JP2016204165A - Method for manufacturing substrate with porous film - Google Patents

Method for manufacturing substrate with porous film Download PDF

Info

Publication number
JP2016204165A
JP2016204165A JP2013203454A JP2013203454A JP2016204165A JP 2016204165 A JP2016204165 A JP 2016204165A JP 2013203454 A JP2013203454 A JP 2013203454A JP 2013203454 A JP2013203454 A JP 2013203454A JP 2016204165 A JP2016204165 A JP 2016204165A
Authority
JP
Japan
Prior art keywords
substrate
porous film
particles
film
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013203454A
Other languages
Japanese (ja)
Inventor
雄一 ▲桑▼原
雄一 ▲桑▼原
Yuichi Kuwabara
阿部 啓介
Keisuke Abe
啓介 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013203454A priority Critical patent/JP2016204165A/en
Priority to PCT/JP2014/075308 priority patent/WO2015046260A1/en
Publication of JP2016204165A publication Critical patent/JP2016204165A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate with a porous film which forms on a substrate a porous film made of an inorganic material, can efficiently thicken the porous film, and hardly causes crack generation or film peeling even if the film thickness is enlarged.SOLUTION: A method for manufacturing a substrate with a porous film includes a step of spraying a coating liquid containing resin particles, inorganic particles, an alkoxysilane hydrolysate, and a liquid medium to a substrate kept at 300-650°C to form a porous film. The liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water.SELECTED DRAWING: None

Description

本発明は多孔質膜付き基板の製造方法に関する。   The present invention relates to a method for producing a substrate with a porous film.

無機材料からなる塗膜(無機膜)は、有機材料からなる塗膜(有機膜)に比べて耐熱性および耐紫外線性が高いという利点を有する。
無機膜を形成する方法として、従来より、膜形成前駆体を含む液を用いて、基板上に該膜形成前駆体を含む塗膜を形成した後、該塗膜を焼成固化させる方法が知られている。
A coating film (inorganic film) made of an inorganic material has an advantage of higher heat resistance and ultraviolet resistance than a coating film (organic film) made of an organic material.
As a method for forming an inorganic film, a method of forming a coating film containing a film forming precursor on a substrate using a liquid containing a film forming precursor and then baking and solidifying the coating film is known. ing.

特許文献1には、コーティング構成材料前駆体および細孔形成剤としてのポリマービーズを含むゾルを、基板上に付着させ、500℃以上で焼成処理を施すことによって多孔構造を有する被膜を得る方法が記載されている。
特許文献2には、鋳型となる有機分子集合体、無機被覆前駆体原料(金属アルコキシド)、水、および有機溶媒を含み、さらに酸またはアルカリを混合したゾル溶液を、基板上に塗布し、乾燥させて水分を除去し、減圧下で紫外線を照射して有機分子集合体の除去を行うことにより、内部にナノ細孔を有する被膜を形成する方法が記載されている。
Patent Document 1 discloses a method of obtaining a coating film having a porous structure by attaching a sol containing a coating constituent material precursor and polymer beads as a pore-forming agent on a substrate and performing a baking treatment at 500 ° C. or higher. Have been described.
In Patent Document 2, a sol solution containing an organic molecular assembly serving as a template, an inorganic coating precursor raw material (metal alkoxide), water, and an organic solvent and further mixed with an acid or alkali is applied onto a substrate and dried. In other words, a method for forming a film having nanopores therein is described by removing water and removing organic molecule aggregates by irradiating ultraviolet rays under reduced pressure.

特表2010−509175号公報Special table 2010-509175 特開2006−130889号公報JP 2006-130889 A

しかしながら特許文献1に記載された方法では、焼成時に塗膜の熱収縮が生じやすく、それによって収縮応力が発生する。この収縮応力は膜厚が増加するにしたがって大きくなり、クラックまたは膜剥がれが発生する原因となる。このため、膜厚を大きくすることが難しい。
特許文献2に記載された方法は工程数が多く、製造効率の点で劣る。
However, in the method described in Patent Document 1, thermal contraction of the coating film is likely to occur at the time of firing, thereby generating contraction stress. This shrinkage stress increases as the film thickness increases, causing cracks or film peeling. For this reason, it is difficult to increase the film thickness.
The method described in Patent Document 2 has many steps and is inferior in terms of production efficiency.

本発明は前記事情に鑑みてなされたもので、基板上に、無機材料からなる多孔質膜を形成する方法であって、多孔質膜を効率良く厚膜化することができ、膜厚が大きくなってもクラックまたは膜剥がれが生じ難い、多孔質膜付き基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a method of forming a porous film made of an inorganic material on a substrate, which can efficiently increase the thickness of the porous film and has a large film thickness. Even if it becomes, it aims at providing the manufacturing method of the board | substrate with a porous film which a crack or film | membrane peeling does not produce easily.

本発明は、下記の[1]〜[8]の発明である。
[1]多孔質膜付き基板の製造方法であって、樹脂粒子と、無機粒子と、アルコキシシラン加水分解物と、多価水酸基含有化合物および水の少なくとも一方を含む液状媒体とを含むコーティング液を準備し;基板を準備し;前記基板を300〜650℃に保持し;前記基板に前記コーティング液を噴霧し;多孔質膜を得る、多孔質膜付き基板の製造方法。
[2]樹脂粒子、無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液を、300〜650℃に保持された基板に噴霧して多孔質膜を形成する工程を有し、前記液状媒体が多価水酸基含有化合物および水の少なくとも一方を含む、多孔質膜付き基板の製造方法。
The present invention is the following [1] to [8].
[1] A method for producing a substrate with a porous film, comprising: a coating liquid comprising resin particles, inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium containing at least one of a polyhydric hydroxyl group-containing compound and water. Preparing the substrate; holding the substrate at 300 to 650 ° C .; spraying the coating liquid onto the substrate; obtaining a porous film;
[2] A step of spraying a coating liquid containing resin particles, inorganic particles, alkoxysilane hydrolyzate, and a liquid medium onto a substrate maintained at 300 to 650 ° C. to form a porous film, A method for producing a substrate with a porous film, wherein the medium contains at least one of a polyhydric hydroxyl group-containing compound and water.

[3]前記樹脂粒子の平均粒子径が250nm以下である、[1]または[2]に記載の多孔質膜付き基板の製造方法。
[4]前記無機粒子の平均凝集粒子径が100nm以下である、[1]〜[3]のいずれか一項に記載の多孔質膜付き基板の製造方法。
[5]前記コーティング液中、前記無機粒子とアルコキシシラン加水分解物の合計に対する、前記樹脂粒子の質量比[樹脂粒子/(無機粒子+アルコキシシラン加水分解物)]が0.01〜1である、[1]〜[4]のいずれか一項に記載の多孔質膜付き基板の製造方法。
[6]前記液状媒体が、多価水酸基含有化合物、または、水と多価水酸基含有化合物の混合物である、[1]〜[5]のいずれか一項に記載の多孔質膜付き基板の製造方法。
[7]前記無機粒子がシリカ粒子である、[1]〜[6]のいずれか一項に記載の多孔質膜付き基板の製造方法。
[8]前記無機粒子が鎖状粒子である、[1]〜[7]のいずれか一項に記載の多孔質膜付き基板の製造方法。
[3] The method for producing a substrate with a porous film according to [1] or [2], wherein an average particle diameter of the resin particles is 250 nm or less.
[4] The method for producing a substrate with a porous film according to any one of [1] to [3], wherein an average aggregate particle diameter of the inorganic particles is 100 nm or less.
[5] The mass ratio [resin particles / (inorganic particles + alkoxysilane hydrolyzate)] of the resin particles to the total of the inorganic particles and the alkoxysilane hydrolyzate in the coating solution is 0.01-1. , [1] to [4] The method for producing a substrate with a porous film according to any one of [1] to [4].
[6] The production of a substrate with a porous film according to any one of [1] to [5], wherein the liquid medium is a polyvalent hydroxyl group-containing compound or a mixture of water and a polyvalent hydroxyl group-containing compound. Method.
[7] The method for producing a substrate with a porous film according to any one of [1] to [6], wherein the inorganic particles are silica particles.
[8] The method for producing a substrate with a porous film according to any one of [1] to [7], wherein the inorganic particles are chain particles.

