JP2017021757A - Vehicular operation support apparatus - Google Patents

Vehicular operation support apparatus Download PDF

Info

Publication number
JP2017021757A
JP2017021757A JP2015141356A JP2015141356A JP2017021757A JP 2017021757 A JP2017021757 A JP 2017021757A JP 2015141356 A JP2015141356 A JP 2015141356A JP 2015141356 A JP2015141356 A JP 2015141356A JP 2017021757 A JP2017021757 A JP 2017021757A
Authority
JP
Japan
Prior art keywords
vehicle
landing
host vehicle
take
drone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141356A
Other languages
Japanese (ja)
Other versions
JP6583621B2 (en
Inventor
真吾 入方
Shingo Irikata
真吾 入方
宗義 難波
Muneyoshi Nanba
宗義 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015141356A priority Critical patent/JP6583621B2/en
Publication of JP2017021757A publication Critical patent/JP2017021757A/en
Application granted granted Critical
Publication of JP6583621B2 publication Critical patent/JP6583621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular operation support apparatus enabling an unmanned flying body to extend flight time.SOLUTION: A support apparatus includes: an unmanned flying body 1 provided with an imaging device 7 capable of flying nearby a vehicle itself 30; a presentation part 37 for presenting a driver of a vehicle itself with an image picked up with the imaging device; a takeoff-landing part 35, disposed in the vehicle itself, for enabling the unmanned flying body to take off and land; and a control part 41 for controlling a flight of the unmanned flying body. Further, the control part includes a takeoff-landing instruction part 49 for performing: instructing the unmanned flying body to land on the takeoff-landing part in a travel state of the vehicle itself with its vehicular speed equal to or less than a given speed value; and instructing the unmanned flying body to take off from the takeoff-landing part in a travel state of the vehicle itself with its acceleration equal to or less than a given acceleration value after the unmanned flying body lands.SELECTED DRAWING: Figure 1

Description

本発明は、自車両の運転支援を行う車両の運転支援装置に関する。   The present invention relates to a driving support apparatus for a vehicle that supports driving of the host vehicle.

自動車(車両)では、近時、無人飛行体、例えば撮像カメラ(撮像装置)を搭載したドローン(無人飛行体)を用いて、自車両の運転の支援を行う運転支援装置が提案されている。この運転支援装置は、ドローンを自車両前方上空に飛行させ、撮像カメラによって自車両の進行方向前方の撮像画像を自車両のドライバー(運転者)に提示し、自車両のドライバーに現在の障害物の状況や交通状況などを知らせて、ドライバーに前方状況に応じた運転を促す(例えば特許文献1を参照)。   In automobiles (vehicles), recently, driving support devices that support driving of the own vehicle using an unmanned air vehicle, for example, a drone (unmanned air vehicle) equipped with an imaging camera (imaging device) have been proposed. This driving support device flies a drone in front of the host vehicle, presents a captured image ahead of the traveling direction of the host vehicle with an imaging camera to the driver (driver) of the host vehicle, and informs the driver of the host vehicle the current obstacle. To inform the driver of driving and driving according to the front situation (see, for example, Patent Document 1).

特開2010−250478号公報JP 2010-250478 A

ドローンは、運転支援している最中、自車両の周辺を飛行し続ける。
ところが、ドローンは、ドローンに搭載されているバッテリの電力をエネルギー源としてモータを駆動し推進力を得るため、一回の運転支援で行えるドローンの飛行時間は限られる。このため、ドライバーが、運転支援を続けたい意思があっても、バッテリの電力の制約を受けるため、運転支援中、途中でドローンによる運転支援を止めることが余儀なくされることがある。
The drone continues to fly around its own vehicle while driving assistance.
However, since the drone drives the motor using the power of the battery installed in the drone as an energy source to obtain propulsion power, the drone flight time that can be performed with one driving support is limited. For this reason, even if the driver intends to continue driving support, the driver's power is limited, so driving support by a drone may be forced to stop during driving support.

そこで、本発明の目的は、無人飛行体の飛行時間の延長を可能とした車両の運転支援装置を提供する。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vehicle driving support device that can extend the flight time of an unmanned air vehicle.

本発明の態様は、自車両の周辺を飛行可能な、撮像装置が付いた無人飛行体と、撮像装置で撮像した画像を自車両の運転者に提示する提示部と、自車両に設けられた、無人飛行体の離着陸が可能な離着陸部と、無人飛行体の飛行を制御する制御部とを備え、制御部は、自車両の車速が所定車速値以下の走行状態のとき、無人飛行体を離着陸部に着陸させる指示を行い、当該無人飛行体の着陸後の自車両の加速が所定加速値以下となった走行状態のとき、離着陸部から無人飛行体を離陸させる指示を行う離発着指示部を有するものとした。   An aspect of the present invention is provided in an unmanned air vehicle with an imaging device capable of flying around the host vehicle, a presentation unit that presents an image captured by the imaging device to a driver of the host vehicle, and the host vehicle. A take-off and landing unit capable of taking off and landing of the unmanned air vehicle and a control unit for controlling the flight of the unmanned air vehicle, and the control unit is configured to move the unmanned air vehicle when the vehicle speed of the host vehicle is a predetermined vehicle speed value or less. A take-off and landing instruction section that gives instructions to land on the take-off and landing section, and instructs the take-off and landing section to take off from the take-off and landing section when the vehicle is in a traveling state in which the acceleration of the host vehicle after landing is below a predetermined acceleration value. It was supposed to have.

