JP2017008867A - Compressed air storage power generation device and compression air storage power generating method - Google Patents

Compressed air storage power generation device and compression air storage power generating method Download PDF

Info

Publication number
JP2017008867A
JP2017008867A JP2015126869A JP2015126869A JP2017008867A JP 2017008867 A JP2017008867 A JP 2017008867A JP 2015126869 A JP2015126869 A JP 2015126869A JP 2015126869 A JP2015126869 A JP 2015126869A JP 2017008867 A JP2017008867 A JP 2017008867A
Authority
JP
Japan
Prior art keywords
expander
compressor
pressure
bypass
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015126869A
Other languages
Japanese (ja)
Inventor
正剛 戸島
Masatake Toshima
正剛 戸島
洋平 久保
Yohei Kubo
洋平 久保
松隈 正樹
Masaki Matsukuma
正樹 松隈
浩樹 猿田
Hiroki Saruta
浩樹 猿田
佳直美 坂本
Kanami Sakamoto
佳直美 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015126869A priority Critical patent/JP2017008867A/en
Publication of JP2017008867A publication Critical patent/JP2017008867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compressed air storage power generation device capable of preventing the reduction in system efficiency by maintaining the expansion at the expansion ratio of the design point of an expander so as to prevent the deterioration in expansion efficiency.SOLUTION: A compressed air storage power generation device 2 comprises: expander bypass channels 24a to 24c; an expander bypass changeover part 26 having valves 27a to 27e; and a control device 28. The expander bypass channels 24a to 24c bypass at least one of a plurality of expander bodies 8a and 8b so as to make air flow. The expander bypass changeover part 26 bypasses the expander bodies 8a and 8b or switches from the expander bodies for air supplied from a pressure accumulation tank 6 by using the expander bypass channels 24a to 24c. When the pressure in the pressure accumulation tank 6 detected by a pressure sensor 16 is lower than a prescribed value, the control device 28 controls the expander bypass changeover part 26 to flow air to the expander bypass channels 24a to 24c and to bypass at least one of the expander bodies 8a and 8b.SELECTED DRAWING: Figure 1

Description

本発明は、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法に関する。   The present invention relates to a compressed air storage power generation apparatus and a compressed air storage power generation method.

風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が安定しないことがある。このため、圧縮空気貯蔵(CAES:compressed air energy storage)発電システム等のエネルギー貯蔵システムを使用して出力を平準化する必要がある。   Since power generation using renewable energy such as wind power generation and solar power generation depends on weather conditions, the output may not be stable. For this reason, it is necessary to level the output using an energy storage system such as a compressed air energy storage (CAES) power generation system.

従来の圧縮空気貯蔵発電装置は、電力プラントのオフピーク時間中に電気エネルギーを圧縮空気として蓄圧タンクに蓄え、高電力需要時間中に圧縮空気により膨張機を駆動して発電機を作動させて電気エネルギーを生成するのが一般的である。   Conventional compressed air storage power generators store electrical energy in the accumulator tank as compressed air during off-peak hours of the power plant, operate the generator by driving the expander with compressed air during high power demand time, and Is generally generated.

特許文献1には、このようなCAES発電装置が開示されている。   Patent Document 1 discloses such a CAES power generator.

特開2013−509530号公報JP2013-509530A

圧縮空気貯蔵発電装置では、膨張機での圧縮空気を使用した発電に伴い、蓄圧タンクの内圧が減少する。この際、蓄圧タンクの内圧が変化すると、膨張機の設計点の膨張比での膨張を維持できず、膨張機の軸動力の変換効率が悪化し、膨張効率が低下する。   In the compressed air storage power generation device, the internal pressure of the pressure accumulating tank decreases with power generation using the compressed air in the expander. At this time, if the internal pressure of the pressure accumulating tank changes, the expansion at the expansion ratio at the design point of the expander cannot be maintained, the conversion efficiency of the shaft power of the expander deteriorates, and the expansion efficiency decreases.

特許文献1の圧縮空気貯蔵発電装置では、蓄圧タンクの内圧が減少した際の膨張機の軸動力の変換効率については考慮されていない。   In the compressed air storage power generation apparatus of Patent Document 1, the conversion efficiency of the shaft power of the expander when the internal pressure of the pressure accumulation tank decreases is not taken into consideration.

本発明は、運転効率が悪くなる段の膨張機には圧縮空気を通さずバイパスさせることでシステム全体としての運転効率の低下を防止できる圧縮空気貯蔵発電装置を提供することを課題とする。   It is an object of the present invention to provide a compressed air storage power generation apparatus that can prevent a reduction in the operation efficiency of the entire system by bypassing compressed air without passing through the expander at a stage where the operation efficiency deteriorates.

本発明の第1の態様は、変動する入力電力により駆動される電動機と、前記電動機と機械的に接続され、空気を圧縮する圧縮機と、前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、前記蓄圧タンク内の圧力を検出する圧力センサと、前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動され、複数の膨張機本体を有する多段型の膨張機と、前記膨張機と機械的に接続された発電機と、複数の前記膨張機本体のうち、少なくとも1つを迂回して空気を流動させる膨張機バイパス流路と、前記蓄圧タンクから供給された空気を前記膨張機バイパス流路を使用して前記膨張機本体を迂回するか切り替えるための膨張機バイパス切替部と、前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記膨張機バイパス切替部を制御して前記膨張機バイパス流路に空気を流し、前記膨張機本体を迂回する制御装置とを備える圧縮空気貯蔵発電装置を提供する。   According to a first aspect of the present invention, there is provided an electric motor driven by fluctuating input power, a compressor mechanically connected to the electric motor to compress air, fluidly connected to the compressor, and the compressor A pressure accumulating tank for storing the compressed air compressed by the pressure accumulating tank, a pressure sensor for detecting the pressure in the accumulating tank, a fluid pressure connected to the pressure accumulating tank and driven by the compressed air supplied from the pressure accumulating tank, A multistage expander having a plurality of expander main bodies, a generator mechanically connected to the expander, and an expander bypass for bypassing at least one of the plurality of expander main bodies to flow air A flow path, an expander bypass switching section for switching whether the air supplied from the pressure accumulating tank bypasses the expander body using the expander bypass flow path, and the pressure sensor. Compressed air comprising: a control device that controls the expander bypass switching unit to flow air through the expander bypass flow path and bypass the expander body when the pressure in the accumulator tank is lower than a predetermined value A storage power generator is provided.

この構成によれば、蓄圧タンクの内圧が減少した場合でも、膨張機の軸動力の変換効率を悪化させないために、膨張機バイパス流路と膨張機バイパス切替部を使用して必要以上の膨張機本体を駆動しないように制御している。具体的には、運転効率が悪くなる段の膨張機には圧縮空気を通さずバイパスさせることでシステム全体としての運転効率の低下を防止できる。   According to this configuration, even when the internal pressure of the pressure accumulating tank decreases, in order not to deteriorate the conversion efficiency of the shaft power of the expander, the expander more than necessary is used by using the expander bypass flow path and the expander bypass switching unit. The main unit is controlled not to be driven. Specifically, a reduction in the operation efficiency of the entire system can be prevented by bypassing the expander at a stage where the operation efficiency is deteriorated without passing compressed air.

前記制御装置は、複数の前記膨張機本体の使用頻度を均一に使用するように前記膨張機バイパス切替部を制御することが好ましい。   It is preferable that the control device controls the expander bypass switching unit so that the use frequency of the plurality of expander bodies is uniformly used.

これにより、膨張機本体の使用頻度が均一化され、個々の膨張機本体の使用による疲労度合を均一化できる。従って、膨張機全体としての耐用年数を延長でき、システムの信頼性を向上できる。   Thereby, the use frequency of an expander main body is equalized, and the fatigue degree by use of each expander main body can be equalized. Therefore, the service life of the entire expander can be extended, and the reliability of the system can be improved.

前記圧縮機は、複数の圧縮機本体を有する多段型であって、複数の前記圧縮機本体のうち、少なくとも1つを迂回して空気を流動させる圧縮機バイパス流路と、前記圧縮機バイパス流路を使用して前記圧縮機本体を迂回するか切り替えるための圧縮機バイパス切替部とをさらに備え、前記制御装置は、前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記圧縮機バイパス切替部を制御して前記圧縮機バイパス流路に空気を流し、前記圧縮機本体を迂回することが好ましい。   The compressor is a multi-stage type having a plurality of compressor bodies, a compressor bypass flow path for flowing air around at least one of the plurality of compressor bodies, and the compressor bypass flow A compressor bypass switching unit for bypassing or switching the compressor main body using a passage, and the control device has a pressure in the pressure accumulation tank detected by the pressure sensor lower than a predetermined value In this case, it is preferable that the compressor bypass switching unit is controlled to flow air through the compressor bypass flow path to bypass the compressor body.

この構成によれば、蓄圧タンクの内圧が減少した場合でも、圧縮機の軸動力の変換効率を悪化させないために、圧縮機バイパス流路と圧縮機バイパス切替部を使用して必要以上の圧縮機本体を駆動しないように制御している。よって、例えば多段の圧縮システム構成では、蓄圧タンク内圧が低下するなどして圧縮システムの途中段で蓄圧タンク内圧を上回る圧力となる場合、後段の圧縮機では圧縮せずにバイパスさせてもそのまま蓄圧タンクに送ることができる。その際、後段の圧縮機を停止できるので、不要な圧縮機を運転させることがなく、システム効率の低下を防止できる。   According to this configuration, even when the internal pressure of the pressure accumulating tank is decreased, in order not to deteriorate the conversion efficiency of the shaft power of the compressor, the compressor bypass flow path and the compressor bypass switching unit are used to reduce the compressor more than necessary. The main unit is controlled not to be driven. Therefore, for example, in a multistage compression system configuration, if the pressure inside the pressure accumulator tank decreases and the pressure exceeds the pressure inside the pressure accumulator tank in the middle of the compression system, the accumulator remains as it is even if it is bypassed without being compressed in the latter stage compressor. Can be sent to the tank. At this time, since the subsequent compressor can be stopped, an unnecessary compressor is not operated, and a decrease in system efficiency can be prevented.

前記制御装置は、複数の前記圧縮機本体の使用頻度を均一に使用するように前記圧縮機バイパス切替部を制御することが好ましい。   It is preferable that the control device controls the compressor bypass switching unit so as to uniformly use a plurality of use frequencies of the compressor main bodies.

