JP2017015369A - Heat exchanging element and humidity adjuster element - Google Patents

Heat exchanging element and humidity adjuster element Download PDF

Info

Publication number
JP2017015369A
JP2017015369A JP2015135555A JP2015135555A JP2017015369A JP 2017015369 A JP2017015369 A JP 2017015369A JP 2015135555 A JP2015135555 A JP 2015135555A JP 2015135555 A JP2015135555 A JP 2015135555A JP 2017015369 A JP2017015369 A JP 2017015369A
Authority
JP
Japan
Prior art keywords
flat plate
flow path
fluid
plate member
humidity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135555A
Other languages
Japanese (ja)
Inventor
雅旦 田口
Masakatsu Taguchi
雅旦 田口
山口 秀樹
Hideki Yamaguchi
秀樹 山口
健太郎 植田
Kentaro Ueda
健太郎 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015135555A priority Critical patent/JP2017015369A/en
Publication of JP2017015369A publication Critical patent/JP2017015369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanging element and a humidity adjuster element capable of improving a heat exchanging efficiency even in the case that a flat plate member is constituted by material quality of low coefficient of thermal conductivity.SOLUTION: A plurality of flat plate members 1 are stacked up under a state in which either a first flow passage 20a where first fluid L1 passes or a second flow passage 20b where second fluid L2 passes is formed at each of flat plate members 1, the first flow passage 20a and the second flow passage 20b are alternately arranged in a direction of stack of the flat plate members 1, they can be configured to be heat exchangeable between the first flow passage 20a and the second flow passage 20b through the flat plate members 1, the flat plate members 1 are configured by any one of material quality such as resin, paper, glass and ceramics and at least one of a first surface 1a facing against the first flow passage 20a of the flat plate members 1 and a second surface 1b facing against the second flow passage 20b of the flat plate members 1 is formed with a metallic film 7.SELECTED DRAWING: Figure 3

Description

本発明は、複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、平板部材の積層方向において、第1流路と2流路とが交互に配設され、第1流路と第2流路との間で前記平板部材を介して熱交換可能に構成された熱交換素子及び調湿素子に関する。   In the present invention, a plurality of flat plate members are stacked in a state of forming a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members, In the laminating direction of the flat plate member, the first flow path and the second flow path are alternately arranged, and heat is configured to be able to exchange heat between the first flow path and the second flow path via the flat plate member. The present invention relates to an exchange element and a humidity control element.

かかる熱交換素子の従来例として、セラミック又はガラス製の一対の平板部材の間に第1流路を形成するとともに、プラスチック製の一対の平板部材の間に第2流路を形成して、第1流路を形成する平板部材と第2流路を形成する平板部材とを接着させる状態で積層することにより、平板部材の積層方向において、第1流路と第2流路とが交互に配設され、第1流路と第2流路との間で平板部材を介して熱交換可能に構成されたものがある(例えば、特許文献1参照)。   As a conventional example of such a heat exchange element, a first flow path is formed between a pair of flat plate members made of ceramic or glass, and a second flow path is formed between a pair of flat plate members made of plastic. By laminating the flat plate member forming the first flow path and the flat plate member forming the second flow path, the first flow path and the second flow path are alternately arranged in the laminating direction of the flat plate member. There is one that is configured to be able to exchange heat between a first flow path and a second flow path via a flat plate member (for example, see Patent Document 1).

特開2003−80021号公報Japanese Patent Laid-Open No. 2003-80021

上記特許文献1の熱交換素子では、第1流路と第2流路との間で平板部材を介して熱交換が行われるが、平板部材が、熱伝導率の低いセラミック板又はガラス板に、プラスチック板を接着して構成されているので、熱交換素子の熱交換効率が低くなるという問題があった。   In the heat exchange element of Patent Document 1, heat exchange is performed between the first flow path and the second flow path via a flat plate member. The flat plate member is formed on a ceramic plate or a glass plate having low thermal conductivity. Since the plastic plate is adhered, there is a problem that the heat exchange efficiency of the heat exchange element is lowered.

本発明は、熱伝導率の低い材質により平板部材が構成されている場合において、熱交換効率を向上することができる熱交換素子及び調湿素子を提供することにある。   An object of the present invention is to provide a heat exchange element and a humidity control element that can improve heat exchange efficiency when a flat plate member is made of a material having low thermal conductivity.

本発明に係る熱交換素子は、複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
前記平板部材の積層方向において、前記第1流路と前記第2流路とが交互に配設され、前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成された熱交換素子であって、その特徴構成は、
前記平板部材が、樹脂、紙、ガラス、及び、セラミックの何れか1つの材質により構成され、
前記平板部材の前記第1流路に面する第1面及び前記平板部材の前記第2流路に面する第2面の少なくとも一方に金属膜が形成されている点にある。
In the heat exchange element according to the present invention, the plurality of flat plate members form a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members. Laminated in a state,
In the laminating direction of the flat plate member, the first flow path and the second flow path are alternately arranged, and heat exchange is performed between the first flow path and the second flow path via the flat plate member. It is a heat exchange element that can be configured, and its characteristic configuration is:
The flat plate member is made of any one material of resin, paper, glass, and ceramic,
A metal film is formed on at least one of the first surface of the flat plate member facing the first flow path and the second surface of the flat plate member facing the second flow path.

上記特徴構成によれば、平板部材の第1流路に面する第1面及び平板部材の第2流路に面する第2面の少なくとも一方に金属膜が形成されている。これにより、第1流体又は第2流体から金属膜を介して平板部材へ伝熱する場合、及び、平板部材から金属膜を介して第1流体又は第2流体へ伝熱する場合において、第1面又は第2面に形成された金属膜が有する良好な熱伝導性により、第1流体又は第2流体と平板部材との間における伝熱面積が拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。   According to the above characteristic configuration, the metal film is formed on at least one of the first surface facing the first flow path of the flat plate member and the second surface facing the second flow path of the flat plate member. Thereby, in the case of transferring heat from the first fluid or the second fluid to the flat plate member through the metal film, and in the case of transferring heat from the flat plate member to the first fluid or the second fluid through the metal film, the first Since the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the good thermal conductivity of the metal film formed on the surface or the second surface, the first fluid or the second fluid Heat transfer between the flat plate members can be promoted.

つまり、第1流体又は第2流体から金属膜を介して平板部材へ伝熱する場合においては、例えば、第1流体又は第2流体が、第1流路内又は第2流路内において均等に通流せず、一部に偏る状態で通流している場合において、第1流体又は第2流体から金属膜に伝えられた熱が、金属膜の全体に広がりながら平板部材に伝えられることとなる。よって、上述の如く、第1流体又は第2流体と平板部材との間における伝熱面積が金属膜により拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。   That is, when heat is transferred from the first fluid or the second fluid to the flat plate member via the metal film, for example, the first fluid or the second fluid is evenly distributed in the first flow path or the second flow path. In the case where the current is not flowing but is partially biased, the heat transferred from the first fluid or the second fluid to the metal film is transferred to the flat plate member while spreading over the entire metal film. Therefore, as described above, the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the metal film, so that the heat transfer between the first fluid or the second fluid and the flat plate member is promoted. be able to.

また、金属膜により、第1流体又は第2流体と平板部材との間の伝熱面積が拡大した状態で、平板部材の第1面から第2面に、又は、第2面から第1面に伝熱するので、平板部材内における伝熱を促進することができる。   In addition, with the metal film, in a state where the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded, the flat plate member is changed from the first surface to the second surface, or from the second surface to the first surface. Therefore, heat transfer in the flat plate member can be promoted.

一方、平板部材から金属膜を介して第1流体又は第2流体へ伝熱する場合においては、例えば、第1流体又は第2流体から平板部材を介して金属膜に伝えられた熱が、金属膜の全体に伝熱して第1流体又は第2流体に伝えられることとなる。よって、上述の如く、第1流体又は第2流体と平板部材との間における伝熱面積が金属膜により拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。
よって、金属よりも熱伝導率の低い材質(樹脂、紙、ガラス、又は、セラミック)により平板部材が構成されている場合において、第1流路と第2流路との間の熱交換効率を向上することができる。
On the other hand, when heat is transferred from the flat plate member to the first fluid or the second fluid via the metal film, for example, the heat transferred from the first fluid or the second fluid to the metal film via the flat plate member is a metal. Heat is transferred to the entire membrane and transferred to the first fluid or the second fluid. Therefore, as described above, the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the metal film, so that the heat transfer between the first fluid or the second fluid and the flat plate member is promoted. be able to.
Therefore, when the flat plate member is made of a material (resin, paper, glass, or ceramic) having a lower thermal conductivity than metal, the heat exchange efficiency between the first flow path and the second flow path is improved. Can be improved.