本発明によれば、自車両の運転支援をしている無人飛行体を、自車両において十分に安全が確保される走行状態(自車両の車速が所定以下)になるとき、自車両が帰還させ、自車両の発進にしたがい、自車両から再び飛行させるようにしたことにより、無人飛行体は、運転支援がなくともすむときは、その間、自車両で待機する。つまり、無人飛行体は、この待機している間、停止され続けるので、無人飛行体の飛行に必要なエネルギーの節約ができる。そして、無人飛行体の自車両からの離陸は、自車両の加速を利用して、十分に加速されてから行われるため、無人飛行体を加速する必要なエネルギーは最小限を抑えることができる。   According to the present invention, when the unmanned air vehicle supporting driving of the host vehicle is in a traveling state in which the safety of the host vehicle is sufficiently secured (the vehicle speed of the host vehicle is below a predetermined value), the host vehicle returns the vehicle. In accordance with the start of the host vehicle, the unmanned air vehicle waits on the host vehicle during the time when it is not necessary to provide driving support by flying again from the host vehicle. In other words, since the unmanned air vehicle continues to be stopped during this waiting time, energy required for the flight of the unmanned air vehicle can be saved. And since the take-off of the unmanned air vehicle from the own vehicle is performed after sufficiently accelerating using the acceleration of the own vehicle, the energy necessary for accelerating the unmanned air vehicle can be minimized.

したがって、無人飛行体は、節約されたエネルギーにより、飛行時間の延長ができ、無人飛行体による自車両の運転支援の範囲を向上させることができる。   Therefore, the unmanned air vehicle can extend the flight time due to the saved energy, and can improve the range of driving assistance of the own vehicle by the unmanned air vehicle.

本発明の一実施形態に係る車両の運転支援装置を、制御系と共に示す斜視図。The perspective view which shows the driving assistance device of the vehicle concerning one embodiment of the present invention with a control system. 制御系が行うドローン(無人飛行体)の一時帰還を説明するフローチャート。The flowchart explaining the temporary return of the drone (unmanned aerial vehicle) which a control system performs. 自車両信号待ちにおけるドローンの一時帰還の状況を順に説明する側面図。The side view explaining in order the situation of the temporary return of the drone in waiting for the own vehicle signal. 同ドローンにおける消費エネルギーの節約具合を説明する線図。A diagram for explaining how energy is saved in the drone.

以下、本発明を図1から図4に示す一実施形態にもとづいて説明する。
図1は、車両の運転支援装置の全体および同装置の制御系を示していて、図1中1は無人飛行体であるところの例えばドローン、30は自車両を示している。
図1に示されるように例えばドローン1は、本体部3、本体部3の側部に放射状に据え付けた複数、例えば4基のモータ駆動式のプロペラ5a(推進部)と、本体部3に据え付けた撮像カメラ7(本願の撮像装置に相当)と、本体部3内に収めたバッテリ3a(エネルギー源)や制御ユニット9とを有したマルチコプターから構成される。プロペラ駆動用のモータ5bを収めるカバー部は離着陸用の脚部を兼ねている。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows an entire vehicle driving support apparatus and a control system of the apparatus. In FIG. 1, reference numeral 1 denotes, for example, a drone that is an unmanned air vehicle, and reference numeral 30 denotes a host vehicle.
As shown in FIG. 1, for example, the drone 1 is installed on the main body 3, a plurality of, for example, four motor-driven propellers 5 a (propulsion unit) installed radially on the side of the main body 3, and the main body 3. And a multi-copter having a battery 3a (energy source) and a control unit 9 housed in the main body 3. The cover for housing the propeller driving motor 5b also serves as a landing / landing leg.

ドローン1の制御ユニット9には、図1中のブロック図に示されるように制御部13や姿勢制御用の姿勢センサ15や障害物検出用の障害物センサ17やGPS19や送受信部21が収められている。そして、制御部13の指令により、バッテリ3aを電力源としたモータ5bの駆動、プロペラ5aの回転制御などが行われ、所望の高度、所望の向きで飛行が行えるようになっている。むろん、ドローン1は、飛行中、制御部13の制御により、障害物センサ17で検出した障害物を避けながら、撮像カメラ7で撮像を行う。   As shown in the block diagram of FIG. 1, the control unit 9 of the drone 1 houses a control unit 13, a posture sensor 15 for posture control, an obstacle sensor 17 for obstacle detection, a GPS 19, and a transmission / reception unit 21. ing. Then, in accordance with a command from the control unit 13, driving of the motor 5b using the battery 3a as a power source, rotation control of the propeller 5a, and the like are performed, so that the flight can be performed at a desired altitude and a desired direction. Of course, the drone 1 captures an image with the imaging camera 7 while avoiding the obstacle detected by the obstacle sensor 17 under the control of the control unit 13 during the flight.

自車両30は、車体33のルーフ33a上に例えばドローン用のヘリポート35(本願の離着陸部に相当)を有している。また例えばインストルメントパネル部30aには、自車両30のドライバー(図示しない)が目視可能なディスプレイ37(本願の提示部に相当)や、制御ユニット39を有している。そして、ヘリポート35上に上記ドローン1が搭載され、ドローン1を車体上部で離着陸可能としている。ヘリポート35上のドローン1は、フック機構(図示しない)で着脱可能にホールドされる。   The host vehicle 30 has, for example, a drone heliport 35 (corresponding to the take-off and landing portion of the present application) on the roof 33a of the vehicle body 33. Further, for example, the instrument panel unit 30 a includes a display 37 (corresponding to a presenting unit of the present application) and a control unit 39 that can be viewed by a driver (not shown) of the host vehicle 30. Then, the drone 1 is mounted on the heliport 35 so that the drone 1 can be taken off and landing at the upper part of the vehicle body. The drone 1 on the heliport 35 is detachably held by a hook mechanism (not shown).

