JP2016501574A - クラスターボレー方法及び装置 - Google Patents

クラスターボレー方法及び装置 Download PDF

Info

Publication number
JP2016501574A
JP2016501574A JP2015543214A JP2015543214A JP2016501574A JP 2016501574 A JP2016501574 A JP 2016501574A JP 2015543214 A JP2015543214 A JP 2015543214A JP 2015543214 A JP2015543214 A JP 2015543214A JP 2016501574 A JP2016501574 A JP 2016501574A
Authority
JP
Japan
Prior art keywords
stimulus
response
pupil
stimuli
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015543214A
Other languages
English (en)
Other versions
JP6726965B2 (ja
JP2016501574A5 (ja
Inventor
テディ・リー・マッデス
アンドリュー・チャールズ・ジェイムズ
コリーヌ・フランセス・カール
Original Assignee
ジ・オーストラリアン・ナショナル・ユニバーシティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012905171A external-priority patent/AU2012905171A0/en
Application filed by ジ・オーストラリアン・ナショナル・ユニバーシティー filed Critical ジ・オーストラリアン・ナショナル・ユニバーシティー
Publication of JP2016501574A publication Critical patent/JP2016501574A/ja
Publication of JP2016501574A5 publication Critical patent/JP2016501574A5/ja
Application granted granted Critical
Publication of JP6726965B2 publication Critical patent/JP6726965B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • A61B3/1173Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes for examining the eye lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本発明は、被験体の1以上の感覚野の部分の機能を評価するシステム及び方法が開示されている。被験体の感覚野の所定部分に与えられる少なくとも2つのクラスター刺激アンサンブルに対する瞳孔レスポンスを測定する。各クラスターは、感覚野に亘る複数の箇所に与えられる個々の刺激を含んでおり、前記箇所は被検査感覚野のための適切な軸上に規定されている。この方法では、前記2以上のクラスター刺激アンサンブルから選択された個々の刺激の統計的に独立したシーケンスを被験体の感覚野へ与え、それにより、被験体の少なくとも一方の瞳孔における瞳孔レスポンスを引き起こし、前記刺激によって引き起こされた前記一方または両方の瞳孔のレスポンスを少なくとも1つのセンサーを用いて検出し、これらの検出されたレスポンスを処理して、検出されたレスポンスを感覚野の各構成部分の感覚機能に関連づける。感覚野は、被験体の両眼の視野であってもよいが、これに限定されるものではない。

