JP2016224912A - Opening reinforcement method for axial pressure reinforcement rib cylindrical shell - Google Patents

Opening reinforcement method for axial pressure reinforcement rib cylindrical shell Download PDF

Info

Publication number
JP2016224912A
JP2016224912A JP2016054255A JP2016054255A JP2016224912A JP 2016224912 A JP2016224912 A JP 2016224912A JP 2016054255 A JP2016054255 A JP 2016054255A JP 2016054255 A JP2016054255 A JP 2016054255A JP 2016224912 A JP2016224912 A JP 2016224912A
Authority
JP
Japan
Prior art keywords
cylindrical shell
opening
axial pressure
rib
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054255A
Other languages
Japanese (ja)
Other versions
JP6235060B2 (en
Inventor
鵬 ▲ハオ▼
鵬 ▲ハオ▼
Peng Hao
博 王
Bo Wang
博 王
闊 田
Kuo Tian
闊 田
剛 李
Go Ri
剛 李
凱繁 杜
Kaifan Du
凱繁 杜
飛 牛
Fei Niu
飛 牛
怡華 莫
Yihua Mo
怡華 莫
春暁 周
Chunxiao Zhou
春暁 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Publication of JP2016224912A publication Critical patent/JP2016224912A/en
Application granted granted Critical
Publication of JP6235060B2 publication Critical patent/JP6235060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce calculation costs for optimum design by enhancing structural efficiency of partial reinforcement design for an opening.SOLUTION: The present invention relates to an opening reinforcement method for an axial pressure reinforcement rib cylindrical shell with respect to a design field of a main load resistant member of an aerospace structure, and the opening reinforcement method for the axial pressure reinforcement rib cylindrical shell includes the steps of: sectioning the axial pressure reinforcement rib cylindrical shell including an opening into an opening distal region and an opening vicinity region; structuring an equivalent rigid model in the opening distal region and also structuring a precise geometric model in the opening vicinity region so as to obtain a mixed analytic model of the axial pressure reinforcement rib cylindrical shell; and checking an optimization result by optimizing opening reinforcement as to the axial pressure reinforcement rib cylindrical shell.SELECTED DRAWING: Figure 1

Description

本発明は、航空宇宙構造における主耐荷部材の設計技術分野に関し、特に、軸方向圧力補強リブ円筒殻における開口補強方法に関する。   The present invention relates to the technical field of design of main load bearing members in an aerospace structure, and more particularly to an opening reinforcing method in an axial pressure reinforcing rib cylindrical shell.

薄肉補強構造は軽量で耐荷性能に優れる等の特徴があることから、現代の航空宇宙工業に広く応用されている。装置の取り付け、配管、放熱等の必要性から、航空宇宙構造の薄肉補強部分には開口の存在が不可避である。例えば、ミサイル、ロケット構造の段間部や計器室、飛行機体などがこれにあたる。開口に起因する構造材料及び剛性の不連続性によって、補強筐体の変位場及び応力場が部分的に乱れ、モーメント応力の無い状態が破壊されると、筐体の耐荷力は低下してしまう。特に、飛移座屈に対する極限耐荷力への影響は大きく、設計上の補強措置を余儀なくされる。しかし、国内外の大多数の研究では、開口付近領域について構造強度の安定角度を部分的に補強していることから、補強リブ円筒殻の設計案の多くが重量超過となっている。特に、開口が多い場合には重量超過が深刻である。この点において、従来の「部分補強」の考え方に基づく研究では構造設計全体への着目が不足している。特に、関連の構造を一体化して最適化するとの設計理論の枠組みに欠けている。また、従来の加工工程や設計理念に縛られて、現在の補強リブ円筒殻の構造設計は多くが「直線リブ」を適用しているため、リブの多様な形状変化に欠け、構造設計空間も制限されている。実際に、設計全体を考慮していない部分補強では、往々にして補強リブ円筒殻の開口付近領域で剛性が突然変化するため、部分的な破損が発生しやすい。注目すべきことに、本邦では重量型キャリアロケットや大型航空機における大直径、薄壁、超軽量等への設計要求が高まっているほか、耐荷構造の多機能性融合に起因する開口の拡大がみられる。よって、動力伝達経路の一部に着目した開口補強設計への要求はますます切実となっている。   Thin-walled reinforcing structures are widely applied to the modern aerospace industry because they are lightweight and have excellent load-bearing performance. Due to the necessity of installation of equipment, piping, heat dissipation, etc., the existence of openings in the thin-walled reinforcement portion of the aerospace structure is inevitable. For example, missiles, interstage parts of rocket structures, instrument rooms, and airplane bodies. Displacement and stress fields of the reinforced housing are partially disturbed by discontinuities in the structural material and rigidity resulting from the openings, and the load bearing capacity of the housing is reduced when the state without moment stress is destroyed. . In particular, the impact on the ultimate load bearing capacity against jump buckling is large, and design reinforcement measures are required. However, in the majority of studies in Japan and overseas, the stability angle of structural strength is partially reinforced in the region near the opening, so many of the design plans for reinforcing rib cylindrical shells exceed the weight. In particular, when there are many openings, excess weight is serious. In this regard, research based on the conventional concept of “partial reinforcement” lacks attention to the entire structural design. In particular, it lacks the framework of design theory to integrate and optimize related structures. In addition, the current structural design of the reinforced rib cylindrical shells, which are bound by the conventional processing processes and design philosophy, apply “straight ribs”, so that there is a lack of various shape changes of the ribs, and the structural design space is also small. Limited. Actually, in partial reinforcement not considering the entire design, since the rigidity suddenly changes in the region near the opening of the reinforcing rib cylindrical shell, partial breakage tends to occur. Of note, in Japan, design requirements for heavy-duty carrier rockets and large aircraft such as large diameters, thin walls, ultra-lightweight, etc. are increasing, and the opening due to multifunctional fusion of load-bearing structures is seen. It is done. Therefore, there is an increasing need for an aperture reinforcement design that focuses on a portion of the power transmission path.

近年、国外の学者Mulaniらが、全体型曲線補強リブ構造の概念を提起した。デジタル化製造技術の急速な発展によって、こうした不規則配置によるリブ加工成型が可能となっている。金属材料については、NC機械によるスライス加工、3Dプリント、電子ビームダイレスフォーミング等の技術で製造加工を完遂可能である。NASAラングレー研究センターは電子ビームダイレスフォーミング技術によって、湾曲リブプレートのアルミニウム合金サンプルを作製し、panelレベルでの実験検証を完了している。しかし、現在のところ、国外の学者らは湾曲リブプレート殻の耐荷重構造については深く研究していない。実際のところ、湾曲リブの設計柔軟性を、補強リブ円筒殻構造における開口補強要求に組み合わせれば、構造における動力伝達経路の一部が大きく改善されて、補強リブ円筒殻の軸方向圧力に対する耐性や、開口補強効率も向上するはずである。   In recent years, foreign scholars Mulani et al. Have proposed the concept of an overall curved reinforcing rib structure. Thanks to the rapid development of digitized manufacturing technology, rib processing and molding with such irregular arrangement is possible. For metal materials, manufacturing processing can be accomplished by techniques such as NC machine slicing, 3D printing, and electron beam dieless forming. The NASA Langley Research Center has produced aluminum alloy samples of curved rib plates using electron beam dieless forming technology, and has completed experimental verification at the panel level. At present, however, foreign scholars have not studied the load bearing structure of curved rib plate shells. In fact, combining the design flexibility of curved ribs with the opening reinforcement requirements in a reinforced rib cylindrical shell structure greatly improves some of the power transmission path in the structure and is resistant to the axial pressure of the reinforced rib cylindrical shell. In addition, the aperture reinforcement efficiency should be improved.

補強リブ円筒殻構造の開口補強効率は、軸方向圧力に対する耐荷力を算出することで評価する必要がある。現在、補強リブ円筒殻構造の耐荷力については、大部分が等価剛性モデルや精密な有限要素モデルに基づいて数値を予測している。等価剛性モデルとは、リブを密集させた周期性を有する補強リブ円筒殻を、均質化理論又は漸近的均質化理論に基づいて異方性又は等方性の光学殻に等価とすることであり、算出効率が極めて高い。しかし、例えばセルごとに周期性を有し、リブ密集条件を満たさねばならないなど、適用条件の制限が厳しい。軸方向圧力下での補強リブ円筒殻は、徐々に負荷がかかるにつれて、線形座屈−非線形飛移座屈−圧潰というように構造が変化する。精密な有限要素モデルでは、分析過程における材料の非線形性、幾何学的非線形性、及び各種欠陥に起因する非線形性要因を考慮して、境界条件、負荷のかかり方、構造的開口、リブ形状等の詳細を正確にシミュレーション可能である。しかし、精密な有限要素モデルでは、往々にして算出効率が非常に低くなる。結果として、開口された補強リブ円筒殻構造の軸方向圧力に対する耐荷能力分析及び最適化に多くの算出コストがかかり、最適化が失敗しやすくもなる。   The opening reinforcement efficiency of the reinforcing rib cylindrical shell structure needs to be evaluated by calculating the load bearing capacity against the axial pressure. Currently, most of the load bearing capacity of the reinforced rib cylindrical shell structure is predicted based on an equivalent stiffness model or a precise finite element model. The equivalent stiffness model is to make a reinforced rib cylindrical shell with periodicity with dense ribs equivalent to an anisotropic or isotropic optical shell based on homogenization theory or asymptotic homogenization theory. The calculation efficiency is extremely high. However, the application conditions are severely limited, for example, each cell must have periodicity and the rib dense condition must be satisfied. The structure of the reinforcing rib cylindrical shell under an axial pressure changes as linear buckling-nonlinear jump buckling-crushing as the load is gradually applied. In a precise finite element model, considering the nonlinearity of the material in the analysis process, geometrical nonlinearity, and nonlinearity factors caused by various defects, boundary conditions, loading method, structural opening, rib shape, etc. The details can be accurately simulated. However, precise finite element models often have very low calculation efficiency. As a result, the load carrying capacity analysis and optimization for the axial pressure of the opened reinforcing rib cylindrical shell structure requires a lot of calculation costs, and the optimization tends to fail.