これにより、圧縮機本体の使用頻度が均一化され、個々の圧縮機本体の使用による疲労度合を均一化できる。従って、圧縮機全体としての耐用年数を延長でき、システムの信頼性を向上できる。   Thereby, the use frequency of a compressor main body is equalized and the fatigue degree by use of each compressor main body can be equalized. Therefore, the useful life of the entire compressor can be extended, and the reliability of the system can be improved.

本発明の第2の態様は、変動する入力電力により電動機を駆動し、前記電動機と機械的に接続された圧縮機により空気を圧縮し、前記圧縮機と流体的に接続された蓄圧タンクに、前記圧縮機により圧縮された圧縮空気を貯蔵し、圧力センサにより前記蓄圧タンク内の圧力を検出し、前記蓄圧タンクと流体的に接続され、複数の膨張機本体を有する多段型の膨張機を前記蓄圧タンクから供給される圧縮空気によって駆動し、前記膨張機と機械的に接続された発電機により発電し、複数の前記膨張機本体のうち、膨張機バイパス流路により少なくとも1つを迂回して空気を流動させ、前記蓄圧タンクから供給された空気を、膨張機バイパス切替部により前記膨張機バイパス流路を使用して前記膨張機本体を迂回するか切り替える圧縮空気貯蔵発電方法において、前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記膨張機バイパス切替部を切り替えて前記膨張機バイパス流路に空気を流し、前記膨張機本体を迂回する、圧縮空気貯蔵発電方法を提供する。   In a second aspect of the present invention, an electric motor is driven by fluctuating input power, air is compressed by a compressor mechanically connected to the electric motor, and a pressure accumulating tank fluidly connected to the compressor is The compressed air compressed by the compressor is stored, the pressure in the accumulator tank is detected by a pressure sensor, and the multistage expander having a plurality of expander bodies is fluidly connected to the accumulator tank, Driven by compressed air supplied from an accumulator tank, generates power by a generator mechanically connected to the expander, and bypasses at least one of the plurality of expander bodies by an expander bypass flow path. Compressed air storage power generation that switches whether the air supplied from the pressure accumulating tank is bypassed by the expander bypass switching unit using the expander bypass flow path. In the method, when the pressure in the pressure accumulating tank detected by the pressure sensor is lower than a predetermined value, the expander bypass switching unit is switched to flow air to the expander bypass flow path, bypassing the expander main body A compressed air storage power generation method is provided.

複数の圧縮機本体を有する多段型の前記圧縮機により空気を圧縮し、複数の前記圧縮機本体のうち、圧縮機バイパス流路により少なくとも1つを迂回して空気を流動させ、圧縮機バイパス切替部により、前記圧縮機バイパス流路を使用して前記圧縮機本体を迂回するか切り替える圧縮空気貯蔵発電方法において、前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記圧縮機バイパス切替部を切り替えて前記圧縮機バイパス流路に空気を流し、前記圧縮機本体を迂回することが好ましい。   Compress air by the multi-stage compressor having a plurality of compressor bodies, flow the air by bypassing at least one of the compressor bodies by a compressor bypass flow path, and switch the compressor bypass In the compressed air storage power generation method for switching whether to bypass the compressor main body using the compressor bypass flow path by the unit, when the pressure in the pressure accumulation tank detected by the pressure sensor is lower than a predetermined value, It is preferable that the compressor bypass switching unit is switched to flow air through the compressor bypass flow path to bypass the compressor body.

本発明によれば、膨張機バイパス流路と膨張機バイパス切替部を使用して必要以上の膨張機本体を駆動しないように制御しているため、運転効率が悪くなる段の膨張機には圧縮空気を通さずバイパスさせることでシステム全体としての運転効率の低下を防止できる。   According to the present invention, the expander bypass flow path and the expander bypass switching unit are used so as not to drive the expander body more than necessary. By bypassing without passing air, it is possible to prevent a decrease in operating efficiency of the entire system.

本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention. 多段型圧縮機の場合の蓄圧タンクの内圧と設計点における個々の圧縮機本体の圧縮量の関係を示すグラフ。The graph which shows the relationship between the internal pressure of an accumulator tank in the case of a multistage type compressor, and the compression amount of each compressor main body in a design point. 圧縮機バイパス切替部の制御方法を示すフローチャート。The flowchart which shows the control method of a compressor bypass switching part. 多段型膨張機の場合の蓄圧タンクの内圧と設計点における個々の膨張機本体の膨張量の関係を示すグラフ。The graph which shows the relationship between the internal pressure of the pressure accumulation tank in the case of a multistage type expander, and the expansion amount of each expander main body in a design point. 膨張機バイパス切替部の制御方法を示すフローチャート。The flowchart which shows the control method of an expander bypass switching part. 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention.

以下、添付図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係る圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2の概略構成図を示している。このCAES発電装置2は、図示しない発電設備で再生可能エネルギーを利用して発電する場合に、需要先である図示しない電力系統への出力変動を平準化するとともに、この電力系統における需要電力の変動に合わせた電力を出力する。
(First embodiment)
FIG. 1 shows a schematic configuration diagram of a compressed air energy storage (CAES) power generator 2 according to a first embodiment of the present invention. The CAES power generation device 2 equalizes output fluctuations to a power system (not shown), which is a demand destination, and generates fluctuations in demand power in the power system when generating power using renewable energy in a power generation facility (not shown). Outputs power matched to.

図1を参照して、CAES発電装置2の構成を説明する。   With reference to FIG. 1, the structure of the CAES power generator 2 is demonstrated.

CAES発電装置2は空気流路を備える。空気流路には、主に圧縮機4と、蓄圧タンク6と、膨張機8とが設けられており、これらが空気配管10a,10bにより流体的に接続され、その内部には空気が流れている(図1の実線参照)。   The CAES power generator 2 includes an air flow path. The air flow path is mainly provided with a compressor 4, a pressure accumulating tank 6, and an expander 8, which are fluidly connected by air pipes 10a and 10b, in which air flows. (See the solid line in FIG. 1).

空気流路では、吸い込まれた空気は、圧縮機4で圧縮され、蓄圧タンク6に貯蔵され、必要に応じて膨張機8に供給され、発電機12a,12bの発電に使用される。   In the air flow path, the sucked air is compressed by the compressor 4, stored in the pressure accumulating tank 6, supplied to the expander 8 as necessary, and used for power generation by the generators 12a and 12b.

本実施形態の圧縮機4は、低圧段圧縮機本体4a及び高圧段圧縮機本体4bを有する2段型のスクリュ式である。スクリュ式の圧縮機4を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。低圧段圧縮機本体4a及び高圧段圧縮機本体4bは、それぞれモータ14a,14bを備える。モータ14a,14bは、低圧段圧縮機本体4a及び高圧段圧縮機本体4bの内部のスクリュに機械的に接続されている。図示しない発電設備で再生可能エネルギーを利用して発電された入力電力がモータ14a,14bに供給されると、この電力によりモータ14a,14bが駆動され、スクリュが回転して低圧段圧縮機本体4a及び高圧段圧縮機本体4bが作動する。モータ14a,14bにより作動されると、空気配管10aを通じて低圧段圧縮機本体4aが吸気口4cより空気を吸気し、圧縮して吐出口4dより吐出し、空気配管10aを通じて高圧段圧縮機本体4bに圧縮空気を圧送する。高圧段圧縮機本体4bは、空気配管10aを通じて吸気口4eより空気を吸気し、圧縮して吐出口4fより吐出し、空気配管10aを通じて蓄圧タンク6に圧縮空気を圧送する。また、圧縮機4は2段型に限定されず3段型以上であってもよく、複数台設置されてもよい。圧縮機4の種類は特に限定されず、例えばターボ式、スクロール式、及びレシプロ式等であってもよい。   The compressor 4 of this embodiment is a two-stage screw type having a low-pressure stage compressor body 4a and a high-pressure stage compressor body 4b. By using the screw-type compressor 4, it is possible to quickly follow the fluctuating input and to quickly change the power generation output. The low-pressure stage compressor body 4a and the high-pressure stage compressor body 4b include motors 14a and 14b, respectively. The motors 14a and 14b are mechanically connected to the screws inside the low-pressure stage compressor body 4a and the high-pressure stage compressor body 4b. When input power generated using renewable energy by a power generation facility (not shown) is supplied to the motors 14a and 14b, the motors 14a and 14b are driven by the power, and the screw rotates to rotate the low-pressure stage compressor body 4a. And the high-pressure stage compressor body 4b operates. When operated by the motors 14a and 14b, the low-pressure stage compressor body 4a sucks air from the intake port 4c through the air pipe 10a, compresses it and discharges it from the discharge port 4d, and passes through the air pipe 10a to the high-pressure stage compressor body 4b. Compressed air to The high-pressure compressor main body 4b sucks air from the intake port 4e through the air pipe 10a, compresses it and discharges it from the discharge port 4f, and pumps the compressed air to the pressure accumulation tank 6 through the air pipe 10a. The compressor 4 is not limited to a two-stage type, and may be a three-stage type or more, and a plurality of compressors may be installed. The kind of the compressor 4 is not specifically limited, For example, a turbo type, a scroll type, a reciprocating type, etc. may be sufficient.

圧縮機4から蓄圧タンク6に延びる空気配管10aには、バルブ18aが設けられており、必要に応じてバルブ18aを開閉し、蓄圧タンク6への圧縮空気の供給を許容又は遮断できる。   The air pipe 10a extending from the compressor 4 to the pressure accumulating tank 6 is provided with a valve 18a, and the valve 18a can be opened and closed as necessary to allow or block the supply of compressed air to the pressure accumulating tank 6.

蓄圧タンク6は、圧縮機4から圧送された圧縮空気を貯蔵する。従って、蓄圧タンク6には、圧縮空気としてエネルギーを蓄積できる。蓄圧圧力は必要蓄電量や設置スペース、法規制などとの兼ね合いから決定される。蓄圧タンク6は、空気配管10bを通じて膨張機8と流体的に接続されている。蓄圧タンク6で貯蔵された圧縮空気は、膨張機8に供給される。   The pressure accumulation tank 6 stores the compressed air fed from the compressor 4. Therefore, energy can be stored in the pressure accumulation tank 6 as compressed air. Accumulated pressure is determined based on a balance with the required power storage capacity, installation space, and legal regulations. The accumulator tank 6 is fluidly connected to the expander 8 through the air pipe 10b. The compressed air stored in the pressure accumulating tank 6 is supplied to the expander 8.