制御ユニット39には、図1中のブロック図に示されるように制御部41や、GPS43や、ドローン1側の送受信部21との間で通信を行う送受信部45が収められている。そして、GPS43で検出された自車両30の位置が、ディスプレイ37に映出される地図上に表示されたり、ドローン1からの撮像画像がディスプレイ37に映出されたりする。双方の信号が有る場合は、例えばディスプレイ37の画面の左右半分のうちの一方側でドローン1からの画像が表示され、他方側で自車両位置が表示される。   As shown in the block diagram of FIG. 1, the control unit 39 houses a control unit 41, a GPS 43, and a transmission / reception unit 45 that performs communication with the transmission / reception unit 21 on the drone 1 side. Then, the position of the host vehicle 30 detected by the GPS 43 is displayed on a map displayed on the display 37, or a captured image from the drone 1 is displayed on the display 37. When both signals are present, for example, the image from the drone 1 is displayed on one side of the left and right halves of the screen of the display 37, and the host vehicle position is displayed on the other side.

ドローン1は、自車両30からの指令により、自車両30の前方上空に飛行される。そして、走行中の自車両30の進路方向前方の情景をドローン1の撮像カメラ7で撮像し続けるため、自車両30の制御部41には、ドローン1の飛行目標位置を設定する機能が設定される。例えばGPS43で検出される自車両30位置を基準に、一定の前方位置、一定の上空高さ位置などが飛行位置として設定される。そして、自車両30の送受信部45から、ドローン1の送受信部21(いずれも通信部)へ飛行目標位置が送信される。   The drone 1 flies over the front of the host vehicle 30 in response to a command from the host vehicle 30. In order to continue to capture the scene ahead of the traveling direction of the host vehicle 30 with the imaging camera 7 of the drone 1, the control unit 41 of the host vehicle 30 is set with a function of setting the flight target position of the drone 1. The For example, on the basis of the position of the host vehicle 30 detected by the GPS 43, a certain forward position, a certain sky height position, etc. are set as the flight position. Then, the flight target position is transmitted from the transmission / reception unit 45 of the host vehicle 30 to the transmission / reception unit 21 (both communication units) of the drone 1.

ドローン1の制御部13には、受信する飛行目標位置にしたがい、ドローン1の飛行を制御する制御プログラムが設定され、設定される飛行目標位置にしたがいドローン1が、走行する自車両30の進行方向前方の定位置を飛行し続けられる。そして、常に自車両30の前方画像が、ディスプレイ37を通じて自車両30のドライバー(運転者)に提示され、自車両30の運転支援が行われるものとしている。   The control unit 13 of the drone 1 is set with a control program for controlling the flight of the drone 1 according to the received flight target position, and the traveling direction of the host vehicle 30 on which the drone 1 travels according to the set flight target position. You can continue to fly forward. The front image of the host vehicle 30 is always presented to the driver (driver) of the host vehicle 30 through the display 37, and driving support of the host vehicle 30 is performed.

また運転支援装置には、こうした自車両30の前方を視認する機能だけでなく、運転支援中のドローン1を自車両30の運転状況にしたがいヘリポート35に帰還させる機能を有している。これは、自車両30が、例えば所定車速値以下の車速、ここでは信号待ちなど車速が「0」(停車)になる走行状態のときに、飛行中(運転支援中)のドローン1をヘリポート35に帰還させる着陸機能と、同ドローン1をヘリポート35から離陸させる離陸機能とを組み合わせたものである。   The driving support device has not only a function of visually checking the front of the host vehicle 30 but also a function of returning the drone 1 during driving support to the heliport 35 according to the driving state of the host vehicle 30. This is because when the host vehicle 30 is in a traveling state where the vehicle speed is “0” (stopped) such as waiting for a signal, for example, a vehicle speed equal to or lower than a predetermined vehicle speed value, the helicopter 35 This is a combination of a landing function for returning to the aircraft and a take-off function for taking off the drone 1 from the heliport 35.

すなわち、着陸機能は、例えば制御部41に、ドローン1に対し離発着指示を行う離着陸指示部49を設ける。さらに制御部41に、自車両30の車速を検出する車速センサ51やGPS43を組み合わせてなる。具体的には離着陸指示部49は、例えばGPS43の地図情報や車速センサ51の車速情報に基づき、自車両30が信号機P(図4に図示)の有る交差点で停車(車速が「0」)した状態、いわゆる信号待ちを検出する機能と、同信号待ちのとき自車両30から、飛行中のドローン1へ帰還信号を送信する機能とから構成される。これにより、自車両30が信号待ちといった、ドローン1が無くとも安全状態が得られる走行状況のときに、飛行中のドローン1を自車両30へ帰還させ、自車両30のヘリポート35に着陸させる。むろんドローン1の制御部13は、帰還信号を受けると、GPS19の自車両位置情報や撮像カメラ7の撮像情報に基づき、自車両30へ戻り、ヘリポート35に着陸する機能を有している。   That is, for the landing function, for example, the control unit 41 is provided with a take-off / landing instruction unit 49 that issues a take-off / landing instruction to the drone 1. Further, the control unit 41 is combined with a vehicle speed sensor 51 that detects the vehicle speed of the host vehicle 30 and a GPS 43. Specifically, the take-off / landing instruction unit 49 stops the vehicle 30 at the intersection where the traffic signal P (shown in FIG. 4) is present (vehicle speed is “0”) based on, for example, the map information of the GPS 43 and the vehicle speed information of the vehicle speed sensor 51. A state, so-called signal waiting function, and a function of transmitting a return signal from the own vehicle 30 to the drone 1 in flight when waiting for the signal. As a result, the drone 1 in flight returns to the host vehicle 30 and landed on the heliport 35 of the host vehicle 30 when the host vehicle 30 is in a traveling state where a safe state can be obtained without the drone 1 such as waiting for a signal. Of course, when receiving the return signal, the control unit 13 of the drone 1 has a function of returning to the own vehicle 30 and landing on the heliport 35 based on the own vehicle position information of the GPS 19 and the imaging information of the imaging camera 7.