本発明の製造方法によれば、基板上に、無機材料からなる厚膜の多孔質膜を効率良く形成することができ、多孔質膜は膜厚が大きくなってもクラックまたは膜剥がれが生じ難い。   According to the production method of the present invention, a thick porous film made of an inorganic material can be efficiently formed on a substrate, and the porous film is unlikely to crack or peel off even when the film thickness increases. .

ガラス製造装置の一例を示す概略図である。It is the schematic which shows an example of a glass manufacturing apparatus. 実験例で得られた多孔質膜付き基板の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the board | substrate with a porous film obtained in the experiment example. 図2の多孔質膜付き基板の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the board | substrate with a porous film of FIG.

本明細書における樹脂粒子の平均粒子径は、分散媒中における樹脂粒子を動的光散乱法で測定した平均粒子径である。
本明細書における無機粒子の平均凝集粒子径は、分散媒中における無機粒子を動的光散乱法で測定した平均粒子径である。分散媒中における無機粒子が、凝集していない単分散の粒子である場合、本方法で得られる平均凝集粒子径の値は平均一次粒子径の値を意味する。
本明細書における基板の温度は、コーティング液を塗布する側の表面温度である。
本明細書における多孔質膜の厚さ(膜厚)は、多孔質膜付き基板の断面を走査型電子顕微鏡にて観察して得られる像において、基板表面に平行な方向(面内方向)における間隔が1.5μmである3点で、基板の表面から多孔質膜の表面までの膜厚を測定し、該3点の膜厚の平均値(平均膜厚)を、多孔質膜の厚さ(膜厚)とした。
The average particle diameter of the resin particles in this specification is an average particle diameter obtained by measuring the resin particles in the dispersion medium by a dynamic light scattering method.
The average aggregate particle diameter of inorganic particles in the present specification is an average particle diameter obtained by measuring inorganic particles in a dispersion medium by a dynamic light scattering method. When the inorganic particles in the dispersion medium are monodispersed particles that are not aggregated, the value of the average aggregated particle diameter obtained by this method means the value of the average primary particle diameter.
The temperature of the substrate in this specification is the surface temperature on the side where the coating liquid is applied.
The thickness (film thickness) of the porous film in this specification is the direction (in-plane direction) parallel to the substrate surface in an image obtained by observing the cross section of the substrate with the porous film with a scanning electron microscope. The film thickness from the surface of the substrate to the surface of the porous film was measured at three points with an interval of 1.5 μm, and the average value (average film thickness) of the film thicknesses at the three points was determined as the thickness of the porous film. (Film thickness).

<多孔質膜付き基板>
本発明における多孔質膜付き基板は、300〜650℃に保持された基板に、樹脂粒子、無機粒子、アルコキシシラン加水分解物および液状媒体を含む液(以下、コーティング液(X)ということもある。)を噴霧することによって多孔質膜(以下、多孔質膜(Y)いうこともある。)が形成されたものである。
<Substrate with porous film>
The substrate with a porous film in the present invention is a liquid containing resin particles, inorganic particles, alkoxysilane hydrolyzate, and a liquid medium (hereinafter also referred to as coating liquid (X)) on a substrate maintained at 300 to 650 ° C. .) Is formed by spraying a porous film (hereinafter also referred to as a porous film (Y)).

基板は基板本体と、基板本体の表面に設けられた、多孔質膜(Y)以外の層を有してもよい。また多孔質膜付き基板は、多孔質膜(Y)上に、多孔質膜(Y)以外の層を有していてもよい。
例えば、基板本体の表面に機能層が設けられており、該機能層の上に、多孔質膜(Y)が形成されてもよい。
機能層としては、アンダーコート層、応力緩和層、密着改善層、保護層等が挙げられる。アンダーコート層は、アルカリバリア層やワイドバンドの低屈折率層としての機能を有する。アンダーコート層としては、アルコキシシランまたはその加水分解物(ゾルゲルシリカ)を含むアンダーコート用コーティング液を基板本体の表面に塗布することによって形成される層が好ましい。応力緩和層とは、ガラス基板と多孔質膜(Y)間の熱膨張率差から生じるクラックを抑制するためのものであり、ガラスと多孔質膜(Y)との中間の熱膨張係数を有する材料で形成されることが好ましい。
The substrate may have a substrate body and layers other than the porous film (Y) provided on the surface of the substrate body. The substrate with a porous film may have a layer other than the porous film (Y) on the porous film (Y).
For example, a functional layer may be provided on the surface of the substrate body, and a porous film (Y) may be formed on the functional layer.
Examples of the functional layer include an undercoat layer, a stress relaxation layer, an adhesion improving layer, and a protective layer. The undercoat layer functions as an alkali barrier layer or a wide band low refractive index layer. The undercoat layer is preferably a layer formed by applying an undercoat coating liquid containing alkoxysilane or a hydrolyzate thereof (sol-gel silica) to the surface of the substrate body. The stress relaxation layer is for suppressing cracks caused by the difference in thermal expansion coefficient between the glass substrate and the porous film (Y), and has an intermediate thermal expansion coefficient between the glass and the porous film (Y). It is preferable to form with a material.

<樹脂粒子>
樹脂粒子は熱処理により除去可能な樹脂粒子である。
樹脂粒子の材料としては、(メタ)アクリル系モノマー、スチレン系モノマー、ジエン系モノマー、イミド系モノマー、アミド系モノマーからなる群(以下「特定モノマー群」ともいう。)から選ばれるモノマーの単独重合体または共重合体が好ましい。
アクリル系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピル、ジエチルアミノエチル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレート、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、ジアセトンアクリルアミド、グリシジル(メタ)アクリレート、エチレングリコールのジアクリル酸エステル、ジエチルグリコールのジアクリル酸エステル、トリエチレングリコールのジアクリル酸エステル、ポリエチレングリコールのジアクリル酸エステル、ジプロピレングリコールのジアクリル酸エステル、トリプロピレングリコールのジアクリル酸エステル、エチレングリコールのジメタクリル酸エステル、ジエチレングリコールのジメタクリル酸エステル、トリエチレングリコールのジメタクリル酸エステル、ポリエチレングリコールのジアクリル酸エステル、プロピレングリコールのジメタクリル酸エステル、ジプロピレングリコールのジメタクリル酸エステル、トリプロピレングリコールのジメタクリル酸エステル等が挙げられる。
<Resin particles>
The resin particles are resin particles that can be removed by heat treatment.
As the material for the resin particles, a single weight of a monomer selected from the group consisting of (meth) acrylic monomers, styrene monomers, diene monomers, imide monomers, and amide monomers (hereinafter also referred to as “specific monomer group”). Polymers or copolymers are preferred.
Acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, (meth ) Pentyl acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, ( (Meth) acrylic acid dodecyl, (meth) acrylic acid phenyl, (meth) acrylic acid methoxyethyl, (meth) acrylic acid ethoxyethyl, (meth) acrylic acid propoxyethyl, (meth) acrylic acid butoxyethyl, (meth) acrylic acid Ethoxypropyl, diethylaminoethyl (meth) acrylate , Dialkylaminoalkyl (meth) acrylate, (meth) acrylamide, N-methylol (meth) acrylamide, diacetone acrylamide, glycidyl (meth) acrylate, ethylene glycol diacrylate, diethyl glycol diacrylate, triethylene glycol Diacrylic acid ester, polyethylene glycol diacrylic acid ester, dipropylene glycol diacrylic acid ester, tripropylene glycol diacrylic acid ester, ethylene glycol dimethacrylic acid ester, diethylene glycol dimethacrylic acid ester, triethylene glycol dimethacrylic acid ester , Polyethylene glycol diacrylate, propylene glycol dimethacrylate , Dimethacrylates of dipropylene glycol, dimethacrylate ester of tripropylene glycol.

