injection rate waveform. Therefore, in estimating the injection start timing R1, the injection end timing R4, and the injection amount from the detection result, the estimation accuracy can be improved.

ここで、本実施形態に反して、n=1に係る反射帯域Br1を噴射帯域Biに対して低周波数の側に外し、n=2に係る反射帯域Br2を噴射帯域Biに対して高周波数の側に外した場合(図7参照)を、本実施形態と比較して以下に説明する。図7の場合には、反射帯域Br2を噴射帯域Biから遠ざけるほど反射帯域Br1が噴射帯域Biに近づき、反射帯域Br1を噴射帯域Biから遠ざけるほど反射帯域Br2が噴射帯域Biに近づく。つまり、反射帯域Br1および反射帯域Br2の両方を噴射帯域Biから遠ざけるには限界がある。   Here, contrary to the present embodiment, the reflection band Br1 related to n = 1 is removed to the low frequency side with respect to the injection band Bi, and the reflection band Br2 related to n = 2 is set to be higher than the injection band Bi. The case of removing to the side (see FIG. 7) will be described below in comparison with the present embodiment. In the case of FIG. 7, the farther the reflection band Br2 is from the injection band Bi, the closer the reflection band Br1 is to the injection band Bi, and the farther the reflection band Br1 is from the injection band Bi, the closer the reflection band Br2 is to the injection band Bi. That is, there is a limit to keep both the reflection band Br1 and the reflection band Br2 away from the injection band Bi.

これに対し本実施形態では、複数の反射帯域Br1、Br2、Br3のうち最も低周波数の反射帯域Br1が、噴射帯域Biに対して高周波数の側に外れている。そのため、反射帯域Br1、Br2の両方を噴射帯域Biから遠ざけることを実現でき、反射波成分が噴射波成分Wiに重畳するおそれを抑制できる。   On the other hand, in the present embodiment, the lowest frequency reflection band Br1 out of the plurality of reflection bands Br1, Br2, and Br3 is out of the high frequency side with respect to the injection band Bi. Therefore, it is possible to realize both of the reflection bands Br1 and Br2 away from the injection band Bi, and it is possible to suppress the possibility that the reflected wave component is superimposed on the injection wave component Wi.

さて、図4および図5を比較してみると、燃圧波形のうち変化点P2以前の波形に比べて、変化点P2以後の波形の方が、反射波成分による影響を大きく受けていることが分かる。また、弁体12の閉弁作動に伴い生じた燃圧脈動の周波数成分は、弁体12の開弁作動に伴い生じた周波数成分に比べてエネルギ強度が高い。   Now, comparing FIG. 4 and FIG. 5, it can be seen that the waveform after the change point P2 of the fuel pressure waveform is more influenced by the reflected wave component than the waveform before the change point P2. I understand. Further, the frequency component of the fuel pressure pulsation generated by the valve closing operation of the valve body 12 has higher energy intensity than the frequency component generated by the valve opening operation of the valve body 12.

この点を鑑みた本実施形態では、弁体12の閉弁作動に伴い生じた燃圧脈動の周波数成分を、噴射帯域Biから外す対象にしている。より厳密には、制御弁14の閉弁作動開始に伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしている。そのため、反射波成分を噴射波成分Wiに重畳させないことによる上記効果が、顕著に発揮される。   In the present embodiment in view of this point, the frequency component of the fuel pressure pulsation caused by the valve closing operation of the valve body 12 is to be excluded from the injection band Bi. More precisely, the frequency component due to the fuel pressure pulsation caused by the start of the valve closing operation of the control valve 14 is excluded from the injection band Bi. Therefore, the above-described effect due to the fact that the reflected wave component is not superimposed on the ejection wave component Wi is remarkably exhibited.

(第2実施形態)
上記第1実施形態では、全ての反射帯域Br1、Br2、Br3が噴射帯域Biに対して高周波数の側に外れるように、分岐通路長Lが設定されている。これに対し本実施形態では、図7に示すように、最も低周波数の反射帯域Br1が噴射帯域Biに対して低周波数の側に外れ、かつ、2番目に低周波数の反射帯域Br2が噴射帯域Biに対して高周波数の側に外れるように、分岐通路長Lが設定されている。
(Second Embodiment)
In the first embodiment, the branch passage length L is set so that all the reflection bands Br1, Br2, and Br3 deviate to the high frequency side with respect to the injection band Bi. On the other hand, in this embodiment, as shown in FIG. 7, the lowest frequency reflection band Br1 deviates to the low frequency side with respect to the injection band Bi, and the second lowest frequency reflection band Br2 is the injection band. The branch path length L is set so as to be out of the high frequency side with respect to Bi.