Description

関連出願
本出願は、2012年11月26日に出願され、同じ発明の名称を有するオーストラリア仮特許出願第2012905171号の出願日の利益を主張するものであり、同仮特許出願の内容は、援用によりその全体が本明細書に組み込まれている。
本発明は、瞳孔及び瞳孔特有の特性を用いて神経系の機能を評価する方法及び装置に関し、特に、視覚系の動作を評価する方法及び装置に関する。
本明細書全体を通して行われる背景技術についての如何なる検討も、そのような背景技術が先行技術であることを認めるものであると、また、そのような背景技術が広く知られている又は当該技術分野における共通の一般知識の一部を形成するものであることを認めるものであると、決して考えられてはならない。
ヒト(人間)において、各視神経は約1,000,000本の神経線維を含んでおり、これらの神経繊維が各網膜のすべての部分から脳へ情報を伝えている。ヒトの視覚系の基本的な設計上の特徴は視交叉である。これは、各網膜の左半分からの視覚情報が脳の右半分へと進み、各網膜の右半分からの視覚情報が脳の左半分に行くことを可能とする。網膜の各半分は、半分の視野、いわゆる半視野に対応している。この構造は、視覚脳の左半分と右半分のそれぞれが視野の約半分についての両眼の情報を受信することを可能にする。そして、その後の脳梁等を介しての脳の両半分間の通信により、視野の両半分が一つのもの(全体)として知覚されることが可能となる。
眼の瞳孔は、中脳の部分を介する単純な反射により眼の中への光束を調節するカメラのアパーチャーであること以上の多くの機能を持っている。瞳孔機能の追加高度化の一部は、視覚野(視覚皮質)の高次脳領域を含む瞳孔レスポンス(瞳孔反射)(pupillary response)に貢献するさまざまな脳領域からの入力から導出される。これらの多くの個々のレスポンスは、瞳孔が視覚刺激に対して応答するよう、何らかの方法で組み合わせる、すなわち、プールつまり統合する(pool)必要がある。図1Aは、2つの眼1から視交叉3を経由して2つの視蓋前域オリーブ核(PON)4に至る2つの球心性経路(視神経2を含む)と、そこから第2の視交叉を経由してエディンガー・ウェストファル核(動眼神経副核)(EWN)6へ、そして毛様体神経節へと至る遠心性部分とを示している。右側にある図1Bは、これらの経路の簡略化されたバージョンを示している。
単一の観測瞳孔レスポンスを与えるための多くの成分信号を組み合わせる(結合する)最初の部位は視蓋前域オリーブ核(PON)4である。頭の各側に一つのPONがあり、それぞれが2つの網膜の各々の半分からの情報を受信する。そして、これら2つのPON4は情報を両エディンガー・ウェストファル(EW)核6(脳の各側に1つずつある)に伝送する。すると、エディンガー・ウェストファル核は、動眼神経を介して瞳孔を神経支配する。これは、いわゆる第2の交叉、即ち第2の視交叉を表している。この回路が意味することは、各瞳孔は両方の網膜のプールされたアクティビティーについての情報を受け取るということであり、そして、重要なことは、いずれかの瞳孔がいずれかの眼の視野の右又は左半分への刺激に対して応答することができるということである。したがって、各瞳孔は独立して、両網膜1の動作についての情報を提供することができる。ある一つの瞳孔がそれ自身の眼の網膜に対しての応答を行うとき、これは直接レスポンスと言われる。ある一つの瞳孔が他方の眼の網膜からのアクティビティーに応答するとき、それは共感性レスポンス(consensual response)と言われる。重要なことは、PON4またはEWN6におけるプーリング(pooling)の各ステージにおいて、ゲインコントロールを含むことのできる視覚処理のための機会があることである。したがって、瞳孔システムでは、各半網膜または視野の各半分についてゲインコントロールを別々に制御することができる。
PONへの入力の約半分は、眼から直接来ているメラノプシン含有網膜神経節細胞(mcRGC)からのものである(更なる情報については、P. D. Gamlin, "The pretectum: connections and oculomotor-related roles (視蓋前域:接続及び眼球運動関連の役割)", Prog Brain Res, 2006, Volume 151, Pages 379-405参照)。この論文は、PONの接続性についても詳細に説明している。これら及び他の全てのタイプの網膜神経節細胞の神経繊維が、眼から脳へ投射する視神経を構成する。これらのmcRGCが、眼からPON(図1A に示す)へと伸びるニューロンである。mcRGCは、光に対して2つの別々のタイプのレスポンスを有する(更なる情報については、D. M. Dacey, H. W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K. W. Yau 及び P. D. Gamlin, "Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN(霊長類網膜中のメラノプシン発現神経節細胞は色及び照度を発信し、LGNに投射する)", Nature, 2005, Volume 433, Issue 7027, Pages 749-754 参照)。第1のレスポンスのタイプは、網膜内のこれらの神経節細胞の細胞体及び樹状アームに存在するメラノプシンに由来する。網膜の視細胞(光受容細胞)の光レスポンスとは異なり、mcRGCのメラノプシン駆動のレスポンスは、光適応機構を持っていないので、光レベルが増大するにつれて着実に増大する。メラノプシン色素は青色光に応答するが、そのレスポンスそのものは非常にゆっくりであり、青色光の一過性の増加に応答するのに数秒を要する。このゆっくりとした統合的レスポンスは、主に平均瞳孔サイズ(明るい光の中では小さく、薄暗い光の中では拡張する)に関与する。
他の全てのタイプの網膜神経節細胞(RGC)と同様に、mcRGCも、眼の桿体(ロッド)及び錐体(コーン)光受容細胞(視細胞)からの信号を伝達する。錐体駆動コンポーネントは黄色光(輝度)には積極的に応答するが、青色光には消極的である。このレスポンスのタイプは、イエローオン(Yellow-ON)/ブルーオフ(Blue-Off)クラスのレスポンスと呼ばれることが多い。これらのレスポンスは、随分一過性であり、錐体の時間分解能を維持する。このシステムは、必然的に、光受容体と、バイポーラ及び水平細胞などの、光受容体情報をRGCに渡す前に処理する細胞とが有する光適応機構を具現化している。他のタイプの網膜神経節細胞は、像の赤色及び緑色差分含有量についての情報及び像の輝度(明るさ)情報を脳に伝達する。主たる輝度信号はパラソル網膜神経節細胞によって脳に伝達される。赤−緑色信号はミジェット(midget)網膜神経節細胞によって運ばれる。これらのパラソル網膜神経節細胞とミジェット網膜神経節細胞とが一緒になってヒト及び同類の霊長類における視神経繊維の大部分を構成する。
パラソル細胞及びミジェット細胞を含む殆どのタイプの網膜神経節細胞と、mcRGCの約半分とは外側膝状体(LGN)を経由して視覚野に進む。視覚野とは、大規模に相互接続された一組の視覚処理領域である。これらの視覚野領域の多くは多層(multiply)であり、視床枕領域を介して中脳と相互に接続されている(更なる情報については、S. Shipp, "The functional logic of cortico-pulvinar connections (皮質 - 視床枕接続の関数論理)", Philos Trans R Soc Lond B Biol Sci, 29 October 2003, Volume 358 (1438), Pages 1605-1624; 及び S. Clarke, S. Riahi-Arya, E. Tardif, A. C. Eskenasy 及び A. Probst, "Thalamic projections of the fusiform gyrus in man(
ヒトにおける紡錘状回の視床投射)", Eur J Neurosci, May 1999, Volume 11 (5), Pages 1835-1838 参照)。
外線条皮質(extrastriate visual cortex)内の高位置の中心部(higher centers)が、PONと通信して、その入力神経供給の略半分を提供する(P. D. Gamlin, "The pretectum: connections and oculomotor-related roles (視蓋前域:接続及び眼球運動関連の役割)", Prog Brain Res, 2006, Volume 151, Pages 379-405 再度参照)。この皮質内で処理された種々の信号の中には、特に、両眼間の両眼視差から導出された距離情報がある。これは、物体が我々の近くに現れたときに生じる所謂レスポンスの三つ組(triad) を制御するもので、これにより、両眼は内側に寄り、眼のレンズが調節され、瞳孔が収縮する。恐らく、瞳孔の収縮は、被写界深度を大きくすることで近見を助ける。明らかに、調節力のある三つ組は深度についての情報を必要とし、その情報はその両眼の皮質入力によってPONに供給される。調節性レスポンスは上述の輝度及び赤−緑入力系からの入力を含むことが知られており、それらも視覚野を経由してPONに進む(更なる情報については、F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space(コーンコントラスト空間での刺激に対する調節応答)", Vision Res, November 2004, Volume 44 (25), Pages 2931-2944参照)。ヒトの輝度系のスペクトル色感度は、赤及び緑感受性の錐体(cone)入力の合計によって与えられるので、黄色調に対応するネットピーク分光感度から離れる。
視覚野から導出される可能性の高い、瞳孔への別の入力は、無彩色で、等輝度の(equiluminant)高空間周波数パターンに対する瞳孔レスポンス(瞳孔反射)である。それらのパターンは、子供においてさえ、視力を瞳孔レスポンスを通じて評価することを可能とする(J. Slooter 及び D. van Norren, "Visual acuity measured with pupil responses to checkerboard stimuli(チェッカーボード刺激に対する瞳孔レスポンスで測定される視力)", Invest Ophthalmol Vis Sci, January 1980, Volume 19 (1), Pages 105-8; 又は、K. D. Cocker 及び M. J. Moseley, "Development of pupillary responses to grating stimuli(格子刺激に対する瞳孔レスポンスの発達)", Ophthalmic Physiol Opt, January 1996, Volume 16 (1), Pages 64-67 参照)。
したがって、瞳孔は、黄色輝度刺激に対して少なくとも2つの感受性源を有する。即ち、mcRGC(メラノプシン含有網膜神経節細胞)のイエローオン(Yellow-ON)レスポンス成分及びパラソル細胞のイエローオンレスポンス成分であり、LGNの大形細胞層(magnocellular layers)への投射の主要な構成部分である。パラソルRGCは、高速ゲインコントロール機構を持っており、それにより、パラソルRGCは優先的に低空間周波数と高時間周波数に応答できる(E. A. Benardete, E. Kaplan 及び B. W. Knight, "Contrast gain control in the primate retina: P cells are not X-like, some M cells are(霊長類網膜におけるコントラストゲインコントロール:P細胞はXのようなものではなく、いくつかのM細胞はXのようなもの)", Vis Neurosci, May 1992, Volume 8 (5), Pages 483-486 参照)。mcRGCのイエローオンレスポンス成分は、そのようなゲインコントロール機構を備えているようには思われない。
全体として、瞳への多様な神経供給は、視神経線維の大部分および視覚系視床と視覚野の様々な部分の活動(アクティビティー)について潜在的に瞳孔が報告できることを意味する。視神経系のこれらさまざまな部分はどれも、ヒトである被験体(被検体)つまり被験者(被検者)に行われる一つの一般的な形の視覚検査(それは、両眼の視野の範囲と機能とを特徴づける)に影響を与えることができる。
ヒトの視野は、一般に静的視野測定によって評価される。この評価の基本形は、小さな視覚検査(試験)刺激を1ずつ次々と、視野を横切る予め定めた一連の場所(場所アレイ)に順次提示することを含む。検査中、被験者は、その被験者に提示された各検査刺激を見たかどうかを主観的に示す一方、検査中はずっと自分の視線を固視目標物上に維持しておく。殆どの視野計について、被験者は、いつ自分が検査刺激を検出したかを示すために、ボタンの押下などの行動レスポンスを与える。視野の構成部分は特徴的な視覚的能力を持つことができる。したがって、視野測定のゴールは、視野の測定箇所各部の1以上の視覚的能力を評価することである。これは、他の感覚系や人の周囲のオーディオビジュアル空間にも一般化できる。他の感覚系とは、例えば、皮膚上の圧力、皮膚の温度などで、その場合、皮膚は各感覚のための感覚野でタイル状に分割されている。人は、感覚野のどの部分がノーマルな感覚機能を持ち、どの部分がスーパーノーマルな感覚機能を持ち、どの部分がアブノーマルな感覚機能を持っているかを示すマップを作りたいと思うかもしれない。視野の任意のサブ領域でのノーマルつまり正常な性能との差は、多くの場合ずれ(deviation)と呼ばれ、視野の特定のずれ部分が何らかの面においてノーマルよりも大幅に性能が悪い場合には、その検査領域は視野欠損を有すると言われる。
眼の瞳孔の特性を評価するために、関連しない技術が用いられる。例えば、特定の視環境の下での瞳孔の静的サイズを測定する装置はピューピロメータ(pupillometer)と呼ばれ、経時変化する瞳孔の大きさを監視する装置はピューピログラフ(pupillograph)と呼ばれる。このような装置の違いは、米国食品医薬品局によって概説されている。ピューピログラフは、従来、標準的な視野刺激へのレスポンスを測定し、視野の視野計測マップ(perimetric maps)を提供するために、それら標準的な視野刺激と組み合わせて使用されてきた。しかし、これらのシステムは、信頼性が無いことが証明されており、商業形態を獲得しておらず、商業的に受け入れられてもいない。
視野を評価する理由は多くある。例えば、視野は、発達(成長)中に変化する顔の物理的特徴、例えば、鼻、眉のリッジ、頬骨など、によって基本的に制限される。したがって、視野を評価することは、顔の発達を追跡するのに有用であり得る。あるいは、通常の人の顔の特徴が、例えば特定のスポーツ又は職業における使用のために、適切な視野をその人に与えるかどうかを調べるのに有用であり得る。視神経系は、成人期まで発展を続けるので、これは視野の特徴に影響を与えることができる。したがって、視野検査は、若い人の発達の状態を決定するために用いることができる。生理的ストレステストも可逆的に視野を変えることがあり得る。したがって、ストレステストの前、最中、後の視野を検査するための高速の機構又は技術を利用できることは、ストレスレベルの評価のために有益である。また、視野検査は、診断自体の手助けとなるよりもむしろ、疾患の管理に有用であり得る。例えば、医師は、治療コースが視覚機能のさらなる低下を防止しているのか、または、何らかのより強力な介入が必要なのかどうかを判断するために、数年の期間にわたって視野検査を繰り返し使用することができる。視野検査は、したがって、視覚に依存するさまざまな問題の管理を支援するために使用することができる。
同様に、緑内障などの他の疾患は、視野の小さな領域に局在損傷を引き起こす可能性がある。繰り返すが、これらの疾患は、現在又は恐らく将来の治療を受けることになるので、視野検査は、経時的な治療の有効性を決定するのに有用である。もちろん、このことが意味するのは、視野検査は、被験者(被検者)の視覚機能に影響を及ぼす緑内障その他の疾患の診断をするために、他のデータと合わせて医師を助けるデータを提供する上で有用であり得るということである。緑内障の場合、視野検査で視野欠損が一旦観察されると、緑内障であることを確認することを助ける他のデータは、眼圧検査、偏光分析法または光コヒーレンストモグラフィー(OCT)による網膜の神経線維層の厚さの測定及び/又は、視診、ステレオ眼底撮影法、OCTまたは共焦点顕微鏡法による、しばしば視神経乳頭とも呼ばれる視神経の頭部のトポグラフィを含む。これらは通常、脳卒中など、視野欠損の脳関連源を排除するために、他の検査、例えば、磁気共鳴映像法、脳の陽電子放射分光法または脳波記録法などと組み合わせて実行されるであろう。
視野計測は、視野の一パッチ内の不良機能をもたらす網膜の局所的な損傷を引き起こす可能性のある他の眼疾患、例えば、加齢黄斑変性症(AMD)または糖尿病性網膜症(DR)などにおいても使用される。一つの目的は、そのような斑状の視野欠損が、眼底カメラ、光学コヒーレンストモグラフィー(断層撮影法)、または同様の装置を用いて観察された網膜上または網膜中の特徴に対応するかどうかを決定することである。視野計測および他の手段からの出力は、診断を行う医療専門家を支援することに加えて、所定の眼が将来AMDまたはDRを発症するかもしれない危険性を決定するために用いることができる。
しかし、既存の静的視野計測システムに関する主たる欠点は、検査の主観的性質である。それは、検査を不精確なものとし、かつ人/患者によるエラーを生じさせる原因となる。なぜならば、現在の検査は、患者が刺激を検出したときに行動的に応答する患者の能力に依存しているからである(静的視野計測は瞳孔レスポンスを使用しない)。典型的には、患者は、刺激に応答するための限定された時間窓を有し、実用的検査時間内で限られた数の刺激の提供を受けることができるのみである。したがって、患者が集中していなければ、何らかの偽陽性または偽陰性のレスポンスが送られるため、視野計測装置は視覚感度を良好に確立できず、したがって、検査の精度を落とすことになる。また、患者が刺激に精確に応答する能力がないこと、または、仮病を使っている場合などのように、刺激に精確に応答する欲求が患者に欠如していることによっても検査は損なわれ得る。そのようなことは、如何なる数の変数、例えば、患者が自閉症、加齢関連疾患、薬物障害または中毒を煩っているかどうか、によっても引き起こされ得る。
現在の検査の更なる欠点は、検査を完了することができる時間である。患者は、各刺激に主観的に応答しなければならないので、これは、検査を実施することのできる時間を制限する。
視野をマッピングする客観的な別の方法は、所謂多焦点方法を用いることである。これらの方法では、一連の視覚刺激つまり視覚刺激アレイが用いられる。このアレイの各メンバーが視野の特定のサブ領域に提示される。視野の各サブ領域における刺激の出現/不出現は、統計的に相互に独立した複数の時間的シーケンスによって変調される。最適なものとしては、変調シーケンスは統計的に完全に独立であるのがよい。すなわち、変調シーケンスは相互に直交していて、謂わばゼロの相互相関を有するのがよい。様々な直交シーケンスに関連する様々な特許(1996年7月23日発行のT. L. Maddess 及び A. C. James の米国特許第5539482号(米国特許出願第08/025,423号)参照。その特許の全開示は援用により本明細書に組み込まれている。)及び近直交(near orthogonal)シーケンスに関連する特許(例えば、1989年7月11日発行のSutterの米国特許第4846567号(米国特許出願第09/647,357号)参照。)が存在する。しかし、最近の分析方法は、より一般的な刺激が用いられることを可能としている(例えば、2011年11月13日発行のT. L. Maddess 及び A. C. Jamesの米国特許第6315414(米国特許出願第09/647,357)、2006年2月28日発行のT. L. Maddess 及び A. C. Jamesの米国特許第7006863号(米国特許出願第10/239,971号)、及び2005年6月9日発行のThe Australian National University, T. L. Maddess 及び A. C. James名義の国際(PCT)公開公報WO/2005/051193 (PCT/AU2004/001656)参照。これら3文献の全開示は援用により本明細書に組み込まれている。)。
多焦点方法の基本概念は、刺激の時間的統計的独立性により、複数連の多くの刺激(trains of many stimuli)が、それぞれのシーケンスによって駆動されて、感覚野の異なる部分、例えば、視覚の異なる領域に、あるいは異なる刺激条件で、同時に提示されることを可能とすることである。そして、全ての検査箇所での刺激提示への推定レスポンス(それは、1または2以上の所謂重み関数とすることができる。)を、視神経系のプールつまり統合された神経活動の記録から回収することができる。重み関数は、線形レスポンスと非線形レスポンスと相互作用とを特徴付けることができる。刺激に対する神経レスポンス、例えば、神経系の部分からの赤外光または他の電磁放射の吸収、散乱、または偏光の変化は、電気的又は磁気的な検出器または機能的磁気共鳴映像法によって記録され得る。理解できるように、そのような神経レスポンスを検出するためのセンサは、複雑であり、効率的な働きのためには、正確な装着、一般的には患者の頭皮か眼の上またはその近傍での装着に依存する。さらに、脳波記録法等の方法には、異なる被験者(被検者)は異なる脳の解剖学的構造を有しているために、これが頭皮上で測定される信号に影響を及ぼすという問題がある。被験者はしばしば、彼ら(彼女ら)の頭皮又は眼に電極が装着されることを酷く嫌がり、また、このような接触方法に付随する健康リスクもある。刺激に対するレスポンスは、瞳孔のモニタリングを通して検出することができるので、非接触式評価を許容するという利点がある。しかし、今日に至るまで、神経系の多焦点検査を行うためにピューピログラフィ(pupillography)を用いる商業的視野計測システムは存在しない。
以下の説明は、多焦点の方法を特色あるものとする多焦点方法の特徴をまとめたものである。米国特許第5539482号は、両眼からの入力が最初に一緒になるポイントつまり第1の視交差のちょうど後で脳内に生成されるレスポンスを、所謂両眼相互作用カーネル(binocular interaction kernels)を使用して測定するために、両眼に提示されるべき独立の多焦点刺激の使用を開示している。これらの多焦点刺激に対しては他の空間的又は時間的制約は与えられない。米国特許第7006863号は、特定の時間的な制約が最適であることを開示している。特に、米国特許第7006863号は、刺激アンサンブルの任意の一領域における有効な刺激の提示数の平均レートが1秒間当たり0.25〜6であるように、多焦点刺激アレイ内の任意の位置での一時的な(瞬間的な)有効な刺激の提示には、より長い非有効な空刺激が挟み込まれ(インターリーブされ)なければならないことを開示している。これは、一時的な刺激シーケンス内の任意の時間ステップにおいて、有効な刺激が所定の単一の場所に出現する確率は、psingleでありsingle <<1/2であることを意味している。空間的に隣接する任意の2つの近隣領域が互いに対して出現しなければならない時について何の制約もないので、空間的に隣接する2つの近隣領域は、確率= ppairで同時に出現し、その確率は、まさに、psingle × psingle = p2 singleに等しい。これらの多焦点刺激は、時間的に疎であると言われている。国際(PCT)公開公報第WO/2005/051193号では、刺激が所定の箇所に出現する時、空間的に隣接する一つの刺激が出現する確率psingleは<< p2 singleであり、好ましくは、隣接する刺激領域に対してppair=0であるというさらなら制約を与えている。これらの刺激は空間的に疎と言われている。なぜならば、すぐ隣の近隣刺激は、同時に出現(共出現)しない傾向にあるか、または、決して同時には出現(共出現)しないかのいずれかであるからである。前記3方法の全てにおいて、特に空間的に疎の刺激の場合においては、刺激は、視野全体で均等に提示されることがわかり、空間的に隣接する刺激クラスターのボレー(一斉射撃)としては殆どあるいは決して起こらない。
