JP2017003841A - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP2017003841A
JP2017003841A JP2015118963A JP2015118963A JP2017003841A JP 2017003841 A JP2017003841 A JP 2017003841A JP 2015118963 A JP2015118963 A JP 2015118963A JP 2015118963 A JP2015118963 A JP 2015118963A JP 2017003841 A JP2017003841 A JP 2017003841A
Authority
JP
Japan
Prior art keywords
optical filter
colloidal
crystal layer
colloidal crystal
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015118963A
Other languages
Japanese (ja)
Other versions
JP2017003841A5 (en
JP6595220B2 (en
Inventor
安紘 佐藤
Yasuhiro Sato
安紘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2015118963A priority Critical patent/JP6595220B2/en
Publication of JP2017003841A publication Critical patent/JP2017003841A/en
Publication of JP2017003841A5 publication Critical patent/JP2017003841A5/en
Application granted granted Critical
Publication of JP6595220B2 publication Critical patent/JP6595220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter having transition wavelength regions each formed of a transmission region and a shield region, the optical filter having good reproducibility of the transition wavelength region.SOLUTION: There is provided an optical filter having a dielectric film lamination structure in which a plurality of layers of dielectric films are laminated on a substrate and a colloidal crystal layer in which colloidal particles are regularly arranged, the optical filter comprising transition wavelength regions each formed of at least one transmission band and shield band. At least one of the transition wavelength regions is determined by the colloidal crystal layer. The colloidal crystal layer may have a peak of reflectance between a light wavelength of 600 to 800 nm. The optical filter may be an infrared cut filter, and the colloidal crystal layer may be formed of colloidal particles and a colloidal particle holding material holding the colloidal particles.SELECTED DRAWING: Figure 1

Description

本発明は、所望の波長領域の透過を遮蔽する光学フィルタに関するものである。   The present invention relates to an optical filter that shields transmission in a desired wavelength region.

カメラやビデオカメラなどの撮像光学系は、撮像光学系を透過してきた光を電気信号に変換する、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサ等から成る撮像素子を有する。撮像素子は、人の目の感度特性とは異なる特性を有しており、従来からこの感度特性を人の目の感度に極力合わせるために所望の光波長の透過を制限する光学フィルタが設けられている。例えば赤外カットフィルタや紫外線カットフィルタ等が撮像光学系に配置される。   An imaging optical system such as a camera or a video camera has an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) sensor that converts light transmitted through the imaging optical system into an electrical signal. The image sensor has a characteristic different from the sensitivity characteristic of the human eye, and conventionally, an optical filter that restricts transmission of a desired light wavelength is provided to match this sensitivity characteristic to the sensitivity of the human eye as much as possible. ing. For example, an infrared cut filter, an ultraviolet cut filter, or the like is disposed in the imaging optical system.

これらの光学フィルタは、所望の光波長の光を吸収する染料や顔料などからなる光吸収タイプと、屈折率の異なる薄膜積層体によって所望の光波長を反射する干渉タイプとの2つに大別されるが、小型・薄型・分光特性を考慮し、カメラ等の撮像光学系には干渉タイプの光学フィルタが広く用いられている。干渉タイプの光学フィルタは一般的に、基板上に真空蒸着法やIAD法、イオンプレーティング法、スパッタ法等により屈折率の異なる複数の薄膜を積層することで形成される。 These optical filters are roughly divided into two types: light absorption types composed of dyes and pigments that absorb light of a desired light wavelength, and interference types that reflect a desired light wavelength by a thin film laminate having a different refractive index. However, in consideration of compactness, thinness, and spectral characteristics, interference type optical filters are widely used in imaging optical systems such as cameras. In general, an interference type optical filter is formed by laminating a plurality of thin films having different refractive indexes on a substrate by a vacuum deposition method, an IAD method, an ion plating method, a sputtering method, or the like.

撮像素子は、特に近赤外光波長における感度が強く、この領域においては人の目の感度と大きく異なる。このため、赤外カットフィルタは透過帯域と不透過帯域との遷移波長領域における光学特性が非常に重要となり、この特性は主に透過帯域の透過率と反射率とが略同等となる波長(以下IR半値波長)によって管理される。   The image sensor has a particularly strong sensitivity at near-infrared light wavelengths, and in this region, the sensitivity is very different from the human eye. For this reason, the optical characteristics of the infrared cut filter in the transition wavelength region between the transmission band and the non-transmission band are very important, and this characteristic is mainly the wavelength at which the transmittance and reflectance of the transmission band are substantially equal (hereinafter referred to as the wavelength). IR half-value wavelength).

特開2004−163869JP2004-163869 特開2009−20437JP2009-20437

特許文献1では、真空蒸着法やIAD法、イオンプレーティング法、スパッタ法等により薄膜を積層した光学フィルタが開示されている。しかしながら、これらの薄膜は成膜される条件により、屈折率や消衰係数などの光学定数が変化しやすい。特に、同一装置での成膜回数が増えると、蒸着機内部に堆積した蒸着膜やこれらの蒸着膜が吸収した水分などの影響を大きく受ける。薄膜積層体による光学特性は薄膜の光学定数と物理膜厚によって決定されるが、バッチ間で光学定数がばらつくことにより、IR半値波長がばらつくという問題があった。   Patent Document 1 discloses an optical filter in which thin films are stacked by a vacuum deposition method, an IAD method, an ion plating method, a sputtering method, or the like. However, the optical constants such as refractive index and extinction coefficient are likely to change depending on the conditions under which these thin films are formed. In particular, when the number of times of film formation in the same apparatus increases, the film is greatly affected by the vapor deposition film deposited inside the vapor deposition machine and the moisture absorbed by these vapor deposition films. The optical characteristics of the thin film laminate are determined by the optical constant and the physical film thickness of the thin film, but there is a problem that the IR half-value wavelength varies due to variations in the optical constant between batches.