本発明に係る調湿素子は、複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
前記平板部材の積層方向において、前記第1流路と前記第2流路とが交互に配設され、前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成された調湿素子であって、その特徴構成は、
前記平板部材が、樹脂、紙、ガラス、及び、セラミックの何れか1つの材質により構成され、
前記平板部材の前記第1流路に面する第1面及び前記平板部材の前記第2流路に面する第2面の少なくとも一方に金属膜が形成され、かつ、前記第1面及び前記第2面の一方に、水分を吸脱着できる吸湿剤が保持された点にある。
In the humidity control element according to the present invention, the plurality of flat plate members form a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members. Laminated in a state,
In the laminating direction of the flat plate member, the first flow path and the second flow path are alternately arranged, and heat exchange is performed between the first flow path and the second flow path via the flat plate member. A humidity control element configured to be capable of having a characteristic configuration
The flat plate member is made of any one material of resin, paper, glass, and ceramic,
A metal film is formed on at least one of the first surface of the flat plate member facing the first flow path and the second surface of the flat plate member facing the second flow path, and the first surface and the first One of the two surfaces is that a moisture absorbent capable of absorbing and desorbing moisture is held.

上記特徴構成によれば、平板部材の第1流路に面する第1面及び平板部材の第2流路に面する第2面の少なくとも一方に金属膜が形成されている。これにより、第1流体又は第2流体から金属膜を介して平板部材へ伝熱する場合、及び、平板部材から金属膜を介して第1流体又は第2流体へ伝熱する場合において、第1面又は第2面に形成された金属膜が有する良好な熱伝導性により、第1流体又は第2流体と平板部材との間における伝熱面積が拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。   According to the above characteristic configuration, the metal film is formed on at least one of the first surface facing the first flow path of the flat plate member and the second surface facing the second flow path of the flat plate member. Thereby, in the case of transferring heat from the first fluid or the second fluid to the flat plate member through the metal film, and in the case of transferring heat from the flat plate member to the first fluid or the second fluid through the metal film, the first Since the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the good thermal conductivity of the metal film formed on the surface or the second surface, the first fluid or the second fluid Heat transfer between the flat plate members can be promoted.

つまり、第1流体又は第2流体から金属膜を介して平板部材へ伝熱する場合においては、例えば、第1流体又は第2流体が、第1流路内又は第2流路内において均等に通流せず、一部に偏る状態で通流している場合において、第1流体又は第2流体から金属膜に伝えられた熱が、金属膜の全体に広がりながら平板部材に伝えられることとなる。よって、上述の如く、第1流体又は第2流体と平板部材との間における伝熱面積が金属膜により拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。   That is, when heat is transferred from the first fluid or the second fluid to the flat plate member via the metal film, for example, the first fluid or the second fluid is evenly distributed in the first flow path or the second flow path. In the case where the current is not flowing but is partially biased, the heat transferred from the first fluid or the second fluid to the metal film is transferred to the flat plate member while spreading over the entire metal film. Therefore, as described above, the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the metal film, so that the heat transfer between the first fluid or the second fluid and the flat plate member is promoted. be able to.

また、金属膜により、第1流体又は第2流体と平板部材との間の伝熱面積が拡大した状態で、平板部材の第1面から第2面に、又は、第2面から第1面に伝熱するので、平板部材内における伝熱を促進することができる。   In addition, with the metal film, in a state where the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded, the flat plate member is changed from the first surface to the second surface, or from the second surface to the first surface. Therefore, heat transfer in the flat plate member can be promoted.

一方、平板部材から金属膜を介して第1流体又は第2流体へ伝熱する場合においては、例えば、第1流体又は第2流体から平板部材を介して金属膜に伝えられた熱が、金属膜の全体に伝熱して第1流体又は第2流体に伝えられることとなる。よって、上述の如く、第1流体又は第2流体と平板部材との間における伝熱面積が金属膜により拡大するので、第1流体又は第2流体と平板部材との間の伝熱を促進することができる。
よって、金属よりも熱伝導率の低い材質(樹脂、紙、ガラス、又は、セラミック)により平板部材が構成されている場合において、第1流路と第2流路との間の熱交換効率を向上することができる。
On the other hand, when heat is transferred from the flat plate member to the first fluid or the second fluid via the metal film, for example, the heat transferred from the first fluid or the second fluid to the metal film via the flat plate member is a metal. Heat is transferred to the entire membrane and transferred to the first fluid or the second fluid. Therefore, as described above, the heat transfer area between the first fluid or the second fluid and the flat plate member is expanded by the metal film, so that the heat transfer between the first fluid or the second fluid and the flat plate member is promoted. be able to.
Therefore, when the flat plate member is made of a material (resin, paper, glass, or ceramic) having a lower thermal conductivity than metal, the heat exchange efficiency between the first flow path and the second flow path is improved. Can be improved.

さらに、第1面又は第2面に、水分を吸脱着できる吸湿剤が保持されているので、吸湿剤が保持された流路を流れる流体に含まれる水分を吸着して、その流体から水分を除去することができる。また、吸湿剤による水分の吸着により吸着熱が発生するが、上述の如く、第1流路と第2流路との間において熱交換を行うことができるので、吸湿剤が保持されて吸着熱が発生する流路を、吸湿剤が保持されていない流路を流れる流体によって冷却することができる。
一方、吸湿剤が水分を吸着している場合には、吸湿剤から第1流体又は第2流体に対して水分を脱着して、第1流体又は第2流体に水分を付加することができる。
Furthermore, since a moisture absorbent capable of adsorbing and desorbing moisture is held on the first surface or the second surface, moisture contained in the fluid flowing through the flow path holding the moisture absorbent is adsorbed, and moisture is removed from the fluid. Can be removed. Further, although heat of adsorption is generated by moisture adsorption by the hygroscopic agent, as described above, heat exchange can be performed between the first channel and the second channel, so that the hygroscopic agent is retained and the heat of adsorption is retained. It is possible to cool the flow path where the water is generated by the fluid flowing through the flow path where the hygroscopic agent is not retained.
On the other hand, when the moisture absorbent adsorbs moisture, moisture can be desorbed from the moisture absorbent to the first fluid or the second fluid to add moisture to the first fluid or the second fluid.

本発明に係る調湿素子の更なる特徴構成は、前記複数の平板部材の前記第1面及び前記第2面の何れか一方に、前記吸湿剤が保持され、他方に金属膜が形成されている点にある。   According to a further characteristic configuration of the humidity control element according to the present invention, the moisture absorbent is held on one of the first surface and the second surface of the plurality of flat plate members, and a metal film is formed on the other. There is in point.

上記特徴構成によれば、平板部材の一方の面に吸湿剤を保持させて、流体に含まれる水分を吸着して除湿することができる。一方、吸湿剤を保持させない平板部材の他方の面には、金属膜を形成することにより、流体と平板部材との間の伝熱を促進することができる。   According to the above characteristic configuration, the moisture absorbent can be held on one surface of the flat plate member, and moisture contained in the fluid can be adsorbed and dehumidified. On the other hand, heat transfer between the fluid and the flat plate member can be promoted by forming a metal film on the other surface of the flat plate member that does not hold the hygroscopic agent.

本発明に係る調湿素子の更なる特徴構成は、前記第1流路に前記第1流体を誘導する第1誘導部材が設けられ、前記第2流路に前記第2流体を誘導する第2誘導部材が設けられている点にある。   A further characteristic configuration of the humidity control element according to the present invention is a second feature in which a first guide member for guiding the first fluid is provided in the first flow path, and the second fluid is guided in the second flow path. The guiding member is provided.

上記特徴構成によれば、第1誘導部材により第1流路内における第1流体の流れ方向を制御することができる。また、第2誘導部材により第2流路内において第2流体の流れ方向を制御することができる。よって、例えば、第1誘導部材により第1流体が第1流路の全面に均等に流れる状態とすることができるので、第1流体と平板部材の第1面との間の伝熱を促進することができる。また、例えば、第2誘導部材により第2流体が第2流路の全面に均等に流れる状態とすることができるので、第2流体と平板部材の第2面との間の伝熱を促進することができる。   According to the above characteristic configuration, the flow direction of the first fluid in the first flow path can be controlled by the first guide member. In addition, the flow direction of the second fluid can be controlled in the second flow path by the second guide member. Therefore, for example, since the first fluid can be made to flow uniformly over the entire surface of the first flow path by the first guide member, heat transfer between the first fluid and the first surface of the flat plate member is promoted. be able to. Further, for example, since the second fluid can be made to flow evenly over the entire surface of the second flow path by the second guide member, heat transfer between the second fluid and the second surface of the flat plate member is promoted. be able to.