全体的に見れば、他の目的、例えば、局所的視覚的注目の焦点を決定したり、視覚野と他の感覚野(例えば聴覚野や体性感覚野)との間の相互作用を決定したりするなどの目的にも使用可能な、高速の客観的非接触式の視野評価に対するニーズが存在する。
瞳孔は、視神経系の神経レスポンスを記録するための優れた基質(substrate)である。瞳孔系は、瞳孔系からレスポンスを入手可能な視覚野その他の感覚野の部分からのより信頼性の高いレスポンスを提供するために利用することができる以下に記載の特別な特性を有する。
さらに、この方法は、ヒトまたは動物である被験体における片方または両方の瞳孔を採用することができる視覚系の他の評価を支援するために瞳孔のレスポンスを増強するように設計されている。この方法及びこの方法を実施するための装置またはシステムは、後述するように、瞳孔を用いてこれらの機能の任意の集まり又は視覚刺激の集まりを評価する際に有用であって、機能及び刺激の所望のサブセットに対する瞳孔のレスポンスを、検査されているセット全体における他のものに対して向上させることを可能とする。
本発明の一側面によれば、被験体(被検体)の神経系を評価する方法が提供される。この方法は、少なくとも2つの刺激アンサンブルからなる刺激アンサンブルのセットから選択された個別の刺激のシーケンスを被験体の神経系に提示するステップを備える。前記刺激アンサンブルのそれぞれは、複数の個別の刺激を備えており、1アンサンブル中の前記複数の個別の刺激が、感覚野のサブ領域内の空間的に隣接するクラスターを構成する。任意のクラスターアンサンブル内の前記個別の刺激のそれぞれの提示は、統計的に互いに独立した擬似ランダムシーケンスによって支配される。したがって、擬似ランダムシーケンスによる制御は、提示の所定の時間ステップにおいて、アンサンブル内の個別刺激のサブセットだけが提示されることを意味する。したがって、提示された刺激アンサンブルは、感覚野全体に亘って一貫的に表されるパターン、例えば、チェッカーボードまたは他の周期的パターンを作ることはできない。なぜならば、アンサンブルの如何なる提示時においても、そのアンサンブルを形成(定義)するそれらの刺激の異なるサブセットが提示されるからである。如何なるアンサンブルであってもそのアンサンブルの複数の個別刺激自体は、感覚野におけるそれらの領域で周期的パターンを表示できる。擬似ランダムシーケンスによる制御は、所定のアンサンブルの所定の提示の際に、幾つかの個別の刺激を同時に提示することができることを意味する。選択された複数の個別の刺激からなるシーケンスは、前記被験体の少なくとも一つ(片方)の瞳孔における瞳孔レスポンスを誘発する、つまり、引き起こすようになっている。この方法は、センサーを用いて、刺激によって誘発された少なくとも一つ(片方)の瞳孔のレスポンスを検出するステップをさらに備えてもよい。また、この方法は、検出された瞳孔レスポンスを、各アンサンブルの個別の刺激のうちの少なくとも2つの刺激に対する被験体の神経レスポンスの関数に関連づけるステップをさらに備えてもよい。
前記複数の個別の刺激は視覚刺激であってよい。これらの視覚刺激は被験体に対し、被験体の視野内の複数の領域に同時に提示されてもよい。それらの領域は、空間的に隣接する刺激クラスターのアンサンブルに制限されている。クラスター化された刺激のアンサンブルは、被験体の眼の視野の中心を取り巻く視野の略弓形部分を形成してもよい。これらの弓形部分は、極座標において、視野の中心から伸びており、第1の内側半径から第2の外側半径まで、そして、第1極角から第2の極角までである。個別の刺激領域のクラスター化された1つのアンサンブルを形成する視野の一弓形部分は、視野の1または複数の象限を画定する境界を有していてもよい。弓形部分の境界は、視野の水平経線及び垂直経線によって画定してもよい。あるいは、個別刺激のクラスターのアンサンブルは、視野内の直線座標上に画定することができるが、同様に、視野の象限または視野の象限の倍数内にある視野部分に制限することができる。直線座標上に画定されたこれらの視野部分の境界は、視野の水平経線および垂直経線を含むことができる。個別視覚刺激のアンサンブルを、被験体の片眼または両眼の視野内の複数のクラスター化されたアンサンブルの範囲内で被験体に提示することができる。これらのアンサンブルの提示は、ラウンドロビン方式または擬似ランダム方式でかわるがわるに行ってもよい。各視覚刺激によって誘発されて生じた一連の瞳孔レスポンスは、片眼又は両眼の視野の検査部分の視覚機能のマップを提供する。したがって、視覚刺激は単眼または両眼に対するものであってよく、しかも、別々に又は同時に提示してもよい。平均刺激間隔期間は1秒/領域と16秒/領域との間、好ましくは約4秒/領域となるように選ぶことができる。替わりに、0.1秒/領域から100秒/領域までの広い範囲を選んでもよい。
1箇所または数箇所における視覚刺激は、幾つかの刺激条件の間で1つずつ代わってもよい。刺激条件は、刺激輝度レベルと、刺激の色または色相とからなる群から選択され得る。アンサンブル内の各刺激のための刺激条件のそれぞれを、瞳孔レスポンスがそれら刺激条件の及ぶ刺激空間の影響を受けた神経レスポンスを表すように、ユニークな統計的に独立したシーケンスによって制御することができる。
両眼視覚刺激は、視野の異なる領域で深さ(奥行き)が変化する物体に追随する(エミュレートする)ように適合させることができる。視野内の物体(対象物)までの距離の測定値(measure of the distance)は、瞳孔レスポンスが被験体の両眼の遠近調節系の機能を表すように被験体の各眼に立体視差情報(stereo disparity cues)を提示することによって決定することができる。
この方法は、2つの網膜のなかから選ばれた1つの網膜の瞳孔レスポンスを記録するステップをさらに備えていてもよい。また、この方法は、記録された瞳孔に関連する網膜の瞳孔レスポンスを直接瞳孔レスポンスによって特徴付けるステップをさらに備えていてもよい。また、この方法は、記録された瞳孔の共感性レスポンスによって、もう一つの網膜の瞳孔レスポンスを特徴付けるステップをさらに備えていてもよい。
例示的な構成では、この方法はさらに以下のステップを備えることができる。すなわち、ユニークな視覚刺激のアンサンブルを被験体のもう一方の眼に同時に提示するステップ、2つの網膜のうちから選択された1つの網膜の瞳孔レスポンスを記録するステップ、記録された瞳孔に関連する網膜の瞳孔レスポンスを直接瞳孔レスポンスによって特徴付けるステップ、記録された瞳孔の共感性レスポンスによって、もう一つの網膜の瞳孔レスポンスを特徴付けるステップである。
刺激アレイは、頭の回りに異なる方位角と仰角で存在する聴覚刺激アレイまたは聴覚刺激及び視覚刺激が一緒にまたは別々に頭の回りに異なる方位角と仰角で存在する聴視覚刺激アレイであってもよい。刺激アレイは、感覚野の異なる部分での被験体の注意(アテンション)のシフトを検査してもよい。あり得る刺激領域のアレイは、所定の時間ステップでの同時提示のために選ばれる複数の刺激クラスターアンサンブルに細分されてもよい。この方法はさらに、刺激アレイによって誘発された被験体の瞳孔レスポンスを記録するステップを備えていてもよい。例示的な構成では、この方法はさらに、刺激アレイによって誘発された瞳孔レスポンスを記録するステップと、記録されたレスポンスから被験体の神経が介在する注意(attentional)、感情、あるいは精神の健康のメカニズムの機能を特徴付けるステップとを備えていてもよい。
本発明の別の面によれば、被験体の神経系を評価するためのシステムが提供される。このシステムは、刺激のシーケンスを生成するためのソースを含む。このソースは、コンピュータまたはコンピュータ制御システムであってもよい。刺激のシーケンスは、少なくとも二つの刺激アンサンブルから選択されるか、それらから導き出してもよい。これらのシーケンスは、被験体の少なくとも片方の瞳孔に瞳孔レスポンスを惹起するように適合され得る。刺激アンサンブルは、複数の個別刺激を含んでいるが、これらの刺激アンサンブルは、個別刺激の固定周期アンサンブルでも固定非周期アンサンブルでもない。各刺激アンサンブルは、視野の実質的な(かなりの)部分をカバーしており、それらの視野部分は典型的に視野の象限または視野の象限の倍数内に画定され、典型的には、視野の水平および垂直経線によって画定される。このシステムはさらに、検出された瞳孔レスポンスを記録して、これらの記録したレスポンスを、アンサンブルの個別刺激のうちの少なくとも二つに対する被験体の神経レスポンスの関数(functions)に関連づけるためのプロセッサを備えることができる。
このシステムはさらに、コンピュータ読み取り可能な記録媒体などの物理的記録媒体に格納された記録データのデータベースを備えることができる。記録されたデータは、以下のもののうちの少なくとも一つ以上についての情報を含む。すなわち、
個別刺激によって少なくとも1の被験体に誘発された神経レスポンスの強度または平均強度、及び
個別刺激によって少なくとも1の被験体に誘発された瞳孔レスポンスの強度または平均強度。
刺激生成用のソースは、記録データの分析から、個別刺激のそれぞれに対する少なくとも一つの重み関数を決定する。
方法、装置、及びシステムの構成を、添付の図面を参照して、例としてのみ、説明する。
図1Aは、2つの眼から視交叉を経由して2つの視蓋前域オリーブ核(PON)に至る2つの球心性経路と、そこから第2の視交叉を経由してエディンガー・ウェストファル核(EWN)へ、そして毛様体神経節へと至る遠心性部分とを示す概略平面図である。
図1Bは、図1Aに示された経路の簡略図面で、この経路は図12で使用される。
図2は、2つのディスプレイ装置及び赤外線に対して透明である2つの鏡を介して被験体の両眼に独立した視覚刺激シーケンスを提示し、2つのビデオ記録装置を用いて2つの瞳孔の直径の変化を記録するための装置の非制限的デザインの構成部分、及び検査刺激シーケンスの提示制御と瞳孔直径データの分析のためのプロセッサを示すブロック図である。
図3は、視野の中心60度内で提示される多焦点刺激アレイの44領域を表したグラフを示しており、刺激領域のリングのセット(中心リング1から外側リング5まで)からなり、これらのリングのセットは、同時に提示されれば重なり合うが、左側または右側の半視野の部分だけを刺激する、リング1、3、5又はリング2、4から引き出された領域クラスターのアンサンブルに分けられた(parsed)場合には、刺激提示シーケンスの間、それらは空間的に重ならず、したがって、輪郭は、図6に示す刺激提示シーケンスの所定の時間ステップにおいて視覚刺激が提示される刺激領域の境界を表す。
図4は、図3に示したような刺激領域アンサンブルの非制限的な一例を示したものであり、この例では、刺激領域アンサンブルは、被験体の眼の右または左半視野に限定された弓形部分を画定している。これらのアンサンブルは所謂クラスターボレー設計(clustered-volley design)で被験体の両眼の両半視野にラウンドロビン方式で提示され、この場合、各時間ステップにおいて、それ自身の統計的に独立した擬似シーケンスによってコントロールされている提示アンサンブルの如何なる領域も、実際に提示され図5、6に示されたものの半分の確率を有する。
図5は、クラスターボレー多焦点刺激シーケンスの時間的展開を生じさせる方法のフローチャートであり、図4に示したもののようなクラスター化された刺激ボレーの非限定的なデザインのステップを含んでおり、まず、潜在的に提示することができる刺激領域アレイが画定され、それらの領域のサブセットのクラスター化されたアンサンブルが画定され、そして、刺激プロセスは、幾つかの刺激サイクルを開始する。それらの刺激サイクルではクラスター刺激アンサンブルのセット(複数)が選択され、統計的に独立した擬似シーケンスによって各クラスター内の領域が提示用に選択される。
図6はクラスターボレー刺激提示プロセスの3サイクルの結果を示しており、点線による輪郭は、刺激が提示され得る各アンサンブルの領域を示し、暗く着色された領域は、或る特定のサイクルでアクティブ状態の刺激を実際に提示した刺激領域を示す。そして、領域の暗い着色は、より薄暗い背景視野に提示された明るい領域を表しているが、如何なる単一領域のアクティブ状態も、その領域の境界内でのちらつき又はパターンを提示するかもしれない。
図7は、図7A及び図7Fにおける小さなボックスによって示される視覚刺激アレイの2つの代替の非限定的なデザインと、それらを図7Bから7Eによって示される視野内のクラスター刺激領域のアンサンブルに基づく象限及び図7Gから7Jによって表される視野内のクラスター刺激領域のアンサンブルに基づく異なる象限へ分割する一例とを示し、領域が所定の時間ステップでアクティブ刺激を示すかもしれない擬似ランダムシーケンスのアクションは、図6と同様に、各クラスターアンサンブルの領域の幾つかを暗く着色することによって示されている。
図8は、図7と同様の図であるが、しかし、刺激領域が、象限ベースのクラスターアンサンブルの2つの異なるセットに割り当てられていて、所定のクラスターへの割り当ては、図8A及び8Fによって画定されているトータルアレイ内の領域の交互の対角線に基づいている。
図9は、瞳孔レスポンス波形が時間的に進展するときの2つの瞳孔レスポンス波形の形態を示すプロットであり、図9Aは多焦点刺激に応答しての波形のピーク振幅を、図9Bは多焦点刺激に応答してのピークまでの時間を示している。この場合、刺激は、各プロットの左上にある黒色の小さい矩形ブロック91によって示される期間中に与えられたもので、波形の下方向への撓みは、瞳孔がベースラインから収縮して直径が小さくなったことを示している。
図10は、図2のように提示された図3、4、6の1眼当たり44領域刺激の独立アレイに応答しての1眼当たり44瞳孔レスポンス波形のペアを示しており、黒色と灰色の波形は、左右の瞳孔からの記録されたレスポンスであり、各刺激に対いて直接レスポンス及び共感性レスポンスがある。各瞳孔から得られるレスポンスは非常に似ているために、それらのレスポンスは、左の瞳孔の灰色レスポンス波形が右の瞳孔の黒色レスポンスを覆い隠すことがよくある。したがって、灰色波形のみが見える時には、両瞳孔からのレスポンスは同一である。
図11は、瞳孔レスポンスシステム内のゲインコントロール機構の動作を示すプロットであり、被験体の視野の領域に提示される1秒当たりの個別刺激の数が増加するにつれて、瞳孔レスポンスのピーク振幅中央値(メジアン)が低下するので、視野の多くの部分を同時に評価する多焦点方法の能力を潜在的に制限することを示している。
図12Bは、レスポンスの強度が図12Aによって示されるEWNに入射する1秒間当たりの刺激数に依存することを示すグラフであり、破線に沿った点は、半網膜当たりでは異なるがEWN当たりでは同数の刺激数を表すか、あるいは、EWNがより多くの刺激を受け取って、より小さいレスポンスとなる場合またはより少ない刺激を受け取って、より大きなレスポンスとなる場合を表しており、このようにして、EWNまたは瞳孔経路においてこれよりも後の点へのゲインコントロールの作用点を分離している。
図13は、図12Bと同様のいくつかの実験データを示すプロットであり、1秒当たり特定の刺激数が特定のEWNへ運ばれ、そのEWNまたはこれよりも瞳孔への経路上後方でゲインコントロール機構によって生成されるレスポンスの低下、減退を示している。
図14は、国際(PCT)公開番号WO/2005/051193に記載の従来の空間的に疎の方法(spatially-sparse method)について得られた領域当たりの平均瞳孔レスポンス(その刺激タイプに対するデータは、横軸のラベルYoldの上方に示されている)と図5、6に示したものに関連する4つのクラスターボレー刺激のバリアント(variants)(但し、半視野アンサンブルクラスターの順番と方向は前記4つの代替非制限的デザインの間で変えられている)との比較を示し、図3の複数の異なる刺激リングについての領域当たりの平均レスポンスを示しており、また、エラーバーが95%信頼限界である場合には、4つのクラスターボレーのバリアントについて、レスポンスが有意に大きくなることを示している。
図15は、図14の実験で得られた信号対ノイズ比(SNR)の比較を示している。ここで、これらのSNRは複数の眼及び複数の被験体全体の平均として求められ、2つのリングクラスターについて別々の結果を残していて、図14と同様に、新しい4つのバリアントに対するSNRが、従来の空間的に疎の方法に対するSNRよりも相当に高いことを示している。5つの刺激タイプの全ては、図3、4、6と同様44の同じ黄色領域を有し、また、4秒/領域という同一の平均提示間隔を有するものであった。
図16は、レスポンス= k × (コントラスト)zというパワー関数としてモデル化された、刺激-レスポンス関数(SRF)の潜在的に飽和する形態を示しており、指数z<<1という値のとき、より高い輝度コントラストに対して、SRFが横這い状態に達する、つまり、SRFが飽和することになる。ここでの背景コントラストは約10cd/m2であるとする。
図17は、6被験体からの測定SRFを示しており、前記従来の空間的に疎の方法(Yold)及び新しいクラスターボレー刺激(Ynew、RGnew)の両方共が余り飽和していないレスポンスの形態を示していることを示している。そして、このことは、図17Aのピーク瞳孔レスポンス振幅と図17Bの信号対ノイズ比の両方について言える。
図18は、刺激アレイが視野の中心60度をカバーせず、同形で規模を縮小して視野の中心30度のみを刺激した点及び図17のためには全く測定されなかった18人の若い正常な人についてSRFが測定された点を除いて、図17と同様である。
図19は、Ynewのクラスターボレー刺激タイプを使用して測定された緑内障患者の眼のピーク瞳孔収縮振幅の、正常対照眼からのずれを、各領域の着色の濃さによって表現されているように、所定の視野領域が正常である確率(%)に変換したものであり、左眼のデータは左列(図19A、19B、19C、19D)に、そして右眼のデータは右列(図19E、19F、19G、19H)にあり、図の各行は、被験体の左右の瞳孔についてのものであって、1回目の検査のために提示されたデータは図19A、19B、19E、19Fに、そして、約2週間後の2回目の繰り返し検査のために提示されたデータは図19C、19D、19G、19Hに示されている。
図20は従来の空間的に疎の刺激タイプ(Yold)対2つのクラスターボレー刺激タイプ(YNew及びRGNew)についてのプロットであり、各測定視野において最悪ずれ領域の数が1から最大20まで増加するときに重症緑内障を診断するための、図21に示したようなROCプロットの百分率曲線下面積(%AUC)±SEを示し、ここで、AUC = 100%は、すべての患者およびすべての正常な対照群が正しく診断されたことを意味している。
図21は、3つのAMD(加齢黄斑変性症)重症度レベルについて従来の空間的に疎の刺激タイプ(SteadyOld)対2つのクラスターボレー刺激タイプ(FlickNew及びSteadyNew)の診断力を示す受信者動作特性(ROC)プロットであり、各眼を標準的データと対比又は各被験体の眼間で瞳孔レスポンス振幅の非対称性を比較している。
図22は、図20と同様のものであるが、しかし、図の3列は、AMDの3つの重症度について各視野の%AUC対N−最悪領域の数のプロットを示している。
本発明の実施形態は、主に健康状態及び病気状態にあるヒトおよび動物の被験体の視野の改善された評価と定量化のための方法及び装置として使用するために、開発されたもので、この用途(アプリケーション)に関して以下説明する。しかし、本発明がこの特定の使用分野に限定されないことは理解されるであろう。特に、本明細書に記載された方法および装置は、視覚順応(調節)、視力、聴力と視聴覚機能、感情の状態、薬物使用、および注意障害の評価のためにも適用することができる。
他に定義しない限り、本明細書で使用される全ての技術用語および科学用語は、本発明が属する技術分野の当業者によって普通に理解される意味と同じ意味を有する。本発明の目的のために、次の用語を以下に定義する。
冠詞「a」および「an」は、本明細書では、冠詞の文法上の対象(目的語)が1つ又は1つよりも多い(すなわち少なくとも1つ)ことを指すために使用されている。一例として、「an element」は、1つの要素または2つ以上の要素のことを言う。
「約」という用語は、基準の頻度または確率に対して、30%異なる、好ましくは20%異なる、より好ましくは10%異なる頻度又は確率のことを言う。
本明細書を通して、特に断りのない限り、単語「comprise 備える、含む」、「comprises 備える、含む」 及び「comprising 備える、含む」は、述べたステップ又は要素若しくは述べたステップ群又は要素群を含むことを意味するが、他の如何なるステップ又は要素若しくはステップ群又は要素群を排除することは意味しないと、理解されるであろう。
本明細書に記載のものと類似または均等の如何なる方法および材料も本発明の実施または検査(試験)において使用することができるが、好ましい方法および材料がここに記載されている。本明細書に記載される方法、装置及びシステムは、様々な方法でかつ様々な目的のために実施されてもよいことが理解されるであろう。ここでの説明は、ほんの一例である。
図1Aを参照すると、瞳孔システムはそれが進化したとき、視野の任意の大きな一部分において集めて一団とされたつまりクラスター化された光刺激に対するレスポンスを減衰しない傾向にあるゲインコントロールシステムを含むと思われる。これは、本発明の実施形態に関して重要な点である。本発明の実施形態において、刺激は、空間的に隣接する刺激クラスターのボレーで(in volleys)提示される。有利なことに、本発明のこれらの実施形態は、EWNのレベル又はその後で作用している特定のゲインコントロールの効果を改善するために、多焦点刺激アンサンブルのサブセットに作用する無関係な空間上の制約に関係する。このゲインコントロールシステムは、複数の(multiple) 視覚刺激が空間的に隣接する刺激クラスターのボレーで提示されるとき、時間的または空間的に疎(sparse)の刺激などの以前の方法に比べて、瞳孔のレスポンスをより少ししか減少させない傾向にある。
本発明の]実施形態は、既存のシステム及び方法の欠点の1つ以上を実質的に克服または少なくとも改善する、若しくは、少なくとも有用な代替物を提供する、ことを追求するもので、特に、感覚野のサブ領域のアレイ全体に検査刺激(例えば、瞳孔レスポンスを介して検出可能な視覚、聴覚、その他の刺激)を同時に提示するのが望ましい場合にそれを追求するもので、その場合、感覚機能は、ゲインコントロールによって監視されるのであるが、このゲインコントロールは、視野全体にわたって拡散して提示される刺激への瞳孔レスポンスは抑制するが、同数の刺激が、視野の中心から10〜50度の半径範囲にある例えば半視野等の視野の実質的サブセットに集合的に及ぶ空間的に隣接する刺激のボレーで送られたときには、瞳孔レスポンスを余り抑制しない。
