JP2016217743A - 熱流束計測装置 - Google Patents

熱流束計測装置 Download PDF

Info

Publication number
JP2016217743A
JP2016217743A JP2015099286A JP2015099286A JP2016217743A JP 2016217743 A JP2016217743 A JP 2016217743A JP 2015099286 A JP2015099286 A JP 2015099286A JP 2015099286 A JP2015099286 A JP 2015099286A JP 2016217743 A JP2016217743 A JP 2016217743A
Authority
JP
Japan
Prior art keywords
flame
combustion chamber
information
calculating
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015099286A
Other languages
English (en)
Inventor
姉崎 幸信
Yukinobu Anezaki
幸信 姉崎
橋詰 剛
Takeshi Hashizume
剛 橋詰
健太郎 西田
Kentaro Nishida
健太郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2015099286A priority Critical patent/JP2016217743A/ja
Publication of JP2016217743A publication Critical patent/JP2016217743A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Engines (AREA)

Abstract

【課題】内燃機関の燃焼室での熱流束の計測精度の向上を図る。【解決手段】熱流束計測装置において、内燃機関の燃焼室における火炎を撮像する撮像手段と、撮像手段によって撮像された火炎画像に基づいて、火炎の移動速度に関する情報である火炎移動速度情報と、該火炎の温度に関する情報である火炎温度情報を算出する第1算出手段と、燃焼室内の圧力に関する圧力情報を取得する圧力情報取得手段と、火炎温度情報および圧力情報に基づいて、燃焼室内の燃焼ガスのプラントル数、動粘性係数、熱伝導率を含む所定パラメータを算出するとともに、火炎移動速度情報及び該所定パラメータに基づいて、火炎から燃焼室の内壁面への熱伝達に関する熱伝達率を算出する第2算出手段と、熱伝達率を含んで形成される所定の熱伝導方程式に従って、燃焼室の壁面内の所定深部での熱流束を算出する第3算出手段と、を備える。【選択図】図2