従来の開口された補強リブ円筒殻構造における部分補強設計では、往々にして有限要素解析に過度に依存することになり、設計及び最適化の過程で幾度も有限要素解析を用いねばならないため、最適化効率が非常に低い。本分野ではすでに多くの業務が展開されているが、軸方向圧力補強リブ円筒殻に適した高効率の開口補強方法についてはいまだ提供されていない。   In the conventional partial reinforcement design in the open-ended reinforcing rib cylindrical shell structure, the finite element analysis is often overly dependent on the finite element analysis, and the finite element analysis must be used many times in the design and optimization process. The conversion efficiency is very low. Although a lot of work has already been developed in this field, a highly efficient opening reinforcement method suitable for an axial pressure reinforcing rib cylindrical shell has not yet been provided.

本発明は主として、従来技術における軸方向圧力補強リブ円筒殻は開口補強設計の構造効率が低く、最適化設計の算出コストが嵩むとの技術的課題を解決するものであり、開口の部分補強設計の構造効率を高め、最適化設計の算出コストを削減するとの目的を達成すべく、軸方向圧力補強リブ円筒殻における開口補強方法を提供する。   The present invention mainly solves the technical problem that the axial pressure reinforcing rib cylindrical shell in the prior art has low structural efficiency of the opening reinforcing design and increases the calculation cost of the optimized design, and the partial reinforcing design of the opening In order to achieve the object of improving the structural efficiency of the material and reducing the calculation cost of the optimized design, an opening reinforcing method for an axial pressure reinforcing rib cylindrical shell is provided.

本発明は軸方向圧力補強リブ円筒殻における開口補強方法を提供し、当該軸方向圧力補強リブ円筒殻における開口補強方法が、開口を含む軸方向圧力補強リブ円筒殻を開口遠方領域と開口付近領域に区分するステップ100を含み、当該ステップが、座屈固有値解析を用い、軸方向圧力補強リブ円筒殻におけるn次までの座屈モードを取得するステップ101と、n次までの座屈モードのうち選別条件を満たすm次までの部分座屈モードを選別し、m次までの部分座屈モードを重畳して混合モード形状を形成するステップ102であって、座屈変形が座屈変形閾値よりも大きな領域の面積が筐体総面積の1/a以下であり、aが2〜4であることを選別条件とするステップ102と、形成された混合モードの形状に基づき、座屈変形が座屈変形閾値を超えている領域を開口付近領域、残りの領域を開口遠方領域として区分するステップ103と、開口遠方領域に等価剛性モデルを構築し、開口付近領域に精密な幾何モデルを構築して、軸方向圧力補強リブ円筒殻の混合分析モデルを得るステップ200と、均質化理論又は漸近的均質化理論に基づく軸方向圧力補強リブ円筒殻構造の等価剛性モデルを構築し、開口遠方領域の軸方向圧力補強リブ円筒殻を、異方性又は等方性の光学殻に等価とするステップ201と、 非一様有理Bスプライン曲線で描いた湾曲リブに基づいて、開口付近領域に精密な幾何モデルを構築するステップ202と、開口付近領域と開口遠方領域の接続関係を設定し、開口を含む軸方向圧力補強リブ円筒殻の軸方向圧力に対する耐荷能力の混合分析モデルを取得するステップ203と、軸方向圧力補強リブ円筒殻について開口補強の最適化を行い、最適化結果をチェックするステップ300と、を含む。   The present invention provides an opening reinforcing method in an axial pressure reinforcing rib cylindrical shell, the opening reinforcing method in the axial pressure reinforcing rib cylindrical shell includes an axial direction pressure reinforcing rib cylindrical shell including an opening, an opening far region and an opening vicinity region. Step 101, which includes buckling eigenvalue analysis, which obtains buckling mode up to the nth order in the axial pressure reinforcing rib cylindrical shell, and of the buckling modes up to the nth order In step 102, partial buckling modes up to m-th order satisfying the selection condition are selected, and a mixed mode shape is formed by superimposing the partial buckling modes up to m-th order, and the buckling deformation is less than the buckling deformation threshold. The buckling deformation is buckled based on the step 102 in which the area of the large region is 1 / a or less of the total housing area and a is 2 to 4 and the shape of the mixed mode formed. Strange Step 103, in which the region exceeding the threshold is classified as the near-opening region and the remaining region as the far-opening region, an equivalent stiffness model is constructed in the far-opening region, and a precise geometric model is constructed in the near-opening region. Step 200 to obtain a mixed analysis model of the directional pressure-reinforced rib cylindrical shell and an equivalent stiffness model of the axial pressure-reinforced rib cylindrical shell structure based on the homogenization theory or asymptotic homogenization theory A precise geometric model is constructed in the region near the aperture based on the step 201 that makes the reinforced cylindrical shell equivalent to an anisotropic or isotropic optical shell and the curved rib drawn by a non-uniform rational B-spline curve. Step 202, setting the connection relationship between the region near the opening and the region far from the opening, and taking a mixed analysis model of the load bearing capacity against the axial pressure of the cylindrical shell of the axial pressure reinforcing rib including the opening Obtaining step 203 and optimizing the opening reinforcement for the axial pressure reinforcing rib cylindrical shell and checking 300 the optimization result.

好ましくは、軸方向圧力補強リブ円筒殻について開口補強の最適化を行い、最適化結果をチェックするステップ300は、第1層の最適化において、代理モデルを大域的最適化手法と組み合わせることで、リブ厚、リブ高さ、軸方向のリブ数と配置、周方向のリブ数と配置、及びプライ角度のうちの1又はこれらの組み合わせを設計変数とし、軸方向圧力補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、軸方向圧力補強リブ円筒殻構造を最適化設計し、制約条件を満たした最適化設計を得るステップ301であって、軸方向のリブ配置が、単一の制御変数で描かれた配置関数で決定されるステップ301と、第2層の最適化において、第1層の最適化設計に基づいてリブ厚、リブ高さ、軸方向のリブ数及び周方向のリブ数を固定し、勾配別部分最適化法を用いて、各湾曲リブの制御点座標を設計変数とし、軸方向圧力補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、軸方向圧力補強リブ円筒殻構造を最適化設計し、制約条件を満たす最適化結果を取得するステップ302と、精密な有限要素解析によって最適化結果をチェックするステップ303と、を含む。   Preferably, the step 300 of optimizing the opening reinforcement for the axial pressure-reinforced rib cylindrical shell and checking the optimization results is performed by combining the surrogate model with a global optimization method in the first layer optimization, The axial direction of the axial pressure reinforcing rib cylindrical shell structure with one or a combination of rib thickness, rib height, number and arrangement of ribs in the axial direction, number and arrangement of ribs in the circumferential direction, and ply angle as a design variable Step 301 is to optimize the axial pressure-reinforced rib cylindrical shell structure with the load bearing capacity against pressure as a target function and the structural weight and / or structure manufacturing cost as constraints, and obtain an optimized design that satisfies the constraints. Thus, in step 301 where the axial rib placement is determined by the placement function drawn with a single control variable, and in the optimization of the second layer, the optimization is based on the optimization design of the first layer. Fixed thickness, rib height, number of axial ribs and number of ribs in the circumferential direction, and using gradient-based partial optimization method, control point coordinates of each curved rib as design variables, and axial pressure reinforcing rib cylindrical shell Optimize the axial pressure reinforced rib cylindrical shell structure with the load bearing capacity against the axial pressure of the structure as the target function and the structure weight and / or structure manufacturing cost as constraints, and obtain optimization results that satisfy the constraints Step 302 and Step 303 for checking the optimization result by precise finite element analysis.

好ましくは、前記代理モデルには、応答曲面モデル、クリギングモデル又は放射基底関数モデルが含まれ、前記大域的最適化手法には、粒子群最適化、遺伝的アルゴリズム、疑似アニーリング法、蟻コロニー最適化、タブーサーチ又は免疫アルゴリズムが含まれる。   Preferably, the surrogate model includes a response surface model, a kriging model, or a radial basis function model, and the global optimization method includes a particle swarm optimization, a genetic algorithm, a pseudo annealing method, and an ant colony optimization. , Tabu search or immune algorithm.

好ましくは、前記勾配別部分最適化法には、最急降下法、実行可能方向法、シンプレックス法、逐次線形計画法又は逐次二次計画法が含まれる。   Preferably, the gradient-based partial optimization method includes a steepest descent method, a feasible direction method, a simplex method, a sequential linear programming method, or a sequential quadratic programming method.

好ましくは、下記式によって軸方向のリブ配置関数が表される。   Preferably, an axial rib arrangement function is represented by the following formula.

Figure 2016224912
Figure 2016224912

は第1リブと第iリブとの距離、λはリブの配置係数、Nはリブ数、Lは第1リブと最終リブとの距離をそれぞれ表す。 C i is the distance between the first rib and the i-th rib, λ is the rib placement coefficient, N is the number of ribs, and L D is the distance between the first rib and the final rib.

