JP2016204213A - Production method of zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector - Google Patents

Production method of zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector Download PDF

Info

Publication number
JP2016204213A
JP2016204213A JP2015088708A JP2015088708A JP2016204213A JP 2016204213 A JP2016204213 A JP 2016204213A JP 2015088708 A JP2015088708 A JP 2015088708A JP 2015088708 A JP2015088708 A JP 2015088708A JP 2016204213 A JP2016204213 A JP 2016204213A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide crystal
fluorescence lifetime
zno
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015088708A
Other languages
Japanese (ja)
Other versions
JP6623412B2 (en
Inventor
承生 福田
Tsuguo Fukuda
承生 福田
信彦 猿倉
Nobuhiko Sarukura
信彦 猿倉
清水俊彦
Toshihiko Shimizu
山ノ井航平
Kohei Yamanoi
坪井瑞輝
Muzuki Tsuboi
佑輝 南
Yuki Minami
佑輝 南
ジョン フェルナンデス エンピゾメルヴィン
John Fernandez Empizo Melvin
ジョン フェルナンデス エンピゾメルヴィン
有田廉
Ren Arita
達広 堀
Tatsuhiro Hori
達広 堀
福田一仁
Kazuhito Fukuda
高畠正宏
Masahiro Takabatake
一公 森
Kazuyuki Mori
一公 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Fukuda Crystal Laboratory
Original Assignee
Osaka University NUC
Fukuda Crystal Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Fukuda Crystal Laboratory filed Critical Osaka University NUC
Priority to JP2015088708A priority Critical patent/JP6623412B2/en
Publication of JP2016204213A publication Critical patent/JP2016204213A/en
Application granted granted Critical
Publication of JP6623412B2 publication Critical patent/JP6623412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for shortening a service life which can be performed after crystal production of a zinc oxide crystal.SOLUTION: A fluorescence lifetime of light emission from a ZnO crystal after crystal production is controlled by irradiating a zinc oxide crystal with a gamma ray which is an electromagnetic radiation, to thereby produce the zinc oxide crystal.SELECTED DRAWING: Figure 2

Description

本発明は、本発明は、ガンマ線によるZnOの結晶の蛍光寿命の制御に関するものである。   The present invention relates to control of the fluorescence lifetime of ZnO crystals by gamma rays.

現在X線自由電子レーザー(XFEL)の開発やEUV(極端紫外光)リソグラフィーなど、紫外領域からX線領域の光源が注目されている。特に現在、サブピコ秒オーダーやフェムト秒オーダーのパルスの紫外光源、X線光源の活用が期待されており、サブピコ秒オーダーやフェムト秒オーダーに対応するシンチレータが不可欠である。
そこで近年、酸化亜鉛(ZnO)のシンチレータ応用が注目されており、酸化亜鉛(ZnO)は、光電子工学の様々な用途に使用することができるII−VI半導体化合物である。その広く直接遷移が生じるバンドギャップ(3.3 e V=380 nm)と大きな励起子結合エネルギー(60 meV)のため、ZnOは強烈かつ効率的な短波長のバンド端付近の励起子発光を室温、またはそれ以上の高温において維持することができる。類似の半導体材料の窒化ガリウム(GaN)に比べて、その広範囲にわたる利用可能性と高品質の単結晶という利点をZnOは有する。
しかしながら、現在EUV光源やX線光源のシンチレータとして蛍光寿命が不十分であり、現在酸化亜鉛(ZnO)の蛍光寿命の短寿命化が期待されている。
Currently, light sources from the ultraviolet region to the X-ray region, such as the development of an X-ray free electron laser (XFEL) and EUV (extreme ultraviolet) lithography, are attracting attention. In particular, it is currently expected to use ultraviolet light sources and X-ray light sources with pulses in the order of subpicoseconds and femtoseconds, and scintillators that are compatible with the order of subpicoseconds and femtoseconds are essential.
Thus, in recent years, zinc oxide (ZnO) scintillator applications have attracted attention, and zinc oxide (ZnO) is an II-VI semiconductor compound that can be used for various applications in optoelectronics. Due to its wide direct transition band gap (3.3 eV = 380 nm) and large exciton binding energy (60 meV), ZnO emits excitonic emission near the band edge of intense and efficient short wavelength at room temperature. Or at higher temperatures. Compared to the similar semiconductor material gallium nitride (GaN), ZnO has the advantages of its wide availability and high quality single crystal.
However, the fluorescence lifetime is currently insufficient as a scintillator of an EUV light source or an X-ray light source, and a reduction in the lifetime of zinc oxide (ZnO) is currently expected.

そして、発光寿命を短くする方法として、結晶生成中に不純物をドープする方法や結晶のマイクロ構造化による方法が進められてきた。
しかしこれらの発光寿命を短くする方法は結晶作成中に行うものであり、結晶作成後に蛍光寿命を短くする方法は存在しなかった。
また不純物ドーピングやナノ構造化は結晶内の均一性を確保しにくく、励起光源の入射位置によって発光寿命が変化してしまうという問題点を持っていた。
従って、従来よりも結晶内を均一に短寿命化することができ、結晶作成後に行える短寿命化の方法が必要となった。
それに加えて、サブピコ秒オーダーやフェムト秒オーダーの蛍光寿命が必要とされているため、時間分解能が十分であるとは言えず、これらの手段と同時に用いることができる蛍光寿命を短くできる手段の開発が期待されていた。
As a method for shortening the light emission lifetime, a method of doping impurities during crystal formation and a method of making a crystal microstructure have been advanced.
However, these methods for shortening the light emission lifetime are performed during crystal production, and there has been no method for shortening the fluorescence lifetime after crystal production.
Impurity doping and nano-structuring have the problem that it is difficult to ensure uniformity within the crystal, and the light emission lifetime changes depending on the incident position of the excitation light source.
Therefore, it has become necessary to provide a method for shortening the lifetime which can be shortened uniformly in the crystal as compared with the prior art and which can be performed after the crystal is formed.
In addition, sub-picosecond and femtosecond order fluorescence lifetimes are required, so it cannot be said that the time resolution is sufficient, and the development of means that can shorten the fluorescence lifetime that can be used simultaneously with these means Was expected.

また、水熱合成法によって作られたZnOは優れたシンチレーション特性が報告されている。
その特性は、光学励起源にかかわらず、ZnOは約1.0ナノ秒の早い蛍光寿命を有する。それに加えて、新しいクエンチング経路の生成に伴う不純物ドーピングか振動子強度を最大にするナノ構造の利用によってZnOの蛍光寿命は格段に向上した。
しかしながら、上記要求を満たすには、この作成されたZnO結晶の蛍光寿命を制御し、短寿命化することが必要であり、また他の方法を模索する上で、放射線環境の影響は特に重要であり、結晶に対する放射線影響が注目されていた。
それは、高エネルギーかつイオン化された放射線の暴露は構造特性、光学特性、電子特性を変えうるためである。
さらに、バルクZnO結晶に対する電子と陽子照射に関する調査はすでに行われており、ZnOの応用に関する調査だけでなく、欠陥に関する情報も研究されてきた。
In addition, ZnO produced by a hydrothermal synthesis method has been reported to have excellent scintillation characteristics.
Its properties are that ZnO has a fast fluorescence lifetime of about 1.0 nanoseconds, regardless of the optical excitation source. In addition, the fluorescence lifetime of ZnO has been significantly improved by the use of impurity doping associated with the generation of new quenching pathways or the use of nanostructures that maximize oscillator strength.
However, in order to satisfy the above requirements, it is necessary to control and shorten the fluorescence lifetime of the prepared ZnO crystal, and the influence of the radiation environment is particularly important in searching for other methods. There was a lot of attention to the radiation effects on the crystals.
This is because exposure to high energy and ionized radiation can alter structural, optical and electronic properties.
Furthermore, investigations on electron and proton irradiation on bulk ZnO crystals have already been conducted, and information on defects as well as investigations on the application of ZnO have been studied.