本発明に係る調湿素子の更なる特徴構成は、前記第1流路が前記第2流路によって冷却される流路であり、
前記第1面及び前記第1誘導部材に、前記吸湿剤が保持されている点にある。
A further characteristic configuration of the humidity control element according to the present invention is a channel in which the first channel is cooled by the second channel,
The hygroscopic agent is held on the first surface and the first guide member.

上記特徴構成によれば、第1流路内に設ける吸湿剤の量を増加させることができるので、第1流路において第1流体に含まれる水分を吸湿剤に吸着させる除湿を目的とする時には、調湿対象空間に供給するために、第1流体からより多くの水分を除去することができる。一方、第1流路において第1流体に対して吸湿剤から水分を脱着させる加湿を目的とする時には、調湿対象空間に供給するために、第1流体に対してより多くの水分を加えることができる。   According to the above characteristic configuration, the amount of the hygroscopic agent provided in the first flow path can be increased. Therefore, when the purpose of dehumidification is to adsorb the moisture contained in the first fluid to the hygroscopic agent in the first flow path. More water can be removed from the first fluid in order to supply the humidity control target space. On the other hand, when the purpose of humidification is to desorb moisture from the hygroscopic agent to the first fluid in the first flow path, more moisture is added to the first fluid in order to supply to the humidity control target space. Can do.

また、被冷却側流路において第1流体に含まれる水分を吸湿剤に吸着させる場合には、水分の吸着により吸湿剤が発熱するが、第2流路によって平板部材を介して被冷却側流路が冷却される。よって、被冷却側流路の第1面及び第1誘導部材の表面に保持されている吸湿剤が冷却される。これにより、被冷却側流路における吸湿剤の発熱による吸湿剤6の温度上昇を抑制することができ、吸湿剤の温度上昇による吸湿剤の吸着性能の低下を抑制することができる。   Further, when moisture contained in the first fluid is adsorbed to the hygroscopic agent in the channel to be cooled, the hygroscopic agent generates heat due to the adsorption of moisture. The road is cooled. Accordingly, the hygroscopic agent held on the first surface of the cooled channel and the surface of the first guide member is cooled. Thereby, the temperature rise of the hygroscopic agent 6 by the heat_generation | fever of the hygroscopic agent in a to-be-cooled channel can be suppressed, and the fall of the adsorption performance of the hygroscopic agent by the temperature rise of a hygroscopic agent can be suppressed.

本発明に係る調湿素子の更なる特徴構成は、前記第1誘導部材及び前記第2誘導部材が、前記第1流体と前記第2流体との流れ方向とが直交する方向となるように配置してある点にある。   A further characteristic configuration of the humidity control element according to the present invention is such that the first guide member and the second guide member are arranged so that the flow directions of the first fluid and the second fluid are orthogonal to each other. It is in a certain point.

上記特徴構成によれば、第1流体と第2流体との流れ方向を直交流として、第1流路と第2流路との間で平板部材を介して熱交換させることができる。   According to the above characteristic configuration, the flow directions of the first fluid and the second fluid can be made to be orthogonal flows, and heat can be exchanged between the first flow path and the second flow path via the flat plate member.

本発明に係る調湿素子の更なる特徴構成は、前記第1誘導部材及び前記第2誘導部材が、前記第1流体と前記第2流体との流れ方向とが互いに向かい合う方向となるように配置してある点にある。   In a further characteristic configuration of the humidity control element according to the present invention, the first guide member and the second guide member are arranged such that the flow directions of the first fluid and the second fluid are opposite to each other. It is in a certain point.

上記特徴構成によれば、第1流体と第2流体との流れ方向を対向流として、第1流路と第2流路との間で平板部材を介して熱交換することができる。このように、第1流体と第2流体との流れ方向を対向流とすることにより、熱交換効率を向上させることができる。   According to the above characteristic configuration, heat exchange can be performed between the first flow path and the second flow path via the flat plate member with the flow direction of the first fluid and the second fluid as the counter flow. Thus, heat exchange efficiency can be improved by making the flow directions of the first fluid and the second fluid counterflow.

調湿素子の斜視図Perspective view of humidity control element 調湿素子の分解斜視図Exploded perspective view of humidity control element 調湿素子の拡大断面図Expanded sectional view of humidity control element 別実施形態に係る調湿素子の拡大断面図Expanded sectional view of a humidity control element according to another embodiment 調湿素子を備える空気調和システムの構成を示す図The figure which shows the structure of an air conditioning system provided with a humidity control element

本発明に係る調湿素子の実施形態を図面に基づいて説明する。
図1及び図2に示すように、本実施形態に係る調湿素子Eは、複数の平板部材1が、平板部材1同士の間に流体Lが通流する流体流路20を形成する状態で積層されている。
An embodiment of a humidity control element according to the present invention will be described with reference to the drawings.
As shown in FIG.1 and FIG.2, the humidity control element E which concerns on this embodiment is the state in which the some flat plate member 1 forms the fluid flow path 20 through which the fluid L flows between the flat plate members 1 mutually. Are stacked.

積層された複数の平板部材1は、流体Lの通流方向に長く形成された六角形状の平板部材で形成され、隣接する一対の平板部材1の間に流体Lの通流方向に長い流体流路20を形成する。また、積層方向において隣接する一対の平板部材1の外周縁部同士を接続する側壁板2が設けられ、上下面が平板部材1により構成され、側面が側壁板2により構成された複数の流体流路20が形成されている。   The plurality of laminated flat plate members 1 are formed of hexagonal flat plate members that are long in the flow direction of the fluid L, and a fluid flow that is long in the flow direction of the fluid L between a pair of adjacent flat plate members 1. A path 20 is formed. In addition, a plurality of fluid flows in which side wall plates 2 that connect the outer peripheral edge portions of a pair of adjacent flat plate members 1 in the stacking direction are provided, the upper and lower surfaces are configured by the flat plate members 1, and the side surfaces are configured by the side wall plates 2. A path 20 is formed.

つまり、本実施形態に係る調湿素子Eは、複数の平板部材1が、平板部材1同士の間の夫々に第1流体L1が通流する被冷却側流路20a又は第2流体L2が通流する冷却側流路20bを形成する状態で積層され、平板部材1の積層方向において、被冷却側流路20aと冷却側流路20bが交互に配設されており、被冷却側流路20aと冷却側流路20bとの間で平板部材1を介して熱交換可能に構成されている。本実施形態では、6枚の平板部材1が積層され、2層の被冷却側流路20aと3層の冷却側流路20bが形成されている。
なお、詳しくは後述するが、図3に示すように、この平板部材1には、冷却側流路20bに面する第2面1bに金属膜7が形成され、被冷却側流路20aに面する第1面1aに水分を吸脱着する吸湿剤6が保持されている。
That is, in the humidity control element E according to the present embodiment, the plurality of flat plate members 1 are connected to the cooled side flow path 20a or the second fluid L2 through which the first fluid L1 flows between the flat plate members 1. The cooling-side flow paths 20b are stacked in a state of forming the flowing cooling-side flow paths 20b, and the cooled-side flow paths 20a and the cooling-side flow paths 20b are alternately arranged in the laminating direction of the flat plate member 1. And the cooling side flow path 20b are configured to be able to exchange heat via the flat plate member 1. In the present embodiment, six flat plate members 1 are laminated to form a two-layer cooled side channel 20a and a three-layer cooling side channel 20b.
As will be described in detail later, as shown in FIG. 3, the flat plate member 1 has a metal film 7 formed on the second surface 1b facing the cooling-side flow path 20b, and faces the cooled-side flow path 20a. A moisture absorbent 6 that absorbs and desorbs moisture is held on the first surface 1a.

被冷却側流路20a及び冷却側流路20bには、調湿素子Eの上面視で、六角形状の平板部材1の長手方向の両端部に、流入口側の流入領域8、11と、流入口側の流出領域10、13とが夫々設けられ、流入領域8、11と流出領域10、13との間に誘導部分9、12が設けられている。そして、調湿素子Eの上面視で、流入領域8、11及び流出領域10、13は略三角形状に形成され、誘導部分9、12は流体流路20内を通流する流体Lの流れの方向に長く形成された長方形状に形成され、この誘導部分9、12には、流体流路20内を通流する流体Lを誘導する誘導部材3、4が設けられている。   In the cooled side flow path 20a and the cooling side flow path 20b, in the top view of the humidity control element E, inflow regions 8 and 11 on the inflow side and flow directions on both ends of the hexagonal flat plate member 1 in the longitudinal direction. Outlet regions 10 and 13 on the inlet side are respectively provided, and guide portions 9 and 12 are provided between the inflow regions 8 and 11 and the outflow regions 10 and 13. In addition, in the top view of the humidity control element E, the inflow regions 8 and 11 and the outflow regions 10 and 13 are formed in a substantially triangular shape, and the guide portions 9 and 12 flow of the fluid L flowing through the fluid flow path 20. The guide portions 9 and 12 are provided with guide members 3 and 4 for guiding the fluid L flowing through the fluid flow path 20.