また離陸機能は、例えば制御部41に接続した自車両30の前方を撮像する撮像装置、ここではルームミラー30bに設けた車載カメラ53と、自車両30の加速度を検出する加速度センサ55とを上記離着陸指示部49に組み合わせてなる。すなわち、離着陸指示部49は、自車両30の信号待ち後、車載カメラ53による自車両前方の撮像情報に基づき、前方の信号機Pが「青色」になることを検出する機能と、加速度センサ55の加速度情報に基づき自車両30が、青色信号での発進により加速を始めたことを検出する機能、同加速から定速走行であるところの自車両30の加速度値が所定値以下となる走行状態を検出する機能と、自車両30が定速走行状態になるとき、再びドローン1を自車両30前方上空の所定位置へ戻すべく離陸信号(再飛行信号)を送信する機能とから構成される。これにより、自車両30が定常走行になると、ドローン1は、ヘリポート35から離陸し、再び自車両30の前方上空を飛行する。つまり、ドローン1は、自車両30の信号待ちの間、自車両30上で一時的に待機される。そして、続く信号待ちの解除に伴い再飛行し、自車両30の運転を支援するモードに戻る。ちなみに待機中のドローン1は、運転停止(モータ5b:オフ)する。なお、ヘリポート35には、信号待ちで待機しているドローン1のバッテリ3aに対し、充電を行うための充電装置、例えば誘導式の充電装置57が設けられている。   The take-off function includes, for example, an imaging device that images the front of the host vehicle 30 connected to the control unit 41, here an in-vehicle camera 53 provided in the room mirror 30b, and an acceleration sensor 55 that detects the acceleration of the host vehicle 30. Combined with the take-off and landing instruction unit 49. That is, the take-off / landing instruction unit 49 waits for a signal from the host vehicle 30 and detects that the front traffic light P becomes “blue” based on imaging information in front of the host vehicle 53 by the in-vehicle camera 53, and the acceleration sensor 55. Based on the acceleration information, a function for detecting that the host vehicle 30 has started accelerating by starting with a blue signal, a running state in which the acceleration value of the host vehicle 30 that is running at a constant speed from the acceleration becomes a predetermined value or less. And a function of transmitting a take-off signal (re-flight signal) to return the drone 1 to a predetermined position in front of the host vehicle 30 again when the host vehicle 30 enters a constant speed running state. As a result, when the host vehicle 30 is in steady running, the drone 1 takes off from the heliport 35 and flies over the front of the host vehicle 30 again. That is, the drone 1 is temporarily on the host vehicle 30 while waiting for the signal of the host vehicle 30. Then, the aircraft re-flies with the cancellation of the subsequent signal waiting and returns to the mode for supporting the driving of the host vehicle 30. Incidentally, the waiting drone 1 stops its operation (motor 5b: off). The heliport 35 is provided with a charging device for charging the battery 3a of the drone 1 waiting for a signal, for example, an inductive charging device 57.

つぎに、このように構成された運転支援装置の作用を、図2に示すフローチャートや図3に示す自車両30の走行状態を参照して説明する。
例えば自車両30の走行中、交通状況などを考慮した運転を行うため、運転支援装置の助けを受けるとする。このときドライバーは、自車両30に設けた離着陸操作部(図示しない)を操作する。すると、ヘリポート35上のドローン1は、ホールド(フック機構)が解除され、さらに各モータ5bが駆動される。
Next, the operation of the driving support apparatus configured as described above will be described with reference to the flowchart shown in FIG. 2 and the traveling state of the host vehicle 30 shown in FIG.
For example, it is assumed that the driving support device receives help in order to perform driving in consideration of traffic conditions while the host vehicle 30 is traveling. At this time, the driver operates a take-off and landing operation unit (not shown) provided in the host vehicle 30. Then, the hold (hook mechanism) of the drone 1 on the heliport 35 is released, and each motor 5b is further driven.

これにより、図1および図3(a)に示されるようにドローン1は、自車両30から送信される制御信号によりモータ5bが駆動され、プロペラ5aがもたらす推進力によって、ヘリポート35から離陸し、自車両30の前方上空の所定位置を飛行する。すると、ドローン1に搭載の撮像カメラ7により撮像された自車両30の前方画像が、ディスプレイ37を通じて自車両30のドライバーに提示され、ステップS1のように運転支援、すなわちドライバーに前方状況に応じた運転を促す。   Thereby, as shown in FIG. 1 and FIG. 3A, the drone 1 is driven off from the heliport 35 by the propulsive force that the motor 5 b is driven by the control signal transmitted from the own vehicle 30 and the propeller 5 a provides, Fly over a predetermined position in front of the host vehicle 30. Then, the front image of the host vehicle 30 captured by the imaging camera 7 mounted on the drone 1 is presented to the driver of the host vehicle 30 through the display 37, and driving assistance, that is, the driver according to the front situation according to step S1. Encourage driving.