図1Aは瞳孔レスポンス経路の関係部分を示しており、各網膜1の左半分及び右半分への視覚インプットがどのようにして2つの視神経2を流れて瞳孔まで進むかを示している。各眼の鼻側にある2つの半網膜からの情報は視交叉3で交差し、2つの左半網膜からの情報が左視蓋前域オリーブ核(PON)4に収束し、2つの右半網膜からの情報が右側のPONに収束する。その後、第2の交叉(交差)5があるので、各エディンガー・ウェストファル核(EWN)6が4つの半網膜全てからの入力を受け取る。PON4は、視覚野(視覚皮質)からの入力(図示されていない)も受信するが、これらの皮質領域は図1に示す皮質下経路のための多くを両眼からの入力によって供給される。このようにして、それぞれの瞳孔が両眼の両方の半視野に応答することができる。これは、2つのタイプの瞳孔レスポンスを形成する。つまり、それ自身の眼の刺激に対して瞳孔が応答する直接レスポンスと、瞳孔がその相手方の目の刺激に応答する共感性レスポンスである。このため、片方の瞳孔のみを監視して、両方の瞳孔における活動に関する情報を得てもよい。両方の瞳孔を同時にモニタするのが有利である。なぜならば、これは、眼から脳への求心性経路と脳から瞳孔への遠心性経路における変化に対応する視野の局所的な変化をユーザが区別することを可能とするからである。図1Bはこれらの経路の簡略版を示しており、これを以下において使用する。
本明細書に開示された方法にしたがって多焦点刺激を提示し、瞳孔レスポンスを記録するための好適な装置200の一例を図2に示す。この装置における刺激方式は、両眼にそれぞれ独立の刺激を与える(つまり、各眼は、別々の、独立して制御される刺激パターン及び/又は刺激シーケンスを検査中に見る)ものである。被験体の左右眼10a、10bのための独立した刺激はコンピュータ18によって作られ、それぞれの通信線11a、11bによって運ばれ、2つの液晶表示装置(LCD)12a、12bに表示される。被験体の両眼10a、10bの前に配置される同じ集束力(焦点距離)の正レンズ13a、13bが使用され、焦点距離は、表示装置12a、12bが遠焦点(far focus)即ち無限遠(visual infinity)にあるように見えるように選択される。これは、眼10a、10bの屈折異常を矯正するために眼鏡やコンタクトレンズのような通常の矯正レンズを使用する(図示せず)ことも可能とする。眼を照明する赤外光は発光ダイオード(LED)15によって提供され、瞳孔径を変更する虹彩の収縮が、各虹彩のレスポンスを記録するための検出器16a、16bによって別々に記録される。検出器16a、16bは、ビデオカメラ、CCD検出器、フォトダイオード検出器、単純な電力検出器、その他の、対象者の両眼10a、10bから反射された反射赤外光を記録する適切な検出器とすることができる。2つのダイクロイックミラー17a、17bは、それぞれのLCD画面の像を被験者の眼10a、10bの一方に映すために使用される。また、ミラー17a、17bは、発光ダイオード15からの赤外光を透過して被験者の眼10a、10bを照明することを可能とし、かつ、反射赤外光がミラー17a、17bを通って送り返されて検出器16a、16bによって検出され、それぞれぞれの通信線19a、19bを介して解析のためにコンピュータシステム18に送られることを可能とする。
図3A、3B、3Cおよび3Dは視野の44領域のアレイの境界を示している。それら44領域のそれぞれが視覚刺激を表示し得る。刺激を表示するこれらの境界を有する領域を刺激領域31と言うが、図3においては、煩雑さを避けるために、アレイの44刺激領域の幾つかだけに31を付している。各プロットの中心は視野の中心を表し、凝視点(point of fixation)としても知られている。また、横軸及び縦軸のラベル(視野方位角(度)、視野仰角(度))は、このアレイが固定点を中心とした視野の中央60度の範囲内で視野の殆どをカバーすることを示している。視野を検査するために、被験体は、検査時間中、検査アレイの中心を凝視しなければならない。したがって、検査の行われている間中、眼10a、10bの位置と、被験体がアレイの中心を凝視し続けていることを監視するために検出器16a、16bを使用することができる。こ非限定的な設計においては、刺激領域のアレイは、5つの領域リングからなる。図3Aに示すように、4刺激領域からなる中央リングをリング1と言い、12刺激領域からなる外側のリングをリング5と言う。図3Bのリング2及び4の中心は、リング1、3、5の中間半径に位置しているため、リング1、3、5から選択された刺激がリング2、4からの刺激と同時に提示された場合には、図3Cに示すように、互いに重なり合う。本発明の実施形態によれば、刺激領域のアレイは、好ましくは視野象限又は象限の和に基づいて、クラスター化されたアンサンブル(以下、クラスターアンサンブル)に分割される。以下で使用するそのような構成の一つを図3Dに例示する。その例では、刺激アレイは、4つのクラスターアンサンブルに分割されており、それらのクラスターアンサンブルはリング1、3、5またはリング2、4のいずれかについて視野の左半分及び右半分に提示可能な刺激領域を含んでおり、これらクラスターアンサンブルの2つが図3Dに示されている。
刺激の重なりは、サンプリング格子上での刺激の空間エイリアシング(aliasing)が最小化されるようなものとすることができる。すなわち、これらの刺激がサンプリング格子が正確に表すことができない空間周波数を全く送らないか僅かしか送らないようにすることができる。これらの刺激は、交互に又は共に、これらの個別の刺激が同時に提示された場合には、これらの個別の刺激が十分に重なって、これら個別の刺激がサンプリング格子の臨界サンプリング周波数(ナイキストレートと呼ばれ、サンプリング格子によって画定される)よりも高い空間周波数を全く又はほとんど伝達しないように、構成することができる。刺激のプロファイルは、滑らかに変化したり、ぼやけていても(不鮮明であっても)よい。個々の刺激の(特にこれら個々の刺激のエッジ及び/又は角で)滑らかに変化するプロファイルは、これら個々の刺激が低空間周波数フーリエ成分だけを含むよう十分滑らかなものであってよい。この場合、図3、図4、図6、図7及び図8に示される刺激領域の境界は、最大値の約半分での明るさを示す輪郭を表しており、その場合、薄暗い境界に沿った刺激のエッジは空間で重なる。刺激のプロファイルは滑らかに変化して、サンプリング格子の点によって定義されるサンプリング格子によって提示し得る最も高い空間周波数以下の空間周波数のみを、個別の刺激(個々の刺激)が含むようにしてもよい。十分に滑らかな又はぼやけた個別の刺激は、次のような有意な利点を有している。つまり、被験体は、屈折力が良好なものとされない(つまり、屈折矯正(補正)が正しくないか不十分、または、全くされていない)ので、被験体の視野評価の結果に大いに影響を与えることがないということである。刺激サンプリング格子及び個別の刺激のこれらの特性は、The Australian National University (ジ・オーストラリアン・ナショナル・ユニバーシティー)、T. L. Maddess(マッデス)及びA. C. James(ジェイムズ)の名義で2009年5月14日に発行されたPCT国際公開番号WO/2009/059380 (PCT/AU2008/001663) の主題であり、その内容は援用により本明細書に組み込まれている。
本構成では、刺激領域アレイは、それぞれの個別の領域においての刺激の出現または非出現が統計的に独立した擬似ランダムシーケンスによって制御される多焦点刺激配置で提示される。重要なことは、刺激が提示される可能性のあるシーケンスの如何なる時間ステップにおいても、1つのクラスター化されたアンサンブル(クラスターアンサンブル)からのそれらの刺激領域だけが刺激を表示する資格があるということである。刺激を提示することのできる複数のクラスターアンサンブルは、多くのサイクルにわたって繰り返されるラウンドロビンシーケンス方式で交換される。図4は、両眼への提示のために、図3に定義された4タイプのクラスターアンサンブルがインターリーブされた構成を示している。図4において、時間は、左上から右下へと斜めに進み、各時間ステップにおける対の図面は、図2に示したような装置によって左右の眼に提示される刺激の配列を示している。図4中の刺激領域境界を示していない空白の図面は、その時間ステップではその眼に刺激が提示されていないことを示す。図4に示すように、クラスター化された刺激のアンサンブルが選択されると、刺激シーケンスは周期的に繰り返されて、より長い検査シーケンスを生成する。
重要なことには、クラスターアンサンブルへの分割は、それらの刺激領域の全てが任意の時間ステップで表示されるための候補者となる場合は決して生じない、ということを意味している。また、提示と提示との間で、表示は非アクティブ状態を示した。非アクティブ状態は、背景光レベルであり、それ故、黒色でなく(つまり無刺激)、広視野の明るいフラッシュでもなく、刺激表示タイミング間にインタリーブされた他の周期的刺激でもない。ここで使用されるデモンストレーションの時間ステップは、通常、0.25秒であり、したがって、刺激がアクティブであるための候補(アクティブ候補)である場合に確率0.5で出現した刺激は、平均提示間隔が4秒であったので、米国特許第7006863号に記載されているように、時間的に疎である。なお、擬似ランダムシーケンスによる制御であることにより、背景が提示された間隔はランダムな長さである。
図5は、クラスターボレー多焦点刺激シーケンスの時間的進展を行わせる方法500を示しており、この方法は、図4に示す非限定的設計の工程を含んでいる。検査の開始前に、クラスターアンサンブルのセット(複数)が選択される。図4、図6、図7及び図8は、領域のクラスターアンサンブルのためのいくつかの可能な非限定的設計を示している。図4、図6、図7及び図8に示すように、4つのクラスターアンサンブルが選択されると共に、検査用多焦点刺激シーケンスの各段階の時間(duration)を画定する時間T1及びT2が設定される。そして、視野内の全ての検査領域は、非アクティブ状態に設定される。検査の開始に続いて、全サイクル数が完了するまで、クラスターアンサンブル内のアクティブ刺激の提示のラウンドロビン循環が実行される。図4、図5及び図6は、刺激がラウンドロビン方式でアンサンブルを繰り返す設計を示しているが、明らかに、アンサンブルは、ランダムな順でも提示することができ、その場合、特定のアンサンブルが平均2〜8秒の間隔で繰り返される。
図5の非限定的な変形例では、4〜6分の長い刺激シーケンスを、30〜40秒の時間のセグメントに分割することができる。各セグメントに続いて、検査を受けている人は数秒〜多数秒の短い休憩を持つことができる。その後、その人が続行する準備ができたときに、その検査を続行することができる。なお、これは図5のETCカウンターループとPTCループ間の第4のループを必要とするであろう。刺激シーケンスを起動すると、瞳孔レスポンス(瞳孔反射)に短命の、つまり一時的な起動トランジェント(過渡信号)が発生することがある。そのため、刺激の各セグメントは、現在の刺激セグメントの前に1秒間の最後のセグメントを入れ、後で、セグメントレコードを連結して完全な刺激レコードとする前に、各セグメントレコードから瞳孔レスポンスのレコードの先頭部分からその余分の1秒間を削り取るのが役立つ。被験体に定期的な休憩を与える手順は、セグメントに余りに多くのまばたきや凝視ロスがある場合にそれらのセグメントを繰り返すことを可能とする。この段落に記載された方法は、本明細書に記載の全ての多焦点瞳孔運動記録試験(pupillographic experiments)で使用された。
方法500のより詳細な説明は以下の通りである。図5に示すようにステップ510、512、514、516、518、520及び522の各々は、幾つかのサブステップを有している。しかし、サブステップを別々のステップとできること、そして、図5のステップは単に図面全体を簡略化するために編成されていることは当業者には明らかであろう。ステップ510では、中央視野の関心エリアをタイル状に分割した潜在的刺激箇所のアレイから、各々が視野の2つの象限に基礎を置く刺激領域の4つのクラスターアンサンブルが選択される。これらの選択されたアンサンブルは、2対(ペア)のクラスターアンサンブルの2セットP1、P2に分類される。ここで、P1、P2内のクラスターは、141及び142又は図4、図5、または図6のクラスターと同様に、視覚空間ではオーバーラップしない。ステップ510では、アレイの全ての刺激領域は非アクティブ状態とされる。アクティブ状態の刺激領域を表示するために、2/60秒間〜8/60秒間の刺激時間T1が選ばれる。約0.25秒の刺激の間から最小時間T2が選択される。合計検査時間が4〜6分となるように、クラスターペアのトグリングの最大繰り返し回数NTが設定される。
ステップ512では、初期条件が設定され、アイトグルが右眼に設定され、クラスターペアトグルがP2に設定され、クラスターペアトグルカウンターPTCがゼロに設定される(PTC=0)。
ステップ514では、クラスターペアトグルが、もう一つのペアのクラスター化刺激領域に切り替えられ、ペアトグルカウンターPTCが1、インクリメント(増加)され、アイトグルカウンターETCがゼロに設定される(ETC=0)。
ステップ516では、アイトグルがもう一方の眼に切り替えられ、アイトグルカウンターETCが1、インクリメントされ、クラスターカウンターCCがゼロに設定される(CC=0)。
ステップ518では、アイトグルの設定によって選択された眼の視野内で、かつ、クラスターペアアイトグルによって選択されたクラスターペア内で、その刺激領域が潜在的に表示され得るクラスターがクラスターカウンターCCの値に応じて選択される。
ステップ520では、T1タイマーとT2タイマーとが開始される。そして、各領域に適用した統計的に独立のシーケンスに応じて、選択したクラスターの領域の平均50%が、T1秒間アクティブ状態を表示することとなる。T1後、全ての領域が非アクティブ状態に戻される。
ステップ522では、期間T2に続いて、クラスターカウンターCCが1、インクリメントされる。その後、処理は判定ステップ524での処理となる。
判定ステップ524では、期間T2後、クラスターカウンターCCが2に等しいかどうかが判定される。判定ステップ524が真(Yes)となれば、処理は判定ステップ526へと進む。そうでなく、判定ステップ524が偽(No)となれば、処理はステップ518へと続く。
判定ステップ526では、アイトグルカウンターETCが2と等しいか否かの判定が行われる。判定ステップ526が真(Yes)となれば、処理は判定ステップ528へと進む。そうでなく、判定ステップ526が偽(No)となれば、処理はステップ516へと続く。
判定ステップ528では、クラスターペアトグルカウンターPTCがクラスターペアのトグリングの最大繰り返し回数NTと等しいか否かの判定が行われる。判定ステップ528が真(Yes)となれば、処理は判定ステップ530へと進む。そうでなく、判定ステップ528が偽(No)となれば、処理はステップ514へと続く。
ステップ530では、全ての刺激領域が非アクティブ状態に設定され、多焦点刺激が終了する。こうして、方法500は終了する。
図6は、図4及び図5に示した刺激シーケンスの3つの考えられるサイクルの一例を示している。図4と同様に、刺激領域のクラスターアンサンブル(それらのアンサンブルの個別の刺激領域は、各時間ステップでの提示候補である。)の4つの可能な選択がある。また、図4と同様に、4つのクラスターアンサンブルからなる同じセットは、ラウンドロビン方式で繰り返される8種類のクラスター及び眼の条件を作るために、インターリーブされて両眼に提示されるものとして示されている。擬似ランダムシーケンスへの支配的影響により、各アンサンブル内の領域の各々は、その境界内で実際の刺激を表示する確率は2分の1であり、有効な刺激を表示するために選択された領域はアクティブであると言われる。図6において、任意の時間ステップでのアクティブ領域はグレーに塗りつぶされている。図3において、符号31は、どの要素が刺激領域と呼ばれているかを示すマーカーとして使用されている。しかし、図6における幾つかの領域の暗色塗りつぶしのように、それらの符号31は、多焦点シーケンスにおいてアクティブである領域(それらの領域は確率的な方法でアクティブ状態を採用している)のマーカーであると考えらえるかもしれない。アクティブである刺激がクラスター内でボレーで出現することを考慮して、これはクラスターボレー(clustered-volley)方法又は設計と呼ばれる。各視野の背景は10 cd/m2で黄色であった。そしてアクティブであるとき、刺激領域は遙かに明るい黄色で、最大150 cd/m2であった。実際には、アクティブな刺激領域の最大値は視野に亘って幾分変化した。そのため、正常な被験体のレスポンスを視野全体にわたってより似たようなものとするために、より敏感な領域が幾分薄暗い光を受けた。これは、2012年6月10日発行のThe Australian National University, T. L. Maddess 及び A. C. James名義の国際公開公報WO/2010/063064 (PCT/AU2009/001560)に開示された刺激バランシング方法に従ったものであり、その開示は援用により本明細書に組み込まれている。図6から明らかなように、如何なる時間ステップでのアクティブな刺激領域も、それら自身の間で定期的なパターンを意図的に作成することはない。その代わりに、如何なる所定の時間ステップにおいても、表示された領域は、それらのアンサンブルの領域に亘ってランダムなパターンを形成する傾向がある。なお、一つの考え得る刺激の変形例(バリアント)は、所定の刺激領域が、図6に示すようなべた塗りではなく、その境界内で小さな周期的パターンを表示することを可能とする。
図7及び図8は、クラスターボレー設計の4つの非制限的代替バージョンを示している。ここで、刺激が潜在的に提示され得る視野の正方形領域の直線的配列(アレイ)が、図7A、7F及び図8A、8Fに示されており、そのアレイを示すこれらの図面は、その下にある図面と簡単に比較できるように2度示されている。図6と同様に、クラスターは、視野の象限を定義(画定)する領域の選択に基づく。図7B〜7Eは、潜在的にアクティブな領域のクラスターの2つの外側視野アンサンブルと2つの内側視野アンサンブルとのセットを画定している。図7G〜図7Jは、領域のクラスターアンサンブルの別のセットを示しており、ここでは、組み合わせの象限が左半視野及び右半視野から引き出されている。図8のためのアンサンブルは同じ直線的な配列(アレイ)に基づくが(図8A及び図8Fを参照)、所定のクラスターアンサンブルに属するように選ばれた領域は、視野の象限内の1本置きの斜線に基づく。図7と同様に、プールしてアンサンブルとすること(pooling into ensembles)に基づく2つの例を示しており、象限が視野の同じ側の半分から引き出された場合を図8B〜8Eに、象限が視野の左半分と右半分とから交互に引き出された場合を図8G〜8Jに示す。別の非制限的設計では、図7及び図8における4アンサンブルのセットは、図4及び図6に示すように、両眼のそれぞれに交互に提示することができる。したがって、図5のフローチャートも、クラスターボレー設計を実施するために図7及び図8に示された4クラスターアンサンブルのセットをどのように使用し得るかについて非制限的設計を説明している。刺激領域は選択行(alternative rows)から選択されている所定のクラスターボレーに入れるために選択されるため、Ppairは殆ど0.5*p2 singleである(但し、隣接する刺激が、偶然、水平経線の両側に出現する(一例が図8C及び図8Dに一つずつ示される)時たまの場合を除く。)ことによって、図8B〜8Eの刺激は空間的に略疎である。図8G〜8Jにおいて、選択された象限が垂直中央線の両側にあるために、水平中央線を挟んで互いに隣接する刺激は出現しない。また、あるクラスターの境界上にある幾つかの刺激領域は、境界の向こうで隣接する刺激領域がないので、平均ではppair < 0.5*p2 singleとなる。これは、クラスターボレー方法と空間的に疎の方法とを合体した方法及び装置を可能とする。
この装置の特定の非制限的構成では、コンピュータシステム19を用いて刺激シーケンスを生成した。この場合、特定の刺激シーケンスにおける特定の刺激領域31(例えば図3、図4、図6、図7、図8参照)での刺激は、被験体の各眼10a、10bへの表示のために、それぞれの通信線11a、11bによってLCD装置12a、12bに送られる。好ましい構成においては、各LCD装置に表示される刺激シーケンスは互いに独立して生成され、被験体/患者の各眼が他方の眼から独立して検査される(すなわち、両眼分離刺激(dichoptic stimulation))。あるいは、両眼の視野における同一場所に提示される刺激領域が同時に提示される両眼検査を実施してもよい。あるいは、両眼分離刺激と両眼刺激との両方をインターリーブして、両タイプの視野を同時に検査するようにしてもよい。2つの眼の2つの感覚野、即ち視野、を刺激することは、本明細書に記載の方法及びシステムは一つの感覚野に限定されないこと、そして、同時に検査される感覚野は、異なる感覚モダリティのものであってもよいことを表している。コンピュータシステムは、直径が約3〜4 mmより大きい瞳孔の下側3/4(すなわち約75%、または65%から約85%の範囲内)を記録し、それに円を合わせるようにし、それによってリアルタイムで患者の両眼それぞれの瞳孔直径を独立に測定することができ、また、オプションとして、特定の検査中に2つの眼10a及び10bに提示される独立して変調された刺激領域の各々に対する各眼の網膜のレスポンスを推定するようにしてもよい。より大きい瞳孔は下側3/4(4分の3)が円に合わせられる。なぜならば、一部の人は、特に高齢者は、瞳孔をわかりにくくし得る眼瞼下垂、つまり上部のまぶたの垂れがあるからである。非常に小さい瞳孔サイズについては、瞳孔全体を合わせること(fitting)は、上まぶたがより小さい瞳孔をわかりにくくする恐れがない場合には有利である。刺激シーケンスは、それぞれのLCD装置12a、12bに表示されるビデオ信号の形態をとってもよく、刺激シーケンスは毎秒60フレームで提示されるのが有利である。本例では、検出器18、19が、毎秒30フレームの速度で被験体の各眼の瞳孔のレスポンスのサンプリングを独立して行った。これらの例では、検出器18、19による患者の瞳孔レスポンスのサンプリングは、LCD装置に表示される刺激シーケンスフレームの毎秒毎のフレームと同期させた。上述したように、被験体の瞳孔の各々は、両眼の網膜から、直接レスポンス及び共感性レスポンスの両方の形態で、プールされた入力を受け取る。したがって、検出器16aおよび16bによって記録された瞳孔の収縮は、各網膜について直接レスポンスおよび共感性レスポンスの両方に関する情報を提供する。
図9は、単一の刺激領域における提示に対する平均レスポンスの形態を示している。図9A、図9Bのプロットの二つのパネルのそれぞれにおいて、横軸は刺激開始後の1秒間を表す。2つの例示的なレスポンス波形の各々は、下方に撓んでベースラインに戻る曲線であり、下方は瞳孔径の減少を示している。したがって、2つのレスポンス波形はそれぞれ、瞳孔径の収縮に続いて再膨張して定常状態の直径になることを表している。刺激開始と刺激持続時間は小さな黒い長方形91によって示されている。キーとなる事項は、ピーク瞳孔収縮及び、それの2つの関連する測定値(2つのプロットによって示されているもの)、すなわち図9Aに示されたピーク収縮の振幅及び図9Bに示されたピークまでに時間、である。
図1A、IBについて説明したように、瞳孔神経系の接続(連絡)性は、それぞれの瞳孔が両方の網膜上のアクティビティつまり活動に関する情報を提供することを意味する。両瞳孔の活動を記録することは、各刺激領域に対して2つのレスポンスがあることを意味する。図10は、図3、図4、図6に示した44領域のレイアウトで両眼分離して提示された刺激について、被験体からの176個のレスポンスの結果的集まりを示している。灰色の波形は右瞳孔のレスポンスから記録されたレスポンスであり、黒色の波形は左瞳孔のレスポンスから記録されたレスポンスである。両瞳孔からの波形は非常に類似しているので、完全に重なって下にある黒色波形を見ることを困難にすることがよくある。