本実施形態においては、被冷却側流路20aを通流する第1流体L1が空気とされ、冷却側流路20bを通流する第2流体L2が第1流体L1よりも低温の空気とされる。これにより、被冷却側流路20aが冷却側流路20bによって冷却されるように構成されている。   In the present embodiment, the first fluid L1 flowing through the cooled channel 20a is air, and the second fluid L2 flowing through the cooling channel 20b is air lower in temperature than the first fluid L1. The Thereby, the to-be-cooled side flow path 20a is configured to be cooled by the cooling side flow path 20b.

被冷却側流路20aの流入領域8側の側面部分に被冷却側入口Winが設けられ、被冷却側流路20aの流出領域10側の側面部分に被冷却側出口Woutが設けられている。一方、冷却側流路20bの流入領域11側の側面部分に冷却側入口Cinが設けられ、冷却側流路20bの流出領域13側の側面部分に冷却側出口Coutが設けられている。
そして、被冷却側入口Winが設けられた被冷却側流路20aの流入領域8と冷却側入口Cinが設けられた冷却側流路20bの流入領域11とが、調湿素子Eの上面視で、誘導部分9、12を挟んで対向する位置に設けられている。同様に、被冷却側出口Woutが設けられた被冷却側流路20aの流出領域10と冷却側出口Coutが設けられた冷却側流路20bの流出領域13とが、調湿素子Eの上面視で、誘導部分9、12を挟んで対向する位置に設けられている。
A cooled side inlet Win is provided on the side surface portion of the cooled side channel 20a on the inflow region 8 side, and a cooled side outlet Wout is provided on the side surface portion of the cooled side channel 20a on the outflow region 10 side. On the other hand, the cooling side inlet Cin is provided in the side surface portion on the inflow region 11 side of the cooling side flow channel 20b, and the cooling side outlet Cout is provided in the side surface portion on the outflow region 13 side of the cooling side flow channel 20b.
The inflow region 8 of the cooled side channel 20a provided with the cooled side inlet Win and the inflow region 11 of the cooling side channel 20b provided with the cooling side inlet Cin are in top view of the humidity control element E. The guide portions 9 and 12 are provided at positions facing each other. Similarly, the outflow region 10 of the cooled side flow path 20a provided with the cooled side outlet Wout and the outflow region 13 of the cooling side flow path 20b provided with the cooling side outlet Cout are viewed from above the humidity control element E. Thus, the guide portions 9 and 12 are provided at positions facing each other.

また、被冷却側流路20aの誘導部分9には、第1流体L1を誘導する第1誘導部材3が設けられ、冷却側流路20bの誘導部分12には、第2流体L2を誘導する第2誘導部材4が設けられている。第1誘導部材3及び第2誘導部材4は、上面視で誘導部分9、12と同等の寸法の長方形状に形成された波板部材5を、夫々の流体流路20の流入領域8、11から流出領域10、13に向かう方向に直交する方向における断面視が波形状となるように誘導部分9、12に配置されている。   Further, the first guiding member 3 for guiding the first fluid L1 is provided in the guiding portion 9 of the cooled side flow path 20a, and the second fluid L2 is guided in the guiding portion 12 of the cooling side flow path 20b. A second guide member 4 is provided. The first guide member 3 and the second guide member 4 are formed from a corrugated plate member 5 formed in a rectangular shape having the same dimensions as the guide portions 9 and 12 when viewed from the top, and the inflow regions 8 and 11 of the respective fluid flow paths 20. To the outflow regions 10 and 13 are arranged in the guide portions 9 and 12 so that the cross-sectional view in the direction orthogonal to the direction toward the outflow regions 10 and 13 has a wave shape.

つまり、第1誘導部材3及び第2誘導部材4は、第1流体L1と第2流体L2との流れ方向とが互いに向かい合う方向となるように誘導部分9及び誘導部分12に配置されており、第1流体L1と第2流体L2とが平板部材1を介して対向流を成す状態で、被冷却側流路20aと冷却側流路20bとの間で熱交換することができる。   That is, the first guide member 3 and the second guide member 4 are arranged in the guide portion 9 and the guide portion 12 so that the flow directions of the first fluid L1 and the second fluid L2 are opposite to each other, In a state where the first fluid L1 and the second fluid L2 are opposed to each other via the flat plate member 1, heat can be exchanged between the cooled channel 20a and the cooling channel 20b.

ちなみに、第1波板部材5a及び第2波板部材5bを形成している波形の山の頂点部分及び波形の谷の底部分は、上下2枚の平板部材1のそれぞれに対して接触している或いは接着されている。つまり、第1波板部材5a及び第2波板部材5bは上下2枚の平板部材1の間の間隔を一定に保つためのスペーサとして機能し、被冷却側流路20a及び冷却側流路20bの変形等を防止できる。また、第1波板部材5a及び第2波板部材5bを介して、被冷却側流路20a及び冷却側流路20bの内部で熱を伝達させることができる。   Incidentally, the top part of the corrugated mountain and the bottom part of the corrugated valley forming the first corrugated member 5a and the second corrugated member 5b are in contact with the two upper and lower flat plate members 1, respectively. Or glued. In other words, the first corrugated plate member 5a and the second corrugated plate member 5b function as spacers for keeping the distance between the upper and lower two flat plate members 1 constant, and the cooled channel 20a and the cooled channel 20b. Can be prevented from being deformed. Further, heat can be transferred inside the cooled side flow path 20a and the cooling side flow path 20b via the first corrugated member 5a and the second corrugated sheet member 5b.

図3に示すように、平板部材1には、冷却側流路20bに面する第2面1bに金属膜7が形成されている。また、複数の平板部材1の被冷却側流路20aに面する第1面1aには、被冷却側流路20aを通流する第1流体L1としての空気に含まれる水分を吸脱着する吸湿剤6が保持されている。さらに、被冷却側流路20aに設けられた第1波板部材5aの表面、つまり、第1波板部材5aの上面側及び下面側にも吸湿剤6が保持されている。この場合、波板状の第1波板部材5aの表面積が大きいので、第1波板部材5aの表面が保持可能な吸湿剤6の量を増加させることができる。このように、平板部材1及び表面積の大きな第1波板部材5aの両面に多くの吸湿剤6を保持させることができるので、被冷却側流路20aにおける水分の吸着性能を高くすることができる。   As shown in FIG. 3, the metal film 7 is formed in the flat surface member 1 on the 2nd surface 1b which faces the cooling side flow path 20b. Further, the first surface 1a facing the cooled channel 20a of the plurality of flat plate members 1 absorbs and desorbs moisture contained in the air as the first fluid L1 flowing through the cooled channel 20a. Agent 6 is retained. Further, the hygroscopic agent 6 is also held on the surface of the first corrugated member 5a provided in the cooled channel 20a, that is, on the upper surface side and the lower surface side of the first corrugated member 5a. In this case, since the surface area of the corrugated first corrugated member 5a is large, the amount of the hygroscopic agent 6 that can be held on the surface of the first corrugated member 5a can be increased. As described above, since a large amount of the hygroscopic agent 6 can be held on both the flat plate member 1 and the first corrugated plate member 5a having a large surface area, the moisture adsorption performance in the cooled channel 20a can be increased. .

平板部材1の第2面1bに形成された金属膜7の材質は様々な種類の金属を用いることができるが、例えば、アルミニウム、クロム、銀及びニッケル等の金属を用いることができる。本実施形態では、アルミニウムを用いる。   Although various kinds of metals can be used as the material of the metal film 7 formed on the second surface 1b of the flat plate member 1, for example, metals such as aluminum, chromium, silver and nickel can be used. In this embodiment, aluminum is used.

この金属膜7は、例えば、真空蒸着により第1面1aに形成されている。金属膜7の厚みは、数ミクロン程度の厚さで構成されている。なお、この真空蒸着によれば、蒸着のための装置の構造が簡単であり、金属膜7の成膜速度が速いという利点を得ることができる。   The metal film 7 is formed on the first surface 1a by, for example, vacuum deposition. The thickness of the metal film 7 is about several microns. In addition, according to this vacuum evaporation, the structure of the apparatus for vapor deposition is simple, and the advantage that the film-forming speed | rate of the metal film 7 is quick can be acquired.

このように金属膜7が形成されることにより、第1面1aに形成された金属膜7が有する良好な熱伝導性により、第2流体L2と平板部材1との間における伝熱面積が金属膜7により拡大するので、第2流体L2と平板部材1との間の伝熱を促進することができる。結果、被冷却側流路20aと冷却側流路20bとの間における熱交換効率が向上する。   By forming the metal film 7 in this way, the heat transfer area between the second fluid L2 and the flat plate member 1 is made of metal due to the good thermal conductivity of the metal film 7 formed on the first surface 1a. Since the film 7 expands, heat transfer between the second fluid L2 and the flat plate member 1 can be promoted. As a result, the heat exchange efficiency between the cooled channel 20a and the cooling channel 20b is improved.