このとき、走行中の自車両30が、自車両30前方の交差点に有る信号機Pの「赤色」点灯の指示を受けて、交差点の停止線で停車したとする。続くステップS3は、離着陸指示部49により自車両30が信号待ちか否かを判定している。すると、離着陸指示部49は、入力されるGPS43の地図情報や車速センサ51の車速情報に基づき、自車両30が交差点で停車(車速:「0」)していると検出する。つまり、図3(b)に示されるように自車両30は、交差点で信号待ちをしていると判定される。   At this time, it is assumed that the traveling own vehicle 30 receives an instruction to turn on “red” of the traffic light P at the intersection in front of the own vehicle 30 and stops at the intersection stop line. In the subsequent step S3, the takeoff / landing instruction unit 49 determines whether or not the host vehicle 30 is waiting for a signal. Then, the takeoff and landing instruction unit 49 detects that the host vehicle 30 is stopped at the intersection (vehicle speed: “0”) based on the input map information of the GPS 43 and the vehicle speed information of the vehicle speed sensor 51. That is, as shown in FIG. 3B, it is determined that the host vehicle 30 is waiting for a signal at the intersection.

すると、ステップS5へ進み、ドローン1への帰還指示が行われる。具体的にはドローン1を帰還させるための指示信号(帰還信号)が、自車両30から送信される。すると、同信号を受けて、ステップS7に示されるようにドローン1は帰還する。すなわち、図3(b)に示されるようにドローン1は、例えばGPS19,43による位置情報や撮像カメラ7の撮像情報に基づく自立航法により、自車両30へ戻り、ヘリポート35(自車両30)上の所定位置に着陸する。着陸したドローン1は、フック機構によりヘリポート35上にホールドされる。ドローン1の着陸が確認されると、モータ5bの運転が停止される。また充電装置57によるバッテリ3a(ドローン1)の充電が始まる。   Then, it progresses to step S5 and the return instruction | indication to the drone 1 is performed. Specifically, an instruction signal (return signal) for returning the drone 1 is transmitted from the host vehicle 30. Then, receiving the signal, the drone 1 returns as shown in step S7. That is, as shown in FIG. 3B, the drone 1 returns to the host vehicle 30 by, for example, self-contained navigation based on position information by the GPS 19 and 43 and image pickup information of the imaging camera 7, and on the heliport 35 (own vehicle 30). Land at a predetermined position. The landing drone 1 is held on the heliport 35 by the hook mechanism. When the landing of the drone 1 is confirmed, the operation of the motor 5b is stopped. In addition, charging of the battery 3a (drone 1) by the charging device 57 starts.

一方、自車両30の車載カメラ53は、信号待ち自車両30の前方に位置する信号機Pを捉えている。信号機Pの表示が「青色」に変わると、続くステップS9における「信号が青か否か」の判定を介して、ステップS13へ進む。
信号機Pが「青色」になると、自車両30のドライバーは、発進操作、すなわちブレーキペダルから足を話して、アクセルペダル(いずれも図示しない)を踏み込む。これにより、図3(c)に示されるように自車両30は、発進し加速しながら交差点を通過する。このとき、離着陸指示部49は、加速度センサ55を通じ、自車両30の加速を検出している。自車両30は、次第に加速が減少して定常走行、例えば40〜60km/hで走行する定速走行に至る。
On the other hand, the in-vehicle camera 53 of the host vehicle 30 captures the traffic light P located in front of the host vehicle 30 waiting for a signal. When the display of the traffic light P changes to “blue”, the process proceeds to step S13 through determination of “whether the signal is blue” in the subsequent step S9.
When the traffic light P becomes “blue”, the driver of the host vehicle 30 starts the operation, that is, speaks his / her foot from the brake pedal, and depresses an accelerator pedal (none of which is shown). Thereby, as shown in FIG. 3C, the host vehicle 30 starts and accelerates and passes through the intersection. At this time, the takeoff / landing instruction unit 49 detects the acceleration of the host vehicle 30 through the acceleration sensor 55. The host vehicle 30 gradually decreases in acceleration and reaches steady running, for example, constant speed running at 40 to 60 km / h.

上記ステップS13は、加速度センサ55で検出される加速状況に基づき、自車両30の定常走行状態が所定時間以上継続したか否かを判定している。具体的には、自車両30の加速値が所定加速値以下となる走行状態が所定時間続くことで、自車両30が定常走行状態に入ったか否かを判定している。そして、自車両30が定常走行状態へ移るにしたがい、ステップS13からステップS15へと進み、ドローン1へ離陸指示(再飛行指示)をする。具体的には、自車両30から、再び自車両30前方の上空の定位置へドローン1を戻すための指示信号(離陸信号)が送信される。   The step S13 determines whether or not the steady running state of the host vehicle 30 has continued for a predetermined time or more based on the acceleration state detected by the acceleration sensor 55. Specifically, it is determined whether or not the host vehicle 30 has entered a steady driving state when a driving state in which the acceleration value of the host vehicle 30 is equal to or less than a predetermined acceleration value continues for a predetermined time. Then, as the host vehicle 30 moves to the steady running state, the process proceeds from step S13 to step S15, and a take-off instruction (re-flight instruction) is given to the drone 1. Specifically, an instruction signal (takeoff signal) for returning the drone 1 to a fixed position in front of the host vehicle 30 is transmitted from the host vehicle 30 again.