<瞳孔レスポンス及びプールされたゲインコントロール>
図11は、本発明者らによって発見された、瞳孔システムによる多焦点刺激へのレスポンスの特徴、つまり、特別なゲインコントロールメカニズムを示す。この図は、種々の時間的密度の多焦点刺激を提示した結果を示す。刺激は、図3の44領域のレイアウトを有し、従来の疎の多焦点刺激方法を用いた。同一の健康な被験体において、4タイプの刺激が2回検査された。これら4タイプの刺激は、平均刺激間隔という点で異なり、それは横軸に、平均提示レート(分当たり領域当たりの提示回数)として表されている。公正な比較を行うために、4タイプの刺激はそれぞれ、各領域で60回提示された。したがって、より速い刺激はより短い時間で完了した。縦座標は、各刺激タイプについて、44領域、2瞳孔、2眼、そして2回の繰り返しを通して計算されたピーク瞳孔収縮振幅中央値91(単位:マイクロメータ)±平均絶対偏差(MAD)として与えられている。明らかに、刺激濃度が増加すると、レスポンスの大きさの中央値は低下しており、ゲインコントロールメカニズムが働いていることを示唆している。
問題は、瞳孔経路のどこでゲインコントロールが働くかということである。図12は、図4、5及び図6に示されたのと同様なクラスターボレー多焦点刺激を採用した一連の実験の結果を示す。但し、その実験では、一般的に、半視野クラスターのサブセットだけ、または片眼だけを使用し、平均提示レートも操作した。図1及び図2に示す視覚経路の構造により、刺激の操作のタイプは、眼、PON又はEWNが受ける分当たりの刺激数を別々に制御し得ることを意味する。実験結果は、EWNで受けた刺激の密度のみがゲインコントロールの強度、すなわち、より高密度の刺激がレスポンス中央値を低下させる程度を決定したことであった。図12Aは、2つの刺激条件を示すために図1の概略形式を使用しているが、それらの刺激条件はいずれも、毎分12刺激がEWNに到達することになるものである。図12Aの左半分は、各眼の左右の視野に毎秒3刺激を提示する(図12A1参照)ことにより、毎秒6刺激が各PONに到達し、各EWNに毎秒12刺激が到達することを示している。図12A の右半分は、半視野当たりの提示レートを倍増するが、左眼のみに刺激を提示する(図12A2を参照)ことにより、両EWNに同じ刺激レートが提示されることを示している。したがって、ゲインコントロールが網膜で働くのであれば、刺激を受けた半視野の各領域でのレスポンスは、図12A2の構成よりも図12A1の構成の方が小さいと予測できる。他方、レスポンスが同じ大きさならば、PONまたはEWNでの影響が考えられる。図12Bは、7人の健康な被験者(男性3名)に対して行った6つのそのような実験のまとめである。実験はランダムな順で行われた。三つの基本的な条件は、横軸の下の3組のテキストラベルによって示されており、具体的には、左から右に、全ての領域(半視野)が刺激された、左眼だけの半視野が刺激された、または、右眼だけの半視野が刺激された、である。横軸マーカー上の数字のペアは、被刺激半網膜それぞれに届けられた2つの代替刺激レート、つまり、1半網膜当たり毎秒3刺激又は6刺激であることを示している。図11と同様に、縦軸は達成されたレスポンス振幅中央値である。ライトグレーのシンボルは、1半網膜当たり毎秒3刺激が送られた実験を、黒色シンボルは、1半網膜当たり毎秒6刺激が送られた実験を示している。約9マイクロメートルのレスポンス振幅中央値を示す3つのシンボルは、横破線によって区別されており、各EWNが1秒当たり12刺激を受けたケースを示し、全てのケースが、ゲインコントロールが瞳孔への経路上、EWNのレベルかそれよりも後方で働いているらしいことを示している。その他の関連の実験は、ゲインコントロールのサイトとしてPONを除外した。
図13は図12からのデータをプールしている。下側横軸ラベルは、図12と同様のもので、上側横軸ラベルは、刺激がEWNに到達する平均レートを示している。このグラフは、レスポンス中央値が単位時間当たりEWNに到達する刺激の数の逆数にほぼ比例することを示している。つまり、レスポンスゲインは、刺激強度にほぼ反比例する。