平板部材1の第1面1a及び第1誘導部材3に保持された吸湿剤6としては様々な種類のものを用いることができるが、例えば、ポリアクリル酸系の樹脂(架橋構造を有するポリアクリル酸ナトリウム等)を主成分とする材料を用いることができる。そして、ポリアクリル酸系の樹脂と、水性ウレタン樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体等の材料で構成されたバインダーとを混合した混合液を、第1面1a面に塗布することにより、アクリル酸ナトリウムを第1面1aに保持させることができる。本実施形態では、吸湿剤6としてポリアクリル酸ナトリウムを用い、バインダーとして水性ウレタン樹脂を用いる。   Various types of hygroscopic agents 6 held on the first surface 1a of the flat plate member 1 and the first guide member 3 can be used. For example, a polyacrylic resin (polyacrylic acid having a crosslinked structure) can be used. A material mainly composed of sodium acid etc. can be used. Then, a mixed liquid obtained by mixing a polyacrylic resin and a binder made of a material such as an aqueous urethane resin, polyvinyl acetate, or ethylene-vinyl acetate copolymer is applied to the first surface 1a. Thus, sodium acrylate can be held on the first surface 1a. In this embodiment, sodium polyacrylate is used as the hygroscopic agent 6 and an aqueous urethane resin is used as the binder.

平板部材1及び波板部材5及び側壁板2は、極性が上記バインダー又は吸湿剤6に近く、耐熱性を有する樹脂材料であることが好ましい。吸湿剤6を平板部材1及び波板部材5(第1波板部材5a)に対してバインダーを用いて保持させる場合に、それら三者の接着性が良好になるからである。例えば、そのような材料として、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリスチレンや、上述した材料の共重合体又は混合したものなどを平板部材1の構成材料として用いることができる。また、平板部材1及び波板部材5及び側壁板2に樹脂材料を用いると、目的とする形に容易に作製することができる。本実施形態では、平板部材1及び波板部材5及び側壁板2としてポリエチレンテレフタレートを用いる。   The flat plate member 1, the corrugated plate member 5, and the side wall plate 2 are preferably resin materials having polarities close to the binder or the hygroscopic agent 6 and having heat resistance. This is because, when the hygroscopic agent 6 is held on the flat plate member 1 and the corrugated plate member 5 (first corrugated plate member 5a) by using a binder, the adhesion between these three components is improved. For example, such materials include polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate, polyvinyl chloride, polyvinyl acetate, polystyrene, and copolymers or mixtures of the above materials. Or the like can be used as a constituent material of the flat plate member 1. Moreover, when a resin material is used for the flat plate member 1, the corrugated plate member 5, and the side wall plate 2, it can be easily manufactured into a target shape. In this embodiment, polyethylene terephthalate is used as the flat plate member 1, the corrugated plate member 5, and the side wall plate 2.

このように本発明に係る調湿素子Eが構成され、平板部材1の第1面1aに金属膜7が形成されているので、平板部材1の第2面1bに形成された金属膜7が有する良好な熱伝導性により、第2面1bにおける第2流体L2と平板部材1との間における伝熱面積が拡大する。よって、第2流体L2と平板部材1との間の伝熱を促進することができるので、ポリエチレンテレフタレートにより平板部材1が構成されている場合でも、金属膜7により伝熱面積を拡大して、被冷却側流路20aと冷却側流路20bとの間の熱交換効率を向上することができる。   Thus, the humidity control element E according to the present invention is configured, and the metal film 7 is formed on the first surface 1 a of the flat plate member 1. Therefore, the metal film 7 formed on the second surface 1 b of the flat plate member 1 is Due to the good thermal conductivity, the heat transfer area between the second fluid L2 and the flat plate member 1 on the second surface 1b is expanded. Therefore, since the heat transfer between the second fluid L2 and the flat plate member 1 can be promoted, even when the flat plate member 1 is composed of polyethylene terephthalate, the heat transfer area is expanded by the metal film 7, The heat exchange efficiency between the cooled channel 20a and the cooling channel 20b can be improved.

さらに、第1面1a及び第1誘導部材3には、水分を吸脱着できる吸湿剤6が保持されているので、被冷却側流路20aと冷却側流路20bとの間において熱交換を行う状態で、被冷却側流路20aにおいて吸湿剤6により第1流体L1に含まれる水分を吸着して、第1流体L1から水分を除去することができる。   Furthermore, since the first surface 1a and the first guide member 3 hold the moisture absorbent 6 capable of absorbing and desorbing moisture, heat exchange is performed between the cooled side channel 20a and the cooling side channel 20b. In this state, moisture contained in the first fluid L1 can be adsorbed by the hygroscopic agent 6 in the cooled side channel 20a to remove moisture from the first fluid L1.

その際、水分の吸着により吸湿剤6が発熱するが、吸湿剤6は、第1面1a及び第1誘導部材3の表面に保持されて被冷却側流路20a内に位置するので、冷却側流路20bにより冷却される。これにより、吸湿剤6の発熱による温度上昇を抑制することができ、吸湿剤6の温度上昇による吸着性能の低下を抑制することができる。   At that time, the hygroscopic agent 6 generates heat due to the adsorption of moisture, but the hygroscopic agent 6 is held on the surface of the first surface 1a and the first guide member 3 and is located in the cooled side flow path 20a. Cooled by the channel 20b. Thereby, the temperature rise by the heat_generation | fever of the hygroscopic agent 6 can be suppressed, and the fall of adsorption | suction performance by the temperature rise of the hygroscopic agent 6 can be suppressed.

次に、本実施形態の調湿素子E(E1,E2)を備える空気調和システムについて説明する。
図5は、調湿素子Eを備える空気調和システムの構成を示す図である。図示するように、この空気調和システムは2つの調湿素子E1,E2を備える。後述するように、図5には、調湿素子E1で除湿運転が行われ、調湿素子E2で再生運転が行われている状態を記載している。空気調和システムは、室外空間から取り込んだ室外空気を第1空気として一方の調湿素子E1の被冷却側流路20aに流し、その被冷却側流路20aを通過した後の第1空気を室内空間に送出するように構成されている。空気調和システムは、室外空間から取り込んだ室外空気を室内に供給するための給気通路L10と、室内空間から取り出した室内空気を室外に排出するための排気通路L20とを有する。尚、本実施形態では、空気を流すためのファンやブロアなどの説明は省略している。
Next, an air conditioning system provided with the humidity control element E (E1, E2) of this embodiment is demonstrated.
FIG. 5 is a diagram illustrating a configuration of an air conditioning system including the humidity control element E. As shown in the figure, this air conditioning system includes two humidity control elements E1 and E2. As will be described later, FIG. 5 shows a state where the dehumidifying operation is performed by the humidity control element E1 and the regeneration operation is performed by the humidity control element E2. The air conditioning system flows outdoor air taken in from the outdoor space as first air to the cooled channel 20a of one humidity control element E1, and passes the first air after passing through the cooled channel 20a indoors. It is comprised so that it may send out to space. The air conditioning system has an air supply passage L10 for supplying outdoor air taken from the outdoor space into the room, and an exhaust passage L20 for discharging indoor air taken out from the indoor space to the outside. In the present embodiment, description of a fan, a blower and the like for flowing air is omitted.

給気通路L10の途中には、室外から室内に向かって、調湿素子E1と顕熱熱交換器200とが順に配置されている。排気通路L20の途中には、室内から室外に向かって、顕熱熱交換器200と加熱器21と調湿素子E2とが順に配置されている。室外空間から給気通路L10に取り込まれた空気は、調湿素子E1の被冷却側流路20aの被冷却側入口Winに導入され、被冷却側流路20aにおいて吸着処理が行われた後、即ち、空気の除湿が行われた後、被冷却側流路20aの被冷却側出口Woutから出て、給気通路L10を介して顕熱熱交換器200へ向かう。   In the middle of the air supply passage L10, the humidity control element E1 and the sensible heat exchanger 200 are sequentially arranged from the outside to the room. In the middle of the exhaust passage L20, a sensible heat exchanger 200, a heater 21, and a humidity control element E2 are arranged in this order from the room toward the outside. The air taken into the air supply passage L10 from the outdoor space is introduced into the cooled side inlet Win of the cooled side channel 20a of the humidity control element E1, and after the adsorption processing is performed in the cooled side channel 20a, That is, after the air is dehumidified, the air exits from the cooled side outlet Wout of the cooled side flow path 20a and travels toward the sensible heat exchanger 200 via the air supply passage L10.