特許文献2には、コロイド結晶層によるブラッグの反射を利用した赤外反射部材が開示されている。コロイド結晶層による反射は、コロイド粒子とコロイド粒子保持材の屈折率、格子面間隔によって決定され、これらはコロイド粒子などの特性が安定であれば、製造工程でのばらつきは比較的小さい。しかしながら、コロイド結晶層によるブラッグの反射は、反射できる波長領域が狭帯域であり、カメラ等の光学系に搭載される光学フィルタに求められる波長領域全域を遮蔽するのは困難である。また、透過帯域における分光特性も十分な特性を得ることは非常に困難である。   Patent Document 2 discloses an infrared reflecting member using Bragg reflection by a colloidal crystal layer. Reflection by the colloidal crystal layer is determined by the refractive index and the lattice spacing of the colloidal particles and the colloidal particle holding material, and these have a relatively small variation in the manufacturing process if the characteristics of the colloidal particles and the like are stable. However, the reflection of Bragg by the colloidal crystal layer has a narrow wavelength range that can be reflected, and it is difficult to shield the entire wavelength range required for an optical filter mounted on an optical system such as a camera. In addition, it is very difficult to obtain sufficient spectral characteristics in the transmission band.

本発明は、羽根の耐久性を向上した羽根駆動装置及びシャッタ羽根並びに撮像装置を提供する。   The present invention provides a blade driving device, a shutter blade, and an imaging device with improved blade durability.

本発明の光学フィルタは、基板上に誘電体膜を複数層積層した誘電体膜積層構造とコロイド粒子が規則的に配列したコロイド結晶層とを有する光学フィルタ基材を備え、前記光学フィルタ基材は少なくとも1つの透過帯と遮蔽帯とによって形成される遷移波長領域を有し、該遷移波長領域の少なくとも1つはコロイド結晶層によって決定される点に特徴がある。   The optical filter of the present invention includes an optical filter base material having a dielectric film laminated structure in which a plurality of dielectric films are laminated on a substrate and a colloidal crystal layer in which colloidal particles are regularly arranged, and the optical filter base material Has a transition wavelength region formed by at least one transmission band and a shielding band, and at least one of the transition wavelength regions is characterized by being determined by the colloidal crystal layer.

本発明の光学フィルタによれば、コロイド結晶層により遷移波長領域が決定されるため、IR半値波長のばらつきの小さい光学フィルタを提供できる。更に、本発明の光学フィルタは、透過帯域と遮蔽帯域のほとんどが誘電体膜積層構造によって決定されるため、カメラなどの撮像光学系に搭載可能な良好な光学特性の光学フィルタを提供することができる。   According to the optical filter of the present invention, since the transition wavelength region is determined by the colloidal crystal layer, it is possible to provide an optical filter with a small variation in IR half-value wavelength. Furthermore, the optical filter of the present invention provides an optical filter with good optical characteristics that can be mounted in an imaging optical system such as a camera, because most of the transmission band and the shielding band are determined by the dielectric film laminated structure. it can.

本発明に係る光学フィルタの構成図Configuration diagram of optical filter according to the present invention 誘電体膜積層構造の断面図Cross section of dielectric film stack 本発明に係る誘電体膜積層構造の分光特性Spectral characteristics of dielectric film laminate structure according to the present invention 本発明に係るコロイド結晶層の断面図Sectional view of a colloidal crystal layer according to the present invention 本発明に係るコロイド結晶層の分光特性Spectral characteristics of colloidal crystal layer according to the present invention 本発明に係る光学フィルタの分光特性Spectral characteristics of the optical filter according to the present invention 本発明に係る光学フィルタの構成例Configuration example of optical filter according to the present invention 誘電体膜積層構造の分光特性Spectral characteristics of dielectric film stacks 光学特性のばらついた誘電体膜積層構造の分光特性Spectral properties of dielectric film stacks with varying optical properties 本発明に係る光学フィルタの分光特性Spectral characteristics of the optical filter according to the present invention

以下、図を基に本発明の光学フィルタを詳細に説明する。   Hereinafter, the optical filter of the present invention will be described in detail with reference to the drawings.

(実施例1)
本発明に係る光学フィルタ(光学フィルタ基材)の構成を図1に示す。本発明の光学フィルタは基板上に少なくとも誘電体膜積層構造とコロイド結晶層とが形成された光学フィルタ基材を構成する。誘電体膜積層構造は屈折率の異なる誘電体膜を積層して形成される。誘電体膜積層構造は所望の光波長を透過あるいは反射させる機能を有する。一方、コロイド結晶層はコロイド粒子が規則的に配列した構造となっており、本発明の光学フィルタの透過帯域と遮蔽帯域とで形成される遷移波長領域を決定する。
Example 1
The structure of the optical filter (optical filter substrate) according to the present invention is shown in FIG. The optical filter of the present invention constitutes an optical filter base material in which at least a dielectric film laminated structure and a colloidal crystal layer are formed on a substrate. The dielectric film laminated structure is formed by laminating dielectric films having different refractive indexes. The dielectric film laminated structure has a function of transmitting or reflecting a desired light wavelength. On the other hand, the colloidal crystal layer has a structure in which colloidal particles are regularly arranged, and determines the transition wavelength region formed by the transmission band and the shielding band of the optical filter of the present invention.

<基材>
本実施例では基材としてPET(ポリエチレンテレフタレート)を用いたが、実質的に透明な基材であればこれに限らず、PET以外のポリエステル系、ポリエーテル系、アクリル系、スチレン系、PES(ポリエーテルスルホン)、ポリスルホン、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、ポリイミド系、ノルボルネン系、フッ素系樹脂等の種々のプラスチック基板を使用することもでき、また有機成分と無機成分からなる有機−無機ハイブリッド基板やガラス基板を用いても良い。ここで、実質的に透明とは、光学フィルタの透過帯域における光吸収率が30%以下であることを示す。誘電体膜積層構造やコロイド結晶層形成による熱応力や膜応力による変形、耐熱性、吸水性を考慮するとノルボルネンやポリイミド系が最適な基材の1つである。なお、本実施例で使用したPET基板の厚みは100μmのものを使用しているが、剛性を保てる範囲で極力薄い方が良く、基材の材質にもよるが、好ましくは200μm〜20μm、更に好ましくは100μm〜25μmである。
<Base material>
In this example, PET (polyethylene terephthalate) was used as the base material. However, the base material is not limited to this as long as it is a substantially transparent base material, and other than PET, polyester-based, polyether-based, acrylic-based, styrene-based, PES ( Various plastic substrates such as polyethersulfone), polysulfone, PEN (polyethylene naphthalate), PC (polycarbonate), polyimide-based, norbornene-based, and fluorine-based resins can also be used. -An inorganic hybrid substrate or a glass substrate may be used. Here, “substantially transparent” means that the light absorption rate in the transmission band of the optical filter is 30% or less. Considering the thermal stress caused by the dielectric film laminated structure and colloidal crystal layer formation, deformation due to film stress, heat resistance, and water absorption, norbornene and polyimide are one of the optimum base materials. In addition, although the thickness of the PET substrate used in this example is 100 μm, it is better to be as thin as possible within a range where rigidity can be maintained, and although it depends on the material of the base material, it is preferably 200 μm to 20 μm. Preferably it is 100 micrometers-25 micrometers.