スチレン系モノマーとしては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、オクチルスチレン、フロロスチレン、クロルスチレン、ブロモスチレン、ジブロモスチレン、クロルメチルスチレン、ニトロスチレン、アセチルスチレン、メトキシスチレン、p−スチレンスルホン酸ナトリウム等が挙げられる。
ジエン系モノマーとしては、ブタジエン、イソプレイン、シクロペンタジエン、1,3−ペンタジエン、ジシクロペンタジエン等が挙げられる。
イミド系モノマーとしては、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド、6−アミノヘキシルコハク酸イミド、2−アミノエチルコハク酸イミド等が挙げられる。
アミド系モノマーとしては、アクリルアミド、N−メチルアクリルアミドなどのアクリルアミド系誘導体、N、N−ジメチルアクリルアミド、N、N−ジメチルアミノプロピルアクリルアミド等のアリルアミン系誘導体、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド系誘導体、N−アミノスチレン等のアミノスチレン類等が挙げられる。
Styrene monomers include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, fluorostyrene, chlorostyrene, bromostyrene, Examples thereof include dibromostyrene, chloromethylstyrene, nitrostyrene, acetylstyrene, methoxystyrene, and sodium p-styrenesulfonate.
Examples of the diene monomer include butadiene, isoprene, cyclopentadiene, 1,3-pentadiene, dicyclopentadiene, and the like.
Examples of the imide monomers include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 6-aminohexyl succinimide, 2-aminoethyl succinimide, and the like.
Examples of amide monomers include acrylamide derivatives such as acrylamide and N-methylacrylamide, allylamine derivatives such as N, N-dimethylacrylamide and N, N-dimethylaminopropylacrylamide, and acrylamide derivatives such as acrylamide and N-methylacrylamide. And aminostyrenes such as N-aminostyrene.