本発明が提供する軸方向圧力補強リブ円筒殻における開口補強方法は、従来の軸方向圧力補強リブ円筒殻の開口補強設計では構造効率が低く、最適化設計の算出コストが嵩むとの課題に対して、まず、NURBS湾曲リブの設計柔軟性を、軸方向圧力補強リブ円筒殻構造における開口補強要求に組み合わせることで、開口付近の動力伝達経路を大幅に改善するとともに、軸方向圧力補強リブ円筒殻構造における軸方向圧力への耐荷力を向上させる。続いて、開口付近領域と開口遠方領域につきアダプティブパーティショニング法を提供して、開口付近領域の範囲を合理的に決定することで、後続の開口付近領域の最適化のために適切な設計領域を特定する。最後に、混合分析モデルに基づいて、軸方向圧力補強リブ円筒殻の開口補強について2層最適化設計法を提供する。開口付近領域−開口遠方領域の混合分析モデルによれば、開口された補強リブ円筒殻構造の軸方向圧力に対する耐荷力の分析効率を大幅に向上させられるほか、算出時間を短縮可能となる。また、2層最適化法は、当該開口補強問題における変数特性を十分に組み合わせ、異なる最適化アルゴリズムを用いて段階的に適化設計を展開することから、最適化効率が向上する。本発明によれば、開口の部分補強設計における構造効率が高まり、最適化設計の算出コストを削減可能となる。よって、本邦のキャリアロケットやミサイルの設計といった航空宇宙分野において、軸方向圧力補強リブ円筒殻構造の開口補強方法の一つと十分になり得る。   The opening reinforcement method for the axial pressure-reinforced rib cylindrical shell provided by the present invention is for the problem that the structural efficiency is low in the conventional opening-reinforcement design of the axial pressure-reinforced rib cylindrical shell, and the calculation cost of the optimized design is increased. First, by combining the design flexibility of the NURBS curved rib with the opening reinforcement requirement in the axial pressure reinforcing rib cylindrical shell structure, the power transmission path near the opening is greatly improved, and the axial pressure reinforcing rib cylindrical shell is also improved. Improve load bearing capacity against axial pressure in the structure. Subsequently, an adaptive partitioning method is provided for the near-opening region and the far-opening region to rationally determine the range of the near-opening region, so that an appropriate design region for optimization of the subsequent near-opening region can be obtained. Identify. Finally, based on the mixed analysis model, a two-layer optimization design method is provided for the opening reinforcement of the axial pressure reinforcing rib cylindrical shell. According to the mixed analysis model of the region near the opening and the region far from the opening, the analysis efficiency of the load bearing capacity against the axial pressure of the opened reinforcing rib cylindrical shell structure can be greatly improved, and the calculation time can be shortened. In addition, the two-layer optimization method sufficiently improves the optimization efficiency because the variable characteristics in the opening reinforcement problem are sufficiently combined and the optimization design is developed step by step using different optimization algorithms. According to the present invention, the structural efficiency in the partial reinforcement design of the opening is increased, and the calculation cost of the optimized design can be reduced. Therefore, in the aerospace field such as the design of carrier rockets and missiles in Japan, it can be sufficient as one of the opening reinforcement methods of the axial pressure reinforcement rib cylindrical shell structure.

本発明の実施例が提供する軸方向圧力補強リブ円筒殻における開口補強方法を実現するためのフローである。It is a flow for implement | achieving the opening reinforcement method in the axial direction pressure reinforcement rib cylindrical shell which the Example of this invention provides. 各種補強リブ円筒殻の構造を示す図である。It is a figure which shows the structure of various reinforcement rib cylindrical shells. 各種補強リブ円筒殻の構造を示す図である。It is a figure which shows the structure of various reinforcement rib cylindrical shells. 各種補強リブ円筒殻の構造を示す図である。It is a figure which shows the structure of various reinforcement rib cylindrical shells. 各種補強リブ円筒殻の構造を示す図である。It is a figure which shows the structure of various reinforcement rib cylindrical shells. 各種開口を示す図である。It is a figure which shows various openings. 各種開口を示す図である。It is a figure which shows various openings. 各種開口を示す図である。It is a figure which shows various openings. 開口された補強リブ円筒殻の構造を示す図である。It is a figure which shows the structure of the opened reinforcing rib cylindrical shell. 本発明の実施例が提供する開口された補強リブ円筒殻における10次までの固有値の座屈モードである。FIG. 4 is a buckling mode of eigenvalues up to the 10th order in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention. 本発明の実施例が提供する開口された補強リブ円筒殻の混合分析モデルである。4 is a mixed analysis model of an open reinforced rib cylindrical shell provided by an embodiment of the present invention. 本発明の実施例が提供する開口された補強リブ円筒殻における第1層面の最適化反復図である。FIG. 6 is an optimized iterative view of a first layer surface in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention. 本発明の実施例が提供する開口された補強リブ円筒殻における第2層面の最適化反復図である。FIG. 6 is an optimized iterative view of the second layer surface in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention.

本発明が解決する技術的課題、適用する技術方案及び達成される技術的効果をより明確にすべく、以下に図面と実施例を組み合わせて本発明を更に詳細に説明する。なお、ここで述べる具体的実施例は本発明を説明するためのものにすぎず、本発明を限定する主旨ではないと解釈される。また、記載の便宜上、図面には本発明に関連する部分のみを表示しており、全ての内容を示しているわけではない。   In order to clarify the technical problem to be solved by the present invention, the technical solution to be applied, and the technical effect to be achieved, the present invention will be described in more detail below in combination with the drawings and embodiments. It should be noted that the specific examples described here are merely for explaining the present invention, and are not intended to limit the present invention. Further, for convenience of description, only the parts related to the present invention are displayed in the drawings, and not all the contents are shown.

図1は、本発明の実施例が提供する軸方向圧力補強リブ円筒殻における開口補強方法を実現するためのフローである。図1に示すように、本発明の実施例が提供する軸方向圧力補強リブ円筒殻における開口補強方法は、開口を含む軸方向圧力補強リブ円筒殻を開口遠方領域と開口付近領域に区分するステップ100を含む。   FIG. 1 is a flowchart for realizing an opening reinforcing method in an axial pressure reinforcing rib cylindrical shell provided by an embodiment of the present invention. As shown in FIG. 1, the method for reinforcing an opening in an axial pressure reinforcing rib cylindrical shell provided by an embodiment of the present invention includes a step of dividing an axial pressure reinforcing rib cylindrical shell including an opening into an opening distant area and an opening vicinity area. 100 is included.

本発明では、開口を含む補強リブ円筒殻の開口を補強する。具体的に、補強リブ円筒殻は各種の補強構成を備えることが可能である。図2a〜dは、各種補強リブ円筒殻の構造を示す図である。図2aは、正三角形の補強リブが正置された円筒殻の構造を示す図であり、図2bは、正三角形の補強リブが縦置きされた円筒殻の構造を示す図であり、図2cは、直交する補強リブが正置された円筒殻の構造を示す図であり、図2dは、任意の角度の補強リブ円筒殻の構造を示す図である。図2a〜dを参照して、本発明が提供する軸方向圧力補強リブ円筒殻における開口補強方法は、各種補強リブ円筒殻について開口補強の最適化設計が可能である。図3a〜cは、各種開口を示す図である。図3a〜cに示すように、開口の形状は矩形、円形又は楕円形が可能である。   In the present invention, the opening of the reinforcing rib cylindrical shell including the opening is reinforced. Specifically, the reinforcing rib cylindrical shell can have various reinforcing configurations. 2a to 2d are diagrams showing structures of various reinforcing rib cylindrical shells. Fig. 2a is a diagram showing the structure of a cylindrical shell in which equilateral triangular reinforcing ribs are arranged, and Fig. 2b is a diagram showing the structure of a cylindrical shell in which equilateral triangular reinforcing ribs are vertically arranged, Fig. 2c Fig. 2 is a diagram showing a structure of a cylindrical shell in which orthogonal reinforcing ribs are arranged in a straight line, and Fig. 2d is a diagram showing a structure of a reinforcing rib cylindrical shell having an arbitrary angle. Referring to FIGS. 2a to 2d, the opening reinforcing method in the axial pressure reinforcing rib cylindrical shell provided by the present invention can be optimized for opening reinforcing for various reinforcing rib cylindrical shells. 3a to 3c are diagrams showing various openings. As shown in FIGS. 3a-c, the shape of the opening can be rectangular, circular or elliptical.

ステップ101において、座屈固有値解析を用い、軸方向圧力補強リブ円筒殻におけるn次までの座屈モードを取得する。   In step 101, buckling modes up to the n-th order in the axial pressure reinforcing rib cylindrical shell are obtained using buckling eigenvalue analysis.

ステップ102において、n次までの座屈モードのうち選別条件を満たすm次までの部分座屈モードを選別し、m次までの部分座屈モードを重畳して混合モード形状を形成する。   In step 102, partial buckling modes up to the mth order satisfying the selection condition among the buckling modes up to the nth order are selected, and the mixed mode shape is formed by superimposing the partial buckling modes up to the mth order.

本ステップでは、座屈変形が座屈変形閾値よりも大きな領域の面積が筐体総面積の1/a以下であり、aが2〜4であることを選別条件とする。実際の開口補強過程では、状況に応じて変形閾値が異なる数値を取るとともに、aが異なる数値を取るよう調整する場合がある。本発明では、変形閾値を0.35、aを2とする。aが2であることから、座屈変形が0.35よりも大きな領域の面積が筐体総面積の半分以下であることが選別条件となる。本ステップでは、座屈変形が0.35よりも大きな領域の面積を測定し、座屈変形が0.35よりも大きな領域の面積が筐体総面積の半分よりも大きいか否かを判別することで、座屈変形が0.35よりも大きな領域の面積が筐体総面積の半分以下である座屈モードを選別して、m次までの部分座屈モードを形成する。本ステップにおける重畳では、m次までの各部分座屈モードを取得して合わせることで混合モード形状が得られる。   In this step, the selection condition is that the area of the region where the buckling deformation is larger than the buckling deformation threshold is 1 / a or less of the total housing area, and a is 2 to 4. In the actual opening reinforcement process, the deformation threshold value may vary depending on the situation, and a may be adjusted to take a different value. In the present invention, the deformation threshold is 0.35 and a is 2. Since a is 2, the selection condition is that the area of the region where the buckling deformation is larger than 0.35 is not more than half of the total housing area. In this step, the area of the region where the buckling deformation is larger than 0.35 is measured, and it is determined whether the area of the region where the buckling deformation is larger than 0.35 is larger than half of the total housing area. Thus, the buckling mode in which the area of the region where the buckling deformation is larger than 0.35 is less than half of the total housing area is selected, and the partial buckling mode up to the mth order is formed. In the superposition in this step, a mixed mode shape is obtained by acquiring and combining the partial buckling modes up to the mth order.

ステップ103では、形成された混合モードの形状に基づき、座屈変形が座屈変形閾値を超えている領域を開口付近領域、残りの領域を開口遠方領域として区分する。   In step 103, based on the shape of the formed mixed mode, the region where the buckling deformation exceeds the buckling deformation threshold is classified as the opening vicinity region, and the remaining region is classified as the opening far region.