特開2012−12527号公報JP2012-12527A 特開2010−53017号公報JP 2010-53017 A 特開2013−212969号公報JP 2013-212969 A

[1]H. Morkoc and U. Ozgur, “Zinc Oxide: Fundamentals, Materials andDevice Technology,” Wiley-VCH Verlag GmbH & Co. KGaA, 2009, Ch. 3: OpticalProperties, pp. 131-244.[1] H. Morkoc and U. Ozgur, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Wiley-VCH Verlag GmbH & Co. KGaA, 2009, Ch. 3: OpticalProperties, pp. 131-244. [2]M. Tanaka, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, Y.Furukawa, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y.Kagamitani, D. Ehrentaut, T. Fukuda, “Hydrothermal method grown large-sizedzinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography,”Appl. Phys. Lett.91, 2007, 231117.[2] M. Tanaka, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, Y. Furukawa, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y. Kagamitani , D. Ehrentaut, T. Fukuda, “Hydrothermal method grown large-sizedzinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography,” Appl. Phys. Lett. 91, 2007, 231117. [3]Y. Furukawa, M. Tanaka, T. Nakazato, T. Tatsumi, M. Nishikino, H.Yamatani, K. Nagashima, T. Kimura, H. Murakami, S. Saito, N. Sarukura, H.Nishimura, K. Mima, Y.Kagamitani, D. Ehrentaut, T. Fukuda, “Temperaturedependence of scintillation properties for a hydrothermal-method-grown zincoxide crystal evaluated by nickel-like silver laser pulses,” J. Opt. Soc. Am. B25, 2008, B118.[3] Y. Furukawa, M. Tanaka, T. Nakazato, T. Tatsumi, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, H. Murakami, S. Saito, N. Sarukura, H. Nishimura , K. Mima, Y. Kagamitani, D. Ehrentaut, T. Fukuda, “Temperaturedependence of scintillation properties for a hydrothermal-method-grown zinc oxide crystal evaluated by nickel-like silver laser pulses,” J. Opt. Soc. Am. B25 , 2008, B118. [4]T. Nakazato, Y. Furukawa, M. Tanaka, T. Tatsumi, M. Nishikino, H.Yamatani, K. Nagashima, T. Kimura, H. Murakami, S. Saito, T. Shimizu, N.Sarukura, H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentaut, T. Fukuda,“Hydrothermal-method-grown ZnO single crystal as fast EUV scintillator forfuture lithography,” J. Cryst. Growth 311, 2009, 875-877.[4] T. Nakazato, Y. Furukawa, M. Tanaka, T. Tatsumi, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, H. Murakami, S. Saito, T. Shimizu, N. Sarukura , H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentaut, T. Fukuda, “Hydrothermal-method-grown ZnO single crystal as fast EUV scintillator forfuture lithography,” J. Cryst. Growth 311, 2009, 875-877 . [5]T. Shimizu, K. Yamanoi, K. Sakai, M. Cadatal-Raduban, T.Nakazato, N. Sarukura, M. Kano, A. Wakamiya, D. Ehrentraut, T. Fukuda, M.Nagasono, T. Togashi, S. Matsubara, K. Tono, A. Higashiya, M. Yabashi, H.Kimura, H. Ohashi, T. Ishikawa, “Response time-shortened zinc oxidescintillator for accurate single-shot synchronization of extreme ultravioletfree-electron laser and short-pulse laser,” Appl. Phys. Express 4, 2011,062701.[5] T. Shimizu, K. Yamanoi, K. Sakai, M. Cadatal-Raduban, T. Nakazato, N. Sarukura, M. Kano, A. Wakamiya, D. Ehrentraut, T. Fukuda, M. Nagasono, T Togashi, S. Matsubara, K. Tono, A. Higashiya, M. Yabashi, H. Kimura, H. Ohashi, T. Ishikawa, “Response time-shortened zinc oxidescintillator for accurate single-shot synchronization of extreme ultraviolet free-electron laser and short-pulse laser, ”Appl. Phys. Express 4, 2011,062701. [6]M. Kano, A. Wakamiya, K. Sakai, K. Yamanoi, M. Cadatal-Raduban,T. Nakazato, T. Shimizu, N. Sarukura, D. Ehrentraut, T. Fukuda.,“Response-time-improved ZnO scintillator by impurity doping,” J. Cryst. Growth318, 2011, 788-790.[6] M. Kano, A. Wakamiya, K. Sakai, K. Yamanoi, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, D. Ehrentraut, T. Fukuda., “Response-time -improved ZnO scintillator by impurity doping, ”J. Cryst. Growth318, 2011, 788-790. [7]K. Yamanoi, T. Shimizu, Y. Furukawa, M. Cadatal-Raduban, T.Nakazato, K. Sakai, M. Tsuboi, R. Nishi, N. Sarukura, M. Tanaka, M. Nishikino,H. Yamatani, K. Nagashima, T. Kimura, T. Fukuda, M. Nagasono, T. Togashi, A.Higashiya, M. Yabashi, T. Ishikawa, H. Ohashi, H. Kimura, “Optical propertiesof hydrothermal-method-grown ZnO crystal as EUV laser diagnostics material,” J.Cryst. Growth 362, 2013, 264-267.[7] K. Yamanoi, T. Shimizu, Y. Furukawa, M. Cadatal-Raduban, T. Nakazato, K. Sakai, M. Tsuboi, R. Nishi, N. Sarukura, M. Tanaka, M. Nishikino, H Yamatani, K. Nagashima, T. Kimura, T. Fukuda, M. Nagasono, T. Togashi, A. Higashiya, M. Yabashi, T. Ishikawa, H. Ohashi, H. Kimura, “Optical properties of hydrothermal-method- grown ZnO crystal as EUV laser diagnostics material, ”J. Cryst. Growth 362, 2013, 264-267. [8]J. Wilkinson K.B. Ucer, R.T. Williams, “Picosecond excitonicluminescence in ZnO and other wide-gap semiconductors,” Rad. Meas. 38, 2004,501-505.[8] J. Wilkinson K.B. Ucer, R.T. Williams, “Picosecond excitonicluminescence in ZnO and other wide-gap semiconductors,” Rad. Meas. 38, 2004, 501-505. [9]D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, J.R. Sizelove,“Production and annealing of electron irradiation damage in ZnO,” Appl. Phys.Lett. 75 (6), 1999, 811-813.[9] D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L.Jones, J.R.Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75 (6), 1999, 811-813. [10]F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. vanLaarhoven, D.C. Look, “The influence of high energy proton bombardment on theelectrical and defect properties of single-crystal ZnO,” J. Phys.-Condens. Mat.13, 2001, 8989-8999.[10] FD Auret, SA Goodman, M. Hayes, MJ Legodi, HA vanLaarhoven, DC Look, “The influence of high energy proton bombardment on theelectrical and defect properties of single-crystal ZnO,” J. Phys.-Condens. Mat .13, 2001, 8989-8999. [11]A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova,V.I. Vdovin,K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, J.M.Zavada, V.A. Dravin, ‘’Proton implantation effects on electrical andrecombination properties of undoped ZnO,” ,J. Appl. Phys.94(5), 2003, 2895-2900[11] AY Polyakov, NB Smirnov, AV Govorkov, EA Kozhukhova, VI Vdovin, K. Ip, ME Overberg, YW Heo, DP Norton, SJ Pearton, JMZavada, VA Dravin, '' Proton implantation effects on electrical andrecombination properties of undoped ZnO, ”, J. Appl. Phys. 94 (5), 2003, 2895-2900 [12]Z.Q. Fang, B. Claflin, D.C. Look, G.C. Farlow, “Electronirradiation induced deep centers in hydrothermally grown ZnO,” J. Appl. Phys.101, 2007, 086106.[12] Z.Q. Fang, B. Claflin, D.C. Look, G.C. Farlow, “Electronirradiation induced deep centers in hydrothermally grown ZnO,” J. Appl. Phys. 101, 2007, 086106. [13]L.A. Kappers, O.R. Gilliam, S.M. Evans, L.E. Halliburton, N.C.Giles, “EPR and optical study of oxygen and zinc vacancies inelectron-irradiated ZnO,” Nucl. Instrum. Meth. B 266, 2008, 2953-2957.[13] L.A. Kappers, O.R.Gilliam, S.M.Evans, L.E.Halliburton, N.C.Giles, “EPR and optical study of oxygen and zinc vacancies inelectron-irradiated ZnO,” Nucl. Instrum. Meth. B 266, 2008, 2953-2957. [14]E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T.Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermalmethod,” J. Cryst. Growth 260, 2004, 166-170.[14] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermalmethod,” J Cryst. Growth 260, 2004, 166-170. [15]K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E.Stutz, B. Luo, F. Ren, D.C. Look, J.M. Zavada, “Hydrogen incorporation anddiffusivity in plasma-exposed bulk ZnO,” Appl. Phys. Lett. 82 (3), 2003,385-387.[15] K. Ip, ME Overberg, YW Heo, DP Norton, SJ Pearton, CEStutz, B. Luo, F. Ren, DC Look, JM Zavada, “Hydrogen incorporation anddiffusivity in plasma-exposed bulk ZnO,” Appl. Phys. Lett. 82 (3), 2003, 385-387. [16]E. Lee, S. Lee, W. Lee, C.E. Lee, “Radiation damage in aproton-irradiated ZnO single crystal,” Journal of Korean Physical Society 56(6), 2010, 2108-2111.[16] E. Lee, S. Lee, W. Lee, C.E. Lee, “Radiation damage in aproton-irradiated ZnO single crystal,” Journal of Korean Physical Society 56 (6), 2010, 2108-2111. [17]T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki,T. Sota, Y. Segawa, H. Koinuma, “Correlation between the photoluminescencelifetime and defect density in bulk and epitaxial ZnO,” Appl. Phys. Lett. 82(2003) 532-534.[17] T. Koida, SF Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, “Correlation between the photoluminescencelifetime and defect density in bulk and epitaxial ZnO,” Appl Phys. Lett. 82 (2003) 532-534. [18]R. Hauschild, H. Priller, M. Decker, J. Brucker, H. Kalt, C.Kingshirn, “Temperature dependent band gap and homogenous line broadening ofthe exciton emission in ZnO,” Phys. Stat. Sol. (C) 3, 2006, 976-979.[18] R. Hauschild, H. Priller, M. Decker, J. Brucker, H. Kalt, C. Kingshirn, “Temperature dependent band gap and homogenous line broadening of the exciton emission in ZnO,” Phys. Stat. Sol. C) 3, 2006, 976-979. [19]P.J. Simpson, R. Tjossem, A.W. Hunt, K.G. Lynn, V. Munne,“Superfast timing performance from ZnO scintillators,” Nucl. Instrum. Meth. A505, 2003, 82-84.[19] P.J. Simpson, R. Tjossem, A.W.Hunt, K.G.Lynn, V. Munne, “Superfast timing performance from ZnO scintillators,” Nucl. Instrum. Meth. A505, 2003, 82-84. [20]J. Charles Cooper, D.S. Koltick, J.T. Mihalczo, J.S. Neal,“Evaluation of ZnO(Ga) coatings as alpha particle transducers within a neutrongenerator,” Nucl. Instrum. Meth. A 505, 2003, 498-501.[20] J. Charles Cooper, D.S. Koltick, J.T. Mihalczo, J.S. Neal, “Evaluation of ZnO (Ga) coatings as alpha particle transducers within a neutrongenerator,” Nucl. Instrum. Meth. A 505, 2003, 498-501. [21]M. J. Berger, J. S. Coursey, M. A. Zucker, “Stopping-power andrange tables for electrons, protons, and helium ions,” National Institute ofStandards and Technology (seehttp://physics.nist.gov/PhysRefData/Star/Text/contents.html) (2009).[21] MJ Berger, JS Coursey, MA Zucker, “Stopping-power andrange tables for electrons, protons, and helium ions,” National Institute of Standards and Technology (seehttp: //physics.nist.gov/PhysRefData/Star/Text/ contents.html) (2009). [22]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J.Narayan, “Excitonic structure and absorption coefficient measurements of ZnOsingle crystal epitaxial films deposited by pulsed laser deposition,” J. Appl.Phys. 85, 1999, 7884.[22] JF Muth, RM Kolbas, AK Sharma, S. Oktyabrsky, J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnOsingle crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys. 85, 1999, 7884. . [23]A. Abu El-Fadl, E.M. El-Maghraby, G.A. Mohamad, “Influence ofgamma radiation on the absorption spectra and optical energy gap of Li-dopedZnO thin films,” Cryst. Res. Technol. 39 (2), 2004, 143-150.[23] A. Abu El-Fadl, EM El-Maghraby, GA Mohamad, “Influence of gamma radiation on the absorption spectra and optical energy gap of Li-doped ZnO thin films,” Cryst. Res. Technol. 39 (2), 2004 , 143-150. [24]G. Qian, S. Baccaro, A. Guerra, L. Xiaoluan, Y. Shuanglong, G.Iurlaro, G. Chen, ‘’Gamma irradiation effects on ZnO-based scintillating CeO2and/or TiO2’’ Nucl.Instrum.Meth.B 262, 2007, 276-280.[24] G. Qian, S. Baccaro, A. Guerra, L. Xiaoluan, Y. Shuanglong, G. Iurlaro, G. Chen, '' Gamma irradiation effects on ZnO-based scintillating CeO2and / or TiO2 '' Nucl.Instrum .Meth.B 262, 2007, 276-280. [25]N.A. Al-Hamdani, R.D. Al-Alawy, S.J. Hassan, “Effect of gammairradiation on the structural and optical properties of ZnO thin films,” IOSRJournal of Computer Engineering 16, 2014, 11-16.[25] N.A. Al-Hamdani, R.D. Al-Alawy, S.J.Hassan, “Effect of gammairradiation on the structural and optical properties of ZnO thin films,” IOSRJournal of Computer Engineering 16, 2014, 11-16. [26]D.Wang, J. Yang, G. Xing, L. Yang, J. Lang, M. Gao, B. Yao, T.Wu, “Abnormal blueshift of UV emission in single-crystalline ZnO nanowires,” J.Lumin. 129, 2009, 996-999.[26] D. Wang, J. Yang, G. Xing, L. Yang, J. Lang, M. Gao, B. Yao, T. Wu, “Abnormal blueshift of UV emission in single-crystalline ZnO nanowires,” J .Lumin. 129, 2009, 996-999.