すると、ドローン1は、ヘリポート35から離陸して、再び自車両30の前方上空へ向かい飛行し、再び上述した自車両30の運転を支援するモードに入る(復帰)。
以上のように運転支援装置は、自車両30の運転支援をしているドローン1を、安全が確保される走行状態(自車両30の車速が所定以下)のときに自車両30に着陸させ、自車両30の発進走行にしたがい再び離陸させ飛行させるようにしたことにより、ドローン1は、運転支援がなくともすむ走行状況(自車両30)のときには、自車両30に帰還され、ヘリポート35上で待機され続ける。つまり、ドローン1は、この待機している間、停止され続けるので、ドローン1の飛行に必要な電力消費量(エネルギー)を節約することができる。
Then, the drone 1 takes off from the heliport 35, flies again toward the upper front of the host vehicle 30, and enters the mode for supporting the driving of the host vehicle 30 again (return).
As described above, the driving support device causes the drone 1 that supports driving of the host vehicle 30 to land on the host vehicle 30 in a traveling state in which safety is ensured (the vehicle speed of the host vehicle 30 is equal to or lower than a predetermined value) The drone 1 is returned to the host vehicle 30 in a driving situation (host vehicle 30) that does not require driving support by taking off and flying again according to the start of the host vehicle 30. Continue to wait. That is, since the drone 1 continues to be stopped while waiting, the power consumption (energy) necessary for the flight of the drone 1 can be saved.

特にドローン1の離陸は、自車両30の加速を利用して、十分に加速されてから行われるので、ドローン1を加速する必要な電力消費量(エネルギー消費)は最小限ですむ。すなわち、自車両30が停車状態(車速が「0」)から定常走行状態(例えば40〜60km/h)に至る走行をすることを想定した場合、ドローン1は、図4中のδ線に示されるように自車両30の走行状態にしたがい、自車両30の停車状態から定常走行状態になるまでの全域で加速をしないと、自車両30の前方へは飛行できない。   In particular, since the take-off of the drone 1 is performed after sufficiently accelerating using the acceleration of the host vehicle 30, the power consumption (energy consumption) required to accelerate the drone 1 is minimized. That is, when it is assumed that the host vehicle 30 travels from a stop state (vehicle speed is “0”) to a steady travel state (for example, 40 to 60 km / h), the drone 1 is indicated by a δ line in FIG. Thus, according to the traveling state of the host vehicle 30, it is not possible to fly ahead of the host vehicle 30 unless acceleration is performed in the entire region from the stop state of the host vehicle 30 to the steady traveling state.

特に自車両30の発進時のアクセルペダルの踏込み量は大きく、定常走行状態になるにしたがいアクセルペダルの踏込み量は小さい。このため、ドローン1の飛行は、離陸してから自車両30の定常走行状態に近付くまでの領域αでは、アクセルペダルの大きな踏込み量がもたらす自車両30の加速具合に応じた大きな加速が求められる。つまり、領域αの飛行は、ドローン1の電力消費量(エネルギー消費)の負担は大きく、これがドローン1の飛行時間を短くする要因の一つとなる。   In particular, the amount of depression of the accelerator pedal when the host vehicle 30 starts is large, and the amount of depression of the accelerator pedal is small as the vehicle is in a steady running state. For this reason, the flight of the drone 1 requires a large acceleration in accordance with the acceleration degree of the host vehicle 30 caused by the large depression amount of the accelerator pedal in the region α from the takeoff to the time when the host vehicle 30 approaches the steady running state. . That is, in the flight in the region α, the load of the power consumption (energy consumption) of the drone 1 is large, and this is one of the factors that shorten the flight time of the drone 1.

本実施形態は、ドローン1を、自車両30が定常走行状態になるときに離陸、すなわち自車両30の加速をドローン1の加速として利用しながら離陸させるので、ドローン1の領域Sにおける大きな加速は不要となり、ドローン1の加速時に要する電力消費量(エネルギー消費)が抑えられることになる。特に領域Sでの電力消費量は大きいので、効率よく、ドローン1の飛行に費やすエネルギーを節約することができる。   In the present embodiment, the drone 1 is taken off when the host vehicle 30 is in a steady running state, that is, the takeoff is performed while using the acceleration of the host vehicle 30 as the acceleration of the drone 1. It becomes unnecessary and the power consumption (energy consumption) required for accelerating the drone 1 is suppressed. In particular, since the power consumption in the region S is large, it is possible to efficiently save energy consumed for the flight of the drone 1.

したがって、ドローン1は、節約されたバッテリ電力(電力エネルギー)分、ドローン1の飛行時間を延長させることができ、ドローン1による自車両30の運転支援の範囲を拡げることができる(向上)。
特に、ドローン1の着陸の指示や離陸の指示は(離着陸指示部49)、自車両30の市街走行において頻繁に起きる信号機Pの信号待ちに基づき行うので、十分なドローン1のエネルギーの節約効果が期待できる。
Accordingly, the drone 1 can extend the flight time of the drone 1 by the saved battery power (power energy), and can expand the range of driving assistance of the host vehicle 30 by the drone 1 (improvement).
In particular, since the drone 1 landing instruction and takeoff instruction (takeoff / landing instruction unit 49) are performed based on the signal waiting of the traffic light P that frequently occurs when the host vehicle 30 travels in the city, the drone 1 has a sufficient energy saving effect. I can expect.