本ステップでは、主に座屈固有値解析を用いて開口遠方領域と開口付近領域を区分する。座屈固有値解析は線形座屈解析ともいい、応力剛性効果を考慮している。当該効果によれば、構造は面内圧応力を受けた後に平面負荷に抵抗する能力が低下してしまう。ある負荷レベルにおいて、こうしたマイナスの応力剛性が構造の線形剛性を上回った場合、構造は座屈不安定となる。   In this step, the area far from the aperture and the area near the aperture are mainly classified using buckling eigenvalue analysis. The buckling eigenvalue analysis is also called linear buckling analysis and considers the stress stiffness effect. This effect reduces the ability of the structure to resist planar loads after receiving in-plane pressure stress. If at some load level such negative stress stiffness exceeds the linear stiffness of the structure, the structure becomes buckling unstable.

ステップ200では、開口遠方領域に等価剛性モデルを構築し、開口付近領域に精密な幾何モデルを構築して、軸方向圧力補強リブ円筒殻の混合分析モデルを得る。   In step 200, an equivalent stiffness model is constructed in the region far from the aperture, and a precise geometric model is constructed in the region near the aperture to obtain a mixed analysis model of the axial pressure reinforcing rib cylindrical shell.

ステップ201では、均質化理論又は漸近的均質化理論に基づく軸方向圧力補強リブ円筒殻構造の等価剛性モデルを構築し、開口遠方領域の軸方向圧力補強リブ円筒殻を、異方性又は等方性の光学殻に等価とする。   In step 201, an equivalent stiffness model of the axial pressure reinforcing rib cylindrical shell structure based on the homogenization theory or the asymptotic homogenization theory is constructed, and the axial pressure reinforcing rib cylindrical shell in the far opening region is made anisotropic or isotropic. Equivalent to the optical shell of sex.

ステップ202では、非一様有理Bスプライン曲線で描いた湾曲リブに基づいて、開口付近領域に精密な幾何モデルを構築する。   In step 202, a precise geometric model is constructed in the region near the opening based on the curved rib drawn by the non-uniform rational B-spline curve.

ステップ203では、開口付近領域と開口遠方領域の接続関係を設定し、開口を含む軸方向圧力補強リブ円筒殻の軸方向圧力に対する耐荷能力の混合分析モデルを取得する。   In step 203, a connection relationship between the opening vicinity region and the opening far region is set, and a mixed analysis model of the load bearing capacity against the axial pressure of the axial pressure reinforcing rib cylindrical shell including the opening is acquired.

本発明は、均質化理論又は漸近的均質化理論に基づいて、補強リブ円筒殻構造の等価剛性モデルを構築する。均質化理論では、マクロ構造を構成するセルエレメントの入手から着手し、セルエレメントが空間周期性を有すると仮定して、セルエレメントの構造を分析することで、元構造とマクロ力学性能が等価である均質材料を取得する。本発明は均質化の原理に基づいて、空間周期性を有するリブを、直交する異方性/等方性の光学殻に等価とすることで、軸方向圧力補強構造の座屈分析効率を大幅に向上させる。均質化理論又は漸近的均質化理論に基づいて取得される等価剛性モデルは、解を求めるプロセスが視覚的で簡潔なことから、ミサイル本体における補強リブ円筒殻構造の初期設計やパラメータ予備調査に常用される。   The present invention builds an equivalent stiffness model of a reinforced rib cylindrical shell structure based on homogenization theory or asymptotic homogenization theory. In the homogenization theory, we start by obtaining the cell elements that make up the macro structure, and assume that the cell elements have a spatial periodicity and analyze the structure of the cell elements so that the original structure and the macro mechanical performance are equivalent. Get a certain homogeneous material. Based on the principle of homogenization, the present invention greatly increases the buckling analysis efficiency of the axial pressure reinforcement structure by making the rib with spatial periodicity equivalent to an orthogonal anisotropic / isotropic optical shell. To improve. The equivalent stiffness model obtained based on homogenization theory or asymptotic homogenization theory is commonly used for initial design and preliminary parameter investigation of the reinforced rib cylindrical shell structure in the missile body because the solution-finding process is visual and simple. Is done.

非一様有理Bスプライン(NURBS)曲線で描かれた湾曲リブは、コンピュータグラフィックスで常用される数学的モデルであり、曲線や曲面を生成して表すために用いられる。通常、NURBS曲線は1の初期制御点、1又は複数の中間制御点及び1の終了制御点によって形状を描き、分析関数やモデル形状の処理に対し極めて高い柔軟性と精密性を提供する。NURBSによる湾曲リブは、NURBS曲線を平面方向に引き伸ばし操作することで得られる。湾曲リブの制御点、即ちNURBS曲線の制御点は、通常は1の初期制御点、1又は複数の中間制御点及び1の終了制御点であり、制御点の座標とは2次元座標軸上における制御点の座標値のことである。有限要素計算において、開口付近領域と開口遠方領域の関係接続は、一般的に共有ノード又は変形調和技術によって完遂される。即ち、開口付近領域と開口遠方領域の境界部分における有限要素のノードの自由度を併合することで、分析モデル全体を形成する。本ステップでは、ステップ201で得られた開口遠方領域モデルとステップ202で得られた開口付近領域モデルを重畳することで、混合分析モデルが得られる。   A curved rib drawn with a non-uniform rational B-spline (NURBS) curve is a mathematical model commonly used in computer graphics, and is used to generate and represent curves and curved surfaces. Normally, a NURBS curve is drawn with one initial control point, one or more intermediate control points, and one end control point, providing extremely high flexibility and precision for processing analytic functions and model shapes. The curved rib by NURBS can be obtained by extending the NURBS curve in the plane direction. The control point of the curved rib, that is, the control point of the NURBS curve is usually one initial control point, one or a plurality of intermediate control points, and one end control point, and the coordinates of the control points are the controls on the two-dimensional coordinate axis. It is the coordinate value of a point. In the finite element calculation, the relational connection between the near-opening region and the far-opening region is generally accomplished by a shared node or deformation matching technique. In other words, the entire analysis model is formed by merging the degrees of freedom of the finite element nodes at the boundary between the near-opening region and the far-opening region. In this step, a mixed analysis model is obtained by superimposing the aperture far region model obtained in step 201 and the aperture vicinity region model obtained in step 202.

ステップ300において、軸方向圧力補強リブ円筒殻について開口補強の最適化を行い、最適化結果をチェックする。   In step 300, optimization of opening reinforcement is performed on the axial pressure reinforcing rib cylindrical shell, and the optimization result is checked.

ステップ301では、第1層の最適化において、代理モデルを大域的最適化手法と組み合わせることで、リブ厚、リブ高さ、軸方向のリブ数と配置、周方向のリブ数と配置、及びプライ角度のうちの1又はこれらの組み合わせを設計変数とし、軸方向圧力補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、軸方向圧力補強リブ円筒殻構造を最適化設計し、制約条件を満たした最適化設計を得る。代理モデルを大域的最適化手法と組み合わせる方法では、まずサンプリングテスト設計手法で得られたテストポイントに基づいて代理モデルを構築してから、大域的最適化手法を用いて代理モデルに基づく最適化を実行する。   In step 301, in the optimization of the first layer, the surrogate model is combined with the global optimization method to obtain the rib thickness, rib height, the number and arrangement of the ribs in the axial direction, the number and arrangement of the ribs in the circumferential direction, and the ply. One of the angles or a combination thereof is used as a design variable, the load resistance against the axial pressure of the axial pressure-reinforcing rib cylindrical shell structure is a target function, and the structural weight and / or structure manufacturing cost is a constraint. Optimized design of the reinforced rib cylindrical shell structure and obtain an optimized design that satisfies the constraints. In the method of combining the surrogate model with the global optimization method, the surrogate model is first constructed based on the test points obtained by the sampling test design method, and then the optimization based on the surrogate model is performed using the global optimization method. Run.

具体的には、本発明の実施例が提供する第1層面の最適化は、下記式で表される。
設計変数:d=[h,t,N,N,λas,λam,λcs,λcm
目標関数:Pco
制約条件:W≦W
ここで、hはリブ高さ、tはリブ厚、Nは軸方向のリブ数、Nは周方向のリブ数、λasは軸方向のリブ始点の配置制御係数、λamは軸方向のリブ中間制御点の配置制御係数、λcsは周方向のリブ始点の配置制御係数、λcmは周方向のリブ中間制御点の配置制御係数、Pcoは構造の軸方向圧力に対する耐荷力、Wは構造重量、Wは初期設計の構造重量をそれぞれ表している。
Specifically, the optimization of the first layer surface provided by the embodiment of the present invention is expressed by the following formula.
Design variable: d = [h, tr , N a , N c , λ as , λ am , λ cs , λ cm ]
Target function: P co
Constraint: W ≦ W 0
Here, h is the rib height, t r is rib thickness, N a is the number of axial ribs, N c rib number of circumferential, lambda the as the arrangement control coefficient of axial ribs start, lambda am the shaft Is the placement control coefficient of the rib intermediate control point in the direction, λ cs is the placement control coefficient of the rib start point in the circumferential direction, λ cm is the placement control coefficient of the rib intermediate control point in the circumferential direction, and P co is the load bearing capacity against the axial pressure of the structure , W represents the structural weight, and W 0 represents the structural weight of the initial design.