樹脂粒子を構成する樹脂が、前記特定モノマー群から選ばれるモノマーの共重合体である場合、該共重合体は、前記特定モノマー群から選ばれる2種以上のモノマーを共重合させたものであってもよく、前記特定モノマー群から選ばれる少なくとも1種と、特定モノマー群から選ばれるモノマー以外の他のモノマーの少なくとも1種とを共重合させたものであってもよい。
該他のモノマーとしては、ジビニルベンゼン、酢酸ビニル、ビニルピリジン、アクリル酸、メタアクリル酸、テトラヒドロフタル酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、メチレンマロン酸、イタコン酸モノエチル、イタコン酸モノブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノプロピル、マレイン酸モノオクチル、カルボキシアルキルビニルエーテル、カルボキシアルキルビニルエステル、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸無水物、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、(メタ)アクリル酸アミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチルなどのアクリル酸またはメタクリル酸のアルキルエステル系誘導体、N−ビニルジエチルアミン、N−アセチルビニルアミンなどのビニルアミン系誘導体、アリルアミン、メタクリルアミン、N−メチルアクリルアミン、N、N−ジメチルアクリルアミド、N、N−ジメチルアミノプロピルアクリルアミドなどのアリルアミン系誘導体、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、サリチル酸ビニル、塩化ビニリデン、クロロヘキサンカルボン酸ビニル、アクリル酸−2−クロロエチル、メタクリル酸−2−クロロエチル、アクリルニトリル、メタクリロニトリル、メタクリルアミド、N−メチロールメタクリルアミド、N−メトキシエチルメタクリルアミド、N−ブトキシメチルメタクリルアミド、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、(メタ)アクリル酸アミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、アクリル酸またはメタクリル酸のアルキルエステル系誘導体、N−ビニルジエチルアミン、N−アセチルビニルアミン等のビニルアミン系誘導体、アリルアミン、メタクリルアミン、N−メチルアクリルアミン、N、N−ジメチルアクリルアミド、N、N−ジメチルアミノプロピルアクリルアミド等のアリルアミン系誘導体、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド系誘導体、p−アミノスチレン、N-メチロール(メタ)アクリルアミド及びジアセトンアクリルアミド、6−アミノヘキシルコハク酸イミド、2−アミノエチルコハク酸イミド、グリシジルメタクリレート、マレイン酸のモノ及びジグリシジルエステル、フマル酸のモノ及びジグリシジルエステル、クロトン酸のモノ及びジグリシジルエステル、テトラヒドロフタル酸のモノ及びジグリシジルエステル、イタコン酸のモノ及びグシジルエステル、ブテントリカルボン酸のモノ及びジグリシジルエステル、シトラコン酸のモノ及びジグリシジルエステル、アリルコハク酸のモノ及びグリシジルエステル等のジカルボン酸モノ及びアルキルグリシジルエステル、p−スチレンカルボン酸のアルキルグリシジルエステル、アリルグリシジルエーテル、アクリル酸グリシジルエーテル、メタアクリル酸グリシジルエーテル、アクリル酸−2−エチルグリシジルエーテル、メタアクリル酸−2−エチルグリシジルエーテル、2−メチルアリルグリシジルエーテル、スチレン−p−グリシジルエーテル、グリシジルアクリレート、アクリル酸−2−ヒドリキシエチル、メタクリル酸−2−ヒドリキシエチル、アクリル酸−2−ヒドリキシプロピル、アクリル酸又はメタクリル酸とポリプロピレングリコール又はポリエチレングリコールとのモノエステル、ラクトン類と(メタ)アクリル酸−2−ヒドロキシエチルとの付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸−2−トリフルオロメチルエチル、(メタ)アクリル酸−2−パ−フルオロメチルエチル、(メタ)アクリル酸−2−パ−フルオロエチル−2−パ−フルオロブチルエチル、(メタ)アクリル酸−2−パ−フルオロエチル、(メタ)アクリル酸パ−フルオロメチル、(メタ)アクリル酸ジパ−フルオロメチルメチル、酢酸ビニル、プロピオン酸ビニル、n−酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、パーサティック酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、安息香酸ビニル、p−tert−ブチル安息香酸ビニル、サリチル酸ビニル、塩化ビニリデン、クロロヘキサンカルボン酸ビニル、アクリル酸−2−クロロエチル、メタクリル酸−2−クロロエチル、3−クロロ−2−ヒドロキシプロピルメタクレート、β−メタクリロイルオキシエチルハイドロジェンフタレート、フェノキシエチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクレレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルエタンジアクリレート、1,1,1−トリスヒドロキシメチルエタントリアクリレート、1,1,1−トリスヒドロキシメチルプロパントリアクリレート、N−メチロールアクリルアマイド等が挙げられる。
共重合体中、特定モノマー群から選ばれるモノマー単位の割合は、全モノマー単位の合計に対し、80モル%以上が好ましく、100モル%が特に好ましい。
When the resin constituting the resin particles is a copolymer of a monomer selected from the specific monomer group, the copolymer is obtained by copolymerization of two or more monomers selected from the specific monomer group. Alternatively, at least one selected from the specific monomer group and at least one other monomer other than the monomer selected from the specific monomer group may be copolymerized.
Examples of the other monomers include divinylbenzene, vinyl acetate, vinylpyridine, acrylic acid, methacrylic acid, tetrahydrophthalic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, methylene Malonic acid, monoethyl itaconate, monobutyl itaconate, monomethyl maleate, monoethyl maleate, monobutyl maleate, monopropyl maleate, monooctyl maleate, carboxyalkyl vinyl ether, carboxyalkyl vinyl ester, bicyclo [2,2,1] Hept-2-ene-5,6-dicarboxylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid Nothing Acrylic acid or methacrylic acid such as aminoethyl (meth) acrylate, propylaminoethyl (meth) acrylate, dimethylaminoethyl methacrylate, aminopropyl (meth) acrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate Alkyl ester derivatives of acids, vinylamine derivatives such as N-vinyldiethylamine, N-acetylvinylamine, allylamine, methacrylamine, N-methylacrylamine, N, N-dimethylacrylamide, N, N-dimethylaminopropylacrylamide, etc. Allylamine derivatives, phenyl (meth) acrylate, benzyl (meth) acrylate, vinyl salicylate, vinylidene chloride, vinyl chlorohexanecarboxylate, acrylic acid-2-chloroe , 2-chloroethyl methacrylate, acrylonitrile, methacrylonitrile, methacrylamide, N-methylol methacrylamide, N-methoxyethyl methacrylamide, N-butoxymethyl methacrylamide, aminoethyl (meth) acrylate, (meth) Propylaminoethyl acrylate, dimethylaminoethyl methacrylate, aminopropyl (meth) acrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, alkyl ester derivatives of acrylic acid or methacrylic acid, N-vinyldiethylamine, N- Vinylamine derivatives such as acetylvinylamine, allylamine, methacrylamine, N-methylacrylamine, N, N-dimethylacrylamide, N, N-dimethylaminopropyl acetate Allylamine derivatives such as rilamide, acrylamide derivatives such as acrylamide and N-methylacrylamide, p-aminostyrene, N-methylol (meth) acrylamide and diacetone acrylamide, 6-aminohexyl succinimide, 2-aminoethyl succinic acid Imides, glycidyl methacrylate, mono and diglycidyl esters of maleic acid, mono and diglycidyl esters of fumaric acid, mono and diglycidyl esters of crotonic acid, mono and diglycidyl esters of tetrahydrophthalic acid, mono and glycidyl esters of itaconic acid Mono- and diglycidyl esters of butenetricarboxylic acid, mono- and diglycidyl esters of citraconic acid, mono- and glycidyl esters of allyl succinic acid, and the like. Ricidyl ester, alkyl glycidyl ester of p-styrene carboxylic acid, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, acrylate-2-ethyl glycidyl ether, methacrylic acid-2-ethyl glycidyl ether, 2- Methyl allyl glycidyl ether, styrene-p-glycidyl ether, glycidyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, acrylic acid or methacrylic acid and polypropylene glycol Or monoester with polyethylene glycol, adduct of lactones and 2-hydroxyethyl (meth) acrylate, trifluoromethylmethyl (meth) acrylate, (meth) acrylic Acid-2-trifluoromethylethyl, (meth) acrylic acid-2-perfluoromethylethyl, (meth) acrylic acid-2-perfluoroethyl-2-perfluorobutylethyl, (meth) acrylic acid- 2-perfluoroethyl, perfluoromethyl (meth) acrylate, dipa-fluoromethylmethyl (meth) acrylate, vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl pivalate, caproic acid Vinyl, vinyl persicate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl p-tert-butyl benzoate, vinyl salicylate, vinylidene chloride, vinyl chlorohexanecarboxylate, 2-chloroethyl acrylate, methacrylic acid 2-chloroethyl, 3-chloro-2-hydroxypropylme Crate, β-methacryloyloxyethyl hydrogen phthalate, phenoxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) Acrylate, diethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, 1,1,1-tris Hydroxymethylethane diacrylate, 1,1,1-trishydroxymethylethane triacrylate, 1,1,1-trishydroxymethyl Bread triacrylate, N- methylolacrylamide acrylamide and the like.
In the copolymer, the proportion of monomer units selected from the specific monomer group is preferably 80 mol% or more, particularly preferably 100 mol%, based on the total of all monomer units.

樹脂粒子を構成する樹脂の熱分解温度は150〜500℃が好ましく、200〜450℃がより好ましい。上記範囲の下限値以上であると、樹脂粒子を含むコーティング液の液滴が基板に到達する前に分解しにくく、空孔を形成しやすい。上限値以下であると、該液滴が基板に到達した後に樹脂粒子の熱分解が適度に進行して、空孔を形成しやすい。
樹脂粒子の材質として、特に入手容易性の点で、ポリスチレン、ポリメチルメタクリレート、またはスチレン-ブタジエン共重合体を用いることが好ましい。
樹脂粒子としては、市販のものを用いてもよく、公知の樹脂粒子の製造方法により製造したものを用いてもよい。たとえば、公知の乳化重合法により、樹脂粒子が分散した分散液を得ることができる。具体的には、界面活性剤を含む水中にモノマーを添加し、混合してミセルを形成させ、重合開始剤を加えて重合させることにより、樹脂粒子の水分散液が得られる。また、界面活性剤を用いないソープフリー重合法によって得られた樹脂粒子を用いてもよい。
150-500 degreeC is preferable and, as for the thermal decomposition temperature of resin which comprises the resin particle, 200-450 degreeC is more preferable. When it is at least the lower limit of the above range, the coating liquid droplets containing the resin particles are unlikely to decompose before reaching the substrate, and voids are likely to be formed. If it is less than or equal to the upper limit value, thermal decomposition of the resin particles proceeds moderately after the droplets reach the substrate, and pores are easily formed.
As the material for the resin particles, it is preferable to use polystyrene, polymethyl methacrylate, or styrene-butadiene copolymer, particularly in terms of easy availability.
As a resin particle, a commercially available thing may be used and what was manufactured by the manufacturing method of a well-known resin particle may be used. For example, a dispersion in which resin particles are dispersed can be obtained by a known emulsion polymerization method. Specifically, an aqueous dispersion of resin particles can be obtained by adding a monomer to water containing a surfactant, mixing to form micelles, and adding a polymerization initiator for polymerization. Moreover, you may use the resin particle obtained by the soap free polymerization method which does not use surfactant.