Description

本発明は、内燃機関の燃焼室における熱流束を計測する装置に関する。
例えばロケットや航空機等の、過酷な熱的環境に晒される物体の強度等を把握するために、物体表面に感温塗料を塗布しそこでの熱流束分布の計測が行われている。しかし、熱的な条件が変動する非定常状態での熱流束分布は時々刻々変化していくため、従来の感温塗料を用いた手法では熱変化に対する追従性が十分ではなく、物体における熱流束分布の計測精度の向上が求められていた。そこで、特許文献1に示す技術では、感温塗料が塗布された任意の材質からなる物体表面に励起光を照射し、物体表面温度に対応して変化する感温塗料の発光強度が、画像情報として高速レートで時系列的に取得検出される。そして、その画像情報に基づいて、光強度−温度較正特性から物質表面の温度分布画像が得られ、それに基づいて熱流束分布が算出される。これにより、物体における熱流束分布をその熱流束が非定常現象や短時間現象であっても計測することが可能とされる。
特開2004−212193号公報
過酷な熱的環境場の一例として、内燃機関の燃焼室の内部が挙げられる。燃焼室においては、燃料と空気の混合ガスが燃焼されるため、燃焼室内は高温高圧の環境に置かれることになる。また、この混合ガスの燃焼は定常的に生じるのではなく、断続的に発生するものである。そのため、燃焼室の壁面は非定常的な熱的環境に晒される。ここで、燃焼室内で生じた燃焼エネルギーは、理想的にその全てがピストンに伝えられることで、高効率の内燃機関として機能することになるが、実際には、燃焼エネルギーの一部が燃焼室の壁面に伝達されることで、いわば燃焼エネルギーの損失が生じ、内燃機関の効率を低下させることになる。このように内燃機関の効率改善の観点からも、燃焼室内の熱的挙動を正確に把握することは重要であり、その一例として、燃焼室における熱流束の利用が挙げられる。
ここで、上記の従来技術では、感温塗料を利用した熱流束の計測が行われている。しかし、内燃機関の燃焼室においては混合ガスが燃焼し、火炎が存在するため、従来技術で示したように感温塗料の発光強度の画像情報を精度よく取得することは困難である。また、感温塗料の発光を利用して間接的に熱流束を計測する場合には、熱に対する感温塗料の追従性のずれに起因した、計測精度の低下を回避することは極めて困難である。特に内燃機関においては、燃焼室内で極めて短時間の混合ガスの燃焼が繰り返される非定常的な熱的環境が形成されるため、感温塗料による熱流束の計測については計測精度の向上には自ずと限界が存在する。
本発明は、上記した問題点に鑑みてなされたものであり、内燃機関の燃焼室での熱流束の計測精度の向上を図る技術を提供することを目的とする。
本発明において、上記課題を解決するために、内燃機関の燃焼室の壁面内部での熱流束を決定する、該燃焼室内の火炎、すなわち混合ガスの燃焼によって形成される火炎に着目
した。そして、当該火炎を撮像し、その画像データに基づいて、火炎の移動速度情報及び火炎の温度情報を算出し、それとともに燃焼室内の圧力情報を利用することで、当該火炎から燃焼室の壁面に伝導する熱エネルギーを所定の熱伝導方程式に従って算出することで、壁面内部での熱流束を算出することが可能となる。
具体的には、本発明は熱流束計測装置であって、内燃機関の燃焼室における火炎を撮像する撮像手段と、前記撮像手段によって撮像された火炎画像に基づいて、火炎の移動速度に関する情報である火炎移動速度情報と、該火炎の温度に関する情報である火炎温度情報を算出する第1算出手段と、前記燃焼室内の圧力に関する圧力情報を取得する圧力情報取得手段と、前記火炎温度情報および前記圧力情報に基づいて、前記燃焼室内の燃焼ガスのプラントル数、動粘性係数、熱伝導率を含む所定パラメータを算出するとともに、前記火炎移動速度情報及び該所定パラメータに基づいて、前記火炎から前記燃焼室の内壁面への熱伝達に関する熱伝達率を算出する第2算出手段と、前記熱伝達率を含んで形成される所定の熱伝導方程式に従って、前記燃焼室の壁面内の所定深部での熱流束を算出する第3算出手段と、を備える。当該構成によれば、火炎の画像データそのものを利用するため、従来技術のように火炎によって感温塗料の発光強度の画像情報の取得が阻害されるようなことは回避できる。
本発明によれば、内燃機関の燃焼室での熱流束の計測精度の向上を図ることが可能となる。
本発明に係る熱流束計測装置の概略構成を示す図である。 図1に示す熱流束計測装置において実行される、内燃機関の燃焼室の壁面内部における熱流束を計測するための計測処理に関するフローチャートである。 図2に示す計測処理において撮像された火炎の画像を示す図である。 図2に示す計測処理においてPIV処理に従って算出された火炎の移動速度の分布を示す図である。 図2に示す計測処理において2色法に従って算出された火炎の温度の分布を示す図である。 燃焼室内の火炎から壁面内部への熱伝達を概念的に記載した図である。 図1に示す熱流束計測装置により計測された燃焼室の壁面内部における熱流束の分布を示す図である。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は、本実施例に係る熱流束計測装置の概略構成を示す図である。図1に示す燃料噴射弁1は、ディーゼルエンジン用の噴射弁である。図1においては、燃料噴射弁1が搭載される内燃機関の全体構成の記載は省略されており、その燃焼室9を形成する燃焼容器2及び燃料噴射弁1から噴射された燃料が自着火することで形成される火炎10に直接晒される位置に、燃焼室9の壁面3が配置されている。
また、燃焼容器2の一部に、燃焼室9内の様子を外部から確認できる、耐熱性の可視化窓4が設けられている。この可視化窓4を通すことで、壁面3に接近する火炎10の部位を外部から確認することが可能となる。そこで、当該部位を撮像視野に収めるように、カラー(RGB)の高速度カメラ6が配置されている。この高速度カメラ6には、被写界深
度の浅いレンズ7が設置されているため、壁面3に到達する直前の火炎10のスポット的な撮像が好適に行われ得る。また、燃焼室9内の圧力を検出するための圧力センサ5が、燃焼容器2に配置されている。
そして、図1に示す熱流束計測装置は解析装置8を有している。解析装置8は、いわゆるコンピュータであり、演算処理装置やメモリ等を有する。また、高速度カメラ6及び圧力センサ5は、この解析装置8に電気的に接続されており、高速度カメラ6により撮像された画像データや、圧力センサ5による圧力の検出データは解析装置8に引き渡されて、そこで後述する壁面3での熱流束計測のための処理に利用されることになる。
