JP2016516657A5 - - Google Patents

Download PDF

Info

Publication number
JP2016516657A5
JP2016516657A5 JP2016501874A JP2016501874A JP2016516657A5 JP 2016516657 A5 JP2016516657 A5 JP 2016516657A5 JP 2016501874 A JP2016501874 A JP 2016501874A JP 2016501874 A JP2016501874 A JP 2016501874A JP 2016516657 A5 JP2016516657 A5 JP 2016516657A5
Authority
JP
Japan
Prior art keywords
glass
glass sheet
glass sheets
interfaces
modified layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016501874A
Other languages
Japanese (ja)
Other versions
JP6186493B2 (en
JP2016516657A (en
Filing date
Publication date
Priority claimed from US14/047,251 external-priority patent/US9340443B2/en
Application filed filed Critical
Priority claimed from PCT/US2014/025537 external-priority patent/WO2014151353A1/en
Publication of JP2016516657A publication Critical patent/JP2016516657A/en
Publication of JP2016516657A5 publication Critical patent/JP2016516657A5/ja
Application granted granted Critical
Publication of JP6186493B2 publication Critical patent/JP6186493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

(1)初期の室温結合を促進するために中程度の、および非高温FPDプロセス、例えば、真空加工、SRD加工および/または超音波加工に耐えるために十分な接着エネルギーを作成するため(例えば、表面が結合される前に、表面あたり40mJ/m の表面エネルギーを有すること)、ファンデルワールス(および/または水素)結合を制御することによって実行可能な、初期の室温結合を制御することによる、キャリアおよび/または薄シート結合表面の変性。
(1) To create sufficient adhesion energy to withstand moderate and non-high temperature FPD processes to promote initial room temperature bonding, eg, vacuum processing, SRD processing and / or ultrasonic processing (eg, Control the initial room temperature bonding that can be done by controlling van der Waals (and / or hydrogen) bonding, having surface energy greater than 40 mJ / m 2 per surface before the surface is bonded. Modification of the carrier and / or thin sheet bonded surface by.

図5は、Oxford ICP380エッチツール(Oxford Instruments,Oxfordshire UKから入手可能)によって、CF4−C4F8混合物から析出したプラズマ重合フルオロポリマー(PPFP)膜の全(線502)表面エネルギー(極性(線504)および分散(線506)成分を含む)を示す。膜は、Eagle XG(登録商標)ガラスのシート上に析出され、分光器偏光解析法によって、厚さ1〜10nmの膜が示された。図5から参照されるように、40%未満のC4F8を含有するプラズマ重合フルオロポリマー膜で処理されたガラスキャリアは、40mJ/m の表面エネルギーを示し、ファンデルワールスまたは水素結合による室温でのガラスとキャリアとの間の制御された結合を生じる。キャリアと薄ガラスとを室温で最初に結合した時に、促進された結合が観察される。すなわち、薄シートをキャリア上に配置し、それらを一点で一緒にプレスした時、波面はキャリア全体で移動するが、表面変性層を有さないSC1処理表面に関して観察されるものよりも低速である。制御された結合は、真空、湿潤、超音波および600℃までの熱処理を含む全ての標準FPDプロセスに耐えるために十分であり、すなわち、この制御された結合は、キャリアからの薄ガラスの移動または剥離が生じることなく、600℃加工試験に合格する。剥離は、上記のとおり、かみそりの刃および/またはKapton(商標)テープを用いて剥離することによって達成された。2つの異なるPPFP膜(上記のとおり析出された)のプロセス適合性は、表3に示される。実施例3aのPPFP1は、C4F8/(C4F8+CF4)=0で形成され、すなわち、C4F8を含まずにCF4/H2によって形成され、そして実施例3bのPPFP2は、C4F8/(C4F8+CF4)=0.38で析出された。両種類のPPFP膜は、真空、SRD、400℃および600℃加工試験に耐えた。しかしながら、PPFP2の20分間の超音波洗浄後、層間剥離が観察され、そのような加工に耐えるには十分な接着力が示される。それにもかかわらず、超音波加工が必要とされないいくつかの用途に関しては、PPFP2の表面変性層は有用となり得る。 FIG. 5 shows the total (line 502) surface energy (polar (line 504) and polar (line 504) and plasma polymerized fluoropolymer (PPFP) films deposited from a CF4-C4F8 mixture by an Oxford ICP380 etch tool (available from Oxford Instruments, Oxfordshire UK). Dispersion (line 506) included). The film was deposited on a sheet of Eagle XG® glass and spectroscopic ellipsometry showed a film with a thickness of 1-10 nm. As referenced from Fig. 5, the glass carrier treated with plasma polymerized fluoropolymer film containing C4F8 less than 40%, it shows the surface energy of 40 mJ / m 2, greater than at room temperature by van der Waals or hydrogen bonds A controlled bond between the glass and the carrier. Accelerated binding is observed when the carrier and thin glass are first bonded at room temperature. That is, when thin sheets are placed on a carrier and they are pressed together at one point, the wavefront moves across the carrier but is slower than that observed for an SC1 treated surface without a surface modified layer. . The controlled bond is sufficient to withstand all standard FPD processes including vacuum, wet, ultrasonic and heat treatment up to 600 ° C., ie, this controlled bond is the transfer of thin glass from the carrier or Passes the 600 ° C. processing test without delamination. Peeling was accomplished by peeling with a razor blade and / or Kapton ™ tape as described above. The process compatibility of two different PPFP membranes (deposited as described above) is shown in Table 3. The PPFP1 of Example 3a is formed with C4F8 / (C4F8 + CF4) = 0, ie formed by CF4 / H2 without C4F8, and the PPFP2 of Example 3b is C4F8 / (C4F8 + CF4) = 0.38. It was deposited. Both types of PPFP films withstood vacuum, SRD, 400 ° C. and 600 ° C. processing tests. However, after 20 minutes ultrasonic cleaning of PPFP2, delamination is observed, indicating sufficient adhesion to withstand such processing. Nevertheless, a surface modified layer of PPFP2 can be useful for some applications where sonication is not required.