樹脂粒子は球状のものが用いられる。
樹脂粒子の平均粒子径は、膜の内部に空孔が形成されやすい点で250nm以下が好ましく、200nm以下がより好ましい。
樹脂粒子の平均粒子径の下限値は、入手容易性の点で10nm以上が好ましく、30nm以上がより好ましい。
樹脂粒子は、1種を単独で用いてもよく、材料、平均粒子径等が異なる2種以上を併用してもよい。
The resin particles are spherical.
The average particle diameter of the resin particles is preferably 250 nm or less, and more preferably 200 nm or less, from the viewpoint that pores are easily formed inside the film.
The lower limit of the average particle diameter of the resin particles is preferably 10 nm or more, and more preferably 30 nm or more in terms of availability.
As the resin particles, one type may be used alone, or two or more types having different materials and average particle diameters may be used in combination.

また樹脂粒子は、無機材料(特に無機酸化物)で被覆されていてもよい。樹脂粒子が被覆されていると樹脂粒子どうしの凝集が抑制され、所望の空孔径分布を得やすく、また空孔密度が高くなりやすい。無機材料としては、シリカ、チタニア等の無機酸化物が例示できる。
樹脂粒子の無機材料による被覆は、樹脂粒子を含むコーティング液を調製する工程とは別の工程として行ってもよく、コーティング液を調製すると同時に、または調製した後にコーティング液中で被覆を進行させてもよく、これらの組み合わせであってもよい。例えばシリカで被覆された樹脂粒子を用いる場合には、コーティング液中において、アルコキシシランの加水分解を樹脂粒子の存在下で行うことで、コーティング液中にシリカで被覆された樹脂粒子を存在させることができる。
The resin particles may be coated with an inorganic material (particularly an inorganic oxide). When the resin particles are coated, aggregation of the resin particles is suppressed, a desired pore size distribution is easily obtained, and the pore density tends to be high. Examples of the inorganic material include inorganic oxides such as silica and titania.
The coating of the resin particles with the inorganic material may be performed as a separate process from the process of preparing the coating liquid containing the resin particles. The coating may be performed in the coating liquid at the same time as or after the coating liquid is prepared. Or a combination thereof. For example, when using resin particles coated with silica, the alkoxysilane is hydrolyzed in the presence of the resin particles in the coating solution, so that the resin particles coated with silica are present in the coating solution. Can do.

<無機粒子>
無機粒子は、平均凝集粒子径が100nm以下であるものが好ましい。無機粒子の平均凝集粒子径が100nm以下であると、コーティング液(X)が無機粒子を含有することによって、着膜効率が向上して、多孔質膜(Y)の膜厚が増大する効果が十分に得られやすい。
該平均凝集粒子径の下限値は、分散安定性の点で1nm以上が好ましく、3nm以上がより好ましい。
<Inorganic particles>
The inorganic particles preferably have an average aggregate particle diameter of 100 nm or less. When the average agglomerated particle diameter of the inorganic particles is 100 nm or less, the coating liquid (X) contains the inorganic particles, thereby improving the film deposition efficiency and increasing the film thickness of the porous film (Y). It is easy to get enough.
The lower limit of the average agglomerated particle diameter is preferably 1 nm or more, more preferably 3 nm or more from the viewpoint of dispersion stability.

無機粒子としては金属酸化物粒子または金属粒子が挙げられる。無機粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
入手容易性の点で、無機粒子として酸化ケイ素粒子を用いることが好ましい。
また無機粒子として各種機能を有するものを用いると、機能層として作用する多孔質膜(Y)が得られる。機能を有する無機粒子の材質の例としては、機能別に下記のものが挙げられる。
紫外線遮蔽:酸化亜鉛、酸化セリウム等。
赤外線遮蔽:酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、酸化タングステン、エルビウム等。
帯電防止:ITO、ATO、銀等。
光触媒:酸化チタン等。
波長変換:酸化亜鉛、ユーロピウムドープ酸化亜鉛、硫化亜鉛、ユーロピウムドープ硫化亜鉛、リン化インジウム、ビスマスドープ硫化カルシウム、ユーロピウムドープフッ化カルシウム、ユーロピウムドープバナジン酸イットリウム等。
多孔質膜(Y)に付与する機能が、膜厚が大きいほど高い効果が得られる機能であると、本発明を適用することによる効果が大きい点で好ましい。膜厚が大きいほど高い効果が得られる機能層として、例えば、光散乱層、アルカリバリア層、紫外線吸収層、赤外線吸収層などが挙げられる。
Inorganic particles include metal oxide particles or metal particles. Inorganic particles may be used alone or in combination of two or more.
In view of availability, it is preferable to use silicon oxide particles as inorganic particles.
When inorganic particles having various functions are used, a porous film (Y) that functions as a functional layer can be obtained. As an example of the material of the inorganic particle which has a function, the following are mentioned according to a function.
UV shielding: zinc oxide, cerium oxide, etc.
Infrared shielding: Indium tin oxide (ITO), antimony tin oxide (ATO), tungsten oxide, erbium, etc.
Antistatic: ITO, ATO, silver, etc.
Photocatalyst: titanium oxide and the like.
Wavelength conversion: zinc oxide, europium doped zinc oxide, zinc sulfide, europium doped zinc sulfide, indium phosphide, bismuth doped calcium sulfide, europium doped calcium fluoride, europium doped yttrium vanadate, and the like.
The function imparted to the porous film (Y) is preferably a function that provides a higher effect as the film thickness is larger in that the effect of applying the present invention is greater. Examples of the functional layer having a higher effect as the film thickness is larger include a light scattering layer, an alkali barrier layer, an ultraviolet absorption layer, and an infrared absorption layer.

無機粒子の形状としては、球状、楕円上、針状、棒状、板状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状が挙げられる。また無機粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
特に、各無機粒子が鎖状に連結している鎖状粒子を用いることにより、コーティング液(X)を、加熱した基板上に噴霧供給して多孔質膜を形成する際の、着膜効率が大幅に向上する。その理由としては、鎖状に連結した無機粒子がアルコキシシラン加水分解物とネットワーク構造を形成することによって、コーティング液(X)が加熱した基板上に供給される際に生じる、アルコキシシラン加水分解物の気化または飛散が抑制されることが考えられる。
鎖状粒子において、連結している無機粒子の数は2〜1000が好ましく、3〜500がより好ましい。鎖状粒子において、無機粒子は直鎖状に連結していてもよく、枝分かれ状であってもよい。
Examples of the shape of the inorganic particles include a spherical shape, an elliptical shape, a needle shape, a rod shape, a plate shape, a cone shape, a columnar shape, a cube shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape. In addition, the inorganic particles may exist in a state where each particle is independent, each particle may be linked in a chain, or each particle may be aggregated.
In particular, by using chain particles in which each inorganic particle is connected in a chain, the deposition efficiency when forming a porous film by spraying the coating liquid (X) onto a heated substrate is improved. Greatly improved. The reason is that the alkoxysilane hydrolyzate produced when the coating liquid (X) is supplied onto the heated substrate by forming chain-structured inorganic particles and a network structure with the alkoxysilane hydrolyzate. It is conceivable that the vaporization or scattering of the water is suppressed.
In the chain particles, the number of linked inorganic particles is preferably 2 to 1000, more preferably 3 to 500. In the chain particles, the inorganic particles may be linearly linked or branched.

無機粒子は、界面活性剤、高分子分散剤、シランカップリング剤等によって表面処理されていてもよい。表面処理後の無機粒子の凝集粒子径は、1〜100nmが好ましい。
無機粒子は、400〜650℃の熱に対して不活性なもの、つまりアルコキシシラン加水分解物を含まず無機粒子のみが分散した分散液を、加熱した基板上に供給した場合に膜を形成しないもの、または著しく着膜効率の低いものであってもよい。
The inorganic particles may be surface-treated with a surfactant, a polymer dispersant, a silane coupling agent or the like. The aggregate particle diameter of the inorganic particles after the surface treatment is preferably 1 to 100 nm.
Inorganic particles are inactive to heat at 400 to 650 ° C., that is, do not form a film when a dispersion in which only inorganic particles are dispersed without containing an alkoxysilane hydrolyzate is supplied onto a heated substrate. Or a film having a significantly low film deposition efficiency.