本発明では、従来よりも酸化亜鉛(ZnO)の結晶内を均一に短寿命化することができ、結晶作成後に行える短寿命化の方法を提供して、酸化亜鉛(ZnO)の発光の蛍光寿命の向上することを目的とする。 In the present invention, the lifetime of zinc oxide (ZnO) can be shortened more uniformly than in the prior art, providing a method for shortening the lifetime after crystal formation, and the fluorescence lifetime of zinc oxide (ZnO) emission. The purpose is to improve.

請求項1に係る発明は、酸化亜鉛結晶に電磁放射線を照射することを特徴とする酸化亜鉛結晶の製造方法である。
請求項2に係る発明は、前記電磁放射線の照射により酸化亜鉛結晶の蛍光寿命を制御することを特徴とする請求項1に記載の酸化亜鉛結晶の製造方法である。
請求項3に係る発明は、前記電磁放射線はガンマ線源を照射することを特徴とする請求項1又は2に記載の酸化亜鉛結晶の製造方法である。
請求項4に係る発明は、前記ガンマ線源の照射は、酸化亜鉛結晶を生成した後に行うことを特徴とする請求項1ないし3のいずれか1項に記載の酸化亜鉛結晶の製造方法。
請求項5に係る発明は、前記ガンマ線源はコバルト60であることを特徴とする請求項3又は4項記載の酸化亜鉛結晶の製造方法である。
請求項6に係る発明は、前記ガンマ線源は50〜150kGyで照射することを特徴とする請求項3ないし5のいずれか1項に記載の酸化亜鉛結晶の製造方法である。
請求項7に係る発明は、前記酸化亜鉛結晶は、水熱合成法により育成させる請求項1ないしのいずれか1項記載の酸化亜鉛結晶の製造方法である。
請求項に係る発明は、請求項1ないしいずれか1項記載の酸化亜鉛単結晶の製造方法により製造した酸化亜鉛結晶単結晶である。
請求項に係る発明は、蛍光寿命が2.0ns以下のことを特徴とする酸化亜鉛結晶である。
請求項1に係る発明は、不純物ドープがないことを特徴とする請求項記載の酸化亜鉛結晶である。
請求項1に係る発明は、低速蛍光寿命0.42ns以下、高速蛍光寿命が1.71ns以下であることを特徴とする請求項又は1項に記載の酸化亜鉛結晶である。
請求項1に係る発明は、発光ピークが380nm以下であることを特徴とする酸化亜鉛結晶である。
請求項1に係る発明は、励起光源の入射位置によって蛍光寿命が変化しないことを特徴とする酸化亜鉛結晶である。
請求項1に係る発明は、ガンマ線源を照射されたことを特徴とする請求項ないし1のいずれか1項に記載の酸化亜鉛結晶である。
請求項1に係る発明は、請求項ないし1のいずれか1項に記載の酸化亜鉛単結晶からなるシンチレータ材料である。
請求項1に係る発明は、請求項1記載のシンチレータ材料からなるシンチレータを備えたシンチレーション検出器である。
The invention according to claim 1 is a method for producing a zinc oxide crystal, wherein the zinc oxide crystal is irradiated with electromagnetic radiation.
The invention according to claim 2 is the method for producing a zinc oxide crystal according to claim 1, wherein the fluorescence lifetime of the zinc oxide crystal is controlled by irradiation with the electromagnetic radiation.
The invention according to claim 3 is the method for producing a zinc oxide crystal according to claim 1 or 2, wherein the electromagnetic radiation irradiates a gamma ray source.
The invention according to claim 4 is the method for producing a zinc oxide crystal according to any one of claims 1 to 3, wherein the irradiation of the gamma ray source is performed after the zinc oxide crystal is generated.
The invention according to claim 5 is the method for producing a zinc oxide crystal according to claim 3 or 4, wherein the gamma ray source is cobalt 60.
The invention according to claim 6 is the method for producing a zinc oxide crystal according to any one of claims 3 to 5, wherein the gamma ray source is irradiated at 50 to 150 kGy.
The invention according to claim 7, before Symbol zinc oxide crystal is a manufacturing method of the zinc oxide crystal according to any one of claims 1 to grown by hydrothermal synthesis method 6.
The invention according to claim 8 is a zinc oxide crystal single crystal manufactured by the method for manufacturing a zinc oxide single crystal according to any one of claims 1 to 7 .
The invention according to claim 9 is a zinc oxide crystal characterized in that the fluorescence lifetime is 2.0 ns or less.
The invention according to claim 1 0, a zinc oxide crystal according to claim 9, wherein there is no impurity doping.
The invention according to claim 1 1, slow fluorescence lifetime 0.42ns or less, high-speed fluorescence lifetime is zinc oxide crystal according to claim 9 or 1 0, wherein for equal to or less than 1.71Ns.
The invention according to claim 1 2, zinc oxide crystals, wherein the emission peak is 380nm or less.
The invention according to claim 1 3, zinc oxide crystals, characterized in that fluorescence lifetime by the incident position of the excitation light source is not changed.
The invention according to claim 1 4, zinc oxide crystal according to any one of claims 9 to 1 3, characterized in that it is irradiated with gamma-ray source.
The invention according to claim 1 5, a scintillator material made of zinc oxide single crystal according to any one of claims 8 to 1 4.
The invention according to claim 1 6, a scintillation detector with scintillator consisting claim 1 5 scintillator material according.