軸方向のリブ配置は、単一の制御変数で描かれた配置関数で決定される。軸方向のリブの配置関数は、

Figure 2016224912
は第1リブと第iリブとの距離、λはリブの配置係数、Nはリブ数、Lは第1リブと最終リブとの距離をそれぞれ表している。本実施例において、単一の制御変数とはリブ配置関数λである。λは通常0.5〜1.5であり、λが1.0の場合、リブは等間隔で均一に分布する。λが1.0より小さい場合には、初期制御点に近いリブはまばらとなり、初期制御点から離れたリブは密集する。また、λが1.0より大きい場合、初期制御点に近いリブは密集し、初期制御点から離れたリブをまばらとなる。大域的最適化手法には、粒子群最適化、遺伝的アルゴリズム、疑似アニーリング法、蟻コロニー最適化、タブーサーチ又は免疫アルゴリズムが含まれる。また、前記代理モデルによる最適化手法には、応答曲面モデル、クリギング(kriging)モデル又は放射基底関数モデルが含まれる。放射基底関数モデルとは、測定点とサンプリング点とのユークリッド距離を独立変数とする関数を基底関数とし、線形加重により構築されるモデルである。また、本発明において軸方向圧力補強リブ円筒殻を代理モデルにより最適化設計する際に必要なテストポイントは、サンプリングテスト設計手法によって得られる。サンプリングテスト設計手法には複数種類あるが、本発明が提供するサンプリングテスト手法には、直交配列、ラテン方格法又は最適ラテン方格法が含まれる。基本的には、サンプリングポイントをできるだけ均一に設計空間内に分布させて、より多くの設計空間情報を取得することを規則とする。なお、多島遺伝的アルゴリズム(Multi−Island Genetic Algorithm)とは、遺伝的アルゴリズムに対して早期に成熟し且つ近年提起されるようになった解決法の1つである。このアルゴリズムもランダム解を出発点とし、繰り返し最適解を探すことで、適合度から解の品質を評価する。本発明は当該手法を用いて、大域の最適解を効率よく検出可能である。 The axial rib placement is determined by the placement function drawn with a single control variable. The axial rib placement function is
Figure 2016224912
C i is the distance between the first rib and the i-th rib, λ is the rib placement coefficient, N is the number of ribs, and L D is the distance between the first rib and the final rib. In this embodiment, the single control variable is the rib arrangement function λ. λ is usually 0.5 to 1.5, and when λ is 1.0, the ribs are uniformly distributed at equal intervals. When λ is smaller than 1.0, ribs close to the initial control point are sparse, and ribs away from the initial control point are dense. On the other hand, when λ is larger than 1.0, the ribs close to the initial control point are densely packed, and the ribs far from the initial control point are sparse. Global optimization techniques include particle swarm optimization, genetic algorithm, pseudo-annealing method, ant colony optimization, tabu search or immune algorithm. The optimization method using the proxy model includes a response surface model, a kriging model, or a radial basis function model. The radial basis function model is a model constructed by linear weighting using a function having an Euclidean distance between a measurement point and a sampling point as an independent variable as a basis function. In the present invention, a test point necessary for optimizing and designing the axial pressure reinforcing rib cylindrical shell by the proxy model can be obtained by a sampling test design method. Although there are a plurality of types of sampling test design methods, the sampling test methods provided by the present invention include an orthogonal arrangement, a Latin square method, or an optimal Latin square method. Basically, the rule is to obtain more design space information by distributing sampling points as uniformly as possible in the design space. Note that the Multi-Island Genetic Algorithm is one of the solutions that have matured early to the genetic algorithm and have recently been proposed. This algorithm also uses a random solution as a starting point, and evaluates the quality of the solution from the fitness by repeatedly searching for the optimal solution. The present invention can detect the global optimum solution efficiently by using this method.

ステップ302では、第2層の最適化において、第1層の最適化設計に基づいてリブ厚、リブ高さ、軸方向のリブ数及び周方向のリブ数を固定し、勾配別部分最適化法を用いて、各湾曲リブの制御点座標を設計変数とし、補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、補強リブ円筒殻構造を最適化設計し、制約条件を満たす最適化結果を取得する。   In step 302, in the optimization of the second layer, the rib thickness, the rib height, the number of ribs in the axial direction and the number of ribs in the circumferential direction are fixed based on the optimization design of the first layer, and the partial optimization method by gradient The control point coordinates of each curved rib is used as a design variable, the load bearing force against the axial pressure of the reinforcing rib cylindrical shell structure is a target function, and the structural weight and / or the structure manufacturing cost are used as constraints. Optimize the structure and obtain optimization results that satisfy the constraints.

具体的には、本発明の実施例が提供する第2層面の最適化は、下記式で表される。
設計変数:d=[xas,xam,ycs,ycm
目標関数:Pco
制約条件:W≦W
ここで、xasは軸方向のリブ初期制御点におけるx座標、xamは軸方向のリブ中間制御点におけるx座標、ycsは周方向のリブ初期制御点におけるy座標、ycmは周方向のリブ中間制御点におけるy座標、Pcoは構造の軸方向圧力に対する耐荷力、Wは構造重量、Wは初期設計の構造重量をそれぞれ表している。
Specifically, the optimization of the second layer surface provided by the embodiment of the present invention is expressed by the following formula.
Design variable: d = [x as , x am , y cs , y cm ]
Target function: P co
Constraint: W ≦ W 0
Here, x as is the x coordinate at the axial initial rib control point, x am is the x coordinate at the axial intermediate rib control point, y cs is the y coordinate at the circumferential initial rib control point, and y cm is the circumferential direction. Y coordinate at the rib intermediate control point, P co is the load bearing capacity against the axial pressure of the structure, W is the structure weight, and W 0 is the structure weight of the initial design.

前記の勾配別部分最適化法には、最急降下法、実行可能方向法、シンプレックス法、逐次線形計画法又は逐次二次計画法が含まれる。逐次二次計画法では、元の制約最適化問題に類似した二次計画部分問題を反復点に構築し、当該部分問題の解を求めることで、制約最適化問題における1の改良反復点を取得する。この過程は、要求を満たす反復点が求められるまで繰り返される。   The gradient-based partial optimization method includes steepest descent method, feasible direction method, simplex method, sequential linear programming, or sequential quadratic programming. In sequential quadratic programming, a quadratic programming subproblem similar to the original constraint optimization problem is constructed at the iteration point, and the solution of the subproblem is obtained to obtain one improved iteration point in the constraint optimization problem. To do. This process is repeated until an iteration point that satisfies the requirement is found.

ステップ303では、精密な有限要素に基づいて、最適化結果をチェックする。   In step 303, the optimization result is checked based on the precise finite element.

チェックの具体的過程としては、精密な有限要素に基づいて、最適化結果について精密なモデリング及び軸方向圧力に対する耐荷能力分析を行い、その幾何モデル及び分析結果をチェックする。本ステップで最適化結果をチェックするのは、加工困難な断裂リブや小さいリブ、応力集中現象の発生有無や、最小特徴サイズ、曲率といったその他の工程要求を満たしているか否かを確認するためである。   As a specific process of the check, based on a precise finite element, the optimization result is subjected to precise modeling and load bearing capacity analysis for axial pressure, and the geometric model and analysis result are checked. The optimization results are checked in this step in order to confirm whether other process requirements such as fractured ribs, small ribs, stress concentration phenomenon, minimum feature size, and curvature are difficult to process. is there.

本発明の方法によれば、軸方向圧力補強リブ円筒殻における開口補強効率が高まり、算出コストを削減可能となる。   According to the method of the present invention, the opening reinforcement efficiency in the axial pressure reinforcing rib cylindrical shell is increased, and the calculation cost can be reduced.

以下に、実例形式で本実施例が提供する方案について説明する。   Below, the method which a present Example provides with an example form is demonstrated.

例示的に、図4は開口された補強リブ円筒殻の構造を示す図である。図4を参照して、直交する補強リブが正置された半径R=1500mm、長さL=2000mm、被覆厚t=4.0mm、リブ厚t=9.0mm、リブ高さh=15.0mm、軸方向のリブ数N=90、周方向のリブ数N=25の円筒殻について考える。なお、開口形状は正方形であり、辺の長さb=500mmであった。また、構造材料としては、弾性率E=70GPa、ボアソン比υ=0.33、密度ρ=2.7E−6kg/mmのアルミニウム合金を用いた。初期設計の構造重量は350kgであり、有限要素モデルに基づき予測される構造の軸方向圧力に対する耐荷力は10000kNであった。 Illustratively, FIG. 4 is a diagram illustrating the structure of an open reinforcing rib cylindrical shell. Referring to FIG. 4, radius R = 1500 mm, length L = 2000 mm, covering thickness t s = 4.0 mm, rib thickness t r = 9.0 mm, and rib height h = Consider a cylindrical shell with 15.0 mm, axial rib number N a = 90, and circumferential rib number N c = 25. The opening shape was a square, and the side length b was 500 mm. As a structural material, an aluminum alloy having an elastic modulus E = 70 GPa, a Boisson ratio υ = 0.33, and a density ρ = 2.7E−6 kg / mm 3 was used. The structure weight of the initial design was 350 kg, and the load bearing capacity against the axial pressure of the structure predicted based on the finite element model was 10000 kN.

まず、有限要素モデルに基づいて座屈固有値解析を行い、10次までの固有値の座屈モードを取得した。図5は、本発明の実施例が提供する開口された補強リブ円筒殻における10次までの固有値の座屈モードである。図5に示すように、4次までが本実施例の選別条件を満たすため、4次までを部分座屈モードとし、5次以降を全体座屈モードとした。5次以降は全体座屈モードのため、開口付近領域と開口遠方領域を区分するためのガイダンス情報は提供されない。そこで、4次までのモードを重畳して混合モード形状を形成し、図6に示すように、変形が所定の閾値0.35を上回る領域を開口付近領域、残りの領域を開口遠方領域として区分した。図6は、本発明の実施例が提供する開口された補強リブ円筒殻の混合分析モデルである。続いて、開口遠方領域に漸近的均質化理論に基づいて取得した等価剛性モデルを用い、リブを異方性の光学殻に等価とするとともに、開口付近領域にNURBS湾曲リブを用いて精密な幾何モデルを構築することで、図6に示すように、開口された補強リブ円筒殻の混合分析モデルを取得した。各湾曲リブは、1の初期制御点、1の中間制御点及び1の終了制御点により描画された。なお、現在主流とされているコンピュータ(4コア、クロック周波数2.9GHz、メモリ8G)を用いたところ、精密な有限要素モデル及び混合分析モデルによる明示的飛移座屈分析の算出に要した時間はそれぞれ1.8時間及び0.2時間であった。   First, buckling eigenvalue analysis was performed based on a finite element model, and buckling modes of eigenvalues up to the 10th order were obtained. FIG. 5 is an eigenvalue buckling mode up to the 10th order in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention. As shown in FIG. 5, since the conditions up to the fourth order satisfy the selection conditions of the present embodiment, the parts up to the fourth order are set as the partial buckling mode, and the fifth order and later are set as the whole buckling mode. Since the fifth and subsequent modes are in the overall buckling mode, guidance information for distinguishing between the aperture vicinity region and the aperture far region is not provided. Therefore, a mixed mode shape is formed by superimposing the modes up to the fourth order, and as shown in FIG. 6, the region where the deformation exceeds a predetermined threshold value 0.35 is classified as the near-opening region, and the remaining region is classified as the far-opening region. did. FIG. 6 is a mixed analysis model of an open reinforced rib cylindrical shell provided by an embodiment of the present invention. Subsequently, the equivalent stiffness model obtained based on the asymptotic homogenization theory is used for the far region of the aperture, the rib is made equivalent to an anisotropic optical shell, and a precise geometrical shape using a NURBS curved rib in the region near the aperture. By constructing the model, a mixed analysis model of the opened reinforcing rib cylindrical shell was obtained as shown in FIG. Each curved rib was drawn with one initial control point, one intermediate control point, and one end control point. In addition, when a computer (4 cores, clock frequency 2.9 GHz, memory 8G), which is currently mainstream, is used, the time required for calculation of explicit jump buckling analysis using a precise finite element model and a mixed analysis model Were 1.8 hours and 0.2 hours, respectively.