<アルコキシシラン加水分解物>
アルコキシシラン加水分解物は、水および多価水酸基含有化合物からなる群から選ばれる1種以上のヒドロキシ化合物の存在下、アルコキシシランを触媒によって加水分解することによって得られるものである。ここで用いる多価水酸基含有化合物は後述するものと同じである。ヒドロキシ化合物としては水が好ましい。アルコキシシラン加水分解物は、未反応のアルコキシシランを含んでいてもよい。アルコキシシランの加水分解物は酸化ケイ素の前駆体であり、これを焼成することにより酸化ケイ素が得られる。
<Alkoxysilane hydrolyzate>
The alkoxysilane hydrolyzate is obtained by hydrolyzing alkoxysilane with a catalyst in the presence of one or more hydroxy compounds selected from the group consisting of water and a polyhydric hydroxyl group-containing compound. The polyvalent hydroxyl group-containing compound used here is the same as that described later. As the hydroxy compound, water is preferred. The alkoxysilane hydrolyzate may contain unreacted alkoxysilane. The hydrolyzate of alkoxysilane is a precursor of silicon oxide, and silicon oxide is obtained by firing this.

アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、モノアルキルトリアルコキシシラン(メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン等)、ジアルキルジアルコキシシラン(ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン等)、トリアルキルモノアルコキシシラン(トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリプロピルメトキシシラン、トリプロピルエトキシシラン等)、モノアリールトリアルコキシシラン(フェニルトリメトキシシラン、フェニルトリエトキシシラン等)、ジアリールジアルコキシシラン(ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等)、トリアリールモノアルコキシシラン(トリフェニルメトキシシラン、トリフェニルエトキシシラン等)、ペルフルオロポリエーテル基を有するアルコキシシラン(ペルフルオロポリエーテルトリエトキシシラン等)、ペルフルオロアルキル基を有するアルコキシシラン(ペルフルオロエチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3−アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。
これらのうち、加水分解速度が速く生産性が高い等の点から、テトラアルコキシシランが好ましく、テトラエトキシシラン、テトラメトキシシランがより好ましい。
アルコキシシランは1種のみを単独で用いてもよく、2種以上を併用してもよい。
Examples of the alkoxysilane include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltrimethoxysilane). Ethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, etc.), dialkyl dialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, etc.) , Trialkyl monoalkoxysilane (trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxy Run, tripropylmethoxysilane, tripropylethoxysilane, etc.), monoaryltrialkoxysilane (phenyltrimethoxysilane, phenyltriethoxysilane, etc.), diaryl dialkoxysilane (diphenyldimethoxysilane, diphenyldiethoxysilane, etc.), triaryl Monoalkoxysilane (triphenylmethoxysilane, triphenylethoxysilane, etc.), alkoxysilane having a perfluoropolyether group (perfluoropolyethertriethoxysilane, etc.), alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane, etc.), Alkoxysilanes having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilanes having an epoxy group (2- 3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.), having acryloyloxy group Alkoxysilane (3-acryloyloxypropyltrimethoxysilane etc.) etc. are mentioned.
Of these, tetraalkoxysilane is preferred, and tetraethoxysilane and tetramethoxysilane are more preferred from the viewpoints of high hydrolysis rate and high productivity.
Alkoxysilane may be used alone or in combination of two or more.

アルコキシシランの加水分解は、ヒドロキシ化合物(好ましくは水)、および触媒を用いて行う。触媒としては酸またはアルカリを用いることが好ましい。酸としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、しゅう酸、酒石酸、クエン酸、モノクロル酢酸、ジクロルム酢酸、トリクロル酢酸等)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、長期保存性の点から酸が好ましい。また、触媒としては、無機粒子の分散を妨げないものが好ましい。
コーティング液(X)を調製する際に、液状媒体としてヒドロキシ化合物を用いるとともに、該液状媒体中にアルコキシシランおよび触媒を存在させることにより、アルコキシシラン加水分解物を含む液状媒体が得られる。
Hydrolysis of the alkoxysilane is performed using a hydroxy compound (preferably water) and a catalyst. It is preferable to use an acid or an alkali as the catalyst. Examples of the acid include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, tartaric acid, citric acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. The catalyst is preferably an acid from the viewpoint of long-term storage. Moreover, as a catalyst, what does not prevent dispersion | distribution of an inorganic particle is preferable.
When the coating liquid (X) is prepared, a hydroxy medium is used as a liquid medium, and an alkoxysilane and a catalyst are present in the liquid medium, whereby a liquid medium containing an alkoxysilane hydrolyzate is obtained.

<液状媒体>
液状媒体は、多価水酸基含有化合物および水の少なくとも一方を含む。すなわち液状媒体として、少なくとも、多価水酸基含有化合物、水、またはこれらの混合物を用いる。
液状媒体が、多価水酸基含有化合物および水をいずれも含まない場合、コーティング液(X)を基板上に噴霧しても、基板上に多孔質膜が形成されないか、または多孔質膜が形成されたとしても着膜効率が著しく低くなる。これは、多価水酸基化合物が、加水分解されたアルコキシシランと縮合し、高分子量化することで、コーティング液の噴霧中の揮発、飛散による損失を抑制しているものと推測される。
特に、コーティング液(X)を基板上に噴霧したときに良好な着膜効率が得られやすい点で、液状媒体として多価水酸基含有化合物を用いることが好ましい。
また、液状媒体中でアルコキシシランの加水分解を行う場合には、液状媒体として多価水酸基含有化合物と水の両方を用いることが好ましい。
<Liquid medium>
The liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water. That is, at least a polyvalent hydroxyl group-containing compound, water, or a mixture thereof is used as the liquid medium.
When the liquid medium contains neither a polyhydric hydroxyl group-containing compound nor water, a porous film is not formed on the substrate even when the coating liquid (X) is sprayed onto the substrate, or a porous film is formed. Even if this is the case, the deposition efficiency is significantly reduced. This is presumed that the polyvalent hydroxyl compound is condensed with the hydrolyzed alkoxysilane to increase the molecular weight, thereby suppressing loss due to volatilization and scattering during spraying of the coating liquid.
In particular, it is preferable to use a polyvalent hydroxyl group-containing compound as the liquid medium in that good film deposition efficiency is easily obtained when the coating liquid (X) is sprayed onto the substrate.
In addition, when the alkoxysilane is hydrolyzed in a liquid medium, it is preferable to use both a polyhydric hydroxyl group-containing compound and water as the liquid medium.