請求項1、2に係る発明によれば、発光寿命を短くする方法として、結晶生成中に不純物をドープする方法や結晶のマイクロ構造化による方法が用いずに、構造特性、光学特性、電子特性を変えることができる。
請求項3、5、6に係る発明によれば、酸化亜鉛結晶に電磁放射線であるガンマ線照射することにより、蛍光寿命を向上させることができる。
また、不純物をドープする方法や結晶のマイクロ構造化による方法では結晶を生成した後にZnOの蛍光寿命を制御できなかったが、本願発明では酸化亜鉛結晶を生成した後にでもZnOの蛍光寿命を制御できる。
さらに、従来よりも酸化亜鉛(ZnO)の結晶内を均一に短寿命化することができる。
請求項に係る発明によれば、大型単結晶で高純度な単結晶が安価に作製できるので、本発明の方法と最適であり、比較例で示した蛍光寿命の向上が達成できる。
従って、上記方法に係る発明は、電磁放射線の利用によって、成長後のZnO結晶に対するシンチレータとしての機能を向上させる代替方法を提供することができる。
請求項8、9、10、11、12、13、14に係る発明によれば、本発明の電磁放射線の利用によって、ZnOの蛍光寿命を制御でき、従来に比べて、蛍光寿命、発光ピークの特性が優れたZnO結晶を提供することができる。
また、可視光領域においては透明な素材として用いることができる。
さらに、蛍光寿命を早めたZnOは、それに関係したシンチレータに基づいて応用できる。
請求項15、16に係る発明によれば、今までにない最速な蛍光寿命をもった短波長光源用シンチレータの開発が期待できる。
According to the first and second aspects of the invention, as a method for shortening the light emission lifetime, a structure characteristic, an optical characteristic, and an electronic characteristic are not used, without using a method of doping impurities during crystal formation or a method of crystal microstructuring. Can be changed.
According to the inventions according to claims 3, 5 and 6 , the fluorescence lifetime can be improved by irradiating the zinc oxide crystal with gamma rays as electromagnetic radiation.
In addition, the fluorescence lifetime of ZnO could not be controlled after the crystal was formed by the impurity doping method or the crystal microstructure method, but the present invention can control the ZnO fluorescence lifetime even after the zinc oxide crystal is generated. .
Furthermore, the lifetime of the zinc oxide (ZnO) crystal can be shortened more uniformly than before.
According to the seventh aspect of the invention, a large single crystal and a high-purity single crystal can be produced at a low cost, which is optimal with the method of the present invention and can achieve the improvement in fluorescence lifetime shown in the comparative example.
Therefore, the invention according to the above method can provide an alternative method for improving the function as a scintillator for a grown ZnO crystal by using electromagnetic radiation.
8. According to the invention of 9,10,11,12,13,1 4, by the use of electromagnetic radiation of the present invention, it can control the fluorescence lifetime of ZnO, as compared to conventional fluorescence lifetime, emission peak A ZnO crystal having excellent characteristics can be provided.
Further, it can be used as a transparent material in the visible light region.
Furthermore, ZnO with an increased fluorescence lifetime can be applied based on the scintillator related thereto.
According to the fifteenth and sixteenth aspects of the present invention, development of a scintillator for a short wavelength light source having an unprecedented fastest fluorescence lifetime can be expected.

(a)本発明の実施例において使用する水熱合成法の概略図である。(b)本発明の実施例において使用する水熱合成法によって得られたZnO単結晶を示す。(c)本発明の実施例において使用する酸化亜鉛結晶を示す。(A) It is the schematic of the hydrothermal synthesis method used in the Example of this invention. (B) The ZnO single crystal obtained by the hydrothermal synthesis method used in the Example of this invention is shown. (C) Zinc oxide crystals used in the examples of the present invention. (a)本発明の実施例において使用する結晶育成装置例を示す断面図である。(b)本発明の実施例となるガンマ線照時の写真を示す。(A) It is sectional drawing which shows the example of the crystal growth apparatus used in the Example of this invention. (B) The photograph at the time of gamma ray irradiation which becomes an Example of this invention is shown. (a)50 kGyのガンマ線照射前後における透過率を示すグラフである。(b)100 kGyのガンマ線照射前後における透過率を示すグラフである。(A) It is a graph which shows the transmittance | permeability before and behind gamma-ray irradiation of 50 kGy. (B) It is a graph which shows the transmittance | permeability before and behind gamma ray irradiation of 100 kGy. (a)(c)は、50 kGyのガンマ線照射前後におけるストリーク像を示すグラフである。(b)(d)は、100 kGyのガンマ線照射前後におけるストリーク像を示すグラフである。(A) and (c) are graphs showing streak images before and after irradiation with 50 kGy of gamma rays. (B) and (d) are graphs showing streak images before and after irradiation with 100 kGy of gamma rays. (a)は、50 kGyのガンマ線照射前後における発光スペクトルを示すグラフである。(b)は、100 kGyのガンマ線照射前後における発光スペクトルを示すグラフである。 (c)は、50 kGyのガンマ線照射前後のピークにおける蛍光寿命を示すグラフである。(d)は、100 kGyのガンマ線照射前後のピークにおける蛍光寿命を示すグラフである。(A) is a graph showing emission spectra before and after irradiation with 50 kGy of gamma rays. (B) is a graph showing emission spectra before and after irradiation with 100 kGy of gamma rays. (C) is a graph which shows the fluorescence lifetime in the peak before and behind irradiation of 50 kGy of gamma rays. (D) is a graph which shows the fluorescence lifetime in the peak before and behind 100 kGy gamma-ray irradiation. 吸収線量ごとの高速蛍光寿命、低速蛍光寿命、発光ピークを示すグラフである。It is a graph which shows the high-speed fluorescence lifetime for every absorbed dose, a low-speed fluorescence lifetime, and a luminescence peak. 吸収線量ごとの蛍光寿命を示すグラフである。It is a graph which shows the fluorescence lifetime for every absorbed dose. 吸収線量ごとの発光強度比を示すグラフである。It is a graph which shows the luminescence intensity ratio for every absorbed dose. ガンマ線照射前後のアルファ線励起による発光の蛍光寿命のグラフを示す。The graph of the fluorescence lifetime of light emission by alpha ray excitation before and after gamma ray irradiation is shown.

(酸化亜鉛(ZnO)の製造方法)
酸化亜鉛(ZnO)の製造方法については、大型・高純度のZnO単結晶を得るために近年確立された水熱合成法を用いた。
以下に水熱合成法の概要を説明する。
(Method for producing zinc oxide (ZnO))
As a method for producing zinc oxide (ZnO), a hydrothermal synthesis method recently established for obtaining a large-sized and high-purity ZnO single crystal was used.
The outline of the hydrothermal synthesis method will be described below.

水熱合成法は従来から水晶の合成方法としてよく知られており、高温高圧水を用い、オートクレーブ内で温度差を与えることにより生じる溶解度の差を利用してバルク単結晶を育成する方法である。
通常、水熱合成法では種結晶と原料のZnOの焼結体をいれ、結晶成長を促すための水酸化カリウム(3 mol/l)と水酸化リチウム(1 mol/l)を鉱化剤として炉に入れる。
特徴として、成長の際に熱による歪みが少ないことや比較的低温(300〜500 ℃)で成長することがある。結晶成長は早くないが、大型容器で大量生産ができるために産業的に有利で、高品質な大型単結晶を安価に作製することのできる方法として注目を集めている。
図1の(a)に水熱合成法の概略図、(b)に水熱合成法によって得られたZnO単結晶をそれぞれ示す。
The hydrothermal synthesis method has been well known as a crystal synthesis method, and is a method for growing a bulk single crystal using a difference in solubility caused by giving a temperature difference in an autoclave using high-temperature and high-pressure water. .
Usually, in the hydrothermal synthesis method, a sintered body of seed crystal and raw material ZnO is added, and potassium hydroxide (3 mol / l) and lithium hydroxide (1 mol / l) for promoting crystal growth are used as mineralizers. Put in the furnace.
Characteristically, there are few distortions caused by heat during growth, and there are cases where growth occurs at a relatively low temperature (300 to 500 ° C.). Crystal growth is not fast, but it is industrially advantageous because it can be mass-produced in a large vessel, and has attracted attention as a method for producing a high-quality large single crystal at low cost.
FIG. 1A shows a schematic diagram of the hydrothermal synthesis method, and FIG. 1B shows a ZnO single crystal obtained by the hydrothermal synthesis method.

(単結晶育成炉)
酸化亜鉛単結晶を製造するための装置を図2(a)に示す。図2(a)に示す装置は、特許文献1記
載の装置である。
(Single crystal growth furnace)
An apparatus for producing a zinc oxide single crystal is shown in FIG. The apparatus shown in FIG. 2A is an apparatus described in Patent Document 1.