<例1 - 正常な被験体における改善された信号対ノイズ比>
国際(PCT)公開番号WO/2005/051193は、空間的に疎の多焦点刺激タイプを記載している。この文献に開示された概念は、視神経系の網膜部位内でゲインコントロールが働いているということである。脳の感覚部分のほとんどは、神経組織のシート上にレイアウトされており、その神経組織のシートは、多くの場合、頭蓋骨内に適合するように折り畳まれて、ヒトの脳の馴染みの脳回および脳溝を形成している。網膜部位の表象(retinotopic representation)を有するつまり網膜部位を表す脳の感覚部分は、その表面を横切る視野マップを含んでいる。他の種類の感覚野もまた、脳シートの異なる部分にマッピングされている。そのような表象の範囲内において、脳シートを横切る短い距離で相互作用する複数のゲインコントロールが働き得る可能性がある。網膜部位マッピング(retinotopic mapping)は、ゲインコントロールが視野の隣接部分の刺激に対するレスポンスに影響を与え得ることを意味している。国際(PCT)公開番号WO/2005/051193は、視野全体にわたって提示された多焦点刺激アレイに応答しての後頭視覚野からの視覚誘発電位を測定する際に、そのような領域ゲインコントロールが働くことを示した。したがって、国際(PCT)公開番号WO/2005/051193は、多焦点刺激シーケンスは、刺激が視覚刺激の小さな一領域に提示されるとき、空間的に隣接する領域に他の刺激が同時に提示されるべきではないことを教示しており、したがって、国際(PCT)公開番号WO/2005/051193の刺激は空間的に疎であると言われる。
EWNは、視覚世界において網膜部位をあまり表すものではない脳領域の一例である。したがって、空間的に疎の刺激は利点の多くを提供しない可能性があると思われるかもしれない。図11、12、13のゲインコントロールの場所を調査する過程で、本発明者らは、それらの実験で使用したクラスターボレー刺激が、より大きいレスポンスを与えているように見えることに気がついた。また、それらのレスポンスが、以前に調査した疎な刺激よりも大きな信号/ノイズ比を有していることに気づいた。これは、驚くべき発見であった。なぜならば、図6に示すように、刺激は明らかに空間的に疎では無かったからである。確かに、視野の制限された部分にクラスターで刺激を提示することは、さらなる利点を提供するように見えた。その点を証明するために、発明者らは一連の実験を行い、そこで、同じ平均提示レートを有する空間的に疎の多焦点刺激とクラスターボレーの多焦点刺激とを、同一人物の中でつきあわせて比較した。なお、これは、感覚空間の強力な地形図を持っていない他の脳領域も、それらの感覚空間に与えられている多焦点クラスターボレー刺激から恩恵を受ける可能性を認めている。
図14は、5つの実験のそれぞれを繰り返した6名の正常者(男性3名)に行った5実験の結果を示す図である。5実験のそれぞれは繰り返された。刺激は黄色で、10 cd/m2の非アクティブ状態にある黄色の背景に提示されたそのアクティブ状態での最大輝度は144 cd/m2であった。5つの刺激タイプの全ては、4秒の平均刺激間隔を生成する擬似ランダムシーケンスによって制御された刺激を提示した。5つの実験の結果は、横軸の5点を中心にまとめられている。図14の最初(左端)のポイントは空間的に疎の方法によるデータを表しており、横軸にYoldのラベルが付されている。他の4つの横軸の点は、クラスターボレー刺激の4タイプのデータを示している。これら4つの刺激のタイプは、それぞれに与えられた刺激の向きやプレゼンテーションの順序のいずれかがおそらく変えられたことを除いては、図4、5、および6によって説明された通りのものである。図3Aの3つのリングから引き出される半視野アンサンブルまたはクラスターは、入れ子になった3つの半円141によって表され、図3Bの2つのリングから引き出される半視野アンサンブルまたはクラスターは入れ子になった2つの半円142によって表される。煩雑さを避けるために、入れ子リング2つ又は3つからなるセットのすべてには141、142の符号を付してはいない。「リング(複数)」とは、したがって、図3A及び図3Bに示す刺激領域のリングのグループ及び図4及び図6に示す刺激領域のリングのグループのことを言う。刺激領域のクラスター化された半リングのシーケンスは、最も右側の4つの横軸点のそれぞれの下に示されている。横軸ラベルは、LRとULへの言及を含んでいるが、それらは、半視野が視野の左右の象限(YnewLR)及び上下の象限(YnewUL)から作成されたことを示すものであるが、それは、それぞれの横軸ラベル下方のプロットされたリングから明らかである。これらのプロットされたリングは、図4、図5及び図6におけるのと同様に、ラウンドロビン提示(the round robin presentation)でインターリーブされる半視野クラスターを示している。図示されたデータポイントは、ピーク瞳孔収縮データがデシベルに変換された線形モデルの出力である。図の凡例で示すように、この線形モデルは、リング1、3、5またはリング2、4から各眼及び各クラスターボレーについて別個の平均を計算した。明らかに、全てのクラスターボレー方法は、すべてのリングと両眼について、Yoldである空間的に疎の方法よりも大きなレスポンスを生成する。驚くべきことに、上下の半視野対左右の半視野のアンサンブルの使用は違いを生じさせないに思われる。なお、横軸にYnewLRのラベルが付されたクラスターボレー刺激の一番目のものは、図4及び図6に示したもの及び図12において全ての半視野が刺激されたケースと同じ刺激方法である。また、YnewULのラベルが付されたクラスターボレー刺激の二番目のものは、半視野クラスターが上下の視野について画定されていることにおいてのみ異なる。眼とリングの全体にわたるレスポンスをプールして第2の線形モデルが作成された。空間的に疎の刺激及びこれら初めの2つのクラスターボレータイプについてのレスポンスの比較結果を表1に示す。空間的に疎の刺激とクラスターボレー刺激の差はp < 2.3 × 10-8で有意であった。これらの結果は、データがモデルに入れられる前に領域、眼、瞳孔全体の中央値(メジアン)を取ることに基づいており、それ故、反復測定に対して完全にボンフェローニ補正されている。YnewLRとYnewULについて見られる改善についてのもう一つの可能な解釈は、短い時間内に同じ視野場所で重なりあう刺激が欠如していれば、これは、脳が両眼立体情報(奥行きの手がかり)(stereoscopic depth cues)と解釈するかもしれないものに対する瞳孔のスプリアス調節ニアレスポンス(spurious accommodative near-responses)を減らすかもしれないということである。
図14の横軸のラベルYnewLR/Shift及びYnewUL/Shifの上方に位置する右側の2つのデータセットは、クラスターボレー刺激タイプの2つの更なるバリエーションの平均データを表す。これらは、ラウンドロビンシーケンス内の提示順序が並べ替えられてリング1、3、5の刺激の後にリング2、4の刺激が同じ眼の同じ半視野に提示される点を除き、YnewLR及びYnewULと同じであった。この違いは、それぞれの横軸ラベルの下にある図面によって示される。これは、わずか0.25秒で発生した刺激がそれらの半視野に対して互いの後に続く場合があることを意味する。これは、リング2、4の刺激に対するレスポンスを抑制し、リング1、3、5の刺激に対するレスポンスを増強すると思われる。増強は、おそらく、それぞれのサイクルにおいてさらに離れて到着するリング1、3、5の刺激によって引き起こされる。
図15Bは、図14と同様であるが、プロットされたデータは、得られた平均信号/ノイズ比(SNR)である。ピーク瞳孔収縮点のそれぞれは、そのピークの信頼性を推定する標準誤差(SE)を伴っている。This permits the SNRs to be quantified as a t-statistic estimated as peak response divided by its SE.これは、SNRが、ピークレスポンスをそのSEで割ったものとして推定されたt統計量として定量化されることを可能にする。これは、測定されたピークが0ではないことの信頼性(確信)の指標を与える。図15Bにおいて、算出された線形モデルは、眼全体にわたってリングのアンサンブルのための結果だけを残すことを意味している。クラスターボレー刺激は全て、空間的に疎の方法よりも良好なSNRを生成する。順序を変えたクラスターボレー刺激についての結果は同様で、リング1、3、5は5を超えるt統計量を生成する。このことは、使用されたリング1、3、5が特に関心のあるものの場合には、これらの刺激を優先的に使用することができること、または、他の何らかのクラスターをより高いSNRのために選択し得ることを示唆している。表1と同じような、眼全体とリング全体に亘るレスポンスをプールした線型モデルを作成した。それを表2に示す。ピーク振幅とは異なり、t統計量はログ変換を必要とはしなかったが、反復測定の如何なる問題も防ぐために、同じ平均化を必要とした。空間的に疎の刺激とクラスターボレー刺激との差の有意性は、p < 1.5 × 10-7において大きかった。
これらの結果は、驚くべきことに、クラスターボレー方法は空間的に疎の方法よりも優れていることを示唆した。即ち、刺激をクラスターで提示するのは、視野全体に拡散的に刺激を分散させるのよりも、良いパフォーマンスを生じた。これはまた、EWNゲインコントロールは、刺激がボレーで送達されたときに刺激を減衰しないほどゆっくりのフィードバック機構を含んでいることも示唆した。あるいは、ゲインコントロールは何らかの区分的な方法(piece-wise fashion)で視野全体をカバーしていて、1又は2象限のサイズほどの視野の部分へのボレーの送達は、視野全体に同じレートで刺激を提示するときのような強い信号をゲインコントロールメカニズムに提供しないようにしているかもしれない。
より大きなレスポンスそのものは、そのレスポンスが、レスポンスの大きさ又は信号/ノイズ比を刺激強度に関連づける関数であって飽和するものを生じさせる場合には、アプリケーションによっては問題となり得る。このような関数は、しばしば、刺激レスポンス関数(SRF stimulus response functions)と呼ばれる。図16は、その問題を説明するものであり、仮定のSRFを、レスポンス= k x コントラストzというパワー関数の形で示している。ここで、コントラストは、(検査輝度/背景輝度)-1として計算される。理解を助けるために、図16は、横軸にコントラストではなく検査輝度をとってプロットされている。3つのSRFが示されており、それらの形状は3つの異なる指数によって定義されている。実線のSRFは、最小の指数、Z = 0.1についてのプロットである。この曲線は、刺激輝度の増加に伴って急速に上昇するが、その後横ばいつまり飽和し始める。いくつかの用途にとっての問題とは、一つの視野の一部の損傷を示すためにレスポンスにおける小さな減少を用いようとした場合、飽和は、損傷及び非損傷又は超正常からのレスポンスを類似させる傾向がある、ということをこの飽和曲線が意味していることである。クラスターボレー方法がレスポンスをより大きくするものであるとすると、クラスターボレー方法はまた、強く飽和する刺激レスポンス関数を生じさせるものではないことを、実証することが重要である。あるいは、十分なレスポンスは提供するが、飽和によって影響されるほど大きくはない刺激強度を決定すべきである。
クラスターボレー刺激が過度に飽和するSRFを生じさせるかどうかを調べるために、6名の正常な被験者(男性3名)のグループを3つの異なる刺激タイプで検査した。それらのアクティブ状態において、これらの3つのタイプは、37.5、75、150または300 cd/m2の最大輝度を有する刺激領域に提示され、12の刺激タイプを作った。これらの12タイプを、ランダムな順で試験した。これらの刺激のうちの2つは図14、15における最初の2つの刺激、つまりYold及びYnew(図14、図15においてYnewLR)であり、これらのクラスターボレー刺激を図4及び図6のものと同じとした。3つ目のタイプは、赤の背景に緑の刺激を提示した点を除き、全ての面においてYnew刺激に同じであった。このタイプは、RGnewと呼ばれる。即ち、検査に応じて、アクティブ状態は37.5、75、150または300 cd/m2の緑であり、非アクティブ状態は10 cd/m2の背景の赤に等しかった。図4及び図6に示すように、44領域の刺激アレイは、視野の中心60度をカバーした。
図17Aは、被験者全体、刺激領域全体、眼全体及び瞳孔全体で計算された結果のレスポンス中央値を示しており、エラーバーは、3刺激タイプについてのSEであった。いずれのSRFもひどく飽和していない、しかし、YnewについてのSRFは、200 cd/m2をはるかに上回る刺激輝度は不適切に通知される場合があることを示唆している。図17Bの信号/ノイズ比は、やや少ない飽和を示しているように見える。150 cd/m2についてのデータに対するt統計量結果の線形モデルは、図2のものと非常に類似した結果を示した。Yoldに対するYnewとRGnewのSNRの改善は、p <0.005で有意であった、表2のものと非常に類似した結果を示した。他の3つのアクティブな輝度レベルに対して分析を繰り返したが、結果は同様であった。
図17及び表3にまとめた結果は、説得力のあるものではあったが、比較的少数の被験者に基づいたものであった。また、同一被験者の一部はこの研究と表1及び2の研究との間で共有された。そのため、より規模の大きい研究を新たな被験者に対して行なった。先の研究と同様に、三つの基本的な刺激タイプがあったが、これらのタイプは、これまで説明したすべての刺激とは一つの基本的な方法において異なっていた。3刺激のすべては、図3に示したものに比して同形(同類形態)で規模が縮小され、44の刺激領域が、中央60度ではなく、中央30度だけを占めるものであった。これまで説明したような60度の刺激アレイは、周辺視野の視覚機能(視覚関数)を評価するよう設計されているのに対して、この小さい30度のアレイは、網膜の黄斑部にほぼ対応する中心視野における機能(関数)を評価することを目的としている。全ての刺激は10 cd/m2の背景に提示された黄色であった。SteadyOldと呼ばれる第1の刺激は、Yoldのような空間的に疎の刺激であり、それまでに提示された全ての刺激と同様に、アクティブ状態で33ミリ秒間(図5においてT1として説明されている)提示された。SteadyNewと呼ぶ第2の刺激は、Ynewのようなクラスターボレー刺激であり、その縮小された空間スケールを除いては、図4、図5及び図6に記載されており、また、そのアクティブ状態で33ミリ秒間刺激を示した。FlickNewと呼ばれる第3の刺激タイプは、アクティブな期間T1の間点滅する刺激を提示したことを除いて、一時的にSteadyNewと全く同じようなタイプのクラスターボレー刺激であった。この点滅アクティブ状態は、33ミリ秒間のアクティブ輝度、33ミリ秒間の10 cd/m2の非アクティブ輝度、そして、33ミリ秒間のアクティブ輝度を示した後、非アクティブ状態に戻った。このタイプのフリッカーは、時々ペデスタルフリッカーと呼ばれる。理由は、フリッカー中の平均輝度がバックグラウンドよりも大きいためである。ペデスタルフリッカーは、眼疾患のいくつかの研究で使用されており、いくつかのこのような用途のために効果的な刺激であると考えられている。すべての刺激の平均プレゼンテーション間隔は、4秒/領域であった。これら3つの刺激タイプは、36、72、144、又は288 cd/m2の4輝度レベルで提示された。平均年齢(±SD)が21±0.97歳である18名の被験者、内男性9名を投入し、被験者が正常であることを決定するために、これらの者に徹底した眼の検査を行った。被験者のうち6名はアジア人で、残りが白人だった。刺激は各被験者による3回の訪問を通じてランダム化された順に提示された。実際、9のランダムな順序での刺激があり、これらは9名の被験者に無作為に割り付けられた。そして残りの9名の被験者は、バランスのとれた統計的デザインを保証するために、逆の順序で検査を完了した。刺激の半分、すなわち6刺激は、図2で説明したタイプの第1試作装置で完了し、残りの6刺激は、第1の装置と同一であるように設計された第2の装置で完了した。本発明者らは、被験者の利き手と利き眼にも留意した。図18は、図17と同様であり、説明文によって示されるように、3刺激タイプのSRF中央値を示している。
線形モデルは、表2及び表3のようにt統計量として表される平均信号/ノイズ比の成分を決定するかもしれない前記の様々な要因の全てを検討した。図18のSRFは、図17のものよりも幾分少ない飽和であり、したがって、線形モデルは288 cd/m2で得られた結果に基づいて検討した。有意な結果(P <0.001)を表4に示す。要因である訪問(visit)、性別、装置、利き手または利き眼は、SNRの重要な決定要因ではなかった。分析は、他の3つのアクティブな輝度レベルに対して繰り返され、結果は同様であった。
このセクションにまとめた3実験は全体として、クラスターボレー刺激は、空間的に疎の刺激に対して、改善された信号/ノイズ比を生成することを示している。したがって、視野の如何なる評価の品質も改善されるだろう、あるいは、検査時間を短縮しても許容可能な信号/ノイズ比を達成することができるであろう。