しかも、ドローン1がヘリポート35に帰還している間を利用して、充電装置57により、ドローン1に搭載のバッテリ3aを充電するようにしたことで、一層、ドローン1の飛行時間を延長させることができる。
なお、上述した一実施形態における各構成および組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能であることはいうまでもない。また本発明は、上述した一実施形態によって限定されることはなく、「特許請求の範囲」によってのみ限定されることはいうまでもない。例えば一実施形態では、ドローン(無人飛行体)は、バッテリの電力で飛行する構造を例に挙げたが、これに限らず、燃料をエネルギー源に飛行を行うエンジン駆動式のドローンでもよく、ドローンの構造には限定されるものではない。
Moreover, by using the charging device 57 to charge the battery 3a mounted on the drone 1 while the drone 1 is returning to the heliport 35, the flight time of the drone 1 can be further extended. Can do.
In addition, each structure, combination, etc. in one embodiment mentioned above are examples, and it cannot be overemphasized that addition, omission, substitution, and other change of a structure are possible within the range which does not deviate from the meaning of the present invention. Absent. Further, the present invention is not limited to the above-described embodiment, and needless to say, is limited only by the “claims”. For example, in one embodiment, the drone (unmanned aerial vehicle) is exemplified as a structure that flies with battery power, but is not limited thereto, and may be an engine-driven drone that flies using fuel as an energy source. The structure is not limited.

1 ドローン(無人飛行体)
3a バッテリ
7 撮像カメラ(撮像装置)
30 自車両
35 ヘリポート(離着陸部)
37 ディスプレイ(提示部)
41 制御部
49 離着陸指示部
57 充電装置
1 drone (unmanned aerial vehicle)
3a battery 7 imaging camera (imaging device)
30 Vehicle 35 Heliport (takeoff and landing part)
37 Display (presentation part)
41 control unit 49 take-off and landing instruction unit 57 charging device

Claims (3)

自車両の周辺を飛行可能な、撮像装置が付いた無人飛行体と、
前記撮像装置で撮像した画像を前記自車両の運転者に提示する提示部と、
前記自車両に設けられた、前記無人飛行体の離着陸が可能な離着陸部と、
前記無人飛行体の飛行を制御する制御部とを備え、
前記制御部は、
前記自車両の車速が所定車速値以下の走行状態のとき、前記無人飛行体を前記離着陸部に着陸させる指示を行い、当該無人飛行体の着陸後の前記自車両の加速が所定加速値以下となった走行状態のとき、前記離着陸部から前記無人飛行体を離陸させる指示を行う離着陸指示部を有する
ことを特徴とする車両の運転支援装置。
An unmanned air vehicle with an imaging device capable of flying around its own vehicle;
A presentation unit for presenting an image captured by the imaging device to a driver of the host vehicle;
A take-off and landing section provided in the host vehicle, capable of taking off and landing of the unmanned air vehicle,
A control unit for controlling the flight of the unmanned air vehicle,
The controller is
When the vehicle speed of the host vehicle is in a traveling state equal to or lower than a predetermined vehicle speed value, an instruction to land the unmanned air vehicle on the take-off and landing unit is provided, and the acceleration of the host vehicle after landing of the unmanned air vehicle is equal to or lower than a predetermined acceleration value. A vehicle driving support device comprising: a take-off / landing instruction unit that gives an instruction to take off the unmanned air vehicle from the take-off / landing unit when the vehicle is in a running state.
前記離着陸指示部は、前記自車両が信号待ちで停車するとき、前記無人飛行体を前記離着陸部に着陸させる指示を行うことを特徴とする請求項1に記載の車両の運転支援装置。   2. The vehicle driving support device according to claim 1, wherein the take-off / landing instruction unit gives an instruction to land the unmanned air vehicle on the take-off / landing unit when the own vehicle stops waiting for a signal. 前記離着陸指示部は、前記無人飛行体の前記離着陸部への着陸後、前記信号待ちの前記自車両が発進して定常走行になるとき、前記離着陸部から前記無人飛行体を離陸させる指示を行うことを特徴とする請求項1又は請求項2に記載の車両の運転支援装置。   The take-off / landing instruction unit gives an instruction to take off the unmanned air vehicle from the take-off / landing unit when the host vehicle waiting for the signal starts and goes into steady running after the unmanned air vehicle has landed on the take-off / landing unit. The vehicle driving support device according to claim 1 or 2, characterized in that
JP2015141356A 2015-07-15 2015-07-15 Vehicle driving support device Active JP6583621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141356A JP6583621B2 (en) 2015-07-15 2015-07-15 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141356A JP6583621B2 (en) 2015-07-15 2015-07-15 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2017021757A true JP2017021757A (en) 2017-01-26
JP6583621B2 JP6583621B2 (en) 2019-10-02

Family

ID=57890144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141356A Active JP6583621B2 (en) 2015-07-15 2015-07-15 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP6583621B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095999A (en) * 2018-02-08 2019-08-19 현대자동차주식회사 Unmanned aerial vehicle and system comprising the same and method for detecting route of unmanned aerial vehicle
WO2020116496A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
WO2020116495A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
WO2020153368A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program
JP2020138681A (en) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 Control system for unmanned flight vehicle
WO2020195933A1 (en) * 2019-03-27 2020-10-01 ソニー株式会社 Information processing device, method, and program
WO2021005783A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Control device and control method
JP2021026483A (en) * 2019-08-05 2021-02-22 株式会社フジタ Management device for a plurality of vehicles
CN113165753A (en) * 2018-12-05 2021-07-23 株式会社尼罗沃克 Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and unmanned aerial vehicle system control program
CN113682227A (en) * 2020-05-19 2021-11-23 马自达汽车株式会社 Vehicle surroundings monitoring system
CN114715390A (en) * 2022-06-07 2022-07-08 西华大学 Auxiliary unmanned aerial vehicle, emergency rescue system and emergency rescue method
US11873100B2 (en) 2018-12-05 2024-01-16 Nileworks Inc. Drone system, drone, movable body, drone system control method, and drone system control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180326A (en) * 2004-12-24 2006-07-06 Equos Research Co Ltd Status monitoring system for vehicle
JP2008074275A (en) * 2006-09-21 2008-04-03 Aisin Aw Co Ltd Operation assistant device, operation assistant system and operation assistant method
US20150102154A1 (en) * 2013-10-15 2015-04-16 Elwha Llc Motor vehicle with captive aircraft
US9056676B1 (en) * 2014-05-30 2015-06-16 SZ DJI Technology Co., Ltd Systems and methods for UAV docking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180326A (en) * 2004-12-24 2006-07-06 Equos Research Co Ltd Status monitoring system for vehicle
JP2008074275A (en) * 2006-09-21 2008-04-03 Aisin Aw Co Ltd Operation assistant device, operation assistant system and operation assistant method
US20150102154A1 (en) * 2013-10-15 2015-04-16 Elwha Llc Motor vehicle with captive aircraft
US9056676B1 (en) * 2014-05-30 2015-06-16 SZ DJI Technology Co., Ltd Systems and methods for UAV docking