特許文献1の記載に従い説明する。この装置は、水熱合成法により単結晶の育成を行う
ための単結晶育成炉(以下、単に育成炉と呼ぶ)である。
This will be described in accordance with the description in Patent Document 1. This apparatus is a single crystal growth furnace (hereinafter simply referred to as a growth furnace) for growing a single crystal by a hydrothermal synthesis method.

図2(a)に示すように、育成炉1は、炉本体2の外周囲に電気炉3が配設されている。
この電気炉3によって炉本体2が加熱されるようになっている。上記炉本体2は、上部が開放された有底円筒状であり、上端開口21には、炉本体2の内部を密閉するための蓋体22が装着されている。
この蓋体22には、炉本体2の内部圧力を計測するための圧力計22aが取り付けられている。更に、炉本体2の内部には、白金製の円筒状の育成容器24が収められている。この育成容器24の内部空間4は密閉されており、この内部空間4の上下方向中間位置には対流制御板23が配設されている。この対流制御板23によって、育成容器24の内部空間4は、下側の原料室41と上側の育成室42とに仕切られている。
As shown in FIG. 2A, the growth furnace 1 is provided with an electric furnace 3 around the outer periphery of the furnace body 2.
The furnace body 2 is heated by the electric furnace 3. The furnace body 2 has a bottomed cylindrical shape with an open top, and a lid 22 for sealing the inside of the furnace body 2 is attached to the upper end opening 21.
A pressure gauge 22 a for measuring the internal pressure of the furnace body 2 is attached to the lid body 22. Furthermore, a cylindrical growth vessel 24 made of platinum is housed inside the furnace body 2. The inner space 4 of the growing container 24 is sealed, and a convection control plate 23 is disposed at an intermediate position in the vertical direction of the inner space 4. By this convection control plate 23, the internal space 4 of the growth vessel 24 is partitioned into a lower raw material chamber 41 and an upper growth chamber 42.

上記原料室41には、育成用原料である酸化亜鉛の単結晶原料5,5,…が収容されて
いる。一 方、育成室42には、単結晶育成棚61に支持された複数枚の種結晶6,6,
…が収容されている。
In the raw material chamber 41, zinc oxide single crystal raw materials 5, 5,. On the other hand, in the growth chamber 42, a plurality of seed crystals 6, 6, supported by a single crystal growth shelf 61 are provided.
… Is housed.

また、この育成容器24の内部空間4には、育成用溶液(アルカリ溶液)を充填した。
本例ではKOHの水溶液を充填した。
The inner space 4 of the growing container 24 was filled with a growing solution (alkali solution).
In this example, an aqueous solution of KOH was filled.

(結晶)
本実験で使用したZnOのサンプルは、水熱合成法により作製した。
母結晶の大きさは約2インチで、純度は高く、最も不純物濃度が高いLiでも1 ppm未満であり、欠陥濃度も極めて少ない高純度高品質の結晶である。このバルクZnO結晶を10 mm×10 mm×0.5 mmにカットし研磨したもの使用した。
実際に使用したサンプルを図1(c)に示す。
(crystal)
The sample of ZnO used in this experiment was prepared by a hydrothermal synthesis method.
The size of the mother crystal is about 2 inches, the purity is high, even Li having the highest impurity concentration is less than 1 ppm, and it is a high-purity high-quality crystal with extremely low defect concentration. This bulk ZnO crystal was cut into 10 mm × 10 mm × 0.5 mm and polished.
The actually used sample is shown in FIG.

酸化亜鉛単結晶を育成する前に、種結晶6の表面を研磨した。   Before growing the zinc oxide single crystal, the surface of the seed crystal 6 was polished.

研磨を次の通り行った。
荒研磨:SiC砥粒を使用した機械荒研磨
中研磨:ダイヤモンドの砥粒を使用した中研磨
仕上げ研磨:バフ板と水を使用した仕上げ研磨
Polishing was performed as follows.
Rough polishing: Mechanical rough polishing using SiC abrasives Medium polishing: Medium polishing using diamond abrasives Final polishing: Final polishing using buffing plate and water

(電磁放射線照射)
電磁放射線照射については、大阪大学産業科学研究所附属の量子ビーム科学研究施設にあるガンマ線照射施設を利用して、ZnO単結晶にガンマ線を照射した。放射線照射施設内は室温、大気圧である。
コバルト60のガンマ線源は現在3種類あり、線源強度、距離1mでの実行線量率、線源の大きさは以下の表1ようになっている。

表1 コバルト60ガンマ線源の特性1
線源名 線源強度 距離1mでの 線源の大きさ
実効線量率
Rabbit11 248.9TBq 75.9(Gy/h) 200mmL×20mmφ
Millennium 62.7TBq 19.1(Gy/h) 200mmL×20mmφ
Dog82 5.88TBq 1.79(Gy/h) 150mmL×25mmφ
(2013年10月1日時点; 線量率は水に対してのもの)

このガンマ線照射施設のガンマ線源はコバルト60で、ガンマ線を放出した。
コバルト60のガンマ線源の特性は、線源Rabbit11を使用した。
(Electromagnetic radiation irradiation)
For electromagnetic radiation irradiation, a ZnO single crystal was irradiated with gamma rays using a gamma ray irradiation facility in the quantum beam science research facility attached to the Institute of Industrial Science, Osaka University. The inside of the irradiation facility is at room temperature and atmospheric pressure.
There are currently three types of gamma ray sources of cobalt 60. Table 1 below shows the source intensity, the effective dose rate at a distance of 1 m, and the size of the source.

Table 1 Characteristics 1 of cobalt 60 gamma ray source
Source name Source intensity Source size at a distance of 1 m
Effective dose rate Rabbit11 248.9TBq 75.9 (Gy / h) 200mmL × 20mmφ
Millennium 62.7TBq 19.1 (Gy / h) 200mmL × 20mmφ
Dog82 5.88TBq 1.79 (Gy / h) 150mmL × 25mmφ
(As of October 1, 2013; dose rate is for water)

The gamma ray source of this gamma irradiation facility was cobalt 60, which emitted gamma rays.
For the characteristics of the cobalt 60 gamma ray source, the source Rabbit 11 was used.

バルクZnO結晶をコバルト60のガンマ線源を用いてガンマ線を照射することで、蛍光寿命を短くした。
水熱合成法によって生成したバルクZnO結晶を10×10×0.5立方ミリメートル、面指数(0001)でスライスし、その後鏡面仕上げを有するように両面を研磨した。
The bulk ZnO crystal was irradiated with gamma rays using a cobalt 60 gamma ray source to shorten the fluorescence lifetime.
The bulk ZnO crystal produced by the hydrothermal synthesis method was sliced at 10 × 10 × 0.5 cubic millimeters and a plane index (0001), and then both surfaces were polished to have a mirror finish.

1メートルの距離で71.1 Gy/hの吸収線量率をもつガンマ線照射施設でその結晶にガンマ線を照射した。
図2(b)に、ガンマ線照時の写真を示す。
The crystals were irradiated with gamma rays at a gamma irradiation facility with an absorbed dose rate of 71.1 Gy / h at a distance of 1 meter.
FIG. 2B shows a photograph at the time of gamma irradiation.

照射時間、その結晶とガンマ線源の距離から吸収線量を測定し、蛍光寿命の向上を測定した。
照射時間Tと線源とZnOサンプルとの距離rを変化させることで吸収線量が10kGy、50kGy、100kGy、及び150kGyのサンプルを作成し、ガンマ線照射前後のZnO単結晶の比較を行った。
The absorbed dose was measured from the irradiation time and the distance between the crystal and the gamma ray source, and the improvement in fluorescence lifetime was measured.
Samples with absorbed doses of 10 kGy, 50 kGy, 100 kGy, and 150 kGy were prepared by changing the irradiation time T and the distance r between the radiation source and the ZnO sample, and the ZnO single crystals before and after gamma irradiation were compared.

比較例Comparative example

(ガンマ線照射前後のZnOの比較実験)
本例では、ZnO単結晶の発光の蛍光寿命を測定した。
それに加えてシンチレータとして発光波長が扱いやすく、材料そのものが発光した光を吸収しないことが重要である。そのため、発光波長のピーク、光透過率も評価した。
また、ZnO単結晶はアルファ線のシンチレータに対しても応用が期待されている。
そこで、本発明では、ガンマ線照射前後のZnO単結晶のアルファ線励起における発光特性評価も行った。
(Comparison experiment of ZnO before and after gamma irradiation)
In this example, the fluorescence lifetime of light emission of the ZnO single crystal was measured.
In addition, it is important that the emission wavelength is easy to handle as a scintillator and that the material itself does not absorb the emitted light. Therefore, the emission wavelength peak and light transmittance were also evaluated.
ZnO single crystals are also expected to be applied to alpha-ray scintillators.
Therefore, in the present invention, the light emission characteristics of the ZnO single crystal before and after the gamma ray irradiation in the alpha ray excitation were also evaluated.