Claims (17)

ガラスシートのアニール化方法において、
各々が2つの主要面を有する複数のガラスシートを積層するステップであって、前記複数のガラスシートにおいて、ガラスシートの隣接するものの間で界面が画定され、該界面の1つに面する前記主要面の少なくとも1つに表面変性層が配置され、該表面変性層が、HMDS、プラズマ重合フルオロポリマーおよび芳香族シランのうちの1つを含むステップと、
各ガラスシートを圧縮するのに十分な時間−温度サイクルに、前記ガラスシートの積層を暴露するステップであって、前記時間−温度サイクルが、400℃以上であるが前記ガラスシートの歪点より低い温度を含むステップと、
を有してなり、
前記表面変性層が、前記時間−温度サイクルを通して、前記界面の1つを画定する前記積層におけるガラスシートの前記隣接するものの間の結合を制御するのに十分であり、一方が保持されて他方が重力を受ける場合に一方のシートが他方から分離しないが、前記ガラスシートの前記隣接するものの一方が2つ以上の断片に破断することなく該ガラスシートを分離し得るような力となるように結合が制御される、ガラスシートのアニール化方法。
In the annealing method of the glass sheet ,
Each comprising: stacking a plurality of glass sheets having two major surfaces, the plurality of glass sheets, the interface is defined between adjacent ones of the glass sheet, the primary facing one of the interface A surface modified layer is disposed on at least one of the surfaces, the surface modified layer comprising one of HMDS, a plasma polymerized fluoropolymer, and an aromatic silane ;
Sufficient time to compress each glass sheet - temperature cycling, comprising the steps of exposing the laminate of said glass sheet, said time - temperature cycles, but lower than the strain point of the glass sheets is 400 ° C. or higher A step including temperature ;
Having
The surface-modified layer is sufficient to control bonding between the adjacent ones of the glass sheets in the laminate that define one of the interfaces throughout the time-temperature cycle, one held and the other When subjected to gravity, one sheet does not separate from the other, but one of the adjacent ones of the glass sheets is bonded to a force that can separate the glass sheets without breaking into two or more pieces Is a method for annealing a glass sheet.
前記時間−温度サイクルが、600℃以上であるが前記ガラスシートの歪点より低い温度を含む、請求項1記載の方法。 The method of claim 1, wherein the time-temperature cycle comprises a temperature of 600 ° C. or more but below the strain point of the glass sheet . 前記表面変性層が、プラズマ重合フルオロポリマーを含該プラズマ重合フルオロポリマーが、プラズマ重合ポリテトラフルオロエチレン、および40%以下のCを有するCF−C4、混合物から析出されたプラズマ重合フルオロポリマー表面変性層のうちの1つである、請求項記載の方法。 Wherein the surface-modified layer is observed containing plasma polymerized fluoropolymers, precipitated from the plasma polymerization fluoropolymer, plasma polymerization polytetrafluoroethylene, and CF 4 -C 4, F 8 mixture with 40% or less of C 4 F 8 The method of claim 1 , wherein the method is one of a modified plasma polymerized fluoropolymer surface modified layer. 前記表面変性層が芳香族シランを含み、該芳香族シランがフェニルシランである、請求項記載の方法。 Wherein the surface-modified layer is observed containing aromatic silane, aromatic silane phenylsilane The method of claim 1, wherein. 前記表面変性層が芳香族シランを含み、該芳香族シランがフェニルトリエトキシシラン、ジフェニルジエトキシシラン、および4−ペンタフルオロフェニルトリエトキシシランのうちの1つである、請求項記載の方法。 Wherein the surface-modified layer is observed containing aromatic silane, aromatic silanes phenyltriethoxysilane, is one of the diphenyl diethoxy silane, and 4-pentafluorophenyl triethoxysilane method of claim 1, wherein . 前記時間−温度サイクルが無酸素環境で実行されることを特徴とする、請求項1〜いずれか1項記載の方法。 The time - temperature cycle, characterized in that it is performed in an oxygen-free environment, according to claim 1 to 5 The method of any one of claims. 表面変性層が配置された前記主要面の少なくとも1つが、40mJ/m 超の表面エネルギーを有する、請求項1記載の方法 The method of claim 1, wherein at least one of the major surfaces on which a surface modification layer is disposed has a surface energy greater than 40 mJ / m 2 . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが24mJ/m 超である、請求項1記載の方法 The method of claim 1, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is greater than 24 mJ / m 2 . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが50〜1000mJ/m である、請求項1記載の方法 The method of claim 1, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is 50 to 1000 mJ / m 2 . ガラスシートのアニール化方法において、
各々が2つの主要面を有する複数のガラスシートを積層するステップであって、前記複数のガラスシートにおいて、ガラスシートの隣接するものの間で界面が画定され、該界面の1つに面する前記主要面の少なくとも1つに表面変性層が配置され、該表面変性層が芳香族シランを含み、該芳香族シランがフェニルシランを含むステップと、
各ガラスシートを圧縮するのに十分な時間−温度サイクルに、前記ガラスシートの積層を暴露するステップと、
を有してなり、
前記表面変性層は、前記時間−温度サイクルを通して、前記界面の1つを画定する前記積層におけるガラスシートの前記隣接するものの間の結合を制御するのに十分であり、一方が保持されて他方が重力を受ける場合に一方のシートが他方から分離しないが、前記ガラスシートの前記隣接するものの一方が2つ以上の断片に破断することなく該ガラスシートを分離し得るような力となるように結合が制御される、ガラスシートのアニール化方法
In the annealing method of the glass sheet,