多価水酸基含有化合物は1分子中に水酸基を2個以上有する化合物であり、例えば、多価アルコール、アルカノールアミン、およびフェノール誘導体からなる群から選ばれる1種以上を用いることができる。
多価アルコールとしては、(ポリ)アルキレングリコール、トリメチロールプロパン、トリメチロールエタン、グリセリン、ペンタエリスリトール、ソルビトール、ジペンタエリスリトール、およびショ糖からなる群から選ばれる1種以上が好ましい。
アルカノールアミンとしては、モノエタノールアミン、プロパノールアミン、およびジエタノールアミンからなる群から選ばれる1種以上が好ましい。
フェノール誘導体としては、ビスフェノールA、カテコール、レゾルシノール、ヒドロキノン、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼンからなる群から選ばれる1種以上が好ましい。
本明細書における(ポリ)アルキレングリコールとは、HO−C2n−OH(nは1以上の整数)で表されるアルキレングリコール、またはHO−(C2n−O−)H(nは1以上の整数であり、mは2以上の整数である。)で表されるポリアルキレングリコールを意味する。
The polyhydric hydroxyl group-containing compound is a compound having two or more hydroxyl groups in one molecule, and for example, one or more selected from the group consisting of polyhydric alcohols, alkanolamines, and phenol derivatives can be used.
The polyhydric alcohol is preferably one or more selected from the group consisting of (poly) alkylene glycol, trimethylolpropane, trimethylolethane, glycerin, pentaerythritol, sorbitol, dipentaerythritol, and sucrose.
The alkanolamine is preferably at least one selected from the group consisting of monoethanolamine, propanolamine, and diethanolamine.
The phenol derivative is preferably at least one selected from the group consisting of bisphenol A, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and hexahydroxybenzene.
In this specification, (poly) alkylene glycol is alkylene glycol represented by HO—C n H 2n —OH (n is an integer of 1 or more), or HO— (C n H 2n —O—) m H ( n is an integer of 1 or more, and m is an integer of 2 or more).

これらのうちでも、多孔質膜の良好な着膜効率が得られやすい点で(ポリ)アルキレングリコールが好ましい。(ポリ)アルキレングリコールとしては、分子量300以下の(ポリ)アルキレングリコールが好ましい。
(ポリ)アルキレングリコールは、アルキレングリコール、ジアルキレングリコール(m=2)、トリアルキレングリコール(m=3)、およびテトラアルキレングリコール(m=4)からなる群から選ばれる1種以上がより好ましい。特に、多孔質膜の良好な着膜効率が得られやすい点から、トリアルキレングリコールまたはテトラアルキレングリコールが好ましく、テトラアルキレングリコールが好ましい。
(ポリ)アルキレングリコールにおけるアルキレン基(−C2n−)の炭素数(n)は、良好に無機微粒子を分散できる点、粘性(取り扱い性)の点で2〜6が好ましく、2〜4がより好ましい。
(ポリ)アルキレングリコールとしては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)テトラメチレングリコールが好ましい。ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールが特に好ましい。
Among these, (poly) alkylene glycol is preferable in that good film deposition efficiency of the porous film can be easily obtained. As the (poly) alkylene glycol, a (poly) alkylene glycol having a molecular weight of 300 or less is preferable.
The (poly) alkylene glycol is more preferably at least one selected from the group consisting of alkylene glycol, dialkylene glycol (m = 2), trialkylene glycol (m = 3), and tetraalkylene glycol (m = 4). In particular, trialkylene glycol or tetraalkylene glycol is preferable, and tetraalkylene glycol is preferable from the viewpoint that good film formation efficiency of the porous film is easily obtained.
The carbon number (n) of the alkylene group (—C n H 2n —) in the (poly) alkylene glycol is preferably 2 to 6 in terms of being able to disperse inorganic fine particles satisfactorily and in terms of viscosity (handleability). Is more preferable.
(Poly) alkylene glycol is preferably (poly) ethylene glycol, (poly) propylene glycol, or (poly) tetramethylene glycol. Particularly preferred are diethylene glycol, triethylene glycol, and tetraethylene glycol.

液状媒体は、本発明の効果を損なわない範囲内で、水または(ポリ)アルキレングリコール以外の他の成分を含んでいてもよい。
他の成分としては、例えばエタノール、2−プロパノール等の1価のアルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
液状媒体が他の成分を含む場合、その含有量は、液状媒体の合計量に対して0質量%超、30質量%以下が好ましく、10質量%以下がより好ましい。
The liquid medium may contain other components other than water or (poly) alkylene glycol as long as the effects of the present invention are not impaired.
Examples of other components include monohydric alcohols such as ethanol and 2-propanol, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
When the liquid medium contains other components, the content thereof is preferably more than 0% by mass and 30% by mass or less, and more preferably 10% by mass or less with respect to the total amount of the liquid medium.

<界面活性剤>
コーティング液(X)に界面活性剤を含有させてもよい。界面活性剤を含有させることにより特に樹脂粒子が大きい場合に、空孔が形成されやすくなる。
<Surfactant>
A surfactant may be contained in the coating liquid (X). By containing the surfactant, pores are easily formed particularly when the resin particles are large.

<多孔質膜付き基板の製造方法>
[コーティング液の調製]
まず、樹脂粒子、無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液(X)を調製する。必要に応じて界面活性剤を添加してもよい。
樹脂粒子は、予め液状媒体に分散した分散液の状態で用いることが好ましい。例えば樹脂粒子が水に分散している市販のポリマー分散液を、コーティング液(X)の調製に用いることができる。
無機粒子は、予め液状媒体に分散した分散液の状態で用いることが好ましい。例えば酸化ケイ素粒子が水に分散している市販のシリカゾル(コロイダルシリカ)を、コーティング液の調製に用いることができる。
好ましくは、少なくともヒドロキシ化合物を含む液状媒体中で、触媒の存在下、アルコキシシランの加水分解を行って、アルコキシシラン加水分解物を含む液状媒体を得、これに樹脂粒子の分散液および無機粒子の分散液を加えて均一に混合してコーティング液を得る方法を用いることができる。
<Method for producing substrate with porous film>
[Preparation of coating solution]
First, a coating liquid (X) containing resin particles, inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium is prepared. A surfactant may be added as necessary.
The resin particles are preferably used in the state of a dispersion previously dispersed in a liquid medium. For example, a commercially available polymer dispersion in which resin particles are dispersed in water can be used for preparing the coating liquid (X).
The inorganic particles are preferably used in the form of a dispersion previously dispersed in a liquid medium. For example, a commercially available silica sol (colloidal silica) in which silicon oxide particles are dispersed in water can be used for preparing the coating liquid.
Preferably, the alkoxysilane is hydrolyzed in a liquid medium containing at least a hydroxy compound in the presence of a catalyst to obtain a liquid medium containing an alkoxysilane hydrolyzate, to which a dispersion of resin particles and inorganic particles are added. A method can be used in which a dispersion liquid is added and uniformly mixed to obtain a coating liquid.

コーティング液(X)の固形分濃度(コーティング液中の樹脂粒子、無機粒子およびアルコキシシラン加水分解物(SiO換算)の合計の濃度)は、多孔質膜の着膜効率およびコーティング液(X)の粘度(取扱性)の点から、0.3〜70質量%が好ましく、3〜25質量%がより好ましい。 The solid content concentration of coating liquid (X) (total concentration of resin particles, inorganic particles and alkoxysilane hydrolyzate (in terms of SiO 2 ) in the coating liquid) is the deposition efficiency of the porous film and the coating liquid (X) From the point of the viscosity (handleability), 0.3-70 mass% is preferable, and 3-25 mass% is more preferable.