そこで、図2に基づいて、壁面3での熱流束計測のための処理について説明する。当該熱流束計測処理は、解析装置8内の演算処理装置によって、所定のプログラムの実行により実現される。なお、当該所定のプログラムは、解析装置8内のメモリに格納されている。先ずS101では、燃料噴射弁1からの噴射燃料が自着火燃焼を行い得る条件が燃焼室9内に形成された状態において、当該燃料噴射弁1から燃料が噴射され、それにより形成される火炎10が高速度カメラ6により撮像される。本熱流束計測処理は、火炎10から壁面3が受熱することで生じる熱流束を計測するものであるから、S101では、火炎10が壁面3に到達する直前の当該火炎10の撮像が行われる。なお、この撮像は、熱流束の挙動を把握する期間にわたって複数回行われる。図3Aに、撮像された火炎10の一例を示す。撮像された火炎10の画像データは、解析装置8へ引き渡される。更に、S101では、火炎10の撮像時における燃焼室9内の圧力が、圧力センサ5によって検出される。S101の処理が終了すると、S102へ進む。
S102では、複数回にわたって撮像された火炎10の画像データに基づいて、PIV処理により火炎10の移動速度情報の算出が行われる。S102の処理は、本発明に係る第1算出手段による処理の一部を形成する。PIV処理は、測定される流速を可視化するために用いられるトレーサ粒子が微小時間Δtに移動する距離Δxを、画像データの処理により算出し、その移動距離ΔxをΔtで除することで、流速を間接的に算出する手法である。そして、PIV処理には、移動距離Δxを算出するための手法として、画像相関法と粒子追跡法の2つの手法が例示できる。本実施例では火炎の移動速度情報を算出するために、撮像した火炎10の画像データにおける輝度むらを利用して、画像相関法に従ってその移動速度情報の算出を行うものとする。なお、PIV処理自体は公知の画像処理技術であるから、本願での詳細な説明は割愛する。
ここで、図3Bに、図3Aに示す火炎データに基づいて算出された火炎10の移動速度情報の分布の一例が示される。図3Bから理解できるように、所々、火炎10の移動速度が比較的高くなっている領域が存在している。S102の処理が終了すると、S103へ進む。
S103では、複数回にわたって撮像された火炎10の画像データに基づいて、2色法により火炎10の温度情報の算出が行われる。S103の処理は、S102の処理と同様、本発明に係る第1算出手段による処理の一部を形成する。2色法は、火炎のカラー画像から火炎の温度を計測するための従来技術による手法であって、例えば、特許文献である特開平01−180430号公報等に詳細が開示されている。2色法では、撮像された火炎の画像データのRGB情報の中から、例えば、R信号とG信号を抽出し、両者の出力比であるR/Gを求める。そして、予め準備しておいた温度をパラメータとした黒体放射の理論曲線に基づいて、当該出力比R/Gから火炎の温度を算出する手法である。本実施例では、撮像範囲の火炎の画像データをメッシュ状に分割し、各メッシュ領域に対する面積平均の火炎温度を2色法により算出する。
ここで、図3Cに、図3Aに示す火炎データに基づいて算出された火炎10の温度情報の分布の一例が示される。図3Cから理解できるように、撮像領域において他の領域よりも突出して火炎温度が高くなっている箇所(図中、丸印で囲まれている領域)が存在することが理解できる。S103の処理が終了すると、S104へ進む。
次に、S104では、S103で算出された火炎10の温度情報と、S101で圧力センサ5によって検出された燃焼室9内の圧力に基づいて、燃焼室9内の火炎(燃焼ガス)のプラントル数Pr、動粘性係数ν、熱伝導率λを含む所定パラメータが算出される。S104の処理は、本発明に係る第2算出手段による処理の一部を形成する。これらの所定パラメータは、後述のS105における熱伝達率の算出や、S106、S107での各処理に必要なパラメータであり、火炎の温度とその圧力により変化する物性値であることが知られている。そこで、解析装置8のメモリ内には、火炎の温度と圧力を引数として、プラントル数Pr、動粘性係数ν、熱伝導率λを算出するための制御マップが格納されている。そして、S104の処理においては、S103で算出された火炎10の温度情報と、S101で検出された圧力を用いて、当該制御マップにアクセスすることで、所定パラメータであるプラントル数Pr、動粘性係数ν、熱伝導率λが算出される。S104の処理が終了すると、S105へ進む。
S105では、下記の式1に従って、火炎10から壁面3への熱伝達に関する熱伝達率αが算出される。S105の処理は、S104の処理と同様に、本発明に係る第2算出手段による処理の一部を形成する。本実施例のようにディーゼル燃焼が行われる場合は、一般的には、壁面3に沿って乱流伝熱が生じていると考えられる。この点、および壁面3が概ね板状であることを踏まえて、式1は決定されている。なお、当該熱伝達率αを含め、S106で算出される壁面3の表面温度Ts及び所定深部の温度Tw、S107で算出される熱流束qを算出するための諸パラメータの相関をモデル化した状態を図4に示す。図4に示すように、式1で算出される熱伝達率αは、温度がTgであり壁面3に沿った移動速度がVである火炎10から壁面3に熱が伝達するときの熱伝達率に相当する。そして、壁面3の表面温度はTsであり、その表面から内部にx進んだ位置である所定深部の温度はTwと記載されている。そして、この壁面3内での熱流束がqと定義されている。
Figure 2016217743
Pr:プラントル数
V:火炎の移動速度
L:代表寸法
ν:火炎の動粘性係数
λg:火炎の熱伝導率
複数回にわたって撮像された火炎の画像データに基づいて算出された火炎移動速度情報、火炎温度情報、及び圧力情報を利用することで、S105の処理により熱伝達率αの時系列データが算出されることになる。S105の処理が終了すると、S106へ進む。
S106では、下記の式2に従って、壁面3の表面温度Tsと所定深部の温度Twが算出される。S106の処理は、本発明に係る第3算出手段による処理の一部を形成する。本実施例のようにディーゼル燃焼による火炎は時間的に変化するため、当該火炎から壁面3への熱伝達は、非定常のものと考えられる。この点を考慮して決定されたのが、下記の式2に示す、壁面3の温度Tを算出するための一次の熱伝導方程式である。当該式2において、表面温度Tsはx=0とすればよく、所定深部の温度Twはx=xとすればよい。
Figure 2016217743