顕熱熱交換器200では、調湿素子E1によって除湿(水分の吸着処理)が行われた後の室外空気と、室内から取り込まれた室内空気との熱交換が行われ、両者の温度が近付くことになる。つまり、調湿素子E1での水分の吸着処理によって水分が減少された後の室外空気は、顕熱熱交換器200でその温度が室内空気の温度に近付けられた状態で、給気通路L10を介して室内へと供給される。   In the sensible heat exchanger 200, heat exchange is performed between the outdoor air after the dehumidification (moisture adsorption process) is performed by the humidity control element E1 and the indoor air taken in from the room, and the temperatures of the two approaches. It will be. That is, the outdoor air after the moisture has been reduced by the moisture adsorption process in the humidity control element E1 passes through the air supply passage L10 in a state where the temperature is brought close to the temperature of the indoor air by the sensible heat exchanger 200. Through the room.

顕熱熱交換器30で熱交換が行われた後の室内空気は、排気通路L20の途中に設けられた加熱器21によって昇温される。図5に示す例では、加熱器21には熱媒通流路22が接続され、その熱媒通流路22を流れる熱媒と、排気通路L20を流れる室内空気との間での熱交換が行われる。そして、昇温された後の室内空気は、排気通路L20を介して調湿素子E2に供給される。   The room air after the heat exchange in the sensible heat exchanger 30 is heated by the heater 21 provided in the middle of the exhaust passage L20. In the example shown in FIG. 5, a heating medium passage 22 is connected to the heater 21, and heat exchange between the heating medium flowing through the heating medium passage 22 and the indoor air flowing through the exhaust passage L <b> 20 is performed. Done. And the indoor air after temperature rising is supplied to the humidity control element E2 via the exhaust passage L20.

加熱器21によって昇温された後の空気は、排気通路L20を介して調湿素子E2の被冷却側流路20aの被冷却側入口Winに導入され、被冷却側流路20aにおいて脱着処理が行われた後、即ち、吸湿剤6の再生に利用された後、被冷却側流路20aの被冷却側出口Woutから出て、排気通路L20を介して室外へと排出される。   The air heated by the heater 21 is introduced into the cooled side inlet Win of the cooled side flow path 20a of the humidity control element E2 through the exhaust passage L20, and the desorption process is performed in the cooled side flow path 20a. After being performed, that is, used for regeneration of the moisture absorbent 6, it exits from the cooled side outlet Wout of the cooled side flow path 20 a and is discharged outside through the exhaust passage L 20.

加えて、本実施形態の空気調和システムでは、調湿素子E1の冷却側流路20bには室外空気が流れるように構成されている。具体的には、空気調和システムは、調湿素子E1よりも上流側の給気通路L10の途中の分岐部位23と、調湿素子E2よりも下流側の排気通路L20の途中の合流部位24とを接続する分岐通路L30を有する。分岐通路L30を流れる室外空気は、調湿素子E1の冷却側流路20bの冷却側入口Cinに導入され、被冷却側流路20aが吸着処理を行った場合に発生する吸着熱を平板部材1を介して吸収した後、冷却側流路20bの冷却側出口Coutから出て、排気通路L20の合流部位24に至る。このように、調湿素子E1の被冷却側流路20aには、室外空気に吸着熱が加わった温度の空気が流れ、調湿素子E1の冷却側流路20bには、室外空気と同等の温度の空気が流れる。つまり、冷却側流路20bに流れる空気の温度は被冷却側流路20aに流れる空気の温度よりも低くなっているので、冷却側流路20bを流れる空気によって、被冷却側流路20aを確実に冷却することができる。   In addition, the air conditioning system of the present embodiment is configured such that outdoor air flows through the cooling-side flow path 20b of the humidity control element E1. Specifically, the air conditioning system includes a branch part 23 in the middle of the air supply passage L10 upstream of the humidity control element E1, and a joining part 24 in the middle of the exhaust passage L20 downstream of the humidity control element E2. Has a branch passage L30. The outdoor air flowing through the branch passage L30 is introduced into the cooling side inlet Cin of the cooling side flow path 20b of the humidity control element E1, and the heat of adsorption generated when the cooled side flow path 20a performs the adsorption process is converted into the flat plate member 1. After being absorbed through the cooling side, the cooling side outlet Cout exits the cooling side flow path 20b and reaches the merging portion 24 of the exhaust passage L20. In this way, air having a temperature obtained by adding adsorption heat to the outdoor air flows through the cooled side flow path 20a of the humidity control element E1, and the cooling side flow path 20b of the humidity control element E1 is equivalent to the outdoor air. Temperature air flows. In other words, since the temperature of the air flowing through the cooling side flow path 20b is lower than the temperature of the air flowing through the cooling side flow path 20a, the air flowing through the cooling side flow path 20b reliably secures the cooled side flow path 20a. Can be cooled to.

また、図示を省略するが、空気調和システムは、一対の調湿素子Eの夫々を、調湿素子E1と調湿素子E2とに切り換える切換機構等を備えている。その結果、吸着処理に利用した後の調湿素子E1を次に再生すること、及び、吸湿剤6の再生を行った後の調湿素子E2を次に吸着処理に利用することが可能となる。同じく図示を省略するが、空気調和システムを用いて、室内へ供給される空気を加湿するような運転も可能である。   Moreover, although illustration is abbreviate | omitted, the air conditioning system is provided with the switching mechanism etc. which switch each of a pair of humidity control elements E to the humidity control element E1 and the humidity control element E2. As a result, it is possible to regenerate the humidity control element E1 after being used for the adsorption process, and to use the humidity control element E2 after the regeneration of the hygroscopic agent 6 for the adsorption process. . Although not shown in the figure, an operation that humidifies the air supplied to the room using an air conditioning system is also possible.

〔別実施形態〕
以下、別実施形態を列記する。
(1)上記実施形態では、平板部材1を六角形状としたが、平板部材1の形状はこれに限るものではない。例えば、平板部材1の形状を四角形状としてもよい。
[Another embodiment]
Hereinafter, other embodiments are listed.
(1) In the said embodiment, although the flat plate member 1 was made into hexagonal shape, the shape of the flat plate member 1 is not restricted to this. For example, the flat plate member 1 may have a quadrangular shape.

(2)上記実施形態では、流体流路20の誘導部分9、12に、流体流路20内を通流する流体Lを誘導する誘導部材3、4が設けたが、これに限らず、流体流路20内の全体に誘導部材を設けてもよい。 (2) In the above-described embodiment, the guide members 3 and 4 for guiding the fluid L flowing through the fluid flow path 20 are provided in the guide portions 9 and 12 of the fluid flow path 20. A guide member may be provided throughout the flow path 20.

(3)上記実施形態では、調湿素子Eにおいて、5層の流体流路20が設けられたが、これに限らず、調湿素子Eにおいて、4層以下の複数の流体流路20を設けもよいし、6層以上の流体流路20を設けてもよい。 (3) In the above-described embodiment, the five layers of fluid flow paths 20 are provided in the humidity control element E. However, the humidity control element E is not limited thereto, and a plurality of fluid flow paths 20 of four layers or less are provided. Alternatively, six or more fluid flow paths 20 may be provided.

(4)上記実施形態では、平板部材1の材質を、ポリエチレンテレフタレート(PET)により構成したが、これに限らず、平板部材1の材質を、ポリプロピレン(PP)、ポリエチレン(PE)、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリスチレンや、上述した材料の共重合体又は混合したものなどにより平板部材1及び誘導部材3、4を構成してもよい。その他、平板部材1の材質を、金属よりも熱伝導率の低い材質である紙、ガラス、又は、セラミックにより構成してもよい。 (4) In the said embodiment, although the material of the flat plate member 1 was comprised by the polyethylene terephthalate (PET), it is not restricted to this, The material of the flat plate member 1 is a polypropylene (PP), polyethylene (PE), polybutylene terephthalate. The flat plate member 1 and the guide members 3 and 4 may be made of polyvinyl chloride, polyvinyl acetate, polystyrene, a copolymer of the above-described materials, or a mixture thereof. In addition, you may comprise the material of the flat plate member 1 with the paper, glass, or ceramic which is a material whose heat conductivity is lower than a metal.

(5)上記実施形態では、誘導部材3、4を構成する波板部材5の材質を、ポリエチレンテレフタレート(PET)により構成したが、これに限らず、波板部材5の材質を、ポリプロピレン(PP)、ポリエチレン(PE)、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリスチレンや、上述した材料の共重合体又は混合したものなどにより誘導部材3、4を構成してもよい。その他、波板部材5の材質を、紙、ガラス、又は、セラミックにより構成してもよい。 (5) In the said embodiment, although the material of the corrugated member 5 which comprises the guide members 3 and 4 was comprised by the polyethylene terephthalate (PET), it is not restricted to this, The material of the corrugated member 5 is polypropylene (PP ), Polyethylene (PE), polybutylene terephthalate, polyvinyl chloride, polyvinyl acetate, polystyrene, or a copolymer or mixture of the above-described materials, etc., may be used to form the guide members 3 and 4. In addition, the material of the corrugated plate member 5 may be made of paper, glass, or ceramic.