(光透過率)
本測定にはダブルビーム光学系分光光度計(日立、U−4100)を用いた。
図3に、50kGy、100kGyのガンマ線を照射したZnOサンプルのガンマ線照射前後の波長300nmから600nmおける透過率のグラフを示す。
グラフでは、600 nmの透過率を100として規格化したグラフであり、横軸は波長、縦軸は600nmの透過率に対する透過率を示している。
ガンマ線照射前後で可視光領域における光透過率を測定したところ、ガンマ線照射前後において透過率の変化は全く見られなかった。 カットオフ波長、吸収端にも変化は全く見られなかった。
(Light transmittance)
A double beam optical spectrophotometer (Hitachi, U-4100) was used for this measurement.
FIG. 3 shows a graph of transmittance at wavelengths from 300 nm to 600 nm before and after gamma ray irradiation of ZnO samples irradiated with gamma rays of 50 kGy and 100 kGy.
In the graph, the transmittance at 600 nm is normalized as 100, the horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance with respect to the transmittance of 600 nm.
When the light transmittance in the visible light region was measured before and after the gamma ray irradiation, no change in the transmittance was observed before and after the gamma ray irradiation. No change was observed at the cutoff wavelength or absorption edge.

(フォトルミネセンス)
本実験では、レーザー光源をZnO単結晶に照射し励起させ、その発光の発光波長、蛍光寿命を評価した。
レーザー光源にはチタンサファイア(Ti:Sapphire)レーザーを用いた。チタンサファイアレーザーの波長は870 nmであり、その3倍波の290nmの波長を用いて実験を行った。
発光の波長、蛍光寿命を評価にはストリークカメラを使用した。
ZnO単結晶は、励起波長にかかわらず380nm付近で発光する。
(Photoluminescence)
In this experiment, a ZnO single crystal was irradiated with a laser light source and excited, and the emission wavelength and fluorescence lifetime of the emitted light were evaluated.
A titanium sapphire (Ti: Sapphire) laser was used as the laser light source. The wavelength of the titanium sapphire laser is 870 nm, and the experiment was conducted using a wavelength of 290 nm which is the third harmonic wave.
A streak camera was used to evaluate the emission wavelength and fluorescence lifetime.
The ZnO single crystal emits light near 380 nm regardless of the excitation wavelength.

(時間波長スペクトル)
図4に、50kGy、100kGyのガンマ線を照射した前後のZnOサンプルのストリークカメラによる時間波長スペクトルを示す。
これは、ZnO結晶の室温におけるバンド端付近の発光を捉えたストリーク像である。
ガンマ線照射前が(a)(b)、ガンマ線照射後が(c)(d)である。
グラフにおいて横軸は減衰が始まった地点を0とした時間軸、縦軸は波長390 nmを中心とした波長軸を表しており、色が濃くなるほど強度が強いことを示している。
従って、図4では、ガンマ線照射前後においてZnOの発光が変化したことを示している。
(Time wavelength spectrum)
FIG. 4 shows time-wavelength spectra of ZnO samples before and after being irradiated with 50 kGy and 100 kGy gamma rays, using a streak camera.
This is a streak image capturing light emission near the band edge of a ZnO crystal at room temperature.
(A) and (b) before gamma irradiation, and (c) and (d) after gamma irradiation.
In the graph, the horizontal axis represents the time axis where the point where attenuation began is 0, and the vertical axis represents the wavelength axis centered on the wavelength of 390 nm, indicating that the darker the color, the stronger the intensity.
Therefore, FIG. 4 shows that the emission of ZnO changed before and after gamma irradiation.

(発光スペクトル、ピークにおける蛍光寿命)
図5に、50kGy、100kGyのガンマ線を照射した前後のZnOサンプルの発光スペクトル及びピークにおける蛍光寿命のグラフを示す。
これは、ZnO結晶の室温におけるバンド端付近の発光のスペクトル的、時間的なグラフである。
これらのグラフは図4のストリーク像から解析したグラフであり、励起光は290nmとなっている。
図5(a)(b)の発光スペクトルのグラフにおいては、横軸が波長、縦軸が強度を示している。
また、図5(c)(d)のピークにおける蛍光寿命のグラフにおいては、横軸は減衰が始まった地点を0とした時間軸、縦軸は減衰が始まった地点での強度を1としたときの強度を示している。
(Emission spectrum, fluorescence lifetime at peak)
FIG. 5 shows a graph of the emission spectrum of the ZnO sample before and after irradiation with gamma rays of 50 kGy and 100 kGy and the fluorescence lifetime at the peak.
This is a spectral and temporal graph of emission near the band edge of a ZnO crystal at room temperature.
These graphs are graphs analyzed from the streak image of FIG. 4, and the excitation light is 290 nm.
5A and 5B, the horizontal axis indicates the wavelength and the vertical axis indicates the intensity.
Further, in the graphs of fluorescence lifetimes at the peaks in FIGS. 5C and 5D, the horizontal axis is a time axis where the point where attenuation starts is 0, and the vertical axis is intensity where the point where attenuation starts is 1. The intensity is shown.

図5(a)(b)より、ガンマ線を照射することで発光のピークが短波長側にシフトした。50kGy、100 kGyのガンマ線を照射した場合、ともにピークが6nm短波長側にシフトした。
また発光スペクトルの半値幅はガンマ線照射前後で変化は見られなかった。
図5(c)(d)より、発光のピークと同様に、蛍光寿命に関してもガンマ線を照射することで変化が見られた。
従って、図5ではガンマ線照射前後においてZnOの蛍光寿命が短くなり、発光ピークが短波長側に変化していることを示している。
From FIGS. 5 (a) and 5 (b), the emission peak shifted to the short wavelength side by irradiating gamma rays. When 50 gGy and 100 kGy gamma rays were irradiated, the peak shifted to the 6 nm short wavelength side.
The half-width of the emission spectrum did not change before and after gamma irradiation.
5 (c) and 5 (d), similar to the emission peak, the fluorescence lifetime was changed by irradiating gamma rays.
Therefore, FIG. 5 shows that the fluorescence lifetime of ZnO is shortened before and after the gamma ray irradiation, and the emission peak is changed to the short wavelength side.

ZnO単結晶の発光の減衰は二重指数関数でフィッティングできる。
強度F(t)、時間をt(減衰が始まった時間をt=0とする)、高速蛍光寿命をτ1、低速蛍光寿命をτ2、高速蛍光寿命、低速蛍光寿命に起因する発光の強度比をF1、F2(F1+F2=1)とすると発光の減衰は以下の式(1)ように表せる。
ここで、高速蛍光寿命は励起子由来の発光の蛍光寿命、低速蛍光寿命は励起子として扱われないキャリアの発光の蛍光寿命である。

F(t)=F1exp(−tτ1)+F2exp(−tτ2) 式(1)
The attenuation of light emission of the ZnO single crystal can be fitted with a double exponential function.
Intensity F (t), time t (time at which decay began is t = 0), fast fluorescence lifetime τ1, slow fluorescence lifetime τ2, fast fluorescence lifetime, and ratio of emission intensity due to slow fluorescence lifetime Assuming that F1 and F2 (F1 + F2 = 1), the attenuation of light emission can be expressed by the following equation (1).
Here, the fast fluorescence lifetime is the fluorescence lifetime of the light emitted from the exciton, and the slow fluorescence lifetime is the fluorescence lifetime of the emission of the carrier that is not treated as an exciton.

F (t) = F1exp (−tτ1) + F2exp (−tτ2) Equation (1)

50 kGyのガンマ線を照射した場合、元の蛍光寿命はτ1=0.52ns、τ2=2.10nsであったのに対して、約80パーセントであるτ1=0.38ns、τ2=1.71nsとなった。
また100kGyのガンマ線を照射した場合、元の蛍光寿命はτ1=0.59ns、τ2=2.02nsであったのに対して、約70パーセントであるτ1=0.42ns、τ2=1.58nsであった。
従って、照射後の蛍光寿命は、元の蛍光寿命を基準にして140ピコ秒から440ピコ秒早くすることに成功した。
When irradiating 50 kGy of gamma rays, the original fluorescence lifetime was τ1 = 0.52 ns and τ2 = 2.10 ns, whereas about 80 percent τ1 = 0.38 ns and τ2 = 1.71 ns. became.
In addition, when irradiation with 100 kGy of gamma rays was performed, the original fluorescence lifetime was τ1 = 0.59 ns and τ2 = 2.02 ns, whereas about 70 percent τ1 = 0.42 ns and τ2 = 1.58 ns. there were.
Therefore, the fluorescence lifetime after irradiation was successfully increased from 140 picoseconds to 440 picoseconds based on the original fluorescence lifetime.

(ガンマ線の吸収線量との関係)
ガンマ線の吸収線量に対する依存性をみるため、高速蛍光寿命、低速蛍光寿命、ピーク波長を図6、7のグラフに示す。
図6はガンマ線照射量ごとのZnOの高速蛍光寿命、低速蛍光寿命、発光ピークを示している。
図7は、ガンマ線照射量ごとのZnOのバンド端付近の発光曲線を示している。
図8は、吸収線量ごとの発光強度比を示している。
(Relationship with absorbed dose of gamma rays)
In order to see the dependency of gamma rays on the absorbed dose, the fast fluorescence lifetime, slow fluorescence lifetime, and peak wavelength are shown in the graphs of FIGS.
FIG. 6 shows the fast fluorescence lifetime, slow fluorescence lifetime, and emission peak of ZnO for each dose of gamma rays.
FIG. 7 shows an emission curve near the band edge of ZnO for each dose of gamma rays.
FIG. 8 shows the emission intensity ratio for each absorbed dose.