Tg:火炎温度
:壁面3の初期温度
λw:壁面3の熱伝導率
aw:壁面3の熱拡散率
erfc(x):相補誤差関数
S106の処理が終了すると、S107へ進む。
S107では、S106で算出された表面温度Ts及び所定深部の温度Twを、下記の式3に代入することで、壁面3の表面から深さxにおける熱流束の分布が、時系列的に算出される。S107の処理は、S106の処理と同様に、本発明に係る第3算出手段による処理の一部を形成する。
Figure 2016217743

ρw:壁面3の密度
Cw:壁面3の比熱
ここで、図5に、式3に従って算出された熱流束の分布が示される。図5から理解できるように、撮像領域において他の領域よりも突出して熱流束が高くなっている箇所が存在することが理解できる。なお、図3B、図3C、及び図5の記載は、高速度カメラ6によって撮像された図3Aの火炎画像に対応している。そのため、本実施例では、熱流束と、火炎の移動速度、火炎の温度との相関関係を面(画像面)で把握することが可能となる。そこで、図3B、図3C、及び図5の記載に基づけば、熱流束が大きくなっている箇所(図5において丸印で囲まれている箇所)に対応する箇所を、図3B及び図3Cにおいても同様に丸印で囲んでいる。これらの比較から分かるように、熱流束が大きくなる箇所においては、火炎の移動速度はそれほど大きくなっていないものの、火炎の温度は比較的高くなっていることが容易に理解できる。ここで、図5に示す「熱流束」は、燃焼室9から壁面3に逃げる熱の流れを意味するものであるから、いわば内燃機関でのディーゼル燃焼における損失(いわゆる冷却損失)を表している。そうすれば、図3B、図3C、図5の相関を踏まえれば、この損失を軽減させるためには、ディーゼル燃焼による火炎10の移動速度を抑制するよりも、その温度を低減した方が図5に示す丸印で囲まれた箇所の熱流束を低減するのに有用であると推察できる。S107の処理後、本制御を終了する。
本制御によれば、火炎10の撮像された画像データを利用して、壁面3における熱流束を計測するため、従来技術のように、火炎10の存在が邪魔になることはなく、熱流束の計測精度を向上させることができる。また、熱流束の計測に当たって壁面3の熱的な物性値である密度や比熱を利用するため、当該計測が壁面3の材質によって制限されることがない。
1・・・燃料噴射弁
2・・・燃焼容器
3・・・壁面
5・・・圧力センサ
6・・・高速度カメラ
8・・・解析装置
9・・・燃焼室
10・・・火炎

Claims (1)

  1. 内燃機関の燃焼室における火炎を撮像する撮像手段と、
    前記撮像手段によって撮像された火炎画像に基づいて、火炎の移動速度に関する情報である火炎移動速度情報と、該火炎の温度に関する情報である火炎温度情報を算出する第1算出手段と、
    前記燃焼室内の圧力に関する圧力情報を取得する圧力情報取得手段と、
    前記火炎温度情報および前記圧力情報に基づいて、前記燃焼室内の燃焼ガスのプラントル数、動粘性係数、熱伝導率を含む所定パラメータを算出するとともに、前記火炎移動速度情報及び該所定パラメータに基づいて、前記火炎から前記燃焼室の内壁面への熱伝達に関する熱伝達率を算出する第2算出手段と、
    前記熱伝達率を含んで形成される所定の熱伝導方程式に従って、前記燃焼室の壁面内の所定深部での熱流束を算出する第3算出手段と、
    を備える、熱流束計測装置。
JP2015099286A 2015-05-14 2015-05-14 熱流束計測装置 Pending JP2016217743A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015099286A JP2016217743A (ja) 2015-05-14 2015-05-14 熱流束計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099286A JP2016217743A (ja) 2015-05-14 2015-05-14 熱流束計測装置