Laminating a plurality of glass sheets each having two major surfaces, wherein an interface is defined between adjacent ones of the glass sheets and the major surface facing one of the interfaces. A surface-modified layer is disposed on at least one of the surfaces, the surface-modified layer comprising an aromatic silane, and the aromatic silane comprising phenylsilane;
Exposing the stack of glass sheets to a time-temperature cycle sufficient to compress each glass sheet;
Having
The surface-modified layer is sufficient to control bonding between the adjacent ones of the glass sheets in the laminate that define one of the interfaces throughout the time-temperature cycle, one being retained and the other being When subjected to gravity, one sheet does not separate from the other, but one of the adjacent ones of the glass sheets is bonded to a force that can separate the glass sheets without breaking into two or more pieces Is a method for annealing a glass sheet .
前記時間−温度サイクルが、400℃以上であるが前記ガラスの歪点より低い温度を含む、請求項10記載の方法 The method of claim 10, wherein the time-temperature cycle comprises a temperature above 400 ° C. but below the strain point of the glass . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが24mJ/m 超である、請求項10記載の方法 The method of claim 10, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is greater than 24 mJ / m 2 . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが50〜1000mJ/m である、請求項10記載の方法 The method of claim 10, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is 50 to 1000 mJ / m 2 . ガラスシートのアニール化方法において、
各々が2つの主要面を有する複数のガラスシートを積層するステップであって、前記複数のガラスシートにおいて、ガラスシートの隣接するものの間で界面が画定され、該界面の1つに面する前記主要面の少なくとも1つに表面変性層が配置され、該表面変性層が芳香族シランを含み、該芳香族シランがフェニルトリエトキシシラン、ジフェニルジエトキシシラン、および4−ペンタフルオロフェニルトリエトキシシランのうちの1つを含むステップと、
各ガラスシートを圧縮するのに十分な時間−温度サイクルに、前記ガラスシートの積層を暴露するステップと、
を有してなり、
前記表面変性層は、前記時間−温度サイクルを通して、前記界面の1つを画定する前記積層におけるガラスシートの前記隣接するものの間の結合を制御するのに十分であり、一方が保持されて他方が重力を受ける場合に一方のシートが他方から分離しないが、前記ガラスシートの前記隣接するものの一方が2つ以上の断片に破断することなく該ガラスシートを分離し得るような力となるように結合が制御される、ガラスシートのアニール化方法
In the annealing method of the glass sheet,
Laminating a plurality of glass sheets each having two major surfaces, wherein an interface is defined between adjacent ones of the glass sheets and the major surface facing one of the interfaces. A surface modification layer is disposed on at least one of the surfaces, the surface modification layer includes an aromatic silane, and the aromatic silane is selected from phenyltriethoxysilane, diphenyldiethoxysilane, and 4-pentafluorophenyltriethoxysilane. Including one of the following:
Exposing the stack of glass sheets to a time-temperature cycle sufficient to compress each glass sheet;
Having
The surface-modified layer is sufficient to control bonding between the adjacent ones of the glass sheets in the laminate that define one of the interfaces throughout the time-temperature cycle, one being retained and the other being When subjected to gravity, one sheet does not separate from the other, but one of the adjacent ones of the glass sheets is bonded to a force that can separate the glass sheets without breaking into two or more pieces Is a method for annealing a glass sheet .
前記時間−温度サイクルが、400℃以上であるが前記ガラスの歪点より低い温度を含む、請求項14記載の方法 The method of claim 14, wherein the time-temperature cycle comprises a temperature above 400 ° C. but below the strain point of the glass . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが24mJ/m 超である、請求項14記載の方法 The method of claim 14, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is greater than 24 mJ / m 2 . 前記界面の1つに面する前記ガラスシートの主要面の間の接着エネルギーが50〜1000mJ/m である、請求項14記載の方法 The method of claim 14, wherein the adhesion energy between the major surfaces of the glass sheet facing one of the interfaces is 50 to 1000 mJ / m 2 .
JP2016501874A 2013-03-15 2014-03-13 Bulk annealing of glass sheets Expired - Fee Related JP6186493B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361791418P 2013-03-15 2013-03-15
US61/791,418 2013-03-15
US14/047,251 US9340443B2 (en) 2012-12-13 2013-10-07 Bulk annealing of glass sheets
US14/047,251 2013-10-07
PCT/US2014/025537 WO2014151353A1 (en) 2013-03-15 2014-03-13 Bulk annealing of glass sheets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017147681A Division JP6434096B2 (en) 2013-03-15 2017-07-31 Bulk annealing of glass sheets