蓄圧タンク6には圧力センサ16が設置されており、蓄圧タンク6内の圧力を検出できる。   A pressure sensor 16 is installed in the pressure accumulation tank 6 so that the pressure in the pressure accumulation tank 6 can be detected.

蓄圧タンク6から膨張機8に延びる空気配管10bには、バルブ18bが設けられており、必要に応じてバルブ18bを開閉し、膨張機8への圧縮空気の供給を許容又は遮断できる。   The air pipe 10b extending from the accumulator tank 6 to the expander 8 is provided with a valve 18b. The valve 18b can be opened and closed as necessary to allow or block the supply of compressed air to the expander 8.

膨張機8は、低圧段膨張機本体8a及び高圧段膨張機本体8bを有する2段型のスクリュ式である。スクリュ式の膨張機8を使用することで、圧縮機4と同様に変動する入力に速やかに追従でき、発電出力も速やかに変更できる。低圧段膨張機本体8a及び高圧段膨張機本体8bは、発電機12a,12bを備える。発電機12a,12bは、低圧段膨張機本体8a及び高圧段膨張機本体8bの内部のスクリュと機械的に接続されている。高圧段膨張機本体8bは、給気口8cで空気配管10bを通じて蓄圧タンク6と流体的に接続され、給気口8cから圧縮空気を供給される。高圧段膨張機本体8bは、供給された圧縮空気により作動し、発電機12bを駆動する。高圧段膨張機本体8bは、排気口8dから空気配管10bを通じて圧縮空気を低圧段膨張機本体8aの給気口8eに供給する。低圧段膨張機本体8aは、同様に供給された圧縮空気により作動し、発電機12aを駆動する。低圧段膨張機本体8aは排気口8fから空気配管10bを通じて外部に膨張した空気を排気する。発電機12a,12bで発電した電力は、図示しない外部の電力系統に供給される。また、膨張機8は2段型に限定されず3段型以上であってもよく、複数台設置されてもよい。膨張機8の種類は特に限定されず、例えばターボ式、スクロール式、及びレシプロ式等であってもよい。   The expander 8 is a two-stage screw type having a low-pressure stage expander body 8a and a high-pressure stage expander body 8b. By using the screw type expander 8, it is possible to quickly follow the fluctuating input as in the case of the compressor 4, and the power generation output can also be changed quickly. The low-pressure stage expander body 8a and the high-pressure stage expander body 8b include generators 12a and 12b. The generators 12a and 12b are mechanically connected to the screws inside the low-pressure stage expander body 8a and the high-pressure stage expander body 8b. The high-pressure stage expander main body 8b is fluidly connected to the pressure accumulation tank 6 through the air pipe 10b at the air supply port 8c, and is supplied with compressed air from the air supply port 8c. The high-pressure stage expander body 8b is operated by the supplied compressed air and drives the generator 12b. The high-pressure stage expander body 8b supplies compressed air from the exhaust port 8d to the air supply port 8e of the low-pressure stage expander body 8a through the air pipe 10b. The low-pressure stage expander body 8a is similarly operated by the supplied compressed air and drives the generator 12a. The low-pressure stage expander main body 8a exhausts the air expanded to the outside through the air pipe 10b from the exhaust port 8f. The power generated by the generators 12a and 12b is supplied to an external power system (not shown). Further, the expander 8 is not limited to the two-stage type, and may be a three-stage type or more, and a plurality of units may be installed. The kind of expander 8 is not specifically limited, For example, a turbo type, a scroll type, a reciprocating type etc. may be sufficient.

本実施形態のCAES発電装置2は、低圧段圧縮機本体4a又は高圧段圧縮機本体4bを迂回して空気を流動させる圧縮機バイパス流路20a〜20cを備える(図1の破線参照)。さらに、本実施形態のCAES発電装置2には、圧縮機バイパス流路20a〜20cを使用していずれの圧縮機本体4a,4bを迂回するか又は迂回しないかを切り替えるための圧縮機バイパス切替部22が設けられている。   The CAES power generation device 2 of the present embodiment includes compressor bypass passages 20a to 20c that allow air to flow around the low-pressure stage compressor body 4a or the high-pressure stage compressor body 4b (see broken lines in FIG. 1). Furthermore, in the CAES power generator 2 of the present embodiment, a compressor bypass switching unit for switching which compressor main body 4a, 4b is bypassed or not bypassed using the compressor bypass flow paths 20a to 20c. 22 is provided.

圧縮機バイパス流路20a〜20cは、空気配管10aと流体的に接続され、低圧段圧縮機本体4a又は高圧段圧縮機本体4bを迂回して空気を流動させることができるように構成されている。具体的には、圧縮機バイパス流路20aは、低圧段圧縮機本体4aの上流で空気配管10aから分岐している。圧縮機バイパス流路20aは、二手に分流され、一方の圧縮機バイパス流路20bは低圧段圧縮機本体4aの下流かつ高圧段圧縮機本体4bの上流で空気配管10aに合流し、他方の圧縮機バイパス流路20cは高圧段圧縮機本体4bの下流で空気配管10aに合流している。   The compressor bypass channels 20a to 20c are fluidly connected to the air pipe 10a and configured to allow air to flow around the low-pressure stage compressor body 4a or the high-pressure stage compressor body 4b. . Specifically, the compressor bypass flow path 20a branches from the air pipe 10a upstream of the low-pressure stage compressor body 4a. The compressor bypass flow path 20a is divided into two hands, and one compressor bypass flow path 20b joins the air pipe 10a downstream of the low pressure stage compressor body 4a and upstream of the high pressure stage compressor body 4b, and the other compression The machine bypass passage 20c joins the air pipe 10a downstream of the high-pressure stage compressor body 4b.

圧縮機バイパス切替部22は、バルブ23a〜23eを備える。バルブ23a〜23eは、空気配管10a及び圧縮機バイパス流路20a〜20cに設けられており、これらのバルブ23a〜23eの開閉を切り替えることで必要に応じて低圧段圧縮機本体4a又は高圧段圧縮機本体4bを迂回して空気を圧縮できる。バルブ23a〜23eの開閉制御については後述する。   The compressor bypass switching unit 22 includes valves 23a to 23e. The valves 23a to 23e are provided in the air pipe 10a and the compressor bypass passages 20a to 20c, and the low pressure compressor main body 4a or the high pressure compressor is switched as necessary by switching between opening and closing of the valves 23a to 23e. Air can be compressed by bypassing the machine body 4b. The opening / closing control of the valves 23a to 23e will be described later.

また、本実施形態のCAES発電装置2は、低圧段膨張機本体8a又は高圧段膨張機本体8bを迂回して空気を流動させる膨張機バイパス流路24a〜24cを備える(図1の破線参照)。さらに、膨張機バイパス流路24a〜24cを使用していずれの膨張機本体8a,8bを迂回するか又は迂回しないかを切り替えるための膨張機バイパス切替部26が設けられている。   Further, the CAES power generation device 2 of the present embodiment includes expander bypass channels 24a to 24c that bypass the low-pressure stage expander body 8a or the high-pressure stage expander body 8b and flow air (see the broken line in FIG. 1). . Furthermore, the expander bypass switching part 26 for switching which expander main body 8a, 8b is bypassed or not bypassed using the expander bypass flow paths 24a to 24c is provided.

膨張機バイパス流路24a〜24cは、空気配管10bと流体的に接続され、低圧段膨張機本体8a又は高圧段膨張機本体8bを迂回して空気を流動させることができるように構成されている。具体的には、膨張機バイパス流路24a〜24cは、蓄圧タンク6の下流かつ高圧段膨張機本体8bの上流で空気配管10bから分岐している。膨張機バイパス流路24aは、二手に分流され、一方の膨張機バイパス流路24bは高圧段膨張機本体8bの下流かつ低圧段膨張機本体8aの上流で空気配管10bに合流し、他方の圧縮機バイパス流路24cは低圧段膨張機本体8aの下流で空気配管10bに合流している。   The expander bypass passages 24a to 24c are fluidly connected to the air pipe 10b and configured to allow air to flow around the low-pressure stage expander body 8a or the high-pressure stage expander body 8b. . Specifically, the expander bypass flow paths 24a to 24c branch from the air pipe 10b downstream of the pressure accumulation tank 6 and upstream of the high-pressure stage expander main body 8b. The expander bypass channel 24a is divided into two branches, and one expander bypass channel 24b joins the air pipe 10b downstream of the high-pressure stage expander body 8b and upstream of the low-pressure stage expander body 8a, and the other compression The machine bypass passage 24c joins the air pipe 10b downstream of the low-pressure expander body 8a.

膨張機バイパス切替部26は、バルブ27a〜27eを備える。バルブ27a〜27eは、空気配管10b及び膨張機バイパス流路24a〜24cに設けられており、これらのバルブ27a〜27eの開閉を切り替えることにより必要に応じて低圧段膨張機本体8a又は高圧段膨張機本体8bを迂回して空気を膨張できる。バルブ27a〜27eの開閉制御については後述する。   The expander bypass switching unit 26 includes valves 27a to 27e. The valves 27a to 27e are provided in the air pipe 10b and the expander bypass channels 24a to 24c, and the low pressure stage expander body 8a or the high pressure stage expansion is switched as necessary by switching between opening and closing of the valves 27a to 27e. Air can be expanded by bypassing the machine body 8b. The opening / closing control of the valves 27a to 27e will be described later.

また、CAES発電装置2は、制御装置28を備える。蓄圧タンク6に設置された圧力センサ16は、制御装置28に検出した圧力を出力する。制御装置28は、検出した圧力に基づいてバルブ18a,18b,23a〜23e,27a〜27eの開閉を制御する。   Further, the CAES power generation device 2 includes a control device 28. The pressure sensor 16 installed in the pressure accumulation tank 6 outputs the detected pressure to the control device 28. The control device 28 controls the opening and closing of the valves 18a, 18b, 23a-23e, 27a-27e based on the detected pressure.

圧縮機バイパス切替部22の制御について、制御装置28は、蓄圧タンク6の内圧が後述する所定の圧力値を下回った場合、高圧段圧縮機本体4bを迂回するようにバルブ23a〜23eの開閉を制御する。具体的には、この場合、バルブ23a,23dを閉じ、バルブ23b,23c,23eを開く。   Regarding the control of the compressor bypass switching unit 22, the control device 28 opens and closes the valves 23 a to 23 e so as to bypass the high-pressure stage compressor body 4 b when the internal pressure of the pressure accumulation tank 6 falls below a predetermined pressure value described later. Control. Specifically, in this case, the valves 23a and 23d are closed and the valves 23b, 23c and 23e are opened.