図6は、ガンマ線照射量ごとのバルクZnO結晶のバンド端付近の蛍光寿命と発光ピークの中心が表わされている。
図6より、発光ピークにおいては、ガンマ線の吸収線量が増加するごとに短波長側にシフトするという現象は見られなかった。
ガンマ線を照射しなかった場合、発光ピークは385nmであるのに対して、50kGy以上の吸収線量ではどのような吸収線量でも380nm付近にピークがある。
また、高速蛍光寿命、低速蛍光寿命はともに50kGy以上の吸収線量では少しずつ短くなっているものの、発光ピークと同様に大きな変化が見られなかった。
FIG. 6 shows the fluorescence lifetime and the center of the emission peak in the vicinity of the band edge of the bulk ZnO crystal for each dose of gamma rays.
FIG. 6 shows that the emission peak does not shift to the short wavelength side as the absorbed dose of gamma rays increases.
When gamma rays are not irradiated, the emission peak is 385 nm, whereas any absorbed dose at 50 kGy or higher has a peak near 380 nm.
Moreover, although both the high-speed fluorescence lifetime and the low-speed fluorescence lifetime were gradually reduced at an absorbed dose of 50 kGy or more, no significant change was observed as in the emission peak.

しかし、図7のグラフのように高速蛍光寿命、低速蛍光寿命を同時に考えることによって、吸収線量が大きくなるにつれて蛍光寿命は短くなるということが言える。
従って、ガンマ線の吸収線量が増加するごとに、蛍光寿命が短くなる。
これは高速成分、低速成分の双方が短くなることに起因するが、それに加えて、図8より低速成分に対し高速成分の強度比が増加することにも起因すると考えられる。
このことは、吸収線量が増加することで励起子として扱えないキャリアが減少することを表している。
However, considering the fast fluorescence lifetime and the slow fluorescence lifetime simultaneously as in the graph of FIG. 7, it can be said that the fluorescence lifetime decreases as the absorbed dose increases.
Therefore, as the absorbed dose of gamma rays increases, the fluorescence lifetime decreases.
This is due to the fact that both the high speed component and the low speed component are shortened, but in addition to this, it is considered that the intensity ratio of the high speed component to the low speed component is increased from FIG.
This indicates that the number of carriers that cannot be handled as excitons decreases as the absorbed dose increases.

(アルファ線励起光子計測)
図9に、10kGyのガンマ線を照射したZnOサンプルのガンマ線照射前後のアルファ線による発光の減衰のグラフを示す。
グラフの横軸は減衰が始まった地点を0とした時間軸、縦軸は減衰が始まった地点での測定電圧を1としたときの測定電圧である。
ガンマ線照射前後において、アルファ線励起による発光の蛍光寿命に変化は見られなかった。従って、アルファ線励起の発光に関してはガンマ線照射の影響がないと考えられる。
(Measurement of alpha-excited photons)
FIG. 9 shows a graph of the attenuation of light emission by alpha rays before and after the gamma ray irradiation of a ZnO sample irradiated with 10 kGy gamma rays.
The horizontal axis of the graph is the time axis when the point where attenuation starts is 0, and the vertical axis is the measured voltage when the measurement voltage at the point where attenuation starts is 1.
There was no change in the fluorescence lifetime of the luminescence due to alpha-ray excitation before and after gamma irradiation. Therefore, it is considered that there is no influence of gamma ray irradiation on the emission of alpha ray excitation.

(考察結果)
上記の測定の結果、ガンマ線の照射により、発光寿命が短縮された。
そして、酸化亜鉛(ZnO)の蛍光寿命を向上させる方法として、バルクZnO単結晶のガンマ線照射が有効である。
ここで、ガンマ線照射によって発光の蛍光寿命が短くなった原因として、ガンマ線によって結晶内に欠陥が生成したためと考えられる。
具体的には、蛍光寿命を元の蛍光寿命を基準にして140ピコ秒から440ピコ秒早くすることに成功した。
このことは結晶を生成した後にでもZnOの蛍光寿命を制御できることを表している。
これらより、ガンマ線の照射により、発光寿命が短縮されていることがわかる。つまり、ガンマ線を照射することで蛍光寿命を短くするという本実験の目的を達成し、蛍光寿命の短寿命化に成功したといえる。
(Discussion results)
As a result of the above measurement, the light emission lifetime was shortened by irradiation with gamma rays.
As a method for improving the fluorescence lifetime of zinc oxide (ZnO), gamma ray irradiation of a bulk ZnO single crystal is effective.
Here, it is considered that the reason why the fluorescence lifetime of light emission is shortened by gamma ray irradiation is that defects are generated in the crystal by gamma rays.
Specifically, the inventors succeeded in increasing the fluorescence lifetime from 140 picoseconds to 440 picoseconds based on the original fluorescence lifetime.
This indicates that the fluorescence lifetime of ZnO can be controlled even after crystals are formed.
From these, it can be seen that the emission lifetime is shortened by the irradiation of gamma rays. In other words, it can be said that the purpose of this experiment of shortening the fluorescence lifetime by irradiating gamma rays was achieved, and the fluorescence lifetime was shortened.

ガンマ線の吸収線量が大きくなるほど蛍光寿命が短くなった。
この原因として、ガンマ線による結晶内の欠陥の量が増加し、捕らえられる電子が増加したためと考えられる。
また可視光領域における透過率に変化はなかった。そのため可視光領域においては透明な素材として用いることができる。
さらに、蛍光寿命を400ピコ秒早めたZnOは、それに関係したシンチレータ及びそれに基づく応用シンチレーション検出器に期待できる。
これは、酸化亜鉛(ZnO)にガンマ線照射を用いることで今までにない最速な蛍光寿命をもった短波長光源用シンチレータの開発が期待できる。
The fluorescence lifetime shortened as the absorbed dose of gamma rays increased.
This is thought to be because the amount of defects in the crystal due to gamma rays increased and the number of captured electrons increased.
There was no change in the transmittance in the visible light region. Therefore, it can be used as a transparent material in the visible light region.
Furthermore, ZnO having a fluorescence lifetime accelerated by 400 picoseconds can be expected for a scintillator related thereto and an applied scintillation detector based thereon.
This can be expected to develop a scintillator for a short wavelength light source having the fastest fluorescence lifetime that has never been achieved by using gamma ray irradiation for zinc oxide (ZnO).

本願では、酸化亜鉛結晶に電磁放射線を照射することにより、蛍光寿命を制御することができ、従来方法に比べて、簡単により精度の高いZnOのシンチレータを作成することができる。 In the present application, the fluorescence lifetime can be controlled by irradiating the zinc oxide crystal with electromagnetic radiation, and a ZnO scintillator can be easily and more accurately produced compared to the conventional method.

1 育成炉
2 炉本体
21 上端開口
22 蓋体
22a 圧力計
23 対流制御板
24 育成容器
3 電気炉
4 内部空間
41 原料室
42 育成室
5 単結晶原料
6 種結晶
DESCRIPTION OF SYMBOLS 1 Growing furnace 2 Furnace main body 21 Upper end opening 22 Lid 22a Pressure gauge 23 Convection control plate 24 Growing vessel 3 Electric furnace 4 Internal space 41 Raw material room 42 Growing room 5 Single crystal raw material 6 Seed crystal

Claims (16)