Publications (3)

Publication Number Publication Date
JP2016516657A JP2016516657A (en) 2016-06-09
JP2016516657A5 true JP2016516657A5 (en) 2017-03-16
JP6186493B2 JP6186493B2 (en) 2017-08-23

Family

ID=51580938

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016501874A Expired - Fee Related JP6186493B2 (en) 2013-03-15 2014-03-13 Bulk annealing of glass sheets
JP2017147681A Expired - Fee Related JP6434096B2 (en) 2013-03-15 2017-07-31 Bulk annealing of glass sheets

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017147681A Expired - Fee Related JP6434096B2 (en) 2013-03-15 2017-07-31 Bulk annealing of glass sheets

Country Status (6)

Country Link
EP (1) EP2969997A1 (en)
JP (2) JP6186493B2 (en)
KR (1) KR102239613B1 (en)
CN (1) CN105658594B (en)
TW (2) TWI679175B (en)
WO (1) WO2014151353A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617437B (en) 2012-12-13 2018-03-11 康寧公司 Facilitated processing for controlling bonding between sheet and carrier
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
JP6186493B2 (en) * 2013-03-15 2017-08-23 コーニング インコーポレイテッド Bulk annealing of glass sheets
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
CN106132688B (en) * 2014-01-27 2020-07-14 康宁股份有限公司 Article and method for controlled bonding of a sheet to a carrier
EP3129221A1 (en) 2014-04-09 2017-02-15 Corning Incorporated Device modified substrate article and methods for making
KR102573207B1 (en) 2015-05-19 2023-08-31 코닝 인코포레이티드 Articles and methods for bonding sheets and carriers
EP3313799B1 (en) 2015-06-26 2022-09-07 Corning Incorporated Methods and articles including a sheet and a carrier
TW201825623A (en) 2016-08-30 2018-07-16 美商康寧公司 Siloxane plasma polymers for sheet bonding
TWI810161B (en) 2016-08-31 2023-08-01 美商康寧公司 Articles of controllably bonded sheets and methods for making same
KR102346393B1 (en) * 2017-06-19 2022-01-03 동우 화인켐 주식회사 Method for Manufacturing Flexible Display Device Comprising Touch Sensor
JP7260523B2 (en) 2017-08-18 2023-04-18 コーニング インコーポレイテッド Temporary binding using polycationic polymers
CN111615567B (en) 2017-12-15 2023-04-14 康宁股份有限公司 Method for treating substrate and method for producing article including adhesive sheet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397722A (en) * 1981-12-31 1983-08-09 International Business Machines Corporation Polymers from aromatic silanes and process for their preparation
WO2004079826A1 (en) * 1996-10-22 2004-09-16 Mitsutoshi Miyasaka Method for manufacturing thin film transistor, display, and electronic device
US20050001201A1 (en) * 2003-07-03 2005-01-06 Bocko Peter L. Glass product for use in ultra-thin glass display applications
US20050069713A1 (en) * 2003-09-30 2005-03-31 Rahul Gupta Capillary coating method
CN101437772B (en) * 2006-05-08 2011-09-07 旭硝子株式会社 Thin plate glass laminate, process for producing display device using thin plate glass laminate, and support glass substrate
WO2009094558A2 (en) * 2008-01-24 2009-07-30 Brewer Science Inc. Method for reversibly mounting a device wafer to a carrier substrate