また、制御装置28は、低圧段圧縮機本体4a及び高圧段圧縮機本体4bの使用頻度を均一に使用するようにバルブ23a〜23eを制御する。従って、制御装置28は、例えば所定の時間高圧段圧縮機本体4bを迂回するようにバルブ23a〜23eを上述のように制御すると、次に所定の時間低圧段圧縮機本体4aを迂回するようにバルブ23a〜23eの開閉を制御する。具体的には、この場合、バルブ23b,23eを閉じ、バルブ23a,23c,23dを開く。ただし、必ずしも順に個々の圧縮機本体4a,4bを使用する必要はなく、2回の所定の時間高圧段圧縮機本体4bを迂回し、その後2回の所定の時間低圧段圧縮機本体4aを迂回するようにしてもよい。   In addition, the control device 28 controls the valves 23a to 23e so that the usage frequencies of the low-pressure stage compressor body 4a and the high-pressure stage compressor body 4b are uniformly used. Therefore, when the control device 28 controls the valves 23a to 23e as described above so as to bypass the high pressure stage compressor body 4b for a predetermined time, for example, the control device 28 next bypasses the low pressure stage compressor body 4a for a predetermined time. Controls opening and closing of the valves 23a to 23e. Specifically, in this case, the valves 23b and 23e are closed and the valves 23a, 23c and 23d are opened. However, it is not always necessary to use the individual compressor bodies 4a and 4b in order. The high pressure stage compressor body 4b is bypassed twice for a predetermined time, and then the low pressure stage compressor body 4a is bypassed twice for a predetermined time. You may make it do.

このように制御することにより、圧縮機本体4a,4bの使用頻度が均一化され、個々の圧縮機本体4a,4bの使用による疲労度合を均一化できる。従って、圧縮機4全体としての耐用年数を延長でき、システムの信頼性を向上できる。   By controlling in this way, the frequency of use of the compressor bodies 4a and 4b is made uniform, and the degree of fatigue due to the use of the individual compressor bodies 4a and 4b can be made uniform. Therefore, the useful life of the compressor 4 as a whole can be extended, and the reliability of the system can be improved.

膨張機バイパス切替部26の制御について、制御装置28は、蓄圧タンク6の内圧が後述する所定の圧力値を下回った場合、高圧段膨張機本体8bを迂回するようにバルブ27a〜27eの開閉を制御する。具体的には、この場合、バルブ27b,27eを閉じ、バルブ27a,27c,27dを開く。   Regarding the control of the expander bypass switching unit 26, the control device 28 opens and closes the valves 27a to 27e so as to bypass the high-pressure stage expander main body 8b when the internal pressure of the pressure accumulating tank 6 falls below a predetermined pressure value described later. Control. Specifically, in this case, the valves 27b and 27e are closed and the valves 27a, 27c and 27d are opened.

また、制御装置28は、低圧段膨張機本体8a及び高圧段膨張機本体8bの使用頻度を均一に使用するようにバルブ27a〜27eを制御する。従って、制御装置28は、例えば所定の時間高圧段膨張機本体8bを迂回するようにバルブ27a〜27eを上述のように制御すると、次に所定の時間低圧段膨張機本体8aを迂回するようにバルブ27a〜27eの開閉を制御する。具体的には、この場合、バルブ27a,27dを閉じ、バルブ27b,27c,27eを開く。ただし、必ずしも順に個々の膨張機本体8a,8bを使用する必要はなく、2回の所定の時間高圧段膨張機本体8bを迂回し、その後2回の所定の時間低圧段膨張機本体8aを迂回するようにしてもよい。   In addition, the control device 28 controls the valves 27a to 27e so that the usage frequencies of the low-pressure stage expander body 8a and the high-pressure stage expander body 8b are uniformly used. Therefore, for example, when the control device 28 controls the valves 27a to 27e as described above so as to bypass the high pressure stage expander body 8b for a predetermined time, the control device 28 next bypasses the low pressure stage expander body 8a for a predetermined time. Controls opening and closing of the valves 27a to 27e. Specifically, in this case, the valves 27a and 27d are closed and the valves 27b, 27c and 27e are opened. However, it is not always necessary to use the individual expander bodies 8a and 8b in order. The high-pressure stage expander body 8b is bypassed twice for a predetermined time, and then the low-pressure stage expander body 8a is bypassed twice for a predetermined time. You may make it do.

このように制御することにより、膨張機本体8a,8bの使用頻度が均一化され、個々の膨張機本体8a,8bの使用による疲労度合を均一化できる。従って、膨張機8全体としての耐用年数を延長でき、システムの信頼性を向上できる。   By controlling in this way, the use frequency of the expander main bodies 8a and 8b is made uniform, and the degree of fatigue due to the use of the individual expander main bodies 8a and 8b can be made uniform. Therefore, the useful life of the expander 8 as a whole can be extended and the reliability of the system can be improved.

図2は、多段型圧縮機の場合の蓄圧タンクの内圧と設計点における個々の圧縮機本体の圧縮量の関係を示すグラフである。本実施形態では2段型の圧縮機4を使用しているが、より一般的な場合を説明するために、図2ではn段型の圧縮機を想定している。グラフの縦軸は、作動流体である空気の圧力を示し、グラフ横軸は何段目の圧縮機本体であるかを示している。   FIG. 2 is a graph showing the relationship between the internal pressure of the pressure accumulating tank and the compression amount of each compressor main body at the design point in the case of a multistage compressor. In this embodiment, a two-stage compressor 4 is used, but in order to explain a more general case, an n-stage compressor is assumed in FIG. The vertical axis of the graph indicates the pressure of air that is the working fluid, and the horizontal axis of the graph indicates the number of compressor bodies.

1段目圧縮機本体(最低圧段膨張機本体)では、大気圧Pin_0の空気を吸気し、圧力Pin_1まで圧縮する。2段目圧縮機本体では、1段目圧縮機本体で圧力Pin_1まで圧縮された圧縮空気をさらに圧力Pin_2まで圧縮する。これを繰り返し、n段目圧縮機本体(最低圧段膨張機本体)では、n−1段目圧縮機本体で圧力Pin_n−1まで圧縮された圧縮空気を蓄圧タンク6の内圧Pまでさらに圧縮する。 In the first-stage compressor main body (lowest pressure stage expander main body), the air at the atmospheric pressure P in — 0 is sucked and compressed to the pressure P in — 1 . In the second stage compressor body, further compressed to a pressure P IN_2 compressed air compressed to a pressure P IN_1 in the first stage compressor body. By repeating this, in the n-th stage compressor main body (minimum pressure stage expander main body), the compressed air compressed to the pressure P in n−1 by the n−1-th stage compressor main body is further increased to the internal pressure P t of the pressure accumulation tank 6. Compress.

ここで圧力Pは、圧力センサ16による蓄圧タンク6の内圧の実測値である。この圧力Pが所定の閾値であるバイパス基準判定圧力Pin_njより高いか又は低いかによって、使用する圧縮機本体の台数に応じた圧縮効率が異なる。このバイパス基準判定圧力Pin_njは、個々の圧縮機本体の圧縮比及び所定のバイパス基準判定圧縮比に基づいて算出できる。例えば、個々の圧縮機本体の設計点における圧縮比がCrで同じ場合、所定のバイパス基準判定圧縮比をCrjとして以下の式のように計算できる。 Here, the pressure P t is an actual measurement value of the internal pressure of the pressure accumulating tank 6 by the pressure sensor 16. This pressure or P t is higher or lower than the bypass check reference pressure P In_nj a predetermined threshold value, the compression efficiency is different depending on the number of the compressor body to be used. The bypass reference determination pressure P in_nj can be calculated based on the compression ratio of each compressor body and a predetermined bypass reference determination compression ratio. For example, when the compression ratio at the design point of each compressor main body is the same for Cr, the predetermined bypass reference determination compression ratio can be calculated as Crj using the following equation.

Figure 2017008867
Figure 2017008867

Figure 2017008867
Figure 2017008867

ここでバイパス基準判定圧縮比Crjは、1<Crj<Crを満たす値であり、求める圧縮効率に応じてこの範囲で変更されてよい。従って、バイパス基準判定圧力Pin_njは、Pin_n−1<Pin_nj<Pin_nの範囲の値となる。個々の圧縮機本体の圧縮比Crがそれぞれ異なる場合、個々の圧縮機本体の圧縮比の積に基づいて同様に、上式(1)よりPin_n−1を算出し、上式(2)よりPin_njを算出すればよい。 Here, the bypass reference determination compression ratio Crj is a value satisfying 1 <Crj <Cr, and may be changed within this range according to the compression efficiency to be obtained. Therefore, the bypass reference determination pressure P in — nj is a value in the range of P in — n−1 <P in — nj <P in — n . When the compression ratios Cr of the individual compressor bodies are different from each other, P in — n−1 is calculated from the above equation (1) based on the product of the compression ratios of the individual compressor bodies, and from the above equation (2). P in_nj may be calculated.

蓄圧タンク6の内圧Pが仮に図に示すように上式(2)のバイパス基準判定圧力Pin_njよりも小さい場合(二点鎖線参照)、n段目圧縮機本体を使用して圧縮すると設計点から大きく離れた圧縮比で圧縮することになり圧縮効率が低下する。即ち、破線矢印の傾斜がn段目における実線矢印の傾斜に比べて著しく小さくなる。従って、この場合にはn段目圧縮機本体を使用せず、1段目からn−1段目圧縮機本体のみで空気を圧縮することが好ましい(二点鎖線矢印参照)。このため、蓄圧タンク6の内圧Ptが所定のバイパス基準判定圧力値Pin_njよりも低い場合、制御装置28により、圧縮機バイパス切替部22を切り替えて圧縮機バイパス流路を使用する。そして、n段目の圧縮機本体で空気を圧縮せずにバイパスさせて蓄圧タンク6に空気を送り込む。 The above equation as shown in tentatively FIG pressure P t is the accumulator tank 6 (2) is smaller than the bypass check reference pressure P In_nj (see two-dot chain line), design and compressed using the n-th stage compressor body Compression is performed at a compression ratio far away from the point, and the compression efficiency decreases. That is, the slope of the dashed arrow is significantly smaller than the slope of the solid arrow at the nth stage. Therefore, in this case, it is preferable not to use the n-th stage compressor main body but to compress the air only from the first stage to the (n-1) -th stage compressor main body (see the two-dot chain line arrow). For this reason, when the internal pressure Pt of the pressure accumulating tank 6 is lower than a predetermined bypass reference determination pressure value P in_nj , the control device 28 switches the compressor bypass switching unit 22 to use the compressor bypass flow path. Then, the air is bypassed without being compressed by the n-th stage compressor main body, and the air is fed into the pressure accumulation tank 6.