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643528B1 (en) * 2018-02-08 2024-03-06 현대자동차주식회사 Unmanned aerial vehicle and system comprising the same and method for detecting route of unmanned aerial vehicle
KR20190095999A (en) * 2018-02-08 2019-08-19 현대자동차주식회사 Unmanned aerial vehicle and system comprising the same and method for detecting route of unmanned aerial vehicle
CN113165753B (en) * 2018-12-05 2024-03-26 株式会社尼罗沃克 Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and computer-readable storage medium
JPWO2020116496A1 (en) * 2018-12-05 2021-10-14 株式会社ナイルワークス Drone system
WO2020116496A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
JP7329858B2 (en) 2018-12-05 2023-08-21 株式会社ナイルワークス drone system
WO2020116495A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
US11873100B2 (en) 2018-12-05 2024-01-16 Nileworks Inc. Drone system, drone, movable body, drone system control method, and drone system control program
CN113165753A (en) * 2018-12-05 2021-07-23 株式会社尼罗沃克 Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and unmanned aerial vehicle system control program
JPWO2020116495A1 (en) * 2018-12-05 2021-10-07 株式会社ナイルワークス Drone system
JP7199648B2 (en) 2019-01-21 2023-01-06 株式会社ナイルワークス Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program
JPWO2020153368A1 (en) * 2019-01-21 2021-10-28 株式会社ナイルワークス Drone system, drone, moving object, motion determination device, drone system control method, and drone system control program
WO2020153368A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program
JP2020138681A (en) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 Control system for unmanned flight vehicle
US12017768B2 (en) 2019-03-27 2024-06-25 Sony Group Corporation Information processing apparatus and information processing method
WO2020195933A1 (en) * 2019-03-27 2020-10-01 ソニー株式会社 Information processing device, method, and program
JPWO2021005783A1 (en) * 2019-07-11 2021-12-09 三菱電機株式会社 Control device
WO2021005783A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Control device and control method
JP7282176B2 (en) 2019-07-11 2023-05-26 三菱電機株式会社 Control device
JP7377642B2 (en) 2019-08-05 2023-11-10 株式会社フジタ Management device for multiple vehicles
JP2021026483A (en) * 2019-08-05 2021-02-22 株式会社フジタ Management device for a plurality of vehicles
CN113682227B (en) * 2020-05-19 2023-12-01 马自达汽车株式会社 Vehicle periphery monitoring system
CN113682227A (en) * 2020-05-19 2021-11-23 马自达汽车株式会社 Vehicle surroundings monitoring system
CN114715390A (en) * 2022-06-07 2022-07-08 西华大学 Auxiliary unmanned aerial vehicle, emergency rescue system and emergency rescue method

Also Published As

Publication number Publication date
JP6583621B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6583621B2 (en) Vehicle driving support device
US20240096225A1 (en) Deep stall aircraft landing
US20180186283A1 (en) Systems and methods for automatically deploying road hazard indicators
US11846940B2 (en) Methods and apparatus for vehicle control
JP6239567B2 (en) Information transmission device
US20170072755A1 (en) Amphibious vertical takeoff and landing (vtol) unmanned device with ai (artificial intelligence) data processing mobile and wearable applications apparatus, same as jet drone, jet flying car, private vtol jet, personal jet aircraft with gsp vtol jet engines and self-jet charged and solar cells powered hybrid super jet electrical car all in one (electricity/fuel)
CN106292684B (en) Vehicle carrying aircraft
JP2017021755A (en) Vehicular operation support apparatus
US9956875B2 (en) Method and device for a vehicle configured for automatic longitudinal guidance
WO2013062608A2 (en) Inverted-landing aircraft
JP2017011614A (en) Driving support control device
US11807363B2 (en) On-vehicle aircraft control system
KR20220014438A (en) Autonomous vehicle and emergency response method using drone thereof
JP6631776B2 (en) Vehicle driving support device
JP2017007603A (en) Operation support controlling apparatus
WO2018087614A1 (en) Amphibious vertical takeoff and landing unmanned device
JP2017010445A (en) Driving support control device
JP2017199172A (en) Peripheral situation presentation system for vehicle, unmanned flying body, and peripheral situation presentation method for vehicle
KR20190052849A (en) Apparatus for controlling taking off and landing of a dron in a vehicle and method thereof
JP2005008059A (en) Automatic flight control system
JP6547446B2 (en) Driver assistance control device
US20210365692A1 (en) Vehicle periphery monitoring system
JP7409225B2 (en) Vehicle-mounted aircraft launch and landing platform device
US20240199228A1 (en) Unmanned robot for urban air mobility vehicle and urban air mobility vehicle
JP2017010446A (en) Driving support control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190820

R151 Written notification of patent or utility model registration

Ref document number: 6583621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151