JPWO2009128359A1 (en) * 2008-04-17 2011-08-04 旭硝子株式会社 GLASS LAMINATE, PANEL FOR DISPLAY DEVICE WITH SUPPORT AND METHOD FOR PRODUCING THEM
JP5029523B2 (en) * 2008-07-14 2012-09-19 旭硝子株式会社 GLASS LAMINATE, PANEL FOR DISPLAY DEVICE WITH SUPPORT, PANEL FOR DISPLAY DEVICE, DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF
TW201033000A (en) * 2009-01-09 2010-09-16 Asahi Glass Co Ltd Glass laminate and manufacturing method therefor
US8697228B2 (en) * 2009-05-06 2014-04-15 Corning Incorporated Carrier for glass substrates
US9847243B2 (en) * 2009-08-27 2017-12-19 Corning Incorporated Debonding a glass substrate from carrier using ultrasonic wave
CN102576106B (en) * 2009-10-20 2015-02-11 旭硝子株式会社 Glass laminate, glass laminate manufacturing method, display panel manufacturing method, and display panel obtained by means of display panel manufacturing method
BR112012019405A2 (en) * 2010-02-03 2018-03-20 Asahi Glass Company, Limited method and apparatus for annealing glass sheet
US20110250346A1 (en) * 2010-04-07 2011-10-13 Remington Jr Michael P Adhesion of organic coatings on glass
TW201309611A (en) * 2011-07-12 2013-03-01 Asahi Glass Co Ltd Method for manufacturing layered-film-bearing glass substrate
JP6186493B2 (en) * 2013-03-15 2017-08-23 コーニング インコーポレイテッド Bulk annealing of glass sheets

Similar Documents

Publication Publication Date Title
JP2016516657A5 (en)
JP2014146793A5 (en)
TWI363082B (en) Release process film
JP6666340B2 (en) Vacuum lamination method for forming conformally coated articles and related conformally coated articles formed therefrom
TWI679175B (en) Bulk annealing of glass sheets
JP2009528688A5 (en)
JP2016033215A5 (en)
CN108349230A (en) The laminating method of ultra-thin glass and non-glass substrate
TW201517175A (en) Carrier-bonding methods and articles for semiconductor and interposer processing
JP2018511909A5 (en) Laminates and assemblies for flexible heaters, flexible heaters, and methods of making
JP2015025125A5 (en)
TW201634625A (en) Adhesive resin layer, adhesive resin film, laminated body and method for manufacturing the laminated body
JP2016507448A (en) GLASS AND GLASS ARTICLE MANUFACTURING METHOD
TW200951197A (en) Removable processing film
TW201529298A (en) Glass articles and methods for controlled bonding of glass sheets with carriers
JP2011235532A5 (en)
JP2011091297A5 (en)
MY196760A (en) Resin composition, resin layer, permanent adhesive, adhesive for temporary bonding, laminated film, processed wafer and method for manufacturing electronic component or semiconductor device
JP6163622B2 (en) Adhesive sheet
KR101974257B1 (en) Adhesive film and semiconductor package using adhesive film
JP2018507926A5 (en)
JP2014189727A (en) Heat-conductive sheet
KR101942967B1 (en) Bonded substrate structure using siloxane-based monomer and method of fabricating the same
JP2019119086A5 (en)
JP6261386B2 (en) Multilayer thermal conductive sheet and method for producing multilayer thermal conductive sheet