Publications (1)

Publication Number Publication Date
JP2016217743A true JP2016217743A (ja) 2016-12-22

Family

ID=57578337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099286A Pending JP2016217743A (ja) 2015-05-14 2015-05-14 熱流束計測装置

Country Status (1)

Country Link
JP (1) JP2016217743A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931319A (zh) * 2018-06-08 2018-12-04 北京航空航天大学 热容燃烧室内壁瞬态热流密度测量方法及装置
JP2019178987A (ja) * 2018-03-30 2019-10-17 国立研究開発法人 海上・港湾・航空技術研究所 熱損失評価装置及び熱損失評価方法、材料評価方法
JP2019184252A (ja) * 2018-04-02 2019-10-24 学校法人明治大学 乱流特性の導出方法および導出装置
CN110823584A (zh) * 2019-11-06 2020-02-21 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178987A (ja) * 2018-03-30 2019-10-17 国立研究開発法人 海上・港湾・航空技術研究所 熱損失評価装置及び熱損失評価方法、材料評価方法
JP6994248B2 (ja) 2018-03-30 2022-01-14 国立研究開発法人 海上・港湾・航空技術研究所 熱損失評価装置及び熱損失評価方法、材料評価方法
JP2019184252A (ja) * 2018-04-02 2019-10-24 学校法人明治大学 乱流特性の導出方法および導出装置
JP7032801B2 (ja) 2018-04-02 2022-03-09 学校法人明治大学 乱流特性の導出方法および導出装置
CN108931319A (zh) * 2018-06-08 2018-12-04 北京航空航天大学 热容燃烧室内壁瞬态热流密度测量方法及装置
CN108931319B (zh) * 2018-06-08 2020-01-31 北京航空航天大学 热容燃烧室内壁瞬态热流密度测量方法及装置
CN110823584A (zh) * 2019-11-06 2020-02-21 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置
CN110823584B (zh) * 2019-11-06 2024-05-28 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置

Similar Documents

Publication Publication Date Title
JP2016217743A (ja) 熱流束計測装置
Fuhrmann et al. Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors
Fuhrmann et al. High-speed phosphor thermometry
Peterson et al. Early flame propagation in a spark-ignition engine measured with quasi 4D-diagnostics
Sun et al. Single-shot, Time-Resolved planar Laser-Induced Incandescence (TiRe-LII) for soot primary particle sizing in flames
US9772298B2 (en) Method and apparatus for determining thermal conductivity and thermal diffusivity of a heterogeneous material
KR20140091784A (ko) 열 흐름 서모그래피에 의한 샘플의 검사 방법
CN104807501A (zh) 紫外激光诱导磷光成像同步测速和测温方法及***
Pan et al. Experimental investigation of fuel film characteristics of ethanol impinging spray at ultra-low temperature
CN109764820A (zh) 一种定容燃烧火焰传播半径的测量角度步长确定方法
Li et al. Effect of nonuniform radiation properties on flame temperature reconstruction based on light field imaging
Ding et al. Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine
El-Adawy et al. Stereoscopic particle image velocimetry for engine flow measurements: Principles and applications
Cai et al. Simultaneous measurement of two-dimensional temperature and strain fields based on thermographic phosphor and digital image correlation
Schreivogel et al. Heat transfer measurements downstream of trenched film cooling holes using a novel optical two-layer measurement technique
Greene Momentum near-wall region characterization in a reciprocating internal-combustion engine
Mancaruso et al. Temperature measurements of the piston optical window in a research compression ignition engine via thermography and templugs
Znamenskaya et al. Time-resolved thermography of impinging water jet
JP7032801B2 (ja) 乱流特性の導出方法および導出装置
RU2460063C1 (ru) Способ определения теплопроводности и температуропроводности твердого тела при нестационарном тепловом режиме
SI24410A (sl) Sistem in metoda za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra
RU2400717C2 (ru) Способ тепловизионного определения характеристик турбулентности газового потока
Mahmud et al. Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure at Similar Injection Rate Condition
CN1693859A (zh) 基于数据融合的非接触式高温测量方法
Boust et al. A model of flame quenching in non-isothermal initial conditions