<誘電体膜積層体>
発明の誘電体膜積層構造は図2で示すような屈折率の異なる複数の薄膜によって形成されており、本実施例では、低屈折率層としてSiO、高屈折率層としてTiOを用いている。本実施例でSiOとTiOを用いたのは、低屈折率層と高屈折率層との現実的な組合せにおいて、最も屈折率差が大きい組合せの1つであり、所望の光学特性を得るために必要となる薄膜の積層数を少なくできるためである。本実施例で用いた材料以外にも、低屈折率層としてはMgFなど、高屈折率層5としてはNb、ZrO、Ta、LaTi(LaTiO)、などが一般的に使用さる。また、低屈折率層と高屈折率層の中間的な屈折率を有する中間屈折率材料(例えばAl,MgOなど)を用いても良く、成膜方法や所望の分光特性に応じて任意に材料を選択可能である。
<Dielectric film laminate>
Dielectric film stacked structure of the invention is formed by a plurality of thin films having different refractive index as shown in Figure 2, in this embodiment, SiO 2 as a low refractive index layer, using a TiO 2 as a high refractive index layer Yes. The use of SiO 2 and TiO 2 in this example is one of the combinations having the largest refractive index difference in the realistic combination of the low refractive index layer and the high refractive index layer, and provides desired optical characteristics. This is because it is possible to reduce the number of thin film layers required to obtain the film. In addition to the materials used in this example, MgF 2 is used as the low refractive index layer, Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , La 2 Ti 2 O 7 (LaTiO 3 is used as the high refractive index layer 5. ), Etc. are generally used. Further, an intermediate refractive index material (for example, Al 2 O 3 , MgO, etc.) having an intermediate refractive index between the low refractive index layer and the high refractive index layer may be used, depending on the film forming method and desired spectral characteristics. Any material can be selected.

次に、誘電体膜積層構造の分光特性について説明する。   Next, spectral characteristics of the dielectric film laminated structure will be described.

誘電体膜積層構造は図3に示すように所望の光波長領域に遮蔽領域を有しており、この遮蔽領域の中心波長をλとしたとき、誘電体膜の光学膜厚がλ/4程度ずつ、具体的には0.7〜1.3λ/4程度の薄膜を積層した構成を基本構成としている。但し、透過帯域のリップルを低減するためにλ/4から大きく離れた層を有していても良い。ここで光学膜厚とは、薄膜の屈折率をn、物理膜厚dとしたとき、n×dで表される。誘電体積膜積層構造は所望の分光特性を得るために20〜40層程度の積層数を有する。プラスチック基板を用いる場合は、成膜時に発生する熱による基板の変形を抑制するために、冷却機構を有する成膜装置を用いることが有効である。本実施例では、真空蒸着法により誘電体膜積層構造を形成したが、IAD法、イオンプレーティング法、スパッタ法などで形成可能であり、これに限られるものではない。特に、誘電体膜積層構造形成後の分光変化を低減するには、IAD法やイオンプレーティング法などのようにアシストを加えながら成膜する事が好ましい。誘電体膜は大気中に含まれる水分が膜中に浸入することで、見かけ上の屈折率が大きくなり、分光特性が変化してしまうが、前述のアシストを利用した成膜方法を用いることで誘電体膜の密度が向上し、誘電体膜に取り込まれる水分が少なくなり、長期にわたり安定した分光特性を維持することができる。   As shown in FIG. 3, the dielectric film laminated structure has a shielding region in a desired light wavelength region. When the central wavelength of this shielding region is λ, the optical film thickness of the dielectric film is about λ / 4. Specifically, the basic configuration is a configuration in which thin films of about 0.7 to 1.3λ / 4 are stacked. However, in order to reduce the ripple in the transmission band, a layer greatly separated from λ / 4 may be provided. Here, the optical film thickness is represented by n × d, where n is the refractive index of the thin film and d is the physical film thickness d. The dielectric volume film laminated structure has a lamination number of about 20 to 40 layers in order to obtain desired spectral characteristics. In the case of using a plastic substrate, it is effective to use a film forming apparatus having a cooling mechanism in order to suppress deformation of the substrate due to heat generated during film formation. In this embodiment, the dielectric film laminated structure is formed by the vacuum deposition method, but it can be formed by the IAD method, the ion plating method, the sputtering method, etc., and is not limited to this. In particular, in order to reduce the spectral change after the dielectric film laminated structure is formed, it is preferable to form the film while assisting, such as the IAD method or the ion plating method. The dielectric film has an apparent refractive index that increases when moisture contained in the air enters the film, and the spectral characteristics change. However, by using the film formation method using the assist described above, The density of the dielectric film is improved, moisture taken into the dielectric film is reduced, and stable spectral characteristics can be maintained over a long period of time.