次に、軸方向圧力補強リブ円筒殻の開口補強について2層最適化設計を展開した。収束基準を満たすまで、第1層につき大域的最適化を、第2層につき部分最適化を実施した。第1層面の最適化においては、構造の軸方向圧力に対する耐荷力を最大化することを最適化目標とし、構造重量が初期重量を超えないことを制約条件とした。設計変数には、リブ高さ、リブ厚、軸方向及び周方向のリブ数、軸方向と周方向におけるリブの配置制御係数(初期制御点と中間制御点をそれぞれ含む)の計8項目が含まれた。特定の設計変数区間内において、最適ラテン方格法を用いて300のサンプルを抽出し、放射基底関数代理モデルを構築した。続いて、多島遺伝的アルゴリズムを用い、代理モデルに基づく開口付近領域の最適化設計を実行した。図7は、本発明の実施例が提供する開口された補強リブ円筒殻における第1層面の最適化反復図である。図7に示すように、外層を4回更新した後に、最適化の反復を収束終了させた。最適化設計の構造重量は350kgであり、等価剛性モデルと有限要素モデルに基づき予測される軸方向圧力に対する耐荷力はそれぞれ11107kN及び11158kNであった。最適化設計の変数値としては、リブ高さが23.0mm、リブ厚が6.3mm、軸方向及び周方向のリブ数がそれぞれ13及び7、軸方向のリブにおける初期制御点と中間制御点の配置制御係数がそれぞれ0.8581及び1.3150、周方向のリブにおける初期制御点と中間制御点の配置制御係数がそれぞれ1.2748及び0.7409であった。   Next, a two-layer optimization design was developed for opening reinforcement of the axial pressure reinforcing rib cylindrical shell. Global optimization was performed for the first layer and partial optimization was performed for the second layer until convergence criteria were met. In the optimization of the first layer surface, the optimization target was to maximize the load bearing capacity against the axial pressure of the structure, and the constraint was that the structure weight did not exceed the initial weight. The design variables include a total of 8 items: rib height, rib thickness, number of ribs in the axial direction and circumferential direction, and rib placement control coefficients in the axial direction and circumferential direction (including initial control points and intermediate control points, respectively). It was. Within a specific design variable interval, 300 samples were extracted using the optimal Latin square method, and a radial basis function surrogate model was constructed. Subsequently, using the archipelago genetic algorithm, optimization design of the area near the opening based on the surrogate model was performed. FIG. 7 is an optimized iterative view of the first layer surface in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention. As shown in FIG. 7, after the outer layer was updated four times, the optimization iterations were converged. The structural weight of the optimized design was 350 kg, and the load bearing capacity against the axial pressure predicted based on the equivalent stiffness model and the finite element model was 11107 kN and 11158 kN, respectively. The optimization design variable values are: rib height 23.0 mm, rib thickness 6.3 mm, axial and circumferential rib numbers 13 and 7, respectively, initial and intermediate control points for axial ribs The arrangement control coefficients were 0.8581 and 1.3150, respectively, and the arrangement control coefficients of the initial control point and the intermediate control point in the circumferential rib were 1.2748 and 0.7409, respectively.

第2層面の最適化においては、構造の軸方向圧力に対する耐荷力を最大化することを最適化目標とし、構造重量が初期重量を上回らないことを制約条件とした。また、軸方向及び周方向のリブ数、リブ高及びリブ厚を固定して、各湾曲リブの制御点座標を計18の設計変数とした。図8は、本発明の実施例が提供する開口された補強リブ円筒殻における第2層面の最適化反復図である。図8に示すように、逐次二次計画法を用いて、最適化を100回反復した後に収束終了した。最適化設計の構造重量は350kgであり、等価剛性モデルと有限要素モデルに基づき予測される軸方向圧力に対する耐荷力はそれぞれ11559kN及び11614kNであった。   In optimizing the second layer surface, the optimization goal was to maximize the load bearing capacity against the axial pressure of the structure, and the constraint was that the structure weight would not exceed the initial weight. Further, the number of ribs in the axial direction and the circumferential direction, the rib height, and the rib thickness were fixed, and the control point coordinates of each curved rib were used as a total of 18 design variables. FIG. 8 is an optimized iterative view of the second layer surface in an open reinforcing rib cylindrical shell provided by an embodiment of the present invention. As shown in FIG. 8, convergence was completed after 100 iterations of optimization using sequential quadratic programming. The structural weight of the optimized design was 350 kg, and the load bearing capacity against the axial pressure predicted based on the equivalent stiffness model and the finite element model was 11559 kN and 11614 kN, respectively.

最後に、精密な有限要素解析によって最適化設計をチェックした。チェックの結果、当該設計は変形モードと応力分布が合理的であり、工程要求を満たしていた。   Finally, the optimization design was checked by precise finite element analysis. As a result of checking, the design was reasonable in deformation mode and stress distribution, and satisfied the process requirements.

比較として、本発明の最適化方法に基づき、直線リブによる補強設計について最適化設計を行った。最適化設計の構造重量は350kg、軸方向圧力に対する耐荷力は10917kNであった。これに対し、本発明の技術方案による最適化設計の構造重量は350kg、軸方向圧力に対する耐荷力は11614kNであった。比較より、本発明の技術方案は、従来技術よりも構造効率の高い開口された補強設計方案を提供可能なことがわかった。   As a comparison, based on the optimization method of the present invention, an optimization design was performed for the reinforcement design using straight ribs. The structural weight of the optimized design was 350 kg, and the load bearing capacity against axial pressure was 10917 kN. In contrast, the structural weight of the optimized design according to the technical scheme of the present invention was 350 kg, and the load bearing capacity against the axial pressure was 11614 kN. From the comparison, it has been found that the technical solution of the present invention can provide an open reinforcing design method having a higher structural efficiency than the conventional technology.

非線形性飛移座屈分析の使用回数からみると、本発明の技術方案では404回であったのに対し、類似の最適化構造重量及び軸方向圧力に対する耐荷力獲得を前提とした場合、従来技術では2200回の分析が必要であった。比較より、本発明の技術方案によれば、従来技術よりも高い最適化効率を提供可能なことがわかった。   In terms of the number of times the nonlinear jump buckling analysis is used, it was 404 times in the technical method of the present invention, whereas in the case of assuming a load capacity against a similar optimized structure weight and axial pressure, The technique required 2200 analyzes. From the comparison, it was found that according to the technical solution of the present invention, it is possible to provide higher optimization efficiency than the conventional technology.

算出コスト面では、提示した2層最適化設計法を適用し、現在主流とされているコンピュータ(4コア、クロック周波数2.9GHz、メモリ8G)を用いた場合、本発明の技術方案の所要時間が80.8hであったのに対し、従来技術では727.2hを要した。比較より、本発明の技術方案によれば算出コストが大幅に削減され、最適化効率が従来技術よりも大きく向上することがわかった。   In terms of calculation cost, when the proposed two-layer optimization design method is applied and a currently mainstream computer (4 cores, clock frequency 2.9 GHz, memory 8 G) is used, the time required for the technical method of the present invention Was 80.8 h, whereas the conventional technology required 727.2 h. From the comparison, it was found that according to the technical solution of the present invention, the calculation cost is greatly reduced, and the optimization efficiency is greatly improved as compared with the prior art.

本実施例が提供する軸方向圧力補強リブ円筒殻における開口補強方法では、まず、NURBS湾曲リブの設計柔軟性を、軸方向圧力補強リブ円筒殻構造における開口補強要求に組み合わせることで、開口付近の動力伝達経路を大幅に改善するとともに、軸方向圧力補強リブ円筒殻構造における軸方向圧力への耐荷力を向上させる。続いて、開口付近領域と開口遠方領域につきアダプティブパーティショニング法を提供して、開口付近領域の範囲を合理的に決定することで、後続の開口付近領域の最適化のために適切な設計領域を特定する。最後に、混合分析モデルに基づいて、軸方向圧力補強リブ円筒殻の開口補強について2層最適化設計法を提供する。開口付近領域−開口遠方領域の混合分析モデルによれば、開口された補強リブ円筒殻構造の軸方向圧力に対する耐荷力の分析効率を大幅に向上させられるほか、算出時間を短縮可能となる。また、2層最適化法は、当該開口補強問題における変数特性を十分に組み合わせ、異なる最適化アルゴリズムを用いて段階的に適化設計を展開することから、最適化効率が向上する。本発明によれば、開口の部分補強設計における構造効率が高まり、最適化設計の算出コストを削減可能となる。よって、本邦のキャリアロケットやミサイルの設計といった航空宇宙分野において、軸方向圧力補強リブ円筒殻構造の開口補強方法の一つとなり得る。   In the opening reinforcing method in the axial pressure reinforcing rib cylindrical shell provided by the present embodiment, first, the design flexibility of the NURBS curved rib is combined with the opening reinforcing requirement in the axial pressure reinforcing rib cylindrical shell structure, so that The power transmission path is greatly improved and the load resistance against the axial pressure in the axial pressure reinforcing rib cylindrical shell structure is improved. Subsequently, an adaptive partitioning method is provided for the near-opening region and the far-opening region to rationally determine the range of the near-opening region, so that an appropriate design region for optimization of the subsequent near-opening region can be obtained. Identify. Finally, based on the mixed analysis model, a two-layer optimization design method is provided for the opening reinforcement of the axial pressure reinforcing rib cylindrical shell. According to the mixed analysis model of the region near the opening and the region far from the opening, the analysis efficiency of the load bearing capacity against the axial pressure of the opened reinforcing rib cylindrical shell structure can be greatly improved, and the calculation time can be shortened. In addition, the two-layer optimization method sufficiently improves the optimization efficiency because the variable characteristics in the opening reinforcement problem are sufficiently combined and the optimization design is developed step by step using different optimization algorithms. According to the present invention, the structural efficiency in the partial reinforcement design of the opening is increased, and the calculation cost of the optimized design can be reduced. Therefore, in the aerospace field such as the design of carrier rockets and missiles in Japan, it can be one of the methods of reinforcing the opening of the axial pressure reinforcing rib cylindrical shell structure.