また、蓄圧タンク6の内圧Pが仮に図に示すように上式(2)のバイパス基準判定圧力Pin_njよりも高い場合(一点鎖線参照)、n段目圧縮機本体を使用して圧縮しても設計点から大きく離れた圧縮比で圧縮することにならず圧縮効率は大きく低下しない。従って、この場合にはn段目圧縮機本体を使用して圧縮することが好ましい(一点鎖線矢印参照)。このため、蓄圧タンク6の内圧Ptが所定のバイパス基準判定圧力値Pin_njよりも高い場合、制御装置28により、圧縮機バイパス切替部22を切り替えて圧縮機バイパス流路を使用しない。 Further, (see dashed line) When high than the bypass check reference pressure P In_nj of the equation (2) internal pressure P t of the accumulator tank 6 is assumed as shown in FIG, compressed using the n-th stage compressor body However, the compression ratio is not greatly reduced from the design point, and the compression efficiency is not greatly reduced. Therefore, in this case, it is preferable to perform compression using the n-th stage compressor main body (see the one-dot chain line arrow). For this reason, when the internal pressure Pt of the pressure accumulating tank 6 is higher than a predetermined bypass reference determination pressure value P in_nj , the control device 28 switches the compressor bypass switching unit 22 and does not use the compressor bypass flow path.

また、蓄圧タンク6の内圧Ptが仮にPin_n−1未満ならば、既にn−1段目圧縮機本体の吐出口部で蓄圧タンクの内圧Ptを上回っているのでn段目圧縮機本体は駆動する必要がない。この場合にはn段目圧縮機本体を使用せず、1段目からn−1段目圧縮機本体のみで空気を圧縮する。蓄圧タンク6の内圧Ptが仮にPin_n−2やこれ以降の設計点における圧力未満ならば、n−2段目以降もさらにバイパスする。 Further, if the internal pressure Pt of the pressure accumulating tank 6 is less than Pin_n−1 , the n-th stage compressor main body is driven because the internal pressure Pt of the pressure accumulating tank is already exceeded at the discharge port portion of the n− 1th stage compressor main body. There is no need to do. In this case, the n-th stage compressor body is not used, and air is compressed only from the first stage to the (n-1) th stage compressor body. If the internal pressure Pt of the pressure accumulating tank 6 is less than the pressure at Pin_n-2 or a design point thereafter, the n- 2th stage and beyond are further bypassed.

図3は、このときの制御方法を示したフローチャートである。運転が開始されると、運転中の圧縮機本体の台数をn台と確認し、蓄圧タンク6の内圧Pがバイパス基準判定圧力Pin_nj以下である場合、n段目入口弁(n段目圧縮機本体に通じるバルブ)を閉弁し、n段目バイパス弁(n段目圧縮機本体をバイパスするためのバルブ)を開弁し、n段目圧縮機本体を停止し、n段目圧縮機本体を迂回する。蓄圧タンク6の内圧PがPin_njより高い場合、n段目入口弁を閉弁し、n段目バイパス弁を開弁し、1段目からn段目までの圧縮機本体で空気を圧縮する。そして、再び運転中の圧縮機本体の台数を確認し、これを繰り返す。従って、このような制御がループすることで2台以上の圧縮機本体をバイパスする場合もあり、圧縮効率を維持する最適な台数で圧縮する。 FIG. 3 is a flowchart showing the control method at this time. When operation is started, check the number of the compressor body during operation and n stand, if the internal pressure P t of the accumulator tank 6 is equal to or less than the bypass check reference pressure P In_nj, n-th stage inlet valve (n-th stage The valve leading to the compressor body) is closed, the n-th stage bypass valve (valve for bypassing the n-th stage compressor body) is opened, the n-th stage compressor body is stopped, and the n-th stage compression is performed. Bypass the machine body. When the internal pressure P t of the accumulator tank 6 is higher than the P In_nj, it closes the n-th stage inlet valve, opens the n-th stage bypass valve, the compressed air in the compressor body of the first stage to the n-th stage To do. And the number of the compressor main bodies in operation is confirmed again, and this is repeated. Therefore, there are cases where two or more compressor main bodies are bypassed by looping such control, and compression is performed with an optimal number that maintains compression efficiency.

このように制御することで、本実施形態では、蓄圧タンク6の内圧が減少した場合でも、圧縮機4の軸動力の変換効率を悪化させないために、圧縮機バイパス流路20a〜20cと圧縮機バイパス切替部22を使用して必要以上の圧縮機本体4a,4bを駆動しないように制御している。よって、本実施形態のように多段の圧縮システム構成では、蓄圧タンク6の内圧が低下するなどして圧縮システムの途中段で蓄圧タンク6の内圧を上回る圧力となる場合、後段の圧縮機では圧縮せずにバイパスさせてもそのまま蓄圧タンク6に送ることができる。その際、後段の圧縮機本体を停止できるので、不要な圧縮機本体を運転させることがなく、システム効率の低下を防止できる。   By controlling in this way, in this embodiment, even when the internal pressure of the pressure accumulating tank 6 is decreased, the compressor bypass flow paths 20a to 20c and the compressor are prevented from deteriorating the conversion efficiency of the shaft power of the compressor 4. The bypass switching unit 22 is used to control the compressor main bodies 4a and 4b so as not to be driven more than necessary. Therefore, in the multistage compression system configuration as in the present embodiment, when the internal pressure of the pressure accumulating tank 6 decreases and the pressure exceeds the internal pressure of the pressure accumulating tank 6 in the middle stage of the compression system, the rear stage compressor performs compression. Even if it is bypassed, it can be sent to the pressure accumulation tank 6 as it is. At that time, since the compressor body at the latter stage can be stopped, an unnecessary compressor body is not operated, and a decrease in system efficiency can be prevented.

また、図3においてn段目圧縮機本体をバイパスするか否かを決定する閾値として、バイパス基準判定圧力Pin_njを採用しているが、より簡単にPin_n−1を閾値としてもよい。 In FIG. 3, the bypass reference determination pressure P in_nj is adopted as a threshold for determining whether or not to bypass the n-th stage compressor main body, but P in_n−1 may be more simply set as the threshold.

図4は、多段型膨張機の場合の蓄圧タンクの内圧と設計点における個々の膨張機本体の膨張量の関係を示す図2と同様のグラフである。本実施形態では2段型の膨張機8を使用しているが、より一般的な場合を説明するために、図4ではm段型の膨張機を想定している。グラフの縦軸は、作動流体である空気の圧力を示し、グラフ横軸は何段目の膨張機本体であるかを示している。   FIG. 4 is a graph similar to FIG. 2 showing the relationship between the internal pressure of the pressure accumulating tank and the expansion amount of each expander body at the design point in the case of the multistage expander. In this embodiment, a two-stage expander 8 is used. However, in order to explain a more general case, FIG. 4 assumes an m-stage expander. The vertical axis of the graph represents the pressure of air as the working fluid, and the horizontal axis of the graph represents the number of stages of the expander body.

m段目膨張機本体(最高圧段膨張機本体)では、蓄圧タンク6の内圧P=Pout_mの空気を給気され、圧力Pout_m−1まで膨張させる。m−1段目膨張機本体では、m段目膨張機本体で圧力Pout_m−1まで膨張された圧縮空気をさらに圧力Pout_m−2まで膨張させる。これを繰り返し、1段目膨張機本体(最低圧段膨張機本体)では、2段目膨張機本体で圧力Pout_1まで膨張された圧縮空気を実質的に大気圧に等しいPout_0までさらに膨張させる。 In the m-th stage expander body (maximum pressure stage expander body), air of the internal pressure P t = P out_m in the pressure accumulation tank 6 is supplied and expanded to the pressure P out_m−1 . In the m-1st stage expander body, the compressed air expanded to the pressure Pout_m-1 in the mth stage expander body is further expanded to the pressure Pout_m-2 . This is repeated, and in the first stage expander body (lowest pressure stage expander body), the compressed air expanded to the pressure P out — 1 in the second stage expander body is further expanded to P out — 0 which is substantially equal to the atmospheric pressure. .

蓄圧タンク6の内圧Pが所定の閾値であるバイパス基準判定圧力Pout_mjより高いか又は低いかによって、使用する膨張機本体の台数に応じた膨張効率が異なる。バイパス基準判定圧力Pout_mjは、個々の膨張機本体の膨張比及び所定のバイパス基準判定膨張比に基づいて算出できる。例えば、個々の膨張機本体の設計点における膨張比がErで同じ場合、所定のバイパス基準判定膨張比をErjとして以下の式のように計算できる。 Depending internal pressure P t of the accumulator tank 6 is higher or lower than the bypass check reference pressure P Out_mj a predetermined threshold value, the expansion efficiency in accordance with the number of the expander body to be used is different. The bypass reference determination pressure P out_mj can be calculated based on the expansion ratio of each expander body and a predetermined bypass reference determination expansion ratio. For example, when the expansion ratio at the design point of each expander body is the same as Er, the predetermined bypass reference determination expansion ratio can be calculated as Erj using the following equation.

Figure 2017008867
Figure 2017008867

Figure 2017008867
Figure 2017008867

ここでバイパス基準判定膨張比Erjは、1<Erj<Erを満たす値であり、求める膨張効率に応じてこの範囲で変更されてよい。従って、バイパス基準判定圧力は、Pout_m−1<Pout_mj<Pout_mの範囲の値となる。個々の膨張機本体の膨張比Erがそれぞれ異なる場合、個々の膨張機本体の膨張比の積に基づいて同様に、上式(3)よりPout_m−1を算出し、上式(4)よりPout_mjを算出すればよい。 Here, the bypass reference determination expansion ratio Erj is a value that satisfies 1 <Erj <Er, and may be changed within this range according to the required expansion efficiency. Therefore, the bypass reference determination pressure has a value in the range of P out_m−1 <P out_mj <P out_m . When the expansion ratios Er of the individual expander bodies are different from each other, P out_m−1 is calculated from the above expression (3) based on the product of the expansion ratios of the individual expander bodies, and from the above expression (4). P out_mj may be calculated.