<コロイド結晶層>
本実施例ではコロイド粒子として粒子径250nm、屈折率1.5のアクリル系粒子を用いた。アクリル系粒子に限らず実質的に透明であれば、ポリスチレンやポリプロピレン、ポリエチレン、ポリエステル、塩化ビニルなどの他の樹脂系粒子や、二酸化ケイ素、ホウケイ酸ガラス、ニオブ酸リチウム、二酸化チタン、酸化イットリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、臭ヨウ化タリウム、ダイアモンドなど様々な材料を使用することができる。これらのコロイド粒子は単体でも2種類以上の混合体であっても良い。また、粒子が中空となっているものを用いることもできる。なお、これらのコロイド粒子はコア粒子をコアシェル層によって被覆したものであっても良いし、コロイド粒子保持材によって保持されていても良い。また、コロイド粒子の配列は、面心立方、体心立方、単純立方などの任意の充填構造をとることができる。
<Colloidal crystal layer>
In this embodiment, acrylic particles having a particle diameter of 250 nm and a refractive index of 1.5 were used as colloidal particles. Other than resin particles such as polystyrene, polypropylene, polyethylene, polyester, vinyl chloride, silicon dioxide, borosilicate glass, lithium niobate, titanium dioxide, yttrium oxide, Various materials such as magnesium fluoride, calcium fluoride, barium fluoride, zinc selenide, thallium bromoiodide, and diamond can be used. These colloidal particles may be a simple substance or a mixture of two or more kinds. Moreover, the thing in which particle | grains are hollow can also be used. In addition, these colloidal particles may be obtained by coating core particles with a core-shell layer, or may be held by a colloidal particle holding material. The colloidal particles can be arranged in any packing structure such as face-centered cube, body-centered cube, or simple cube.

コロイド結晶層は図4のようになっており、その反射特性はブラッグの反射条件によって決まる。ブラッグの反射条件によるコロイド結晶層の反射波長のピーク波長(λ)は、コロイド結晶層の格子面距離(d)、コロイド結晶層の屈折率(n)、コロイド結晶層に入射する光の入射角度(θ)より、式1で表される。 The colloidal crystal layer is as shown in FIG. 4, and its reflection characteristics are determined by Bragg's reflection conditions. The peak wavelength (λ p ) of the reflection wavelength of the colloidal crystal layer according to the Bragg reflection conditions is the lattice plane distance (d) of the colloidal crystal layer, the refractive index of the colloidal crystal layer (n a ), and the light incident on the colloidal crystal layer. From the incident angle (θ), it is expressed by Equation 1.

λ=2d(n −sinθ)1/2・・・・・・・・・・・・・・・・・・・式1 λ p = 2d (n a 2 -sin 2 θ) 1/2 ··················· Formula 1

ここで、nはコロイド粒子の屈折率(nsphere)、コロイド粒子の保持材の屈折率(nvoid)、コロイド粒子の体積占有率(f)により、式2によって与えられる。 Here, n a is given by Equation 2 by the refractive index (n sphere ) of the colloidal particles, the refractive index (n void ) of the colloidal particle holding material, and the volume occupancy (f) of the colloidal particles.

=(n spheref+n void(1−f))1/2・・・・・・・・・・・・式2 n a = (n 2 sphere f + n 2 void (1-f)) 1/2 ...

以下、図面を参照して本発明の実施の形態について具体的に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例では、コロイド粒子径250nmとしているが、式1と式2より、所望の光波長領域に反射ピークが現れるような任意の格子面間隔dを得られる粒子径とする事ができる。但し、コロイド粒子径は可視光波長よりも小さい粒子径とすることが好ましい。可視光波長よりもコロイド粒子が大きくなると、可視光波長領域においてコロイド粒子による光の拡散が発生し、ヘイズ値が高くなり、カメラ等に搭載された場合、画質の劣化を引き起こす虞がある。ここで可視光波長とは400〜700nmを指す。また、コロイド粒子の屈折率(nsphere)に関しても、式1と式2より、所望の光波長領域に反射ピークがくるように保持材の屈折率(nvoid)や、コロイド粒子の体積占有率(f)などのパラメータを考慮し、任意の値を選択できる。 In this embodiment, the colloidal particle diameter is 250 nm. However, from Equations 1 and 2, the particle size can be set to an arbitrary lattice plane interval d such that a reflection peak appears in a desired light wavelength region. However, the colloidal particle diameter is preferably a particle diameter smaller than the visible light wavelength. If the colloidal particles are larger than the visible light wavelength, light is diffused by the colloidal particles in the visible light wavelength region, and the haze value is increased. Here, the visible light wavelength refers to 400 to 700 nm. Further, with respect to the refractive index (n sphere ) of the colloidal particles, the refractive index (n void ) of the holding material and the volume occupancy rate of the colloidal particles so that the reflection peak comes in a desired light wavelength region from the equations 1 and 2. An arbitrary value can be selected in consideration of parameters such as (f).

コロイド結晶層の厚みは任意の反射率を発生できる厚みとして良く、また必要に応じてブラッグの反射条件の異なるコロイド結晶層を膜厚方向に複数層積層しても良い。反射ピーク波長の強度は、コロイド層の厚みが厚いほど強いピークとなる。また、ブラッグの反射条件の異なる複数のコロイド結晶層を設けることで、コロイド結晶層による反射波長領域を広くすることができる。   The thickness of the colloidal crystal layer may be a thickness that can generate an arbitrary reflectance, and a plurality of colloidal crystal layers having different Bragg reflection conditions may be laminated in the film thickness direction as necessary. The intensity of the reflection peak wavelength becomes stronger as the colloid layer is thicker. Also, by providing a plurality of colloidal crystal layers with different Bragg reflection conditions, the reflection wavelength region by the colloidal crystal layer can be widened.

コロイド結晶層の形成には、本実施例ではスピンコート法を用いたが、バーコーター法やディップコート法などが好適に用いることができ、またこれらの方法に限らず既存の様々な方法で形成しても良い。   In this embodiment, the spin coat method was used to form the colloidal crystal layer. However, a bar coater method, a dip coat method, or the like can be suitably used, and the present invention is not limited to these methods and is formed by various existing methods. You may do it.

コロイド粒子保持材を用いる場合は、実質的に透明な材料であれば良く、例えば、アクリル系、ポリエステル系樹脂、ポリウレタン系樹脂、フッ素樹脂、PET系樹脂、PC系樹脂、エポキシ系樹脂、ポリイミド系樹脂、スチレン系樹脂、ポリオレフィン系樹脂等など様々な材料を用いることができ、これらを単独あるいは2種類以上混合して用いても良い。また、必要に応じて、重合開始剤を含んでいても良い。   When a colloidal particle holding material is used, any material that is substantially transparent may be used, for example, acrylic, polyester resin, polyurethane resin, fluororesin, PET resin, PC resin, epoxy resin, polyimide resin. Various materials such as a resin, a styrene resin, a polyolefin resin, and the like can be used, and these may be used alone or in combination of two or more. Moreover, the polymerization initiator may be included as needed.