最後に、以上の各実施例は本発明の技術方案を説明するためのものであって、本発明を制限する主旨ではない。前記各実施例を参照して本発明を詳細に説明したが、当業者であれば、前記各実施例に記載される技術方案を補正、或いはその一部又は全ての技術的特徴につき等価の置き換えを実施したとしても、対応する技術方案の本質が本発明の各実施例における技術方案の範囲を逸脱することはないものと理解可能である。   Finally, each of the above embodiments is for explaining the technical solution of the present invention and is not intended to limit the present invention. Although the present invention has been described in detail with reference to each of the above embodiments, those skilled in the art will correct the technical solutions described in each of the above embodiments, or equivalently replace some or all of the technical features. However, it can be understood that the essence of the corresponding technical solution does not depart from the scope of the technical solution in each embodiment of the present invention.

Claims (5)

軸方向圧力補強リブ円筒殻における開口補強方法であって、
開口を含む軸方向圧力補強リブ円筒殻を開口遠方領域と開口付近領域に区分するステップ100を含み、当該ステップが、
座屈固有値解析を用い、軸方向圧力補強リブ円筒殻におけるn次までの座屈モードを取得するステップ101と、
n次までの座屈モードのうち選別条件を満たすm次までの部分座屈モードを選別し、m次までの部分座屈モードを重畳して混合モード形状を形成するステップ102であって、座屈変形が座屈変形閾値よりも大きな領域の面積が筐体総面積の1/a以下であり、aが2〜4であることを選別条件とするステップ102と、
形成された混合モードの形状に基づき、座屈変形が座屈変形閾値を超えている領域を開口付近領域、残りの領域を開口遠方領域として区分するステップ103と、
開口遠方領域に等価剛性モデルを構築し、開口付近領域に精密な幾何モデルを構築して、軸方向圧力補強リブ円筒殻の混合分析モデルを得るステップ200と、
均質化理論又は漸近的均質化理論に基づく軸方向圧力補強リブ円筒殻構造の等価剛性モデルを構築し、開口遠方領域の軸方向圧力補強リブ円筒殻を、異方性又は等方性の光学殻に等価とするステップ201と、
非一様有理Bスプライン曲線で描いた湾曲リブに基づいて、開口付近領域に精密な幾何モデルを構築するステップ202と、
開口付近領域と開口遠方領域の接続関係を設定し、開口を含む軸方向圧力補強リブ円筒殻の軸方向圧力に対する耐荷能力の混合分析モデルを取得するステップ203と、
軸方向圧力補強リブ円筒殻について開口補強の最適化を行い、最適化結果をチェックするステップ300と、を含むことを特徴とする方法。
A method of reinforcing an opening in an axial pressure reinforcing rib cylindrical shell,
Partitioning the axial pressure reinforcing rib cylindrical shell including the aperture into an aperture remote region and a region near the aperture, the step comprising:
Using buckling eigenvalue analysis to obtain a buckling mode up to the nth order in the axial pressure-reinforced rib cylindrical shell 101;
a step 102 of selecting a partial buckling mode up to an m-th order satisfying a selection condition from buckling modes up to an n-th order, and forming a mixed mode shape by superimposing the partial buckling modes up to the m-th order; A step 102 in which the area of the region where the bending deformation is larger than the buckling deformation threshold is 1 / a or less of the total housing area, and a is 2 to 4,
Dividing the region where the buckling deformation exceeds the buckling deformation threshold based on the shape of the formed mixed mode, as a region near the opening, and the remaining region as a region far from the opening; and
Building an equivalent stiffness model in the far opening region and building a precise geometric model in the near opening region to obtain a mixed analysis model of the axial pressure-reinforced rib cylindrical shell;
An equivalent stiffness model of the axial pressure-reinforced rib cylindrical shell structure based on the homogenization theory or asymptotic homogenization theory was constructed, and the axial pressure-reinforced rib cylindrical shell in the far region of the aperture was changed to an anisotropic or isotropic optical shell. Step 201 equivalent to
Building a precise geometric model 202 in the region near the opening based on curved ribs drawn with non-uniform rational B-spline curves;
Setting a connection relationship between the region near the opening and the region far from the opening, and obtaining a mixed analysis model 203 of the load bearing capacity against the axial pressure of the axial pressure reinforcing rib cylindrical shell including the opening; and
Optimizing aperture reinforcement for the axial pressure reinforcing rib cylindrical shell and checking 300 for optimization results.
軸方向圧力補強リブ円筒殻について開口補強の最適化を行い、最適化結果をチェックするステップ300は、
第1層の最適化において、代理モデルを大域的最適化手法と組み合わせることで、リブ厚、リブ高さ、軸方向のリブ数と配置、周方向のリブ数と配置、及びプライ角度のうちの1又はこれらの組み合わせを設計変数とし、軸方向圧力補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、軸方向圧力補強リブ円筒殻構造を最適化設計し、制約条件を満たした最適化設計を得るステップ301であって、軸方向のリブ配置が、単一の制御変数で描かれた配置関数で決定されるステップ301と、
第2層の最適化において、第1層の最適化設計に基づいてリブ厚、リブ高さ、軸方向のリブ数及び周方向のリブ数を固定し、勾配別部分最適化法を用いて、各湾曲リブの制御点座標を設計変数とし、軸方向圧力補強リブ円筒殻構造の軸方向圧力に対する耐荷力を目標関数とし、構造重量及び/又は構造製造コストを制約条件として、軸方向圧力補強リブ円筒殻構造を最適化設計し、制約条件を満たす最適化結果を取得するステップ302と、
精密な有限要素解析によって最適化結果をチェックするステップ303と、を含むことを特徴とする請求項1記載の軸方向圧力補強リブ円筒殻における開口補強方法。
The step 300 of optimizing the opening reinforcement for the axial pressure reinforcing rib cylindrical shell and checking the optimization result comprises:
In the optimization of the first layer, by combining the surrogate model with the global optimization method, the rib thickness, the rib height, the number and arrangement of the ribs in the axial direction, the number and arrangement of the ribs in the circumferential direction, and the ply angle One or a combination of these is used as a design variable, the load bearing capacity of the axial pressure reinforcing rib cylindrical shell structure against the axial pressure is set as a target function, and the structural weight and / or the structure manufacturing cost are used as constraint conditions. A step 301 for optimizing the structure and obtaining an optimized design satisfying the constraints, wherein the axial rib placement is determined by a placement function drawn with a single control variable;
In the optimization of the second layer, the rib thickness, the rib height, the number of ribs in the axial direction and the number of ribs in the circumferential direction are fixed based on the optimization design of the first layer, and a gradient-specific partial optimization method is used. The axial pressure reinforcement ribs are designed with the control point coordinates of each curved rib as design variables, the load bearing capacity against the axial pressure of the axial pressure reinforcement rib cylindrical shell structure as a target function, and the structural weight and / or structure manufacturing cost as constraints. A step 302 of optimizing the cylindrical shell structure and obtaining an optimization result that satisfies the constraint conditions;
The method of reinforcing an opening in an axial pressure reinforcing rib cylindrical shell according to claim 1, further comprising a step 303 of checking an optimization result by a precise finite element analysis.
前記代理モデルには、応答曲面モデル、クリギングモデル又は放射基底関数モデルが含まれ、前記大域的最適化手法には、粒子群最適化、遺伝的アルゴリズム、疑似アニーリング法、蟻コロニー最適化、タブーサーチ又は免疫アルゴリズムが含まれる、ことを特徴とする請求項2記載の軸方向圧力補強リブ円筒殻における開口補強方法。   The surrogate model includes a response surface model, a kriging model or a radial basis function model, and the global optimization method includes particle swarm optimization, genetic algorithm, pseudo-annealing method, ant colony optimization, tabu search 3. The method of reinforcing openings in an axial pressure reinforcing rib cylindrical shell according to claim 2, wherein an immune algorithm is included. 前記勾配別部分最適化法には、最急降下法、実行可能方向法、シンプレックス法、逐次線形計画法又は逐次二次計画法が含まれる、ことを特徴とする請求項2記載の軸方向圧力補強リブ円筒殻における開口補強方法。   3. The axial pressure reinforcement according to claim 2, wherein the gradient-based partial optimization method includes a steepest descent method, a feasible direction method, a simplex method, a sequential linear programming method, or a sequential quadratic programming method. A method of reinforcing openings in a rib cylindrical shell. 下記式によって軸方向のリブ配置関数が表され、
Figure 2016224912
は第1リブと第iリブとの距離、λはリブの配置係数、Nはリブ数、Lは第1リブと最終リブとの距離をそれぞれ表す、ことを特徴とする請求項2記載の軸方向圧力補強リブ円筒殻における開口補強方法。
The following formula represents the axial rib placement function,
Figure 2016224912
C i is a distance between the first rib and the i-th rib, λ is a rib placement coefficient, N is the number of ribs, and L D is a distance between the first rib and the final rib, respectively. A method for reinforcing an opening in a cylindrical shell of an axial pressure reinforcing rib as described.
JP2016054255A 2015-05-28 2016-03-17 Opening reinforcement design method in cylindrical shell with axial pressure reinforcement rib Active JP6235060B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510279783.6 2015-05-28
CN201510279783.6A CN104866673B (en) 2015-05-28 2015-05-28 A kind of axle presses the Cutout reinforcement method of reinforcement post shell