蓄圧タンク6の内圧Pが仮に図に示すように上式(4)のバイパス基準判定圧力Pout_mjよりも小さい場合(二点鎖線参照)、m段目膨張機本体を使用して膨張すると設計点から大きく離れた膨張比で膨張することになり膨張効率が低下する。即ち、破線矢印の傾斜がm段目における実線矢印の傾斜に比べて著しく小さくなる。従って、この場合にはm段目膨張機本体を使用せず、1段目からm−1段目膨張機本体のみで空気を膨張させることが好ましい(二点鎖線矢印参照)。このため、蓄圧タンク6の内圧Pが所定のバイパス基準判定圧力値Pout_mjよりも低い場合、制御装置28により、膨張機バイパス切替部26を切り替えて膨張機バイパス流路に空気を流してm段目膨張機本体で空気を膨張させずにバイパスさせて排気する。 Pressure P t is assumed above as shown in FIG type accumulator tank 6 (4) is smaller than the bypass check reference pressure P Out_mj (see two-dot chain line), and expands using m-th stage expander body design It will expand | swell by the expansion ratio far away from the point, and expansion efficiency will fall. That is, the slope of the dashed arrow is significantly smaller than the slope of the solid arrow at the m-th stage. Therefore, in this case, it is preferable not to use the m-th stage expander main body but to expand the air only from the first stage to the (m-1) -th stage expander main body (see a two-dot chain line arrow). Therefore, if the internal pressure P t of the accumulator tank 6 is lower than a predetermined bypass check reference pressure value P Out_mj, the control unit 28, by flowing air to the expander bypass passage by switching the expander bypass-switching section 26 m The stage expander body bypasses the air without expanding it and exhausts it.

また、蓄圧タンク6の内圧Pが仮に図に示すように上式(4)のバイパス基準判定圧力Pout_mjよりも高い場合(一点鎖線参照)、m段目膨張機本体を使用して膨張しても設計点から大きく離れた膨張比で膨張することにならず膨張効率は大きく低下しない。従って、この場合にはm段目膨張機本体を使用して膨張することが好ましい(一点鎖線矢印参照)。このため、蓄圧タンク6の内圧Pが所定のバイパス基準判定圧力値Pout_mjよりも高い場合、制御装置28により、膨張機バイパス切替部26を切り替えて膨張機バイパス流路を使用しない。 Further, (see dashed line) When high than the bypass check reference pressure P Out_mj the above equation as shown in tentatively FIG pressure P t is the accumulator tank 6 (4), and expanded using the m-th stage expander body However, it does not expand at an expansion ratio far away from the design point, and the expansion efficiency does not decrease greatly. Therefore, in this case, it is preferable to expand using the m-th stage expander body (see the dashed line arrow). Therefore, if the internal pressure P t of the accumulator tank 6 is higher than the predetermined bypass check reference pressure value P Out_mj, the control device 28, without using the expander bypass passage by switching the expander bypass switching unit 26.

また、蓄圧タンク6の内圧Ptが仮にm−1段目における各膨張機の膨張比によって決まる設計点における圧力Pout_m−1未満ならば、m段目膨張機本体は駆動する必要がない。この場合にはm−1段目およびその下流段(後段)の膨張機本体のみで空気を膨張させる。蓄圧タンク6の内圧Ptが仮にPout_m−2やこれ以降の設計点における圧力未満ならば、m−2段目以降もさらにバイパスする。 Further, if the internal pressure Pt of the pressure accumulating tank 6 is less than the pressure Pout_m−1 at the design point determined by the expansion ratio of each expander at the (m−1) th stage, it is not necessary to drive the mth stage expander body. In this case, air is expanded only by the expander main body at the (m-1) th stage and its downstream stage (rear stage). If the internal pressure Pt of the pressure accumulating tank 6 is less than Pout_m-2 or a pressure at a design point thereafter, the m- 2th stage and beyond are further bypassed.

図5は、このときの制御方法を示したフローチャートである。運転が開始されると、運転中の膨張機本体の台数をm台と確認し、蓄圧タンク6の内圧Pがバイパス基準判定圧力Pout_mj以下である場合、m段目入口弁(m段目膨張機本体に通じるバルブ)を閉弁し、m段目バイパス弁(m段目膨張機本体をバイパスするためのバルブ)を開弁し、m段目膨張機本体を停止し、m段目膨張機本体を迂回する。蓄圧タンク6の内圧PがPout_mjより高い場合、m段目入口弁を閉弁し、m段目バイパス弁を開弁し、1段目からm段目までの膨張機本体で空気を膨張させる。そして、再び運転中の膨張機本体の台数を確認し、これを繰り返す。従って、このような制御がループすることで2台以上の膨張機本体をバイパスする場合もあり、膨張効率を維持する最適な台数で膨張する。 FIG. 5 is a flowchart showing the control method at this time. When operation is started, check the number of the expander body in operation and m stand, if the internal pressure P t of the accumulator tank 6 is equal to or less than the bypass check reference pressure P Out_mj, m-th stage inlet valve (m-th stage The valve leading to the expander body) is closed, the m-th stage bypass valve (valve for bypassing the m-th stage expander body) is opened, the m-th stage expander body is stopped, and the m-th stage expansion is performed. Bypass the machine body. When the internal pressure P t of the accumulator tank 6 is higher than the P Out_mj, it closes the m-th stage inlet valve, opening the m-th stage bypass valve, expanding the air in the expander body from first stage to the m-th stage Let Then, the number of expander bodies in operation is confirmed again, and this is repeated. Therefore, there are cases where two or more expander main bodies are bypassed by looping such control, and expansion is performed with an optimal number that maintains expansion efficiency.

このように制御することで、本実施形態では、蓄圧タンク6の内圧が減少した場合でも、膨張機8の軸動力の変換効率を悪化させないために、膨張機バイパス流路24a〜24cと膨張機バイパス切替部26を使用して必要以上の膨張機本体を駆動しないように制御している。具体的には、運転効率が悪くなる段の膨張機本体には圧縮空気を通さずバイパスさせることでシステム全体としての運転効率の低下を防止できる。   By controlling in this way, in this embodiment, even when the internal pressure of the pressure accumulating tank 6 decreases, in order not to deteriorate the conversion efficiency of the shaft power of the expander 8, the expander bypass channels 24a to 24c and the expander The bypass switching unit 26 is used to control the expansion machine body not to be driven more than necessary. Specifically, it is possible to prevent a reduction in the operation efficiency of the entire system by bypassing the expander body at a stage where the operation efficiency is deteriorated without passing compressed air.

また、図5においてm段目膨張機本体をバイパスするか否かを決定する閾値として、バイパス基準判定圧力Pout_mjを採用しているが、より簡単にPout_m−1を閾値としてもよい。 In FIG. 5, the bypass reference determination pressure P out_mj is employed as a threshold value for determining whether or not to bypass the m-th expander body, but P out_m−1 may be more easily set as the threshold value.

(第2実施形態)
図6は、第2実施形態のCAES発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、圧縮機4及び膨張機8が共に3段型であることに関する以外は図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については説明を省略する場合がある。
(Second Embodiment)
FIG. 6 shows a schematic configuration diagram of the CAES power generator 2 of the second embodiment. The CAES power generator 2 of this embodiment is substantially the same as the first embodiment of FIG. 1 except that the compressor 4 and the expander 8 are both three-stage types. Therefore, description of the same parts as those shown in FIG. 1 may be omitted.

圧縮機4は、3段型であり、1段目圧縮機本体4gと、2段目圧縮機本体4hと、3段目圧縮機本体4iとを備える。これらの圧縮機本体4g〜4iにより、空気は順に圧縮され、蓄圧タンク6に貯蔵される。   The compressor 4 is a three-stage type, and includes a first-stage compressor body 4g, a second-stage compressor body 4h, and a third-stage compressor body 4i. By these compressor main bodies 4 g to 4 i, the air is sequentially compressed and stored in the pressure accumulation tank 6.

膨張機8は、3段型であり、1段目膨張機本体8iと、2段目膨張機本体8hと、3段目膨張機本体8gとを備える。これらの膨張機本体8g〜8iにより、空気は順に膨張され、外部に排気される。   The expander 8 is a three-stage type, and includes a first-stage expander body 8i, a second-stage expander body 8h, and a third-stage expander body 8g. By these expander main bodies 8g to 8i, air is sequentially expanded and exhausted to the outside.

圧縮機バイパス流路20d〜20gは、空気配管10aと流体的に接続され、1段目から3段目圧縮機本体4g〜4iを迂回して空気を流動させるように構成されている。具体的には、圧縮機バイパス流路20dは、1段目圧縮機本体4gの上流で空気配管10aから分岐する。圧縮機バイパス流路20dは、三手に分流されている。1つ目の圧縮機バイパス流路20eは1段目圧縮機本体4gの下流かつ2段目圧縮機本体4hの上流で空気配管10aに合流する。2つ目の圧縮機バイパス流路20fは2段目圧縮機本体4hの下流かつ3段目圧縮機本体4iの上流で空気配管10aに合流する。3つ目の圧縮機バイパス流路20gは3段目圧縮機本体4iの下流で空気配管10aに合流する。   The compressor bypass passages 20d to 20g are fluidly connected to the air pipe 10a and configured to flow air around the first to third stage compressor bodies 4g to 4i. Specifically, the compressor bypass passage 20d branches from the air pipe 10a upstream of the first stage compressor body 4g. The compressor bypass channel 20d is divided into three hands. The first compressor bypass flow path 20e joins the air pipe 10a downstream of the first stage compressor body 4g and upstream of the second stage compressor body 4h. The second compressor bypass flow path 20f joins the air pipe 10a downstream of the second stage compressor body 4h and upstream of the third stage compressor body 4i. The third compressor bypass flow path 20g joins the air pipe 10a downstream of the third-stage compressor body 4i.