コロイド粒子保持材は活性化エネルギーである熱線や紫外線、可視光線、電子線などによって硬化する樹脂を用いることができる。活性エネルギー線の照射量は、樹脂組成物の硬化が進行するエネルギー量であれば良い。   As the colloidal particle holding material, a resin curable by heat rays, ultraviolet rays, visible rays, electron beams or the like as activation energy can be used. The irradiation amount of an active energy ray should just be an energy amount with which hardening of a resin composition advances.

熱重合開始剤としては、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2−メチルブチロニトリル)、1,1−アゾビス(シクロヘキサン−1−カルボニル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、4,4−アゾビス(4−シアノバレリック酸)、等が挙げられるが、これらに限定されるものでなく、単独又は複数で用いても良い。 Thermal polymerization initiators include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethoxyethyl) peroxydicarbonate. , T-butyl peroxyneodecanoate, t-butyl peroxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide, 2,2-azobisisobutyro Nitrile, 2,2-azobis (2-methylbutyronitrile), 1,1-azobis (cyclohexane-1-carbonyl), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2 2- azobis (2-methyl propionate), 4,4-azobis (4-cyanovaleric acid), but and the like, not limited to these, may be used alone or a plurality.

光重合開始剤としては、例えば、ベンゾフェノン、ベンジル、4,4−ジメチルアミノベンゾフェノン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルジメチルケタール、2−ヒドロキシ−2−メチルプロピオフェノン、1−ヒドロキシシクヘキシルフェニルケトン、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、ヒドラゾン、α−アシロキシムエステルなどが挙げられるが、これらに限定されるものでなく、単独又は複数で用いても良い。 Examples of the photopolymerization initiator include benzophenone, benzyl, 4,4-dimethylaminobenzophenone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzyldimethyl ketal, 2-hydroxy-2 -Methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, hydrazone, α-acyloxime ester, etc., but are not limited to these. May be used.

電子線硬化開始剤としては、ベンゾフェノン、2−エチルアントラキノン、2,4−ジエチルチオキサントン、メチルオルソベンゾイルベンゾエート、イソプロピルチオキサントン、ジエトキシアセトフェノン、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシル−フェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス−フェニルホスフィンオキサイド、メチルベンゾイルホルメート、1,7−ビスアクリジニルヘプタン、9−フェニルアクリジン等が挙げられるが、これらに限定されるものでなく、単独又は複数で用いても良い。   Examples of electron beam curing initiators include benzophenone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, methyl orthobenzoylbenzoate, isopropylthioxanthone, diethoxyacetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, benzoin methyl ether, Benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis-phenylphosphine oxide, methylbenzoylformate, 1,7-bisacridinylheptane, 9-phenylacridine, etc. However, the present invention is not limited to these and may be used alone or in combination.

また、コロイド結晶層には光学フィルタの遮蔽領域に光吸収を有する色素が分散されていても良い。コロイド結晶層に色素を分散することで、光学フィルタの遮蔽領域を形成する誘電体膜積層構造の積層数を減らすことが可能となる。色素としては、光学フィルタの透過領域において実質的に透明であれば、シアニン系、アゾ系、フタロシアニン系、ナフタロシアニン系、ジイモニウム系、ポリメチン系、アンスラキノン系、ナフトキノン系、トリフェニルメタン系、アミニウム系、ピリリウム系、スクワリリウム系等の色素が好適に利用可能であり、またこれらを2種類以上混合して用いることもできる。   In the colloidal crystal layer, a dye having light absorption may be dispersed in the shielding region of the optical filter. By dispersing the pigment in the colloidal crystal layer, it is possible to reduce the number of laminated dielectric film layers that form the shielding region of the optical filter. The dye may be cyanine, azo, phthalocyanine, naphthalocyanine, diimonium, polymethine, anthraquinone, naphthoquinone, triphenylmethane, aminium as long as it is substantially transparent in the transmission region of the optical filter. , Pyrylium and squarylium dyes can be suitably used, and two or more of these can be used in combination.

また、コロイド結晶層には、酸化防止剤や紫外線吸収材などの安定剤が分散されていても良い。これらの安定剤は、光学フィルタの分光・物性などの経時変化を低減する効果を有し、特に紫外線に弱いPCなどのプラスチック基板を用いたときや、コロイド結晶層に染料などの光吸収剤を添加したときなどには効果的である。酸化防止剤としては、フェノール系、ビンダードフェノール系、アミン系、ビンダードアミン系、硫黄系、リン酸系、亜リン酸系等が挙げられ、紫外線吸剤としては、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系等が挙げられるが、これらに限定されたものではない。また、これらの酸化防止剤や紫外線吸収剤は単独又は複数を混合して用いてもよい。   In addition, a stabilizer such as an antioxidant or an ultraviolet absorber may be dispersed in the colloidal crystal layer. These stabilizers have the effect of reducing changes over time in the spectral and physical properties of the optical filter. Especially when a plastic substrate such as PC that is weak against ultraviolet rays is used, a light absorber such as a dye is added to the colloidal crystal layer. It is effective when added. Antioxidants include phenol, binderd phenol, amine, binderd amine, sulfur, phosphoric acid, phosphorous acid, etc. UV absorbers include benzophenone, benzotriazole Benzoate and the like, but are not limited thereto. These antioxidants and ultraviolet absorbers may be used alone or in combination.

<光学フィルタの製造方法>
次に本実施例の光学フィルタの作製方法を説明する。
<Method for manufacturing optical filter>
Next, a method for manufacturing the optical filter of this example will be described.