<例2 - 緑内障におけるクラスターボレー刺激>
正常な被験者を開放隅角緑内障患者から識別するための相対的な診断パワーを、表3の3つの広視野刺激タイプYold、YnewとRGnewの150 cd/m2バリアント(異形)について調査した。先のように、すべての3つの刺激タイプは、領域当たりの平均刺激間隔が4秒であった。被験者の診断状態は、FA-I1アクロマティックペリメトリー(SITA-FAST)、マトリックス24-2ペリメトリー、ハイデルベルクスペクトラリス スペクトルドメインオプティカルコヒーレンストモグラフィ(OCT 光干渉断層法)、スリットランプバイオマイクロスコピー、及びアプリケーショントノメトリ(圧平眼圧測定法)を用いて確認された。被験者は、偽陽性、陰性、及び視野測定における凝視損失(fixation losses)についてのメーカーの基準に合格しなければならなかった。すべての被験者のための除外基準には、6/12より悪い視力(acuity)、±6ジオプトリーより大きい距離屈折力、または2ジオプトリーより大きい円柱屈折力が含まれていた。正常な被験者には、緑内障を持った主要血縁者がいなかった。研究グループは、24名の正常対照と22名のOAG(開放隅角緑内障)患者を含んでいた。正常対照と患者とは年齢および性別をマッチさせており、それぞれ、3つの多刺激方法全てにより、2週間の間隔をあけて2回試験した。表5は、被験者のパラメータをまとめたものである。患者の眼は、HFA視野計検査での平均欠陥(MD)に基づいて次の3つの重症度グループに分離された:MD> -6dBは軽症の眼、MD ≦ -6 dB かつ MD > -12 dBは中等症の眼、MD < -12 dBは重症の眼。
前記3刺激タイプについて正常な被験者で得られた信号/ノイズ比を比較するために線型モデルを作成した。複数の測定値の補正として、モデルへの入力は、24名の正常な対照被験者各々について単一の数字を生成するために瞳孔、眼、及び刺激領域間で計算された平均t統計量であった。結果は表6に示されているが、この研究グループは表3の研究グループよりも年齢が高いにも拘わらず、結果は非常に類似していた。表6に示すYoldに対するYnew及びRGnewの平均SNRの改善は、p < 6 × 10-6で有意であった。
診断パワーは、受信者動作特性(ROC)プロットの曲線下百分率面積(AUC)として定量化した。図21に示すように、ROCプロットは、縦軸に患者を診断するための真陽性率、横軸に正常対照被験者を誤診するための偽陽性率を示している。完璧な性能、つまり、すべての患者が正しく診断され、正常な対照者が誤って診断されないことは、100パーセントのAUCで示されている。偶然診断性能は50%のAUC値によって示される。ROC分析は、正常な対照被験者の44領域の各々での瞳孔レスポンスから引き出された規範的な基準視野からの各測定視野の領域のずれを基に、行った。基準視野の44個の値と、各被験者の各眼からの44個の値との差を求めた。これらの差を、正常からのずれ(deviations from normal)と呼ぶ。これらのずれをデシベル(10log10)に変換した後、正規分布のzスコアに変換した。
図19は、Ynew刺激方法についての緑内障被験者の視野のためのずれデータの一例を示す図である。データは、視野計測(perimetry)の当業者によく知られることになる方法で提示される。この視野計測ではZスコアのずれは、視野内の各位置で得られた結果が正常である確率に変換されている。各プロットのグレーレベルは、p = 5、2、1に対応しており、SAPでは一般的であるように、0.5%に相当する。したがって、より暗色の領域は、視野の一部が異常に小さい瞳孔レスポンスを生成する可能性が高いことを示している。2つの列は左眼に対する結果(図19A〜図19D)と、右眼に対する結果(図19A〜図19D)とを示している。図19Aのタイトルによって示されるように、左眼は、重症度カテゴリ3であると、即ち、HFAのMD <-12 dBである深刻な損傷を受けた眼であると評価される。右眼は、HFAのMD > -6 dBである重症度カテゴリ1の軽く罹患した眼である。左列の図の縦軸のラベルが示すように、図19の各行は、左右の瞳孔からの結果である。上の4つの図19A、19B、19E、19Fは最初の検査で得られた結果であり、下の4つの図19C、19D、19G、19Hは、繰り返し検査で得られたデータに基づいている。全体的にそれぞれの眼の結果は、瞳孔間と反復間とにおいてかなり一致している。結果が眼に追随し、瞳孔には追随しないということは、損傷が脳から瞳孔への遠心性経路上にはなく、眼から脳への求心性経路上にあることを示している。これらの結果は、他の視野計測法とよく一致するものであった。
この研究では、ROC分析で使用された各プロトコルのための基準視野データは、正常な対照群の眼及び瞳孔間で測定された各視野の場所での中央値、デシベルピーク振幅またはピークまでの時間のいずれか、として計算した。また、ROC分析は、交差検証(cross-validation)の形態であるリーブワンアウト(LOO)ストラティジー(Leave-One-Out strategy)を採用した。LOOでは、各正常被験者視野に対するROC分析は、基準データからその視野が除去された状態で繰り返されるため、所定の正常被験者視野からのデータはそれ自体の分類にバイアスをかけない。中央値(メジアン)を計算する前に、右眼視野からの視野は左から右へと反映されたので、鼻からこめかみ(側頭)にかけての場所(naso-temporal location)は左右の眼の間に対応していた。別個のROCプロットを求めて正常対照群と3つの緑内障重症度群の各々とを対比した。これらのデータセットのそれぞれについて、ROCプロットは20回行われたが、各ステップでROC分析は最悪のNのずれ(worst N deviations)に基づいたものであった。ここで、Nは1から20の範囲にある。したがって、N=1に対するROCでは、正常と最も相違する各視野の1つの領域(各視野の最悪箇所)についてROCプロットが作られた。続くROCは、視野毎に最悪の2領域、3領域、等々の平均をプロットし、AUC値が各プロットから記録される。これの目的は、瞳孔記録多焦点法(pupillographic multifocal method)が局所の損傷を検出することができる程度を割り出すことであった。例えば、1つの最悪箇所(N-最悪=1)がAUC最高値を持っていれば、それは、正常者が重大に損傷を受けた視野領域を持っていないこと、そして、患者の眼における1つのそのような箇所さえ完璧な診断力(AUC = 100%)を提供することを意味するであろう。一方、AUC最高値がN-最悪=20についてのみ得られる場合には、それは、妥当な診断力を得るには多くの領域からの結果を平均する必要があること、したがって、この方法は緑内障に特有な局部損傷を検出できないことを意味するであろう。
図20は、深刻な損傷を受けた全ての眼の1番目から20番目までの最悪性能領域に対して得られた百分率(%)AUC値のプロットを3つの刺激タイプについて示しており、エラーバーは標準誤差(SE)を示す。図20Aは、Yoldは約95%の合理的なAUCを達成するために平均する箇所が5以上必要であることを示している。図20Cは、RGnewはそれよりもましで、視野の中で最悪の約2領域が考慮されるときに、その最高の性能を達成することを示している。図20Bは、少なくともこの疾患重症度グループについては、診断性能は完璧で、全ての被験者は正しく分類され、SEは、最悪の1領域と5領域との間で実質的に0であることを示している。明らかに、クラスターボレー法は、診断の面で、従来の空間的に疎の方法を凌駕した。各視野の第I最悪点(最悪箇所)と第2最悪点(最悪箇所)との組み合わせについての平均AUC値をそれらの標準誤差と共に表7にまとめている。表7の行は3つの重大度カテゴリに対応する。「中等症及び重症」というラベルの付いた3番目の行は、中程度及び重度に影響を受けた視野からのデータがプールされたときの結果、即ち、HFA MD < -6 dBである患者の眼についての結果を示す。興味深い効果は、RGnewは重症の目に対してはYnewほど良好に働かなかったが、中程度び重度に影響を受けた目に対してはRGnewが最も良好に働いた。
<例3 -黄斑変性におけるクラスターボレー刺激>
各視野の中心30°に44刺激領域を提示する、黄斑指向の刺激タイプのバージョンを用いて、加齢黄斑変性症(AMD)を検出するための診断能力を、従来の空間的に疎の刺激であるSteadyOldと、2つの新しいクラスターボレー刺激であるFlickNew及びSteadyNewとの間で比較した。刺激は、表4にあるもののように黄色であったが、10 cd/m2の背景に提示されたアクティブ状態での最高輝度は288 cd/m2であった。表8は、患者及び年齢をマッチさせた正常な対照被験者の人口統計(demographics)をまとめたものである。すべての被験者を前記緑内障の研究時と同様に調べた。また、除外基準は同様であった。さらに、視野角45度の無散瞳眼底カメラを用いてカラー眼底写真を撮った。
表9は、表6に比べて約4歳高齢である正常対照群で達成されたt統計量ベースの信号/ノイズ比を含む線型モデルの結果を示す。表4と同様に、2つのクラスターボレー刺激についての信号/ノイズ比は、FlickNew についてはp < 0.04において、SteadyNewについてはp < 10-8において、SteadyOldよりも有意に大きかった。
それぞれの眼について正常からのずれを生じさせる方法は、規範的なデータを求めるときにLOO法を用いることを含めて、図20及び表7を作り出すために使用した方法と同じであった。1つの更なる方法が追加された。それは、各被験者の両眼について得られた結果における非対称性つまり差異を視野の44箇所のそれぞれについて求めたことである。非対称性測定値(asymmetry measures)に対する規範的なデータ及び眼の非対称間での正常からのずれはROC分析への入力を形成した。図21A、21C、21Eは、各眼に基づくデータについて正常からのずれに基づいたROCプロットを示す。一方、図21B、21D、21Fは、非対称性測定値についての結果を示す。凡例によって示されるように、図ごとに3つのROCプロットがあり、それぞれのプロットは、SteadyOld、FlickNew、SteadyNewの刺激タイプに対するものである。患者の眼は、「立体視カラー眼底写真からの加齢黄斑変性症を分類するための加齢性眼疾患研究システム」(AREDSリサーチグループ、米国眼科学誌(American Journal of Opthalmology)、2001、巻132(5)、661-668頁)に掲載された周知の加齢性眼疾患研究(AREDSエイレッズ)に基づいてAMD重症度カテゴリに分離された。AREDS規格は、準正常からAMD最終ステージまでの4つの疾患重症度レベルを有する。この研究のために、本発明者らは、最初の2つのAREDSカテゴリ1及び2の眼をプールして、軽度の疾患カテゴリを形成した。AREDSのカテゴリ3および4は、中程度および重度のAMDと同一視された。重症カテゴリには、新生血管型AMDまたは中心窩を脅かす地図状萎縮を伴う眼が含まれた。図21の3つの行の図面は、軽症、中等症および重症のカテゴリに対応する。すべてのROCプロットは、正常からのずれが各眼に基づいたものであろうと、眼間の非対称性に基づいたものであろうと、検討した視野の中で最もずれの大きい1つの領域に基づいている。図21B、21D、21F中の点線のROCプロットは、SteadyNew刺激が、1.0(すなわち、100%)のAUCを達成したことを示している。これは、すべての重症度カテゴリ内のすべての被験者が正しく診断されつつ通常のコントロールが誤診されなかったことを示すものである。軽症の眼に対する結果は驚くほど良い。他の方法は、このような結果を達成していないからである。
図22は図20と同様、分析のために考慮された最悪視野領域の数の関数としてプロットされた%AUCを示している。図21のように、そして全体的な図形のタイトルによって示されるように、ROC分析に使用されるずれ(偏差)はすべて、前記のように、Zスコアに変換された測定ピーク瞳孔レスポンス振幅における眼間の非対称性に基づくものであった。図の行は、図のアルファベット文字と結合した図のラベルによって示されるように、表9と同じ順序での刺激タイプに対応している。したがって、図 22A、22D、22GはSteadyOldについてのAUCデータを呈示しており、図22B、22E、22HはFlickNewについてのものであり、図22C、22F、221はSteadyNew刺激についてのものである。タイトルによって示されるように、図の列は3つのAMD疾患重症度即ち軽症(図22A、22B、22C)、中等症(図22D、22E、22F)および重症(図22G、22H、22I)に対応している。最下行の図面である図22C、22F、22Iから明らかであるが、正常からの1番目の最悪のずれから7番目の最悪のずれまでのいずれをも検討すると、FlickNew刺激タイプは完璧な診断、即ち、最小の標準誤差(エラーバーがデータシンボルよりも小さいことで示される)を伴う100%の%AUCをもたらすことがわかる。明らかに、クラスターボレー刺激の空間的に小さいバージョンは、同スケールの空間的に疎の刺激及びクラスターボレー型のペデスタルフリッカーバージョンを凌ぐ。