圧縮機バイパス切替部22は、バルブ23f〜23mを備える。これらのバルブ23f〜23mの開閉を切り替えることにより必要に応じて1段目から3段目圧縮機本体4g〜4iを迂回して空気を圧縮できる。バルブ23f〜23mの開閉制御については第1実施形態と同様である。例えば、1段目圧縮機本体4gを迂回する場合、バルブ23g,23j,23k,23mを閉じ、バルブ23f,23h,23i,23lを開く。2段目圧縮機本体4hを迂回する場合、バルブ23f,23i,23mを閉じ、バルブ23g,23h,23j,23k,23lを開く。3段目圧縮機本体4iを迂回する場合、バルブ23f,23h,23j,23lを閉じ、バルブ23g,23i,23k,23mを開く。また、1段目圧縮機本体4g及び2段目圧縮機本体4hの両方を迂回する場合、バルブ23g,23h,23i,23mを閉じ、バルブ23f,23j,23k,23lを開く。2段目圧縮機本体4h及び3段目圧縮機本体4iを迂回する場合、バルブ23f,23i,23k,23lを閉じ、バルブ23g,23h,23j,23mを開く。   The compressor bypass switching unit 22 includes valves 23f to 23m. By switching between opening and closing of these valves 23f to 23m, the air can be compressed by bypassing the first to third stage compressor bodies 4g to 4i as necessary. The opening / closing control of the valves 23f to 23m is the same as in the first embodiment. For example, when bypassing the first stage compressor body 4g, the valves 23g, 23j, 23k, and 23m are closed, and the valves 23f, 23h, 23i, and 23l are opened. When bypassing the second stage compressor body 4h, the valves 23f, 23i, and 23m are closed, and the valves 23g, 23h, 23j, 23k, and 23l are opened. When bypassing the third-stage compressor body 4i, the valves 23f, 23h, 23j, and 23l are closed, and the valves 23g, 23i, 23k, and 23m are opened. When bypassing both the first-stage compressor body 4g and the second-stage compressor body 4h, the valves 23g, 23h, 23i, and 23m are closed, and the valves 23f, 23j, 23k, and 23l are opened. When bypassing the second-stage compressor body 4h and the third-stage compressor body 4i, the valves 23f, 23i, 23k, and 23l are closed, and the valves 23g, 23h, 23j, and 23m are opened.

膨張機バイパス流路24d〜24gは、空気配管10bと流体的に接続され、1段目から3段目膨張機本体8i〜8gを迂回して空気を流動させるように構成されている。具体的には、膨張機バイパス流路24dは、3段目膨張機本体8gの上流で空気配管10bから分岐する。膨張機バイパス流路24dは、三手に分流されている。1つ目の膨張機バイパス流路24dは3段目膨張機本体8gの下流かつ2段目膨張機本体8hの上流で空気配管10bに合流する。2つ目の膨張機バイパス流路24eは2段目膨張機本体8hの下流かつ1段目膨張機本体8iの上流で空気配管10bに合流する。3つ目の膨張機バイパス流路24fは1段目膨張機本体8iの下流で空気配管24gに合流する。   The expander bypass passages 24d to 24g are fluidly connected to the air pipe 10b and configured to flow air while bypassing the first-stage to third-stage expander bodies 8i to 8g. Specifically, the expander bypass passage 24d branches from the air pipe 10b upstream of the third-stage expander body 8g. The expander bypass flow path 24d is divided into three hands. The first expander bypass passage 24d joins the air pipe 10b downstream of the third-stage expander body 8g and upstream of the second-stage expander body 8h. The second expander bypass passage 24e joins the air pipe 10b downstream of the second-stage expander body 8h and upstream of the first-stage expander body 8i. The third expander bypass flow path 24f joins the air pipe 24g downstream of the first-stage expander body 8i.

膨張機バイパス切替部26は、バルブ27f〜27mを備える。これらのバルブ27f〜27mの開閉を切り替えることにより必要に応じて1段目から3段目膨張機本体8i〜8gを迂回して空気を膨張できる。バルブ27f〜27mの開閉制御については第1実施形態と同様である。例えば、3段目膨張機本体8gを迂回する場合、バルブ27g,27j,27k,27mを閉じ、バルブ27f,27h,27i,27lを開く。2段目膨張機本体8hを迂回する場合、バルブ27f,27i,27mを閉じ、バルブ27g,27h,27j,27k,27lを開く。1段目膨張機本体8iを迂回する場合、バルブ27f,27h,27j,27lを閉じ、バルブ27g,27i,27k,27mを開く。また、3段目膨張機本体8g及び2段目膨張機本体8hの両方を迂回する場合、バルブ27g,27h,27i,27mを閉じ、バルブ27f,27j,27k,27lを開く。2段目膨張機本体8h及び1段目膨張機本体8iを迂回する場合、バルブ27f,27i,27k,27lを閉じ、バルブ27g,27h,27j,27mを開く。   The expander bypass switching unit 26 includes valves 27f to 27m. By switching the opening and closing of these valves 27f to 27m, the air can be expanded by bypassing the first to third stage expander bodies 8i to 8g as necessary. The opening / closing control of the valves 27f to 27m is the same as in the first embodiment. For example, when bypassing the third stage expander body 8g, the valves 27g, 27j, 27k, and 27m are closed, and the valves 27f, 27h, 27i, and 27l are opened. When bypassing the second-stage expander body 8h, the valves 27f, 27i, and 27m are closed, and the valves 27g, 27h, 27j, 27k, and 27l are opened. When bypassing the first-stage expander body 8i, the valves 27f, 27h, 27j, and 27l are closed, and the valves 27g, 27i, 27k, and 27m are opened. When bypassing both the third-stage expander body 8g and the second-stage expander body 8h, the valves 27g, 27h, 27i, and 27m are closed, and the valves 27f, 27j, 27k, and 27l are opened. When bypassing the second stage expander body 8h and the first stage expander body 8i, the valves 27f, 27i, 27k, and 27l are closed, and the valves 27g, 27h, 27j, and 27m are opened.

このように、3段型の圧縮機4及び膨張機8の場合でも、本発明は適用可能であり、設計点での圧縮比及び膨張比での圧縮及び膨張を維持することでシステムの充放電効率の低下を防止できる。従って、同様に4段以上の多段型の場合でもシステムの充放電効率を維持するために本発明は有効である。   Thus, even in the case of the three-stage type compressor 4 and the expander 8, the present invention is applicable, and charging and discharging of the system is performed by maintaining the compression ratio and the expansion ratio at the design point. A reduction in efficiency can be prevented. Therefore, the present invention is also effective in maintaining the charge / discharge efficiency of the system even in the case of a multi-stage type having four or more stages.

全実施形態を通じて、本発明の「変動する入力電力」は再生可能エネルギーに限定されることなく、工場設備の需要電力を平滑化したりピークカットをしたりするものであってもよい。   Throughout all the embodiments, the “fluctuating input power” of the present invention is not limited to renewable energy, and may smooth or peak-cut the demand power of factory equipment.

第1及び第2実施形態では、圧縮熱を回収しないCAES発電装置2に対して本発明を適用しているが、図示しない熱交換器等を使用して圧縮熱を回収し、膨張前の空気に戻すことで、蓄圧タンク6における熱放出を防止し、システム効率を向上させてもよい。   In the first and second embodiments, the present invention is applied to the CAES power generator 2 that does not recover the compression heat. However, the compression heat is recovered using a heat exchanger or the like (not shown), and the air before expansion. By returning to, heat release in the pressure accumulation tank 6 may be prevented, and system efficiency may be improved.

2 圧縮空気貯蔵発電装置(CAES発電装置)
4 圧縮機
4a 低圧段圧縮機本体
4b 高圧段圧縮機本体
4c 吸気口
4d 吐出口
4e 吸気口
4f 吐出口
4g 1段目圧縮機本体
4h 2段目圧縮機本体
4i 3段目圧縮機本体
6 蓄圧タンク
8 膨張機
8a 低圧段膨張機本体
8b 高圧段膨張機本体
8c 給気口
8d 排気口
8e 給気口
8f 排気口
8g 3段目膨張機本体
8h 2段目膨張機本体
8i 1段目膨張機本体
10a,10b 空気配管
12a,12b,12c,12d,12e 発電機
14a,14b,14c,14d,14e モータ(電動機)
16 圧力センサ
18a,18b バルブ
20a,20b,20c,20d,20e,20f,20g 圧縮機バイパス流路
22 圧縮機バイパス切替部
23a,23b,23c,23d,23e,23f,23g,23h,23i,23j,23k,23l,23m バルブ
24a,24b,24c,24d,24e,24f,24g 膨張機バイパス流路
26 膨張機バイパス切替部
27a,27b,27c,27d,27e,27f,27g,27h,27i,27j,27k,27l,27m バルブ
28 制御装置
2 Compressed air storage generator (CAES generator)
4 Compressor 4a Low Pressure Stage Compressor Body 4b High Pressure Stage Compressor Body 4c Intake Port 4d Discharge Port 4e Intake Port 4f Discharge Port 4g First Stage Compressor Body 4h Second Stage Compressor Body 4i Third Stage Compressor Body 6 Accumulated Pressure Tank 8 Expander 8a Low-pressure stage expander body 8b High-pressure stage expander body 8c Air supply port 8d Exhaust port 8e Air supply port 8f Exhaust port 8g Third-stage expander body 8h Second-stage expander body 8i First-stage expander Main body 10a, 10b Air piping 12a, 12b, 12c, 12d, 12e Generator 14a, 14b, 14c, 14d, 14e Motor (electric motor)
16 Pressure sensor 18a, 18b Valve 20a, 20b, 20c, 20d, 20e, 20f, 20g Compressor bypass flow path 22 Compressor bypass switching part 23a, 23b, 23c, 23d, 23e, 23f, 23g, 23h, 23i, 23j , 23k, 23l, 23m Valves 24a, 24b, 24c, 24d, 24e, 24f, 24g Expander bypass flow path 26 Expander bypass switching section 27a, 27b, 27c, 27d, 27e, 27f, 27g, 27h, 27i, 27j , 27k, 27l, 27m Valve 28 Control device

Claims (6)