PET基板上に、蒸着膜を形成する領域に開口を有する成膜マスクをセットする。これを蒸着ドームに配置し、蒸着ドームを蒸着機内にセットし、蒸着機内を排気する。蒸着機内が十分な真空状態となったら、SiO層の蒸着材料が充填された坩堝を電子ビームにより過熱し、基板にSiO層を付着させる。SiOを所望の膜厚成膜したら、TiO層の蒸着材料が充填された坩堝を電子ビームで過熱し、同じく所望の膜厚を形成する。任意の層数この作業を繰り返し、所望の分光特性を得る。この際、必要に応じて、蒸着機内に反応性ガスを導入してもよい。任意の層数積層が終わったら、ベントを行い、蒸着機内の圧力を外圧程度とし、基板を取り出す。 A film formation mask having an opening in a region where a vapor deposition film is formed is set on the PET substrate. This is disposed in the vapor deposition dome, the vapor deposition dome is set in the vapor deposition machine, and the vapor deposition machine is evacuated. After evaporation machine becomes a sufficient vacuum state, a crucible evaporation material SiO 2 layer is filled overheated by an electron beam, depositing a SiO 2 layer on the substrate. When the SiO 2 film having a desired thickness is formed, the crucible filled with the vapor deposition material for the TiO 2 layer is heated with an electron beam to similarly form the desired film thickness. Arbitrary number of layers This operation is repeated to obtain desired spectral characteristics. At this time, a reactive gas may be introduced into the vapor deposition machine as necessary. When the arbitrary number of layers has been stacked, venting is performed, the pressure in the vapor deposition machine is set to an external pressure, and the substrate is taken out.

誘電体積層構造の成膜が終わったら、次にコロイド結晶層を形成する。本実施例ではアクリル系コロイド粒子、具体的にはアクリル系のコアと、同じくアクリル系のコアシェル層からなるコロイド粒子を用いた。アクリル系コロイド粒子をアセトンに分散させたコロイド粒子分散剤をスピンコート法により成膜し、90℃の乾燥炉にて30分間放置し、アセトンを揮発させた。更に、紫外線を照射し、コロイド結晶層を十分に硬化させた。本実施例ではコロイド結晶層の膜厚が25μmとなるように、複数回スピンコートによる成膜を行った。   After film formation of the dielectric laminated structure, a colloidal crystal layer is formed next. In this example, colloidal particles composed of acrylic colloid particles, specifically, an acrylic core and an acrylic core-shell layer were used. A colloidal particle dispersant in which acrylic colloidal particles were dispersed in acetone was formed into a film by a spin coating method, and allowed to stand in a drying oven at 90 ° C. for 30 minutes to volatilize acetone. Further, the colloidal crystal layer was sufficiently cured by irradiating with ultraviolet rays. In this example, film formation was performed by spin coating a plurality of times so that the thickness of the colloidal crystal layer was 25 μm.

本実施例によって形成したコロイド結晶層の分光特性、光学フィルタの分光特性はそれぞれ図5、図6のようになっている。 The spectral characteristics of the colloidal crystal layer formed by this embodiment and the spectral characteristics of the optical filter are as shown in FIGS. 5 and 6, respectively.

また、コロイド粒子保持材を形成する場合は、コロイド粒子とコロイド粒子保持材とを溶媒に分散させ、スピンコート法などで塗布後、乾燥・硬化させることでコロイド結晶層が得られる。溶媒はコロイド粒子やコロイド粒子保持材、色素などの特性を考慮し任意に選択すれば良く、例えば、アセトンやMEK(メチルエチルケトン)、MIBK(メチルイソブチルケトン)等のケトン系溶媒や、シクロヘキサン、トルエン等の炭化水素系、酢酸メチル、酢酸エチル等のエステル系、ジエチルエーテル、テトラヒドロフラン等のエーテル系、メタノール、エタノール等のアルコール系、ジメチルホルムアミド等のアミン系の溶媒などを利用でき、これらを単体又は2種類以上の混合溶媒として用いて希釈してもよい。   In the case of forming a colloidal particle holding material, the colloidal crystal layer is obtained by dispersing the colloidal particles and the colloidal particle holding material in a solvent, applying the solution by a spin coating method, and drying and curing. The solvent may be arbitrarily selected in consideration of characteristics such as colloidal particles, colloidal particle holding materials, and pigments. For example, ketone solvents such as acetone, MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone), cyclohexane, toluene, etc. Hydrocarbon solvents, ester solvents such as methyl acetate and ethyl acetate, ether solvents such as diethyl ether and tetrahydrofuran, alcohol solvents such as methanol and ethanol, and amine solvents such as dimethylformamide, etc. It may be diluted as a mixed solvent of more than one type.

本発明の光学フィルタは図1で示した構成以外にも様々な構成が可能である。   The optical filter of the present invention can have various configurations other than the configuration shown in FIG.

図1では基板の一方の面に誘電体膜積層構造を、反対の面にコロイド結晶層を設けているが、図7(a)のように誘電体積層構造とコロイド結晶層とを同一面に形成しても良いし、図7(b)のように基板の両面にコロイド結晶層を形成しても良い。   In FIG. 1, a dielectric film laminated structure is provided on one surface of the substrate and a colloidal crystal layer is provided on the opposite surface, but the dielectric laminated structure and the colloidal crystal layer are on the same surface as shown in FIG. Alternatively, a colloidal crystal layer may be formed on both sides of the substrate as shown in FIG.

また、図7(c)のように誘電体膜積層構造を2つ以上に分割して基板の両面に形成しても良い。誘電体膜積層構造を2つ以上に分割して成膜する場合には、例えば図8に示すような分光特性を有する誘電体膜積層構造とすることが考えられる。具体的には、光学フィルタによって遮蔽される波長領域を2つ以上に分割し、それぞれの誘電体膜積層構造に異なる波長領域を遮蔽させることが可能である。誘電体膜積層構造体はそれぞれの遮蔽する光波長における中心波長をλとすると、λ/4程度の光学膜厚を有する屈折率の異なる複数の薄膜から形成される。 Further, as shown in FIG. 7C, the dielectric film laminated structure may be divided into two or more and formed on both surfaces of the substrate. When the dielectric film laminated structure is divided into two or more films, for example, a dielectric film laminated structure having spectral characteristics as shown in FIG. 8 can be considered. Specifically, it is possible to divide the wavelength region shielded by the optical filter into two or more, and to shield different wavelength regions in each dielectric film laminated structure. The dielectric film laminate structure is formed of a plurality of thin films having different optical indexes and an optical film thickness of about λ / 4, where λ is the center wavelength of the light wavelength to be shielded.