これによれば、最も低周波数の反射帯域Br1が噴射帯域Biの低周波数側に外しているので、第1実施形態に比べて分岐通路長Lが長くなる。よって、分岐通路長Lを長くせざるを得ない場合であっても、全ての反射帯域Br1、Br2、Br3を噴射帯域Biから外すことを実現できる。   According to this, since the lowest frequency reflection band Br1 is removed to the low frequency side of the injection band Bi, the branch path length L is longer than that in the first embodiment. Therefore, even if it is necessary to increase the branch passage length L, it is possible to remove all the reflection bands Br1, Br2, Br3 from the injection band Bi.

(第3実施形態)
上記第1実施形態に係る図1の燃料噴射弁10では、ボデー側分岐通路11eの長さL1を導入通路21bの長さL2よりも長く設定している。これに対し、図8に示すように、本実施形態に係る燃料噴射弁10Aでは、ボデー側分岐通路11eの長さL1を導入通路21bの長さL2よりも短く設定している。
(Third embodiment)
In the fuel injection valve 10 of FIG. 1 according to the first embodiment, the length L1 of the body side branch passage 11e is set longer than the length L2 of the introduction passage 21b. On the other hand, as shown in FIG. 8, in the fuel injection valve 10A according to the present embodiment, the length L1 of the body side branch passage 11e is set shorter than the length L2 of the introduction passage 21b.

また、上記第1実施形態では、ボデー側分岐通路11eの全長に亘って通路径が均一である。これに対し本実施形態では、小径部11e1および大径部11e2の2段階に通路径を変化させている。そして、導入通路21bの通路径を大径部11e2と一致させている。なお、反射波成分の周波数は、分岐通路長Lに依存し、通路径には依存しない。   In the first embodiment, the passage diameter is uniform over the entire length of the body-side branch passage 11e. On the other hand, in this embodiment, the passage diameter is changed in two stages, that is, the small diameter portion 11e1 and the large diameter portion 11e2. The passage diameter of the introduction passage 21b is made to coincide with the large diameter portion 11e2. The frequency of the reflected wave component depends on the branch passage length L and does not depend on the passage diameter.

また、上記第1実施形態では、ボデー側分岐通路11eの延伸方向と導入通路21bの延伸方向とが非平行である。これに対し、本実施形態では、ボデー側分岐通路11eの延伸方向と導入通路21bの延伸方向とが平行である。   In the first embodiment, the extending direction of the body-side branch passage 11e is not parallel to the extending direction of the introduction passage 21b. On the other hand, in this embodiment, the extending direction of the body side branch passage 11e and the extending direction of the introduction passage 21b are parallel.

以上により、本実施形態では、ボデー側分岐通路11eの長さL1が導入通路21bの長さL2よりも短く設定されている。そのため、図1の燃料噴射弁10と同一の燃圧センサ20を図8の燃料噴射弁10Aに採用した場合において、ボデー側分岐通路11eの長さL1が短くなった分だけ、図1の燃料噴射弁10と比較すると分岐通路長Lが短くなる。よって、最も低周波数の反射帯域Br1が噴射帯域Biから高周波数側に外れる度合いを大きくできる。よって、反射波成分が噴射波成分Wiに重畳することの抑制効果を向上できる。   As described above, in the present embodiment, the length L1 of the body side branch passage 11e is set shorter than the length L2 of the introduction passage 21b. Therefore, when the same fuel pressure sensor 20 as that of the fuel injection valve 10 of FIG. 1 is employed in the fuel injection valve 10A of FIG. 8, the fuel injection of FIG. 1 is made by the length L1 of the body side branch passage 11e. Compared with the valve 10, the branch passage length L is shortened. Therefore, the degree to which the lowest frequency reflection band Br1 deviates from the injection band Bi toward the high frequency side can be increased. Therefore, the effect of suppressing the reflected wave component from being superimposed on the ejection wave component Wi can be improved.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

上記第2実施形態では、n=1番目の反射帯域Br1を噴射帯域Biの低周波数側に位置させて、n=1番目の反射帯域Br1とn=2番目の反射帯域Br2との間に噴射帯域Biを位置させている。これに対し、2番目以降のいずれかの反射帯域を噴射帯域Biの低周波数側に位置させてもよい。   In the second embodiment, n = 1st reflection band Br1 is positioned on the lower frequency side of the injection band Bi, and injection is performed between the n = 1st reflection band Br1 and the n = 2nd reflection band Br2. The band Bi is located. On the other hand, any of the second and subsequent reflection bands may be positioned on the low frequency side of the ejection band Bi.