Claims (24)

  1. 被験体の神経系を評価するための方法であって、
    被験体の感覚野の部分内でクラスター化された少なくとも2つの刺激アンサンブルから選択され、前記被験体の少なくとも1つの瞳孔から瞳孔レスポンスを誘発するようになっている個別の刺激の交互ボレーで多焦点刺激アレーを提示するステップを備え、
    前記クラスター化された刺激アンサンブルは複数の個別の刺激を備え、選択された個別の刺激は統計的に独立したシーケンスに従って同時に提示され、如何なる時間ステップにおいても刺激のボレーが所定のクラスターから提示されて各個別の刺激要素が約0.5の提示確率を有するようになっており、ボレーでの前記刺激の提示は、ボレーではない場合には刺激によって誘発されるレスポンスを弱める傾向にあるゲインコントロールメカニズムに打ち勝って、瞳孔からのより大きくより信頼性のあるレスポンスを生成し、
    また、前記刺激によって誘発された少なくとも片方の瞳孔のレスポンスを、センサーを用いて検出するステップと、
    瞳孔レスポンスを記録して、これらの瞳孔レスポンスを、クラスターアンサンブルの個別の刺激のうちの少なくとも2つに対する被験体の神経レスポンスの関数に関係づけるステップと、
    感覚系の評価のために、記録されたレスポンスから、検査された感覚野の各領域のための重み関数を決定するステップと
    を備えたことを特徴とする方法。
  2. 請求項1に記載の方法において、
    どの刺激領域のクラスターを表示候補とするかの選択を、擬似ランダムプロセスによって制御することを特徴とする方法。
  3. 請求項1に記載の方法において、
    どの刺激領域のクラスターを表示候補とするかの選択を、ラウンドロビンプロセスによって制御することを特徴とする方法。
  4. 請求項1から3までのいずれか1つに記載の方法において、
    それぞれが統計的に独立した刺激によって制御されている個別の刺激は、領域当たり1秒から領域当たり16秒までの間の平均提示間隔、好ましくは、領域当たり4秒の平均提示間隔で出現することを特徴とする方法。
  5. 請求項1から4までのいずれか1つに記載の方法において、
    所定の刺激領域クラスターアンサンブル内にあるように選択される領域は、個別の領域が所定の時間ステップに出現する確率をpsingleとした場合に任意の2つの空間的に隣接する領域が互いの隣に出現する確率ppairが、検査箇所のアレイ全体に亘って平均でp2 single/2以下となるように選択されることを特徴とする方法。
  6. 請求項1から6までのいずれか1つに記載の方法において、
    両眼は、両眼分離刺激によって同時に刺激され、ここで、各領域の提示は統計的に独立したシーケンスによって制御されて、別々の重み関数を推定できるようにしたことを特徴とする方法。
  7. 請求項6に記載の方法において、
    両眼視覚刺激を用いるか、または単眼刺激及び両眼刺激をインターリーブして、各々に対する重み関数を決定し得るようにしたことを特徴とする方法。
  8. 請求項1から7までのいずれか1つに記載の方法において、
    両方の瞳孔を同時に刺激して、直接レスポンス及び共感性レスポンスを各眼について推測できるようにし、求心性及び遠心性の視覚機能を区別できるようにしたことを特徴とする方法。
  9. 請求項1から8までのいずれか1つに記載の方法において、
    瞳孔レスポンスが被験体の両眼の調節システムの機能を表すように、被験体の各眼に立体視差情報を提示することによって、視覚刺激は視野内の物体までの距離の測定値を提供するようになっていることを特徴とする方法。
  10. 請求項1から8までのいずれか1つに記載の方法において、
    刺激シーケンスは、瞳孔のスプリアス調節ニアレスポンスを減らすために、約0.5秒の時間スケールで起きる非線形インタラクションによって生じる両眼立体情報を減らすように設計されていることを特徴とする方法。
  11. 請求項1から8までのいずれか1つに記載の方法において、
    記録された測定レスポンスは経時変化する瞳孔直径ではなく、調節性三つ組(accommodative triad)の別の部分からの信号、つまり、瞳孔レスポンスと相関し得る輻輳眼球運動または眼のレンズ形状の変化であることを特徴とする方法。
  12. 請求項1から8までのいずれか1つに記載の方法において、
    記録された測定レスポンスは経時変化する瞳孔直径ではなく、プールされた神経活動の測定値であり、前記神経活動は、EWNにおけるような感覚空間の明確に定義されたトポロジカルマップが存在しない1以上の感覚領域から生成されたクラスターボレー刺激によって誘発されたものであり、
    誘発レスポンスを記録するための装置は、電気的または磁気的変化、神経系の部分からの赤外光その他の電磁放射線の吸収、散乱または偏向の変化を検出するもの、または機能的磁気共鳴映像を含むことを特徴とする方法。
  13. 被験体の神経系を評価するためのシステムであって、
    被験体の感覚野の部分内でクラスター化された少なくとも2つの刺激アンサンブルから選択され、前記被験体の少なくとも1つの瞳孔から瞳孔レスポンスを誘発するようになっている個別の刺激の交互ボレーで多焦点刺激アレーを生成する手段を備え、
    前記クラスター化された刺激アンサンブルは複数の個別の刺激を備え、選択された個別の刺激は統計的に独立したシーケンスに従って同時に提示され、如何なる時間ステップにおいても刺激のボレーが所定のクラスターから提示されて各個別の刺激要素が約0.5の提示確率を有するようになっており、ボレーでの前記刺激の提示は、ボレーではない場合には刺激によって誘発されるレスポンスを弱める傾向にあるゲインコントロールメカニズムに打ち勝って、瞳孔からのより大きくより信頼性のあるレスポンスを生成し、
    また、被験体の少なくとも片方の瞳孔に瞳孔レスポンスを生じさせるために、前記多焦点クラスターボレー刺激のシーケンスを被験体の神経系に提示するための表示手段と、
    前記刺激によって誘発された少なくとも片方の瞳孔のレスポンスを、センサーを用いて検出するためのセンサーと、
    瞳孔レスポンスを記録して、これらの瞳孔レスポンスを、クラスターアンサンブルの個別の刺激のうちの少なくとも2つに対する被験体の神経レスポンスの関数に関係づけると共に、感覚系の評価のために、記録されたレスポンスから、検査された感覚野の各領域のための重み関数を決定するためのプロセッサと
    を備えたことを特徴とするシステム。
  14. 請求項13に記載のシステムにおいて、
    どの刺激領域のクラスターを表示候補とするかの選択を、擬似ランダムプロセスによって制御することを特徴とするシステム。
  15. 請求項13に記載のシステムにおいて、
    どの刺激領域のクラスターを表示候補とするかの選択を、ラウンドロビンプロセスによって制御することを特徴とするシステム。
  16. 請求項13から15までのいずれか1つに記載のシステムにおいて、
    それぞれが統計的に独立した刺激によって制御されている個別の刺激は、領域当たり1秒から領域当たり16秒までの間の平均提示間隔、好ましくは、領域当たり4秒の平均提示間隔で出現することを特徴とするシステム。
  17. 請求項13から16までのいずれか1つに記載のシステムにおいて、
    所定の刺激領域クラスターアンサンブル内にあるように選択される領域は、個別の領域が所定の時間ステップに出現する確率をpsingleとした場合に任意の2つの空間的に隣接する領域が互いの隣に出現する確率ppairが、検査箇所のアレイ全体に亘って平均でp2 single/2以下となるように選択されることを特徴とするシステム。
  18. 請求項13から17までのいずれか1つに記載のシステムにおいて、
    両眼は、両眼分離刺激によって同時に刺激され、ここで、各領域の提示は統計的に独立したシーケンスによって制御されて、別々の重み関数を推定できるようにしたことを特徴とするシステム。
  19. 請求項18に記載のシステムにおいて、
    両眼視覚刺激を用いるか、または単眼刺激及び両眼刺激をインターリーブして、各々に対する重み関数を決定し得るようにしたことを特徴とするシステム。
  20. 請求項13から19までのいずれか1つに記載のシステムにおいて、
    両方の瞳孔を同時に刺激して、直接レスポンス及び共感性レスポンスを各眼について推測できるようにし、求心性及び遠心性の視覚機能を区別できるようにしたことを特徴とするシステム。
  21. 請求項13から19までのいずれか1つに記載のシステムにおいて、
    瞳孔レスポンスが被験体の両眼の調節システムの機能を表すように、被験体の各眼に立体視差情報を提示することによって、視覚刺激は視野内の物体までの距離の測定値を提供するようになっていることを特徴とするシステム。
  22. 請求項13から19までのいずれか1つに記載のシステムにおいて、
    刺激シーケンスは、瞳孔のスプリアス調節ニアレスポンスを減らすために、約0.5秒の時間スケールで起きる非線形インタラクションによって生じる両眼立体情報を減らすように設計されていることを特徴とするシステム。
  23. 請求項13から19までのいずれか1つに記載のシステムにおいて、
    記録された測定レスポンスは経時変化する瞳孔直径ではなく、調節性三つ組(accommodative triad)の別の部分からの信号、つまり、瞳孔レスポンスと相関し得る輻輳眼球運動または眼のレンズ形状の変化であることを特徴とするシステム。
  24. 請求項13から19までのいずれか1つに記載のシステムにおいて、
    記録された測定レスポンスは経時変化する瞳孔直径ではなく、プールされた神経活動の測定値であり、前記神経活動は、EWNにおけるような感覚空間の明確に定義されたトポロジカルマップが存在しない1以上の感覚領域から生成されたクラスターボレー刺激によって誘発されたものであり、
    誘発レスポンスを記録するための装置は、電気的または磁気的変化、神経系の部分からの赤外光その他の電磁放射線の吸収、散乱または偏向の変化を検出するもの、または機能的磁気共鳴映像を含むことを特徴とするシステム。
JP2015543214A 2012-11-26 2013-11-25 クラスターボレー方法及び装置 Active JP6726965B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012905171A AU2012905171A0 (en) 2012-11-26 Clustered volley method and apparatus
AU2012905171 2012-11-26
PCT/AU2013/001358 WO2014078909A1 (en) 2012-11-26 2013-11-25 Clustered volley method and apparatus

Publications (3)

Publication Number Publication Date
JP2016501574A true JP2016501574A (ja) 2016-01-21
JP2016501574A5 JP2016501574A5 (ja) 2018-04-26
JP6726965B2 JP6726965B2 (ja) 2020-07-22

Family

ID=50775317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015543214A Active JP6726965B2 (ja) 2012-11-26 2013-11-25 クラスターボレー方法及び装置

Country Status (7)

Country Link
US (1) US9848771B2 (ja)
EP (1) EP2922461B1 (ja)
JP (1) JP6726965B2 (ja)
CN (1) CN105208917B (ja)
AU (1) AU2013350326B2 (ja)
CA (1) CA2888423C (ja)
WO (1) WO2014078909A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016029A2 (en) 2009-08-02 2011-02-10 Tel Hashomer Medical Research Infrastructure And Services Ltd System and method for objective chromatic perimetry analysis using pupillometer
US10258230B2 (en) 2013-10-30 2019-04-16 Tel Hashomer Medical Research Infrastructure And Services, Ltd. Pupillometers and systems and methods for using a pupillometer
US20150250383A1 (en) * 2014-03-05 2015-09-10 Annidis Corporation Real time visualization of surgical operations on the eye
JP6417676B2 (ja) * 2014-03-06 2018-11-07 ソニー株式会社 情報処理装置、情報処理方法、アイウェア端末および認証システム
RU2603326C1 (ru) * 2015-07-16 2016-11-27 Юлиана Александровна Барбос Способ диагностики первичной открытоугольной глаукомы
US10849490B2 (en) * 2015-08-25 2020-12-01 Indiana University Research And Technology Corporation Systems and methods for specifying the quality of the retinal image over the entire visual field
EP3402388B1 (en) 2016-01-12 2021-02-17 Accutome, Inc. System and method for performing objective perimetry and diagnosis of patients with retinitis pigmentosa and other ocular diseases
CN107550451B (zh) * 2016-06-30 2021-12-28 中国科学院心理研究所 一种视野功能自然客观评估的方法与***
US10925479B2 (en) * 2016-10-13 2021-02-23 Ronald Michael Kurtz Networked system of mobile communication platforms for nonpharmacologic constriction of a pupil
EP3320829A1 (en) * 2016-11-10 2018-05-16 E-Health Technical Solutions, S.L. System for integrally measuring clinical parameters of visual function
US10368740B2 (en) * 2017-02-03 2019-08-06 Sangmyung University Industry-Academy Cooperation Foundation Method and system for noncontact vision-based 3D cognitive fatigue measuring by using task evoked pupillary response
WO2019108916A1 (en) 2017-11-30 2019-06-06 Ohio State Innovation Foundation Method and system for measuring or assessing human visual field
CN111227782B (zh) * 2019-03-13 2023-07-28 株式会社拓普康 视标呈现装置和眼科装置
JP7276823B2 (ja) * 2019-03-28 2023-05-18 学校法人早稲田大学 視覚認知機能評価システム
WO2023168495A1 (en) * 2022-03-11 2023-09-14 The Australian National University Response estimation to efficiently capture dynamic response gain changes in multifocal responses
CN115024684A (zh) * 2022-05-23 2022-09-09 天津大学 刺激范式生成***、脑-机接口***、检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049776A1 (en) * 1998-03-30 1999-10-07 The Australian National University Simultaneous binocular assessment of multiple optic nerve and cortical regions in diseases affecting nerve condition
JP2003527913A (ja) * 2000-03-27 2003-09-24 ジ・オーストラリアン・ナショナル・ユニバーシティー 疎な刺激により神経機能を評価するための方法および装置
JP2007512050A (ja) * 2003-11-28 2007-05-17 ジ・オーストラリアン・ナショナル・ユニバーシティー 神経機能の評価
JP2011502590A (ja) * 2007-11-09 2011-01-27 ジ・オーストラリアン・ナショナル・ユニバーシティー 感覚野の評価方法および装置
JP2012510830A (ja) * 2008-12-05 2012-05-17 ジ・オーストラリアン・ナショナル・ユニバーシティー 瞳孔の評価方法および評価装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846567A (en) 1986-08-06 1989-07-11 Sutter Erich E Retinal area response mapping using simultaneous multi-area stimulation with binary sequences and objective response analysis
US5539482A (en) 1992-02-28 1996-07-23 The Australian National University Glaucoma testing using non-linear systems identification techniques
US7524064B2 (en) * 2004-03-09 2009-04-28 Research Foundation Of The State University Of New York Apparatus and method for assessing retinal damage
US8393734B2 (en) * 2007-09-14 2013-03-12 Neuroptics, Inc. Pupilary screening method and system
JP2014533587A (ja) * 2011-11-21 2014-12-15 アイチェック ヘルス コネクション, インコーポレイテッド 網膜疾患を監視するビデオゲーム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049776A1 (en) * 1998-03-30 1999-10-07 The Australian National University Simultaneous binocular assessment of multiple optic nerve and cortical regions in diseases affecting nerve condition
JP2003527913A (ja) * 2000-03-27 2003-09-24 ジ・オーストラリアン・ナショナル・ユニバーシティー 疎な刺激により神経機能を評価するための方法および装置
JP2007512050A (ja) * 2003-11-28 2007-05-17 ジ・オーストラリアン・ナショナル・ユニバーシティー 神経機能の評価
JP2011502590A (ja) * 2007-11-09 2011-01-27 ジ・オーストラリアン・ナショナル・ユニバーシティー 感覚野の評価方法および装置
JP2012510830A (ja) * 2008-12-05 2012-05-17 ジ・オーストラリアン・ナショナル・ユニバーシティー 瞳孔の評価方法および評価装置

Also Published As

Publication number Publication date
AU2013350326B2 (en) 2018-11-08
WO2014078909A1 (en) 2014-05-30
EP2922461A4 (en) 2016-07-27
CN105208917A (zh) 2015-12-30
CA2888423A1 (en) 2014-05-30
AU2013350326A1 (en) 2015-05-07
JP6726965B2 (ja) 2020-07-22
US9848771B2 (en) 2017-12-26
EP2922461B1 (en) 2022-05-11
US20150282704A1 (en) 2015-10-08
CA2888423C (en) 2020-12-15
CN105208917B (zh) 2017-07-14
EP2922461A1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6726965B2 (ja) クラスターボレー方法及び装置
Pfau et al. Fundus-controlled perimetry (microperimetry): application as outcome measure in clinical trials
AU2009322076B2 (en) Pupillary assessment method and apparatus
Walsh et al. Walsh and Hoyt's clinical neuro-ophthalmology: the essentials
Ansari et al. Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension
JP2008503244A (ja) 網膜損傷を評価するための装置及び方法
Victor et al. Visual function and brain organization in non-decussating retinal–fugal fibre syndrome
CN107205637A (zh) 用于监测和/或评估瞳孔响应的方法和***
Groth et al. Evaluation of virtual reality perimetry and standard automated perimetry in normal children
Hyon et al. Objective measurement of distance visual acuity determined by computerized optokinetic nystagmus test
Weijland et al. Automated perimetry
Zeppieri et al. Frequency doubling technology (FDT) perimetry
Krøyer et al. Quantification of metamorphopsia in patients with macular hole
Cubbidge Visual fields
Subramanian et al. Walsh & Hoyt's Clinical Neuro-Ophthalmology: The Essentials
Johnson Detecting functional changes in the patient’s vision: visual field analysis
Kuriakose et al. Visual Function and Its Assessment
Konjevoda et al. Ophthalmologic Examination of the Child
Fulcher et al. British Congress of Optometry and Vision Science (COVS) Abstracts 2020
Sartucci et al. Psychophysiology and Electrophysiology of the Visual System
Al-Nosairy Structure and function in glaucoma: OCT/A and ERG investigations
Smith How Binocular Visual Performance Is Changed When One Eye Has Lower Vision: Characterization Of Inhibitory Binocular Interactions
Tu Visual Abnormalities and Sensory Integration in Infantile Nystagmus
Nilsson The Rarebit Fovea Test-a new measure of visual function
Cole Aspects of the pupil light response and colour vision using pupillometric and psychophysical tests

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20150706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180209

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6726965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250