酸化亜鉛結晶に電磁放射線を照射することを特徴とする酸化亜鉛結晶の製造方法。 A method for producing a zinc oxide crystal, comprising irradiating the zinc oxide crystal with electromagnetic radiation. 前記電磁放射線の照射により酸化亜鉛結晶の蛍光寿命を制御することを特徴とする請求項1に記載の酸化亜鉛結晶の製造方法。 The method for producing a zinc oxide crystal according to claim 1, wherein the fluorescence lifetime of the zinc oxide crystal is controlled by irradiation with the electromagnetic radiation. 前記電磁放射線はガンマ線源を照射することを特徴とする請求項1又は2に記載の酸化亜鉛結晶の製造方法。 The method for producing a zinc oxide crystal according to claim 1 or 2, wherein the electromagnetic radiation is applied to a gamma ray source. 前記ガンマ線源の照射は、酸化亜鉛結晶を生成した後に行うことを特徴とする請求項1ないし3のいずれか1項に記載の酸化亜鉛結晶の製造方法。 The method for producing a zinc oxide crystal according to any one of claims 1 to 3, wherein the irradiation of the gamma ray source is performed after the zinc oxide crystal is formed. 前記ガンマ線源はコバルト60であることを特徴とする請求項3又は4項記載の酸化亜鉛結晶の製造方法。 The method for producing a zinc oxide crystal according to claim 3 or 4, wherein the gamma ray source is cobalt 60. 前記ガンマ線源は50〜150kGyで照射することを特徴とする請求項3ないし5のいずれか1項に記載の酸化亜鉛結晶の製造方法。 6. The method for producing a zinc oxide crystal according to claim 3, wherein the gamma ray source is irradiated with 50 to 150 kGy. 前記酸化亜鉛結晶は、水熱合成法により育成させる請求項1ないしのいずれか1項記載の酸化亜鉛結晶の製造方法。 The method for producing a zinc oxide crystal according to any one of claims 1 to 6 , wherein the zinc oxide crystal is grown by a hydrothermal synthesis method. 請求項1ないしいずれか1項記載の酸化亜鉛単結晶の製造方法により製造した酸化亜鉛結晶
単結晶。
A zinc oxide crystal single crystal produced by the method for producing a zinc oxide single crystal according to any one of claims 1 to 7 .
蛍光寿命が2.0ns以下のことを特徴とする酸化亜鉛結晶。 A zinc oxide crystal having a fluorescence lifetime of 2.0 ns or less. 不純物ドープがないことを特徴とする請求項記載の酸化亜鉛結晶。 The zinc oxide crystal according to claim 9, which is not doped with impurities. 低速蛍光寿命0.42ns以下、高速蛍光寿命が1.71ns以下であることを特徴とする請求項又は1項に記載の酸化亜鉛結晶。 Slow fluorescence lifetime 0.42ns or less, a zinc oxide crystal according to claim 9 or 1 0, wherein a high speed fluorescence lifetime is equal to or less than 1.71Ns. 発光ピークが380nm以下であることを特徴とする酸化亜鉛結晶。 A zinc oxide crystal having an emission peak of 380 nm or less. 励起光源の入射位置によって蛍光寿命が変化しないことを特徴とする酸化亜鉛結晶。 A zinc oxide crystal characterized in that the fluorescence lifetime does not change depending on the incident position of the excitation light source. ガンマ線源を照射されたことを特徴とする請求項ないし1のいずれか1項に記載の酸化亜鉛結晶。 To 9 claims, characterized in that the gamma-ray source is irradiated zinc oxide crystal according to any one of 1 3. 請求項ないし1のいずれか1項に記載の酸化亜鉛単結晶からなるシンチレータ材料。 Scintillator material made of zinc oxide single crystal according to any one of claims 8 to 1 4. 請求項1記載のシンチレータ材料からなるシンチレータを備えたシンチレーション検出器。 Scintillation detector with scintillator made of scintillator material of claim 1 5, wherein.
JP2015088708A 2015-04-23 2015-04-23 Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material, and scintillator detector Active JP6623412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088708A JP6623412B2 (en) 2015-04-23 2015-04-23 Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material, and scintillator detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088708A JP6623412B2 (en) 2015-04-23 2015-04-23 Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material, and scintillator detector

Publications (2)

Publication Number Publication Date
JP2016204213A true JP2016204213A (en) 2016-12-08
JP6623412B2 JP6623412B2 (en) 2019-12-25

Family

ID=57488753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088708A Active JP6623412B2 (en) 2015-04-23 2015-04-23 Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material, and scintillator detector

Country Status (1)

Country Link
JP (1) JP6623412B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126718A (en) * 2003-10-22 2005-05-19 Ge Medical Systems Global Technology Co Llc Terbium- or lutetium-containing scintillator composition having increased resistance to radiation damage
WO2005114256A1 (en) * 2004-05-24 2005-12-01 Fukuda X'tal Laboratory ZnO SINGLE CRYSTAL AS SUPER HIGH SPEED SCINTILLATOR AND METHOD FOR PREPARATION THEREOF
WO2009130987A1 (en) * 2008-04-26 2009-10-29 ユーエムケー・テクノロジー株式会社 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon
JP2009286856A (en) * 2008-05-27 2009-12-10 Fukuda Crystal Laboratory Scintillator material, method for manufacturing the same, and ionizing radiation detector
JP2010280826A (en) * 2009-06-04 2010-12-16 Mitsubishi Gas Chemical Co Inc Laminate-type zinc oxide-based single crystal scintillator and method for manufacturing the same
JP2011063452A (en) * 2009-09-15 2011-03-31 Shinshu Univ Laminated body and method for manufacturing the same
WO2011067893A1 (en) * 2009-12-04 2011-06-09 パナソニック株式会社 Substrate, and method for producing same
JP2012012527A (en) * 2010-07-01 2012-01-19 Daishinku Corp Scintillator material and scintillation detector
JP2013212969A (en) * 2012-04-04 2013-10-17 Fukuda Crystal Laboratory Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126718A (en) * 2003-10-22 2005-05-19 Ge Medical Systems Global Technology Co Llc Terbium- or lutetium-containing scintillator composition having increased resistance to radiation damage
WO2005114256A1 (en) * 2004-05-24 2005-12-01 Fukuda X'tal Laboratory ZnO SINGLE CRYSTAL AS SUPER HIGH SPEED SCINTILLATOR AND METHOD FOR PREPARATION THEREOF
WO2009130987A1 (en) * 2008-04-26 2009-10-29 ユーエムケー・テクノロジー株式会社 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon
JP2009286856A (en) * 2008-05-27 2009-12-10 Fukuda Crystal Laboratory Scintillator material, method for manufacturing the same, and ionizing radiation detector
JP2010280826A (en) * 2009-06-04 2010-12-16 Mitsubishi Gas Chemical Co Inc Laminate-type zinc oxide-based single crystal scintillator and method for manufacturing the same
JP2011063452A (en) * 2009-09-15 2011-03-31 Shinshu Univ Laminated body and method for manufacturing the same
WO2011067893A1 (en) * 2009-12-04 2011-06-09 パナソニック株式会社 Substrate, and method for producing same
JP2012012527A (en) * 2010-07-01 2012-01-19 Daishinku Corp Scintillator material and scintillation detector
JP2013212969A (en) * 2012-04-04 2013-10-17 Fukuda Crystal Laboratory Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUJIE QIAN ET AL.: "Gamma irradiation effects on ZnO-based scintillating glasses containing CeO2 and/or TiO2", NUCL. INSTRUM. METH., vol. 262, JPN6018047265, 12 June 2007 (2007-06-12), pages 276 - 280, ISSN: 0003930146 *
T.SHIMIZU ET AL.: "Response time-shortened zinc oxidescintillator for accurate single-shot synchronization of extreme u", APPL. PHYS. EXPRESS, vol. 4, JPN6018047264, 16 May 2011 (2011-05-16), pages 062701 - 1, ISSN: 0003930145 *

Also Published As

Publication number Publication date
JP6623412B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
Zawadzka et al. Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition
Chen et al. Blue-green emission mechanism and spectral shift of Al-doped ZnO films related to defect levels
Lin et al. Hydrothermal growth of ZnO single crystals with high carrier mobility
Yanagida et al. Scintillation properties of in doped ZnO with different in concentrations
Rasmidi et al. Radiation damage effects on zinc oxide (ZnO) based semiconductor devices–a review
Gorokhova et al. Structural, optical, and scintillation characteristics of ZnO ceramics
WO2010140426A1 (en) MULTILAYER ZnO SINGLE CRYSTAL SCINTILLATOR AND METHOD FOR MANUFACTURING SAME
JP2009286856A (en) Scintillator material, method for manufacturing the same, and ionizing radiation detector
Kimura et al. Comparative study of radiation-induced luminescence between non-doped CsBr transparent ceramic and crystal
Zhang et al. An ultrafast X-ray scintillating detector made of ZnO (Ga)
JP6623412B2 (en) Method for producing zinc oxide crystal, zinc oxide crystal, scintillator material, and scintillator detector
Li et al. Ultraviolet-light emission enhancement and morphology stability for ZnO: Ga nanorod array treated by hydrogen plasma
Kano et al. Fabrication of In-doped ZnO scintillator mounted on a vacuum flange
Yamanoi et al. ZnO crystal as a potential damage-recoverable window material for fusion reactors
Zorenko et al. Luminescent and scintillation properties of CsI: Tl films grown by the liquid phase epitaxy method
Islamov et al. Effect of gamma-quanta and fast neutrons on color and emission centers in LuAG and LuAG: Pr crystals
Rodnyi et al. Ultrafast luminescence of Ga-and In-doped ZnO ceramics
JP2017066245A (en) Scintillator crystal material, single crystal scintillator, radiation detector, imaging apparatus and nondestructive inspection apparatus
Hussain et al. Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD)
Roy et al. Spectroscopic and Transmittance Properties of Fine Grained Ce $^{+ 3} $ Doped Lutetium Oxyorthosilicate
Seki et al. Optical and scintillation properties of Dy3+: Y3Al5O12 and undoped Y3Al5O12 crystals grown in reduction atmosphere
JP6032590B2 (en) Method for producing zinc oxide single crystal
Sisodiya et al. Single crystal growth of 2 in. diameter LiI: Eu in carbon coated crucible and effect of post growth thermal treatment on scintillation
Fan et al. Experimental and theoretical study of defect-driven scintillation from γ− G a 2 O 3 nanophosphor-embedded transparent glass-ceramics
Nanto et al. Luminescence Properties of Impurity-Doped Zinc Oxide Phosphor for Novel Neutron Detection.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191101

R150 Certificate of patent or registration of utility model

Ref document number: 6623412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250