上記各実施形態では、制御弁14が第1シート面11pへ着座する作動を開始したことに伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしている。これに対し、制御弁14が第2シート面11qへ着座する作動を開始したことに伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしてもよい。また、弁体12の開弁作動開始に伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしてもよい。弁体12の閉弁作動開始に伴い生じる燃圧脈動による周波数成分を、噴射帯域Biから外す対象にしてもよい。   In each of the above embodiments, the frequency component due to the fuel pressure pulsation that occurs when the control valve 14 starts the operation of being seated on the first seat surface 11p is targeted for removal from the injection band Bi. On the other hand, the frequency component due to the fuel pressure pulsation generated when the control valve 14 starts the operation of being seated on the second seat surface 11q may be excluded from the injection band Bi. Further, the frequency component due to the fuel pressure pulsation generated when the valve body 12 starts the valve opening operation may be excluded from the injection band Bi. The frequency component due to the fuel pressure pulsation caused by the start of the valve closing operation of the valve body 12 may be excluded from the injection band Bi.

上記各実施形態では、ボデー側分岐通路11eとメイン通路11aとが直交して連通している。これに対し、ボデー側分岐通路11eとメイン通路11aとを鋭角または鈍角(非直交)に連通させてもよい。   In each of the above embodiments, the body side branch passage 11e and the main passage 11a communicate with each other at right angles. On the other hand, the body side branch passage 11e and the main passage 11a may be communicated at an acute angle or an obtuse angle (non-orthogonal).

10、10A…燃料噴射弁、11b…噴孔、20…燃圧センサ、11a…メイン通路、11…ボデー、12…弁体、11e…ボデー側分岐通路(分岐通路)、21b…導入通路(分岐通路)、Wi…噴射波成分、Bi…噴射帯域、Br1、Br2、Br3…反射帯域。   DESCRIPTION OF SYMBOLS 10, 10A ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 11a ... Main passage, 11 ... Body, 12 ... Valve body, 11e ... Body side branch passage (branch passage), 21b ... Introduction passage (branch passage) ), Wi ... injection wave component, Bi ... injection band, Br1, Br2, Br3 ... reflection band.

Claims (4)

燃料を噴射する噴孔(11b)を形成するとともに、前記噴孔へ燃料を流通させるメイン通路(11a)を内部に形成するボデー(11)と、
前記メイン通路を開閉する弁体であって、開弁作動して前記噴孔から燃料を噴射させ、閉弁作動して前記噴孔からの燃料噴射を停止させる弁体(12)と、
前記ボデーに取り付けられ、燃料の圧力変化を表した燃圧波形を検出する燃圧センサ(20)と、
を備え、
前記ボデーの内部には、前記メイン通路から分岐して前記燃圧センサへ燃料を導く分岐通路(11e、21b)が設けられ、
前記燃圧波形に含まれる周波数成分のうち、前記開弁作動または前記閉弁作動に伴い前記メイン通路から前記分岐通路へ伝播された燃圧脈動の周波数成分を噴射波成分(Wi)と呼び、前記メイン通路と前記分岐通路の境界で反射して前記分岐通路内を往復移動する燃圧脈動の周波数成分を反射波成分と呼び、前記噴射波成分の周波数帯域を噴射帯域(Bi)と呼び、前記反射波成分の周波数帯域を反射帯域(Br1、Br2、Br3)と呼ぶ場合に、
前記反射帯域が前記噴射帯域から外れることとなるように、前記分岐通路の長さが設定されていることを特徴とする燃料噴射弁。
A body (11) that forms a nozzle hole (11b) for injecting fuel and forms a main passage (11a) through which fuel flows to the nozzle hole;
A valve body that opens and closes the main passage, and opens the valve to inject fuel from the nozzle hole, and closes the valve to stop fuel injection from the nozzle hole (12);
A fuel pressure sensor (20) attached to the body for detecting a fuel pressure waveform representing a change in fuel pressure;
With
Inside the body, there are provided branch passages (11e, 21b) that branch from the main passage and guide the fuel to the fuel pressure sensor,
Of the frequency components included in the fuel pressure waveform, the frequency component of the fuel pressure pulsation propagated from the main passage to the branch passage in association with the valve opening operation or the valve closing operation is called an injection wave component (Wi), and The frequency component of the fuel pressure pulsation reflected at the boundary between the passage and the branch passage and reciprocating in the branch passage is referred to as a reflected wave component, the frequency band of the injection wave component is referred to as an injection band (Bi), and the reflected wave When the frequency band of the component is called a reflection band (Br1, Br2, Br3),
The fuel injection valve characterized in that the length of the branch passage is set so that the reflection band deviates from the injection band.
前記反射帯域は、所定ピッチで離散して複数存在し、
複数の前記反射帯域のうち最も低周波数の反射帯域(Br1)が、前記噴射帯域に対して高周波数の側に外れていることを特徴とする請求項1に記載の燃料噴射弁。
A plurality of the reflection bands exist discretely at a predetermined pitch,
The fuel injection valve according to claim 1, wherein a reflection band (Br1) having a lowest frequency among the plurality of reflection bands is deviated to a higher frequency side with respect to the injection band.
前記反射波成分は、前記閉弁作動に伴い生じた燃圧脈動の周波数成分であることを特徴とする請求項1または2に記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the reflected wave component is a frequency component of fuel pressure pulsation caused by the valve closing operation. 4. 前記燃圧センサは、
前記ボデーに取り付けられ、前記分岐通路の燃料が導入される導入通路(21b)を内部に形成するとともに前記導入通路の燃料圧力により弾性変形する起歪部(21a)を有する本体部(21)と、
前記起歪部の弾性変形量に応じた信号を出力する圧力センサ素子(22)と、
を備え、
前記分岐通路は、前記ボデーに形成されたボデー側分岐通路(11e)および前記導入通路を含み、
前記ボデー側分岐通路の長さは、前記導入通路の長さよりも短く設定されていることを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射弁。
The fuel pressure sensor is
A main body (21) which is attached to the body, forms an introduction passage (21b) into which fuel in the branch passage is introduced, and has a strain generating portion (21a) which is elastically deformed by fuel pressure in the introduction passage; ,
A pressure sensor element (22) for outputting a signal corresponding to the amount of elastic deformation of the strain-generating portion;
With
The branch passage includes a body side branch passage (11e) formed in the body and the introduction passage,
The fuel injection valve according to any one of claims 1 to 3, wherein a length of the body side branch passage is set shorter than a length of the introduction passage.
JP2015145925A 2015-07-23 2015-07-23 Fuel injection valve Active JP6451539B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015145925A JP6451539B2 (en) 2015-07-23 2015-07-23 Fuel injection valve
DE102016110309.8A DE102016110309A1 (en) 2015-07-23 2016-06-03 fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145925A JP6451539B2 (en) 2015-07-23 2015-07-23 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2017025806A true JP2017025806A (en) 2017-02-02
JP6451539B2 JP6451539B2 (en) 2019-01-16