(6)上記実施形態では、第1誘導部材3及び第2誘導部材4を、波板状の部材で構成したが、第1誘導部材3及び第2誘導部材4の形状はこれに限られるものではない。例えば二つの平板部材1の間に、上述した波板部材5の代わりにリブ14が設けて、このリブ14を用いて第1誘導部材3及び第2誘導部材4を形成してもよい。このリブ14は、波板部材5と同様に、空気が流れる方向に向かって長く形成されている。リブ14は、二つの平板部材1の夫々に対して垂直に配置されており、空気の流れる方向を誘導する役割に加えて、二つの平板部材1の間のスペーサの役割を果たすことができる。図中では、被冷却側流路20aに設けられているリブ14を第1リブ14aと表記し、冷却側流路20bに設けられているリブ14を第2リブ14bと表記している。図4に示す調湿素子Eでも、被冷却側流路20aにおいて第1空気が接触する部分の表面には吸湿剤6が設けられている。つまり、被冷却側流路20aを構成する平板部材1の一方の表面及び第1リブ14aの両方の表面は吸湿剤6を保持している。
その他にも、波板部材5の断面の形状は上述したものから適宜変更可能である。例えば、上記実施形態では、波板部材5の断面の形状が滑らかな波形である例を示したが、断面が三角形や矩形などを一つの単位形状として、その単位形状が繰り返されるような波形に形成されてもよい。
(6) In the said embodiment, although the 1st guide member 3 and the 2nd guide member 4 were comprised by the corrugated member, the shape of the 1st guide member 3 and the 2nd guide member 4 is restricted to this is not. For example, a rib 14 may be provided between the two flat plate members 1 instead of the corrugated plate member 5 described above, and the first guide member 3 and the second guide member 4 may be formed using the rib 14. Like the corrugated plate member 5, the rib 14 is formed long in the direction in which air flows. The rib 14 is disposed perpendicular to each of the two flat plate members 1 and can serve as a spacer between the two flat plate members 1 in addition to the role of guiding the air flow direction. In the drawing, the rib 14 provided in the cooled side flow path 20a is denoted as a first rib 14a, and the rib 14 provided in the cooling side flow path 20b is denoted as a second rib 14b. Also in the humidity control element E shown in FIG. 4, the hygroscopic agent 6 is provided on the surface of the portion to be contacted with the first air in the cooled channel 20a. That is, the one surface of the flat plate member 1 and the surfaces of both the first ribs 14a constituting the cooled side flow path 20a hold the moisture absorbent 6.
In addition, the shape of the cross section of the corrugated plate member 5 can be changed as appropriate from the above. For example, in the above-described embodiment, an example in which the cross-sectional shape of the corrugated member 5 is a smooth waveform is shown. However, the cross-section has a triangular shape, a rectangular shape, etc. as one unit shape, and the unit shape is repeated. It may be formed.

(7)上記実施形態では、第1誘導部材3及び第2誘導部材4を、第1流体L1と第2流体L2との流れ方向とが互いに向かい合う方向となるように配置したが、これに限らず、第1誘導部材3及び第2誘導部材4を、第1流体L1と第2流体L2との流れ方向とが直交する方向となるように配置してもよい。 (7) In the above embodiment, the first guide member 3 and the second guide member 4 are arranged so that the flow directions of the first fluid L1 and the second fluid L2 face each other. Instead, the first guide member 3 and the second guide member 4 may be arranged such that the flow directions of the first fluid L1 and the second fluid L2 are orthogonal to each other.

(8)上記実施形態では、平板部材1の冷却側流路20bに面する第2面1bに金属膜7が形成されたが、これに限らず、平板部材1の被冷却側流路20aに面する第1面1aに金属膜7が形成されてもよい。また、第1面1a及び第2面1bの両方に金属膜7が形成されてもよい。 (8) In the above embodiment, the metal film 7 is formed on the second surface 1b facing the cooling-side flow path 20b of the flat plate member 1. However, the present invention is not limited thereto. A metal film 7 may be formed on the first surface 1a facing. Further, the metal film 7 may be formed on both the first surface 1a and the second surface 1b.

(9)上記実施形態では、被冷却側流路20aに設けられた第1誘導部材3に吸湿剤6が保持されたが、これに限らず、第1誘導部材3に吸湿剤6が保持されていなくてもよい。 (9) In the above embodiment, the hygroscopic agent 6 is held in the first guide member 3 provided in the cooled side flow path 20a. However, the hygroscopic agent 6 is held in the first guide member 3 without being limited thereto. It does not have to be.

(10)上記実施形態では、真空蒸着により、平板部材1の第2面1bに金属膜7を形成したが、これに限らず、スパッタリング法により金属膜7を成膜してもよい。 (10) In the above embodiment, the metal film 7 is formed on the second surface 1b of the flat plate member 1 by vacuum vapor deposition. However, the present invention is not limited thereto, and the metal film 7 may be formed by a sputtering method.

(11)上記実施形態では、第1面1a及び第1誘導部材3に、水分を吸脱着できる吸湿剤6が保持された構成として、被冷却側流路20aと冷却側流路20bとの間において熱交換を行う状態で、被冷却側流路20aにおいて吸湿剤6により第1流体L1に含まれる水分を吸着して、第1流体L1から水分を除去したが、これに限らず、吸湿剤6が水分を吸着している場合には、被冷却側流路20aと冷却側流路20bとの間において熱交換を行う状態で、被冷却側流路20aにおいて吸湿剤6から第1流体L1に対して水分を脱着して、第1流体L1に水分を付加する構成としてもよい。 (11) In the above embodiment, the first surface 1a and the first guide member 3 are configured so that the moisture absorbent 6 capable of adsorbing and desorbing moisture is held between the cooled channel 20a and the cooling channel 20b. In the state where the heat exchange is performed in FIG. 5, the moisture contained in the first fluid L1 is adsorbed by the moisture absorbent 6 in the cooled side flow path 20a and the moisture is removed from the first fluid L1. 6 adsorbs moisture, heat is exchanged between the cooled channel 20a and the cooled channel 20b, and the first fluid L1 from the hygroscopic agent 6 in the cooled channel 20a. It is good also as a structure which attaches | subjects a water | moisture content and adds a water | moisture content to 1st fluid L1.

(12)上記実施形態では、平板部材1の第2面1bに金属膜7が形成され、かつ、平板部材1の第1面1aに第1流体L1に含まれる水分を吸脱着できる吸湿剤6が保持された調湿素子Eの例を示したが、本発明は調湿素子Eに限られるものではない。例えば、第1面1a及び第2面1bに吸湿剤6を保持していない単なる熱交換素子として構成してもよい。その場合、熱交換素子は、複数の平板部材1が、平板部材1同士の間に流体Lが通流する流体流路20を形成する状態で積層され、流体流路20が、平板部材1の積層方向において、第1流体L1が通流する第1流路と第2流体L2が通流する第2流路とが交互に配設されて構成され、第1流路と第2流路との間で平板部材1を介して熱交換可能に構成され、平板部材1が、樹脂、紙、ガラス、及び、セラミックの何れかの材質により構成され、平板部材1の第1流路に面する第1面1a及び平板部材1の第2流路に面する第2面1bの少なくとも一方に金属膜7が形成されるように構成してもよい。 (12) In the above embodiment, the hygroscopic agent 6 has the metal film 7 formed on the second surface 1b of the flat plate member 1 and can absorb and desorb moisture contained in the first fluid L1 on the first surface 1a of the flat plate member 1. However, the present invention is not limited to the humidity control element E. For example, you may comprise as a mere heat exchange element which does not hold | maintain the hygroscopic agent 6 in the 1st surface 1a and the 2nd surface 1b. In that case, the heat exchange element is laminated in a state in which a plurality of flat plate members 1 form a fluid flow path 20 through which the fluid L flows between the flat plate members 1. In the stacking direction, the first flow path through which the first fluid L1 flows and the second flow path through which the second fluid L2 flows are alternately arranged, and the first flow path and the second flow path are configured. The flat plate member 1 is made of any material of resin, paper, glass, and ceramic and faces the first flow path of the flat plate member 1. You may comprise so that the metal film 7 may be formed in at least one of the 1st surface 1a and the 2nd surface 1b which faces the 2nd flow path of the flat plate member 1. FIG.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

以上説明したように、熱伝導率の低い材質により平板部材が構成されている場合でも、熱交換効率を向上することができる熱交換素子及び調湿素子を提供することができる。   As described above, even when the flat plate member is made of a material having low thermal conductivity, it is possible to provide a heat exchange element and a humidity control element that can improve heat exchange efficiency.