Publications (2)

Publication Number Publication Date
JP2016224912A true JP2016224912A (en) 2016-12-28
JP6235060B2 JP6235060B2 (en) 2017-11-22

Family

ID=53912498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054255A Active JP6235060B2 (en) 2015-05-28 2016-03-17 Opening reinforcement design method in cylindrical shell with axial pressure reinforcement rib

Country Status (2)

Country Link
JP (1) JP6235060B2 (en)
CN (1) CN104866673B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344524A (en) * 2018-10-18 2019-02-15 燕山大学 A kind of thin-slab structure reinforced bag sand well optimization method
CN109408939A (en) * 2018-10-18 2019-03-01 燕山大学 A kind of improved method for the thin-slab structure reinforced bag sand well optimization taking into account stress and displacement constraint
CN109614696A (en) * 2018-12-10 2019-04-12 安徽江淮汽车集团股份有限公司 A kind of the staff cultivation stepwise evaluation and positive development method of subframe
CN109684781A (en) * 2019-02-22 2019-04-26 北京石油化工学院 Miniature momenttum wheel magnetic vacuum sealing system optimization method
CN109740299A (en) * 2019-03-12 2019-05-10 中国舰船研究设计中心 A kind of underwater pressure hull opening reinforcement structure design method
CN110020485A (en) * 2019-04-10 2019-07-16 东北大学 One kind being based on bolted suspension type thin-walled column shell inherent characteristic analysis method
JP2020004357A (en) * 2018-06-28 2020-01-09 東漢新能源汽車科技有限公司 Optimization design method of front cover, and device
JP2020058219A (en) * 2018-09-27 2020-04-09 株式会社デンソー Rotary electric machine
CN111506860A (en) * 2020-04-16 2020-08-07 哈尔滨锅炉厂有限责任公司 Pipe connection reinforcement calculation method capable of simultaneously bearing internal pressure and external pressure
CN115416329A (en) * 2022-08-15 2022-12-02 中国人民解放军空军工程大学 Additive manufacturing method of continuous fiber composite structure containing holes
CN116187040A (en) * 2023-01-30 2023-05-30 中国特种设备检测研究院 Pressure container hole opening reinforcing method, system, electronic equipment and storage medium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522261B (en) * 2016-06-21 2023-04-07 哈尔滨乐普实业有限公司 Opening reinforcing technology for winding formed glass fiber reinforced plastic seawater desalination membrane shell
CN106503411A (en) * 2016-12-19 2017-03-15 中国航空工业集团公司沈阳飞机设计研究所 A kind of method for designing of fuselage primary load bearing reinforcing frame
CN107220461B (en) * 2017-06-26 2019-10-11 大连理工大学 A kind of variation rigidity composite panel shell structure effectively optimizing method
CN107480381B (en) * 2017-08-17 2018-08-10 广东工业大学 The method of response surface model is built based on simulated annealing and applies its system
CN109110150A (en) * 2018-08-10 2019-01-01 广州飞安航空科技有限公司 A kind of Aircraft Metal Structure reinforcement repairing strength and stiffness accordance method and system
CN109670271B (en) * 2019-01-15 2023-03-07 上海交通大学 Shape correction method of large thin-wall stiffened plate based on sensitive point multipoint incremental forming
CN112417602B (en) * 2020-11-30 2024-06-14 大连理工大学 Collaborative design method for rib layout, shape and size of thin-wall reinforced structure
CN112763166B (en) * 2020-12-29 2023-04-14 中国航空工业集团公司西安飞机设计研究所 Method for determining lateral rigidity of large-opening structure of cabin body of rectangular fuselage
CN112926147B (en) * 2021-01-27 2023-11-03 合肥工业大学 Posterior optimization design method for reinforced column shell containing defects
CN114912302B (en) * 2022-07-18 2022-10-14 上海索辰信息科技股份有限公司 Method for acquiring modal density of stiffened plate based on modal space sampling algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176233A (en) * 1998-12-10 2000-06-27 Babcock Hitachi Kk Self-supported spray type adsorption tower and wet type flue gas desulfurization apparatus
JP2007199961A (en) * 2006-01-25 2007-08-09 Nec Corp Analysis method, analysis system, and analyzer program of finite element method analysis model
JP2012077601A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Steel pipe column structure and method of manufacturing the same
JP2013008363A (en) * 2011-06-20 2013-01-10 Boeing Co:The Design of curved fiber paths for composite laminates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484531B (en) * 2014-12-18 2017-05-24 大连理工大学 Stiffened plate shell structure reliability optimization method with multisource uncertainty being considered

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176233A (en) * 1998-12-10 2000-06-27 Babcock Hitachi Kk Self-supported spray type adsorption tower and wet type flue gas desulfurization apparatus
JP2007199961A (en) * 2006-01-25 2007-08-09 Nec Corp Analysis method, analysis system, and analyzer program of finite element method analysis model
JP2012077601A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Steel pipe column structure and method of manufacturing the same
JP2013008363A (en) * 2011-06-20 2013-01-10 Boeing Co:The Design of curved fiber paths for composite laminates

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004357A (en) * 2018-06-28 2020-01-09 東漢新能源汽車科技有限公司 Optimization design method of front cover, and device
JP7363147B2 (en) 2018-09-27 2023-10-18 株式会社デンソー rotating electric machine
JP2020058219A (en) * 2018-09-27 2020-04-09 株式会社デンソー Rotary electric machine
CN109344524B (en) * 2018-10-18 2022-12-09 燕山大学 Method for optimizing distribution of reinforcing ribs of thin plate structure
CN109408939A (en) * 2018-10-18 2019-03-01 燕山大学 A kind of improved method for the thin-slab structure reinforced bag sand well optimization taking into account stress and displacement constraint
CN109344524A (en) * 2018-10-18 2019-02-15 燕山大学 A kind of thin-slab structure reinforced bag sand well optimization method
CN109408939B (en) * 2018-10-18 2022-11-29 燕山大学 Improvement method for optimizing distribution of reinforcing ribs of sheet structure considering both stress and displacement constraints
CN109614696A (en) * 2018-12-10 2019-04-12 安徽江淮汽车集团股份有限公司 A kind of the staff cultivation stepwise evaluation and positive development method of subframe
CN109614696B (en) * 2018-12-10 2023-05-09 安徽江淮汽车集团股份有限公司 Full-constraint layer-by-layer evaluation and forward development method for auxiliary frame
CN109684781A (en) * 2019-02-22 2019-04-26 北京石油化工学院 Miniature momenttum wheel magnetic vacuum sealing system optimization method
CN109740299A (en) * 2019-03-12 2019-05-10 中国舰船研究设计中心 A kind of underwater pressure hull opening reinforcement structure design method
CN110020485A (en) * 2019-04-10 2019-07-16 东北大学 One kind being based on bolted suspension type thin-walled column shell inherent characteristic analysis method
CN111506860A (en) * 2020-04-16 2020-08-07 哈尔滨锅炉厂有限责任公司 Pipe connection reinforcement calculation method capable of simultaneously bearing internal pressure and external pressure
CN115416329A (en) * 2022-08-15 2022-12-02 中国人民解放军空军工程大学 Additive manufacturing method of continuous fiber composite structure containing holes
CN115416329B (en) * 2022-08-15 2024-05-31 中国人民解放军空军工程大学 Additive manufacturing method of porous continuous fiber composite structure
CN116187040A (en) * 2023-01-30 2023-05-30 中国特种设备检测研究院 Pressure container hole opening reinforcing method, system, electronic equipment and storage medium
CN116187040B (en) * 2023-01-30 2023-10-20 中国特种设备检测研究院 Pressure container hole opening reinforcing method, system, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN104866673B (en) 2017-07-11
JP6235060B2 (en) 2017-11-22
CN104866673A (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6235060B2 (en) Opening reinforcement design method in cylindrical shell with axial pressure reinforcement rib
Wang et al. Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression
US10909282B2 (en) Method for rigidity enhancement and weight reduction using laser peening
Hao et al. Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors
EP2983099B1 (en) Method for determining reduction factor of axial load bearing capacity of a cylindrical shell structure in a rocket
JP6055070B2 (en) Reliability optimization method for plate structure with reinforced ribs considering multidimensional uncertainty
Wang et al. Determination of realistic worst imperfection for cylindrical shells using surrogate model
Wang et al. Optimum design of hierarchical stiffened shells for low imperfection sensitivity
Hao et al. Surrogate-based optimization of stiffened shells including load-carrying capacity and imperfection sensitivity
Wang et al. Compression behavior of strut-reinforced hierarchical lattice—Experiment and simulation
Dey et al. Rotational and ply-level uncertainty in response of composite shallow conical shells
Wang et al. Two-stage size-layout optimization of axially compressed stiffened panels
Foryś Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behaviour
Zheng et al. Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels
Pan et al. Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials
CN107590325A (en) A kind of fiber-reinforced composite materials structures optimization method based on Shepard interpolation
Wang et al. Generatrix shape optimization of stiffened shells for low imperfection sensitivity
Kanou et al. Numerical modeling of stresses and buckling loads of isogrid lattice composite structure cylinders
Hao et al. Optimization of curvilinearly stiffened panels with single cutout concerning the collapse load
Shahgholian-Ghahfarokhi et al. A sensitivity study of the free vibration of composite sandwich cylindrical shells with grid cores
Hao et al. Progressive optimization of complex shells with cutouts using a smart design domain method
Zhong et al. Variable-stiffness composite cylinder design under combined loadings by using the improved Kriging model
Xue et al. Free vibration analysis of functionally graded porous cylindrical panels and shells with porosity distributions along the thickness and length directions
Li et al. Improved reliability-based design optimization of non-uniformly stiffened spherical dome
Zhang et al. Shape optimisation of stainless steel corrugated cylindrical shells for additive manufacturing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6235060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250