Family

ID=57738500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145925A Active JP6451539B2 (en) 2015-07-23 2015-07-23 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP6451539B2 (en)
DE (1) DE102016110309A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025474A (en) * 2019-08-06 2021-02-22 株式会社デンソー Fuel injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147987U (en) * 1983-03-25 1984-10-03 日立建機株式会社 Pulsation absorber
JPH08270878A (en) * 1995-01-31 1996-10-15 Hitachi Constr Mach Co Ltd Pulsation reducing device
JP2011047280A (en) * 2009-08-25 2011-03-10 Denso Corp Fuel injection valve
JP2012215157A (en) * 2011-04-01 2012-11-08 Nippon Soken Inc Apparatus of estimating fuel state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147987U (en) * 1983-03-25 1984-10-03 日立建機株式会社 Pulsation absorber
JPH08270878A (en) * 1995-01-31 1996-10-15 Hitachi Constr Mach Co Ltd Pulsation reducing device
JP2011047280A (en) * 2009-08-25 2011-03-10 Denso Corp Fuel injection valve
JP2012215157A (en) * 2011-04-01 2012-11-08 Nippon Soken Inc Apparatus of estimating fuel state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025474A (en) * 2019-08-06 2021-02-22 株式会社デンソー Fuel injection valve
US11415095B2 (en) 2019-08-06 2022-08-16 Denso Corporation Fuel injection valve
JP7293959B2 (en) 2019-08-06 2023-06-20 株式会社デンソー fuel injector

Also Published As

Publication number Publication date
DE102016110309A1 (en) 2017-01-26
JP6451539B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5394432B2 (en) Fuel state estimation device
JP5195842B2 (en) Pressure reducing valve controller
JP4835715B2 (en) Fuel injection state detection device
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP4835716B2 (en) Fuel injection state detection device
JP5136617B2 (en) Fuel injection waveform calculation device
JP5447491B2 (en) Fuel pressure sensor abnormality diagnosis device
JP5003796B2 (en) Fuel injection state detection device
JP5263280B2 (en) Fuel injection control device
JP2012077653A (en) Fuel injection state detection device
JP2015059427A (en) Fuel injection control method and common rail type fuel injection control device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5024429B2 (en) Fuel injection state detection device
JP6020387B2 (en) Pressure sensor responsiveness learning device
US9664605B2 (en) Fuel density detection device
JP5293765B2 (en) Fuel injection state estimation device
JP6451539B2 (en) Fuel injection valve
JP5067461B2 (en) Fuel injection state detection device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP5168325B2 (en) Fuel injection state detection device
JP5126296B2 (en) Fuel injection state detection device
JP5949578B2 (en) Abnormality diagnosis device for fuel pressure sensor
JP2012041847A (en) Device for determining detection gap of fuel pressure sensor
JP2008280851A (en) Fuel injection property detecting device and engine control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6451539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250