基板の両面に誘電体膜積層構造を配置することで、誘電体膜積層構造体の膜応力による光学フィルタの反りを低減することが可能である。 By disposing the dielectric film laminated structure on both surfaces of the substrate, it is possible to reduce the warpage of the optical filter due to the film stress of the dielectric film laminated structure.

なお、複数の誘電体膜積層構造から遮蔽領域を形成する光学フィルタに色素を分散したコロイド結晶層を形成する場合は、それぞれの誘電体膜積層構造の形成する遮蔽領域が重なる領域に光吸収特性を有する色素を用いることが好ましい。本実施例では、図8の第一遮蔽領域と第二遮蔽領域の重なり合う波長領域を指す。誘電体膜積層構造の光学特性は比較的ばらつきやすく、成膜装置の状態などにより分光特性がずれることがある。複数の誘電体膜積層構造から遮蔽領域を形成する場合、それぞれの誘電体膜積層構造の遮蔽領域が重なりあう領域における分光の変化が発生しやすく、例えば図9に示したように、遮蔽すべき赤外光波長の領域の透過率が上がってしまう。コロイド結晶層に含まれる色素にこの波長領域における光吸収を有するものを使用することで、誘電体膜積層構造の成膜ばらつきによる赤外波長領域の透過率向上を効果的に抑制する事ができる。 In addition, when a colloidal crystal layer in which a dye is dispersed is formed on an optical filter that forms a shielding region from a plurality of dielectric film laminated structures, light absorption characteristics are overlapped in the region where the shielding regions formed by the respective dielectric film laminated structures overlap. It is preferable to use a dye having In this embodiment, the wavelength region where the first shielding region and the second shielding region in FIG. 8 overlap is indicated. The optical characteristics of the dielectric film laminated structure are relatively easy to vary, and the spectral characteristics may shift depending on the state of the film forming apparatus. When a shielding region is formed from a plurality of dielectric film laminated structures, a spectral change is likely to occur in a region where the shielding regions of the respective dielectric film laminated structures overlap. For example, as shown in FIG. The transmittance in the infrared light wavelength region is increased. By using a dye contained in the colloidal crystal layer that has light absorption in this wavelength region, it is possible to effectively suppress an increase in transmittance in the infrared wavelength region due to film formation variation of the dielectric film laminated structure. .

また、コロイド結晶層による反射波長領域を広げたいときは、図7(d)に示したような、ブラッグの反射条件の異なる複数のコロイド結晶層を膜厚方向に複数層形成することができる。図7(d)では複数のコロイド結晶層が隣接しているが、必ずしも隣接している必要は無く、複数のコロイド結晶層が基板の反対面に配置されていてもよい。 When it is desired to extend the reflection wavelength region by the colloidal crystal layer, a plurality of colloidal crystal layers having different Bragg reflection conditions as shown in FIG. 7D can be formed in the film thickness direction. In FIG. 7D, a plurality of colloidal crystal layers are adjacent to each other. However, they are not necessarily adjacent to each other, and a plurality of colloidal crystal layers may be arranged on the opposite surface of the substrate.

(実施例2)
本発明の光学フィルタは透過帯域と遮蔽領域とにより形成される遷移波長領域を2つ以上有していても良い。このような光学フィルタとしてはUV−IRカットフィルタが挙げられる。2つ以上の遷移波長領域を有する光学フィルタを形成する場合、少なくとも一方を誘電体膜積層構造により決定しても良い。少なくとも一方の遷移波長領域を誘電体膜積層構造により決定する場合は、コロイド結晶層によって決定される遷移波長領域よりも短波長側の遷移波長領域を誘電体膜積層構造によって決定することが好ましい。誘電体膜積層構造の光学膜厚がばらついたとき、一般に長波長側の分光特性のバラツキが大きくなり、例えば、UV−IRカットフィルタの場合、UV半値波長に比べ、IR半値波長のほうがバラツキが大きくなるためである。図10に、UV半値波長を誘電体膜積層構造、IR半値をコロイド結晶層によって決定した、本実施例の光学フィルタの分光特性を示す。
(Example 2)
The optical filter of the present invention may have two or more transition wavelength regions formed by a transmission band and a shielding region. Examples of such an optical filter include a UV-IR cut filter. When an optical filter having two or more transition wavelength regions is formed, at least one of them may be determined by a dielectric film laminated structure. In the case where at least one transition wavelength region is determined by the dielectric film laminated structure, it is preferable that the transition wavelength region shorter than the transition wavelength region determined by the colloidal crystal layer is determined by the dielectric film laminated structure. When the optical film thickness of the dielectric film laminated structure varies, generally, the dispersion of the spectral characteristics on the long wavelength side becomes large. For example, in the case of a UV-IR cut filter, the IR half-value wavelength is more varied than the UV half-value wavelength. This is because it becomes larger. FIG. 10 shows the spectral characteristics of the optical filter of this example, in which the UV half-value wavelength is determined by the dielectric film laminated structure and the IR half-value is determined by the colloidal crystal layer.

実施例1、実施例2に記載した光学フィルタの構成により、光学フィルタの透過帯域と遮蔽帯域との遷移波長領域に存在する半値波長のばらつきが小さい光学フィルタを提供することができる。   With the configuration of the optical filter described in the first embodiment and the second embodiment, it is possible to provide an optical filter having a small variation in half-value wavelength existing in the transition wavelength region between the transmission band and the shielding band of the optical filter.