1 平板部材
1a 第1面
1b 第2面
3 第1誘導部材
4 第2誘導部材
6 吸湿剤
7 金属膜
20 流体流路
20a 被冷却側流路(第1流路)
20b 冷却側流路(第2流路)
E 調湿素子
L 流体
L1 第1流体
L2 第2流体
DESCRIPTION OF SYMBOLS 1 Flat member 1a 1st surface 1b 2nd surface 3 1st guide member 4 2nd guide member 6 Hygroscopic agent 7 Metal film 20 Fluid flow path 20a Cooling side flow path (1st flow path)
20b Cooling side channel (second channel)
E Humidity control element L Fluid L1 First fluid L2 Second fluid

Claims (7)

複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
前記平板部材の積層方向において、前記第1流路と前記第2流路とが交互に配設され、前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成された熱交換素子であって、
前記平板部材が、樹脂、紙、ガラス、及び、セラミックの何れか1つの材質により構成され、
前記平板部材の前記第1流路に面する第1面及び前記平板部材の前記第2流路に面する第2面の少なくとも一方に金属膜が形成されている熱交換素子。
A plurality of flat plate members are stacked in a state of forming a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members,
In the laminating direction of the flat plate member, the first flow path and the second flow path are alternately arranged, and heat exchange is performed between the first flow path and the second flow path via the flat plate member. A heat exchange element configured to be possible,
The flat plate member is made of any one material of resin, paper, glass, and ceramic,
A heat exchange element in which a metal film is formed on at least one of a first surface of the flat plate member facing the first flow path and a second surface of the flat plate member facing the second flow path.
複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
前記平板部材の積層方向において、前記第1流路と前記第2流路とが交互に配設され、前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成された調湿素子であって、
前記平板部材が、樹脂、紙、ガラス、及び、セラミックの何れか1つの材質により構成され、
前記平板部材の前記第1流路に面する第1面及び前記平板部材の前記第2流路に面する第2面の少なくとも一方に金属膜が形成され、かつ、前記第1面及び前記第2面の一方に、水分を吸脱着できる吸湿剤が保持された調湿素子。
A plurality of flat plate members are stacked in a state of forming a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members,
In the laminating direction of the flat plate member, the first flow path and the second flow path are alternately arranged, and heat exchange is performed between the first flow path and the second flow path via the flat plate member. A humidity control element configured to be possible,
The flat plate member is made of any one material of resin, paper, glass, and ceramic,
A metal film is formed on at least one of the first surface of the flat plate member facing the first flow path and the second surface of the flat plate member facing the second flow path, and the first surface and the first A humidity control element in which a moisture absorbent capable of absorbing and desorbing moisture is held on one of the two surfaces.
前記複数の平板部材の前記第1面及び前記第2面の何れか一方に、前記吸湿剤が保持され、他方に金属膜が形成されている請求項2に記載の調湿素子。   The humidity control element according to claim 2, wherein the hygroscopic agent is held on one of the first surface and the second surface of the plurality of flat plate members, and a metal film is formed on the other. 前記第1流路に前記第1流体を誘導する第1誘導部材が設けられ、前記第2流路に前記第2流体を誘導する第2誘導部材が設けられている請求項2又は3に記載の調湿素子。   The first guide member that guides the first fluid is provided in the first flow path, and the second guide member that guides the second fluid is provided in the second flow path. Humidity control element. 前記第1流路が前記第2流路によって冷却される流路であり、
前記第1面及び前記第1誘導部材に、前記吸湿剤が保持されている請求項4に記載の調湿素子。
The first channel is a channel cooled by the second channel;
The humidity control element according to claim 4, wherein the hygroscopic agent is held on the first surface and the first guide member.
前記第1誘導部材及び前記第2誘導部材が、前記第1流体と前記第2流体との流れ方向とが直交する方向となるように配置してある請求項2〜5の何れか1項に記載の調湿素子。   The said 1st guide member and the said 2nd guide member are arrange | positioned so that the flow direction of the said 1st fluid and the said 2nd fluid may become a direction orthogonal to any one of Claims 2-5. The humidity control element described. 前記第1誘導部材及び前記第2誘導部材が、前記第1流体と前記第2流体との流れ方向とが互いに向かい合う方向となるように配置してある請求項2〜5の何れか1項に記載の調湿素子。   The said 1st induction member and the said 2nd induction member are arrange | positioned so that the flow direction of the said 1st fluid and the said 2nd fluid may turn into the direction which mutually faces. The humidity control element described.
JP2015135555A 2015-07-06 2015-07-06 Heat exchanging element and humidity adjuster element Pending JP2017015369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135555A JP2017015369A (en) 2015-07-06 2015-07-06 Heat exchanging element and humidity adjuster element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135555A JP2017015369A (en) 2015-07-06 2015-07-06 Heat exchanging element and humidity adjuster element

Publications (1)

Publication Number Publication Date
JP2017015369A true JP2017015369A (en) 2017-01-19

Family

ID=57827762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135555A Pending JP2017015369A (en) 2015-07-06 2015-07-06 Heat exchanging element and humidity adjuster element

Country Status (1)

Country Link
JP (1) JP2017015369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187893A1 (en) * 2018-03-29 2019-10-03 大阪瓦斯株式会社 Humidity control element and method for using same
JPWO2019097885A1 (en) * 2017-11-16 2019-11-14 三菱電機株式会社 Total heat exchange element and total heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172164A (en) * 1977-06-02 1979-10-23 Swiss Aluminium Ltd. Metal strip for the production of heat exchangers
JP2003062424A (en) * 2001-06-13 2003-03-04 Daikin Ind Ltd Dehumidification element and adsorption element used therein
JP2005528575A (en) * 2002-04-26 2005-09-22 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
JP2006283995A (en) * 2005-03-31 2006-10-19 Suzutora:Kk Heat exchanging film for total heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172164A (en) * 1977-06-02 1979-10-23 Swiss Aluminium Ltd. Metal strip for the production of heat exchangers
JP2003062424A (en) * 2001-06-13 2003-03-04 Daikin Ind Ltd Dehumidification element and adsorption element used therein
JP2005528575A (en) * 2002-04-26 2005-09-22 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
JP2006283995A (en) * 2005-03-31 2006-10-19 Suzutora:Kk Heat exchanging film for total heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019097885A1 (en) * 2017-11-16 2019-11-14 三菱電機株式会社 Total heat exchange element and total heat exchanger
WO2019187893A1 (en) * 2018-03-29 2019-10-03 大阪瓦斯株式会社 Humidity control element and method for using same
JP2019171316A (en) * 2018-03-29 2019-10-10 大阪瓦斯株式会社 Humidity conditioning element and using method of the same
US20210023502A1 (en) * 2018-03-29 2021-01-28 Osaka Gas Co., Ltd. Humidity Control Element and Method for Using the Same
JP7170410B2 (en) 2018-03-29 2022-11-14 大阪瓦斯株式会社 Humidity control element
US11872522B2 (en) 2018-03-29 2024-01-16 Osaka Gas Co., Ltd. Humidity control element and method for using the same

Similar Documents

Publication Publication Date Title
US11872522B2 (en) Humidity control element and method for using the same
JP4341924B2 (en) Desiccant ventilation system
MX2014006151A (en) Heat exchange matrix.
JP6566829B2 (en) Air conditioning system
JP5987854B2 (en) Heat exchange element and heat exchanger
JP2017015369A (en) Heat exchanging element and humidity adjuster element
JP2016040506A (en) Desiccant block device and desiccant air conditioner
JP6570410B2 (en) Air conditioning system
JP2001263729A (en) Adsorption/desorption device and moisture adjusting system using same
JP6570345B2 (en) Air conditioning system
JP2018169054A (en) Air conditioning system
JP2017015367A (en) Humidity adjuster element and air conditioning system
JP6078668B1 (en) Indirect vaporization air conditioner
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JP2017013031A (en) Humidity control element
JP6443964B2 (en) Humidity control unit
JP2018004134A (en) Total heat exchange element and total heat exchange-type ventilation device
JP3649203B2 (en) Humidity control device
JP2017053531A (en) Indirect evaporative air-conditioning device and indirect evaporative air-conditioning method
JP2001215097A (en) Heat exchange element with added harmful gas elimination function
JP6352915B2 (en) Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
JPH06109395A (en) Heat exchanging element for plate type heat exchanger with fins
JP2018169056A (en) Air conditioning system
CN111919078B (en) Total heat exchange element and total heat exchanger
JP4393478B2 (en) Desiccant ventilation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924