変動する入力電力により駆動される電動機と、
前記電動機と機械的に接続され、空気を圧縮する圧縮機と、
前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、
前記蓄圧タンク内の圧力を検出する圧力センサと、
前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動され、複数の膨張機本体を有する多段型の膨張機と、
前記膨張機と機械的に接続された発電機と、
複数の前記膨張機本体のうち、少なくとも1つを迂回して空気を流動させる膨張機バイパス流路と、
前記蓄圧タンクから供給された空気を前記膨張機バイパス流路を使用して前記膨張機本体を迂回するか切り替えるための膨張機バイパス切替部と、
前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記膨張機バイパス切替部を制御して前記膨張機バイパス流路に空気を流し、前記膨張機本体を迂回する制御装置と
を備える圧縮空気貯蔵発電装置。
An electric motor driven by fluctuating input power;
A compressor mechanically connected to the electric motor and compressing air;
An accumulator tank that is fluidly connected to the compressor and stores compressed air compressed by the compressor;
A pressure sensor for detecting the pressure in the pressure accumulation tank;
A multistage expander that is fluidly connected to the pressure accumulator tank, driven by compressed air supplied from the pressure accumulator tank, and having a plurality of expander bodies;
A generator mechanically connected to the expander;
An expander bypass flow path for bypassing at least one of the plurality of expander main bodies and flowing air;
An expander bypass switching unit for switching the air supplied from the accumulator tank to bypass the expander body using the expander bypass flow path; and
When the pressure in the pressure accumulating tank detected by the pressure sensor is lower than a predetermined value, the expander bypass switching unit is controlled to flow air through the expander bypass flow path and to bypass the expander body And a compressed air storage power generator.
前記制御装置は、複数の前記膨張機本体の使用頻度を均一に使用するように前記膨張機バイパス切替部を制御する、請求項1に記載の圧縮空気貯蔵発電装置。   The compressed air storage power generation device according to claim 1, wherein the control device controls the expander bypass switching unit so as to evenly use a plurality of expander main body usage frequencies. 前記圧縮機は、複数の圧縮機本体を有する多段型であって、
複数の前記圧縮機本体のうち、少なくとも1つを迂回して空気を流動させる圧縮機バイパス流路と、
前記圧縮機バイパス流路を使用して前記圧縮機本体を迂回するか切り替えるための圧縮機バイパス切替部と
をさらに備え、
前記制御装置は、前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記圧縮機バイパス切替部を制御して前記圧縮機バイパス流路に空気を流し、前記圧縮機本体を迂回する、請求項1又は請求項2に記載の圧縮空気貯蔵発電装置。
The compressor is a multistage type having a plurality of compressor bodies,
A compressor bypass flow path for bypassing at least one of the plurality of compressor bodies and allowing air to flow;
A compressor bypass switching unit for switching whether to bypass the compressor main body using the compressor bypass flow path, and
When the pressure in the pressure accumulating tank detected by the pressure sensor is lower than a predetermined value, the control device controls the compressor bypass switching unit to flow air through the compressor bypass flow path, and the compressor The compressed air storage power generation device according to claim 1 or 2, wherein the compressed air storage power generation device bypasses the main body.
前記制御装置は、複数の前記圧縮機本体の使用頻度を均一に使用するように前記圧縮機バイパス切替部を制御する、請求項3に記載の圧縮空気貯蔵発電装置。   The compressed air storage power generation device according to claim 3, wherein the control device controls the compressor bypass switching unit so as to uniformly use a plurality of use frequencies of the compressor main bodies. 変動する入力電力により電動機を駆動し、
前記電動機と機械的に接続された圧縮機により空気を圧縮し、
前記圧縮機と流体的に接続された蓄圧タンクに、前記圧縮機により圧縮された圧縮空気を貯蔵し、
圧力センサにより前記蓄圧タンク内の圧力を検出し、
前記蓄圧タンクと流体的に接続され、複数の膨張機本体を有する多段型の膨張機を前記蓄圧タンクから供給される圧縮空気によって駆動し、
前記膨張機と機械的に接続された発電機により発電し、
複数の前記膨張機本体のうち、膨張機バイパス流路により少なくとも1つを迂回して空気を流動させ、
前記蓄圧タンクから供給された空気を、膨張機バイパス切替部により前記膨張機バイパス流路を使用して前記膨張機本体を迂回するか切り替える圧縮空気貯蔵発電方法において、
前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記膨張機バイパス切替部を切り替えて前記膨張機バイパス流路に空気を流し、前記膨張機本体を迂回する、圧縮空気貯蔵発電方法。
Drives the motor with fluctuating input power,
Compress air by a compressor mechanically connected to the electric motor,
Storing the compressed air compressed by the compressor in an accumulator tank fluidly connected to the compressor;
The pressure sensor detects the pressure in the accumulator tank,
Driving a multistage expander fluidly connected to the accumulator tank and having a plurality of expander bodies by compressed air supplied from the accumulator tank;
Power is generated by a generator mechanically connected to the expander,
Among the plurality of expander main bodies, at least one is bypassed by the expander bypass flow path, and the air flows.
In the compressed air storage power generation method for switching the air supplied from the pressure accumulating tank to bypass the expander main body using the expander bypass flow path by the expander bypass switching unit,
When the pressure in the accumulator tank detected by the pressure sensor is lower than a predetermined value, the compression is performed by switching the expander bypass switching unit to flow air through the expander bypass flow path and bypassing the expander main body. Air storage power generation method.
複数の圧縮機本体を有する多段型の前記圧縮機により空気を圧縮し、
複数の前記圧縮機本体のうち、圧縮機バイパス流路により少なくとも1つを迂回して空気を流動させ、
圧縮機バイパス切替部により、前記圧縮機バイパス流路を使用して前記圧縮機本体を迂回するか切り替える圧縮空気貯蔵発電方法において、
前記圧力センサで検出した前記蓄圧タンク内の圧力が所定の値よりも低い場合、前記圧縮機バイパス切替部を切り替えて前記圧縮機バイパス流路に空気を流し、前記圧縮機本体を迂回する、請求項5に記載の圧縮空気貯蔵発電方法。
Compress air with the multistage compressor having a plurality of compressor bodies,
Among the plurality of compressor bodies, the air is caused to flow by bypassing at least one of the compressor bypass passages,
In the compressed air storage power generation method for switching between bypassing the compressor body using the compressor bypass flow path by the compressor bypass switching unit,
When the pressure in the pressure accumulating tank detected by the pressure sensor is lower than a predetermined value, the compressor bypass switching unit is switched to flow air to the compressor bypass flow path to bypass the compressor main body. Item 6. The compressed air storage power generation method according to Item 5.
JP2015126869A 2015-06-24 2015-06-24 Compressed air storage power generation device and compression air storage power generating method Pending JP2017008867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015126869A JP2017008867A (en) 2015-06-24 2015-06-24 Compressed air storage power generation device and compression air storage power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126869A JP2017008867A (en) 2015-06-24 2015-06-24 Compressed air storage power generation device and compression air storage power generating method

Publications (1)

Publication Number Publication Date
JP2017008867A true JP2017008867A (en) 2017-01-12

Family

ID=57761311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126869A Pending JP2017008867A (en) 2015-06-24 2015-06-24 Compressed air storage power generation device and compression air storage power generating method

Country Status (1)

Country Link
JP (1) JP2017008867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067604A (en) * 2019-05-31 2019-07-30 贵州电网有限责任公司 A kind of multiple expansion generator startup stage exhaust conditioning system and method
JP2020067009A (en) * 2018-10-23 2020-04-30 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
CN113169583A (en) * 2018-12-14 2021-07-23 株式会社神户制钢所 Compressed air storage power generation device and compressed air storage power generation method
WO2022004237A1 (en) * 2020-06-30 2022-01-06 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
CN113958441A (en) * 2021-10-20 2022-01-21 西安交通大学 Combined pumped storage system and operation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067009A (en) * 2018-10-23 2020-04-30 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
WO2020085105A1 (en) * 2018-10-23 2020-04-30 株式会社神戸製鋼所 Compressed-air-storing power generation apparatus and compressed-air-storing power generation method
EP3832093A4 (en) * 2018-10-23 2022-04-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Compressed-air-storing power generation apparatus and compressed-air-storing power generation method
CN113169583A (en) * 2018-12-14 2021-07-23 株式会社神户制钢所 Compressed air storage power generation device and compressed air storage power generation method
CN110067604A (en) * 2019-05-31 2019-07-30 贵州电网有限责任公司 A kind of multiple expansion generator startup stage exhaust conditioning system and method
CN110067604B (en) * 2019-05-31 2024-03-26 贵州电网有限责任公司 Exhaust regulation system and method for starting stage of multistage expansion generator
WO2022004237A1 (en) * 2020-06-30 2022-01-06 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
CN113958441A (en) * 2021-10-20 2022-01-21 西安交通大学 Combined pumped storage system and operation method thereof
CN113958441B (en) * 2021-10-20 2024-05-24 西安交通大学 Combined pumped storage system and operation method thereof

Similar Documents

Publication Publication Date Title
JP2017008867A (en) Compressed air storage power generation device and compression air storage power generating method
WO2016203980A1 (en) Compressed air energy storage power generation device, and compressed air energy storage power generation method
WO2016203979A1 (en) Compressed air energy storage power generation device
US20180128167A1 (en) Compressed air energy storage and power generation method and compressed air energy storage and power generation device
WO2016178358A1 (en) Compressed-air storage power generation method and compressed-air storage power generation apparatus
JP5438279B2 (en) Multistage vacuum pump and operation method thereof
US20180347459A1 (en) Compressed air energy storage and power generation device
JP6832869B2 (en) Gas handling systems and methods for efficiently managing changes in gas conditions
KR101858648B1 (en) Method for anti-surge controlling of multi-stage compressing system
WO2017073433A1 (en) Heat pump
CN113883076B (en) Control method of multi-compressor series-operation multi-shaft compressor unit system
JP2016211436A (en) Compressed air energy storage power generation device
US20110272893A1 (en) Labyrinth Seal For A Turbomachine
WO2022004237A1 (en) Compressed air storage power generation device and compressed air storage power generation method
JP4837150B2 (en) Refrigeration cycle equipment
CA3162566A1 (en) Method and apparatus for compressing a gas feed with a variable flow rate
US20170074159A1 (en) Forced induction apparatus for engine
EP2333458A1 (en) Fluid circuit and refrigeration cycle apparatus using the same
US11105263B2 (en) Constant flow function air expansion train with combuster
EP3628841A1 (en) Compressed-air-storing power generation device and compressed-air-storing power generation method
WO2018193768A1 (en) Compressed-air storage power generation device
JP2016211469A (en) Compressor juxtaposition operation load decentralization system and method
JP2023086522A (en) Compressed air storage power generation device
JP2018182996A (en) Compressed air storage power generation device
JP2021096043A (en) Exhaust heat recovery system and gas compressor used for the same