1. 基板
2、2’.誘電体膜積層構造
3、3’.コロイド結晶層
4.コロイド粒子
5.誘電体膜(SiO
6.誘電体膜(TiO
1. Substrate 2, 2 '. Dielectric film laminated structure 3, 3 ′. Colloidal crystal layer4. Colloidal particles5. Dielectric film (SiO 2 )
6). Dielectric film (TiO 2 )

Claims (8)

基板上に誘電体膜を複数層積層した誘電体膜積層構造とコロイド粒子が規則的に配列したコロイド結晶層とを有する光学フィルタ基材を備え、
前記光学フィルタ基材は、少なくとも1つの透過帯と遮蔽帯とによって形成される遷移波長領域を有し、該遷移波長領域の少なくとも1つはコロイド結晶層によって決定されることを特徴とした光学フィルタ。
An optical filter substrate having a dielectric film laminated structure in which a plurality of dielectric films are laminated on a substrate and a colloidal crystal layer in which colloidal particles are regularly arranged;
The optical filter substrate has a transition wavelength region formed by at least one transmission band and a shielding band, and at least one of the transition wavelength regions is determined by a colloidal crystal layer .
前記コロイド結晶層が光波長600〜800nmの間に反射率のピークを有することを特徴とした請求項1に記載の光学フィルタ。 The optical filter according to claim 1, wherein the colloidal crystal layer has a reflectance peak between light wavelengths of 600 to 800 nm. 前記光学フィルタが赤外カットフィルタであることを特徴とした請求項1〜2のいずれか一項に記載の光学フィルタ。 The optical filter according to claim 1, wherein the optical filter is an infrared cut filter. 前記コロイド結晶層がコロイド粒子とコロイド粒子を保持するコロイド粒子保持材とからなることを特徴とした請求項1〜3のいずれか一項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 3, wherein the colloidal crystal layer includes a colloidal particle and a colloidal particle holding material that holds the colloidal particle. ブラッグの反射条件の異なる複数の前記コロイド結晶層が膜厚方向に複数積層されたことを特徴とする請求項1〜4のいずれか一項に記載の光学フィルタ。 5. The optical filter according to claim 1, wherein a plurality of the colloidal crystal layers having different Bragg reflection conditions are stacked in a film thickness direction. 前記コロイド粒子の粒径が可視光波長以下であることを特徴とした請求項1〜5のいずれか一項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 5, wherein a particle diameter of the colloidal particles is not more than a visible light wavelength. 前記誘電体膜積層構造が少なくとも一つ遷移波長領域を決定することを特徴とした請求項1〜6のいずれか一項に記載の光学フィルタ。 The optical filter according to claim 1, wherein the dielectric film laminated structure determines at least one transition wavelength region. 前記光学フィルタ基材は、前記誘電体膜積層構造と前記コロイド結晶層とがともに少なくとも1つの遷移波長領域を有し、前記コロイド結晶層により形成される遷移波長領域が、前記誘電体膜積層構造によって形成される遷移波長領域よりも長波長側に存在することを特徴とした請求項1〜7のいずれか一項に記載の光学フィルタ。 In the optical filter substrate, both the dielectric film laminated structure and the colloidal crystal layer have at least one transition wavelength region, and the transition wavelength region formed by the colloidal crystal layer has the dielectric film laminated structure. The optical filter according to claim 1, wherein the optical filter is present on a longer wavelength side than a transition wavelength region formed by the optical filter.
JP2015118963A 2015-06-12 2015-06-12 Optical filter and camera equipped with optical filter Active JP6595220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118963A JP6595220B2 (en) 2015-06-12 2015-06-12 Optical filter and camera equipped with optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118963A JP6595220B2 (en) 2015-06-12 2015-06-12 Optical filter and camera equipped with optical filter

Publications (3)

Publication Number Publication Date
JP2017003841A true JP2017003841A (en) 2017-01-05
JP2017003841A5 JP2017003841A5 (en) 2018-07-05
JP6595220B2 JP6595220B2 (en) 2019-10-23

Family

ID=57752439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118963A Active JP6595220B2 (en) 2015-06-12 2015-06-12 Optical filter and camera equipped with optical filter

Country Status (1)

Country Link
JP (1) JP6595220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136065A (en) * 2018-05-25 2020-12-25 松下知识产权经营株式会社 Optical filter, multiple optical filter, and light-emitting device and lighting system using the same
JP6923064B1 (en) * 2020-12-15 2021-08-18 東洋インキScホールディングス株式会社 Laminates and wavelength cut filters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271528A (en) * 2009-05-21 2010-12-02 National Institute For Materials Science Colloid crystal structure and method for producing the same
JP2015507758A (en) * 2011-12-08 2015-03-12 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Ophthalmic filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271528A (en) * 2009-05-21 2010-12-02 National Institute For Materials Science Colloid crystal structure and method for producing the same
JP2015507758A (en) * 2011-12-08 2015-03-12 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Ophthalmic filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136065A (en) * 2018-05-25 2020-12-25 松下知识产权经营株式会社 Optical filter, multiple optical filter, and light-emitting device and lighting system using the same
JP6923064B1 (en) * 2020-12-15 2021-08-18 東洋インキScホールディングス株式会社 Laminates and wavelength cut filters
JP2022094772A (en) * 2020-12-15 2022-06-27 東洋インキScホールディングス株式会社 Laminate and wavelength cut filter

Also Published As

Publication number Publication date
JP6595220B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP5823119B2 (en) Optical filter for UV-IR cut
JP5819063B2 (en) Optical filter
JP5693949B2 (en) Optical filter
JP5789373B2 (en) Optical filter
JP2012137649A (en) Optical filter
JP5759717B2 (en) Imaging optical system for surveillance cameras
JP2006301489A (en) Near-infrared ray cut filter
WO2012157706A1 (en) Optical filter, optical device, electronic device, and antireflection complex
WO2012157719A1 (en) Optical filter and optical device
WO2018043500A1 (en) Optical filter
US9513417B2 (en) Optical filter and optical apparatus
WO2014119507A1 (en) Anti-reflection film and production method therefor
JP2012137651A (en) Optical filter
TW202113424A (en) Optical member and camera module to provide an optical member which selectively reflects visible light in a specific wavelength region but suppresses the reflection of light in a specific wavelength region
JP6595220B2 (en) Optical filter and camera equipped with optical filter
JP2017003842A (en) Optical filter, light intensity adjustment device having optical filter mounted therein, and imaging optical system
JP2017003843A (en) Optical filter, light intensity adjustment device having optical filter mounted therein, and imaging optical system
JP6556529B2 (en) Optical filter and optical device provided with optical filter
JP6136661B2 (en) Near-infrared cut filter
JP6053352B2 (en) Optical filter, optical device, and optical filter manufacturing method.
CN112558195A (en) Optical sheet, image pickup module, and electronic apparatus
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP2016071278A (en) Optical filter and light quantity adjusting device, and imaging apparatus
JP6955343B2 (en) Infrared cut filter and imaging optical system
JP2018180430A (en) Optical filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250