コーティング液(X)中の膜形成成分である無機粒子とアルコキシシラン加水分解物(SiO換算)の合計(100質量%)のうち、無機粒子の割合は1〜60質量%が好ましく、3〜30質量%がより好ましい。無機粒子の割合が1質量%以上であると、コーティング液(X)が無機粒子を含有することによって、着膜効率が向上して、多孔質膜(Y)の膜厚が増大する効果が十分に得られやすい。無機粒子の割合が60質量%以下であると、無機粒子の凝集が良好に抑制され、無機粒子が均一に分散した膜が得られやすい。
前記コーティング液(X)中の膜形成成分である無機粒子とアルコキシシラン加水分解物(SiO換算)の合計の質量を1とするとき、これに対する樹脂粒子の質量比[樹脂粒子/(無機粒子+アルコキシシラン加水分解物)]は0.01〜1が好ましく、0.01〜0.3がより好ましい。上記範囲の下限値以上であると、高い空孔密度が得られやすく、上限値以下であると樹脂粒子の熱分解に伴う内部応力の発生が抑えられ、クラックのない膜が得られやすい。
Of the total (100% by mass) of the inorganic particles and the alkoxysilane hydrolyzate (in terms of SiO 2 ) that are film forming components in the coating liquid (X), the proportion of the inorganic particles is preferably 1 to 60% by mass, 30 mass% is more preferable. When the ratio of the inorganic particles is 1% by mass or more, the coating liquid (X) contains the inorganic particles, so that the film deposition efficiency is improved and the film thickness of the porous film (Y) is sufficiently increased. Easy to obtain. When the proportion of the inorganic particles is 60% by mass or less, the aggregation of the inorganic particles is satisfactorily suppressed, and a film in which the inorganic particles are uniformly dispersed is easily obtained.
When the total mass of the inorganic particles which are film-forming components in the coating liquid (X) and the alkoxysilane hydrolyzate (SiO 2 equivalent) is 1, the mass ratio of the resin particles to this [resin particles / (inorganic particles) + Alkoxysilane hydrolyzate)] is preferably from 0.01 to 1, more preferably from 0.01 to 0.3. When it is at least the lower limit of the above range, a high pore density is easily obtained, and when it is at most the upper limit, the generation of internal stress accompanying thermal decomposition of the resin particles is suppressed, and a crack-free film is easily obtained.

[コーティング液の塗布]
調製したコーティング液を、基板に噴霧する方法で塗布する。
コーティング液の噴霧方法は、コーティング液を、ノズル(スプレーガン等)を用いて噴霧するスプレー法が好ましい。特に、液体と気体を混合させて微細な霧状とする2流体ノズルを用いることが、液滴の大きさを制御しやすい点で好ましい。
スプレー法による具体的な塗布方法としては、下記の方法(i)、(ii)、(iii)等が挙げられる。工程数が少なく、多孔質膜付き基板をより生産効率よく製造できる点から、方法(ii)が好ましい。
[Application of coating solution]
The prepared coating solution is applied to the substrate by spraying.
The spraying method of the coating liquid is preferably a spraying method in which the coating liquid is sprayed using a nozzle (such as a spray gun). In particular, it is preferable to use a two-fluid nozzle in which a liquid and a gas are mixed to form a fine mist in terms of easy control of the droplet size.
Specific application methods by the spray method include the following methods (i), (ii), (iii) and the like. The method (ii) is preferable because the number of steps is small and a substrate with a porous film can be produced more efficiently.

(i)固定された基板の上方でノズルを移動させながら、ノズルから基板にコーティング液を噴霧する方法。
(ii)一方向に移動している帯状の基板(例えばガラスリボン)に、ノズルからコーティング液を噴霧する方法。
(iii)一方向に移動している帯状の基板(例えばガラスリボン)の上方でノズルを移動させながら、ノズルから基板にコーティング液を噴霧する方法。
(I) A method of spraying the coating liquid from the nozzle onto the substrate while moving the nozzle above the fixed substrate.
(Ii) A method of spraying a coating liquid from a nozzle onto a belt-like substrate (for example, a glass ribbon) moving in one direction.
(Iii) A method in which the coating liquid is sprayed from the nozzle onto the substrate while moving the nozzle over a belt-like substrate (for example, a glass ribbon) moving in one direction.

コーティング液を塗布する際の基板の温度は、300〜650℃であり、350〜600℃が好ましい。該温度範囲にある基板にコーティング液が噴霧されると、アルコキシシラン加水分解物が焼成されて酸化ケイ素となると同時に樹脂粒子が熱分解して除去され、基板上に多孔質膜(Y)が形成される。
基板の温度が300℃以上であると、基板上のアルコキシシラン加水分解物が短時間で焼成されると同時に樹脂粒子の熱分解が生じて多孔構造が形成される。該基板の温度は350℃以上が好ましい。該基板の温度の上限は特に限定されないが、高すぎると、加熱するための設備が大がかりになり、基板の材質も制限されるため、これらの不都合が生じない温度とすることが好ましく、例えば650℃以下が好ましい。
本発明においては、基板の温度を300〜650℃の範囲内の所定の温度に保持し、そこにコーティング液を噴霧する。基板の温度は、少なくともコーティング液が噴霧される直前において、300〜650℃の範囲内の所定の温度に温度制御されていればよい。
ノズルから噴霧される液滴の平均粒子径は1〜100μmが好ましく、5〜80μmがより好ましい。該液滴の平均粒子径が上記範囲の下限値以上であると、樹脂粒子体積に対して液滴が十分に大きくなるため、空孔が形成されやすくなる。上値以下であると、膜形成時の収縮応力が抑えられ、クラックが発生しにくくなる。
The temperature of the board | substrate at the time of apply | coating a coating liquid is 300-650 degreeC, and 350-600 degreeC is preferable. When the coating liquid is sprayed onto the substrate in the temperature range, the alkoxysilane hydrolyzate is baked to form silicon oxide, and at the same time, the resin particles are thermally decomposed and removed to form a porous film (Y) on the substrate. Is done.
When the substrate temperature is 300 ° C. or higher, the alkoxysilane hydrolyzate on the substrate is baked in a short time and at the same time, the resin particles are thermally decomposed to form a porous structure. The temperature of the substrate is preferably 350 ° C. or higher. The upper limit of the temperature of the substrate is not particularly limited, but if it is too high, the equipment for heating becomes large and the material of the substrate is also limited. Therefore, it is preferable that the temperature does not cause these disadvantages, for example, 650 C. or lower is preferable.
In the present invention, the temperature of the substrate is maintained at a predetermined temperature within the range of 300 to 650 ° C., and the coating liquid is sprayed thereon. The temperature of the substrate may be controlled to a predetermined temperature within a range of 300 to 650 ° C. at least immediately before the coating liquid is sprayed.
The average particle size of droplets sprayed from the nozzle is preferably 1 to 100 μm, and more preferably 5 to 80 μm. When the average particle diameter of the droplets is equal to or larger than the lower limit of the above range, the droplets are sufficiently large with respect to the resin particle volume, so that voids are easily formed. If it is not more than the upper value, shrinkage stress during film formation is suppressed, and cracks are less likely to occur.

上記方法(ii)または(iii)として、例えば、基板がガラス基板である場合、溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、ついで切断してガラス基板を製造するガラス基板の製造方法において、ガラスリボンにコーティング液を塗布して、ガラスリボン上に多孔質膜(Y)を形成する方法を用いることができる。ガラスリボンは、その後切断される。この場合のガラス基板は、強化されていない生板ガラス基板が好ましい。
すなわち、ガラス基板となるガラスリボンに、コーティング液(X)を塗布し、アルコキシシランの加水分解物を焼成すると同時に樹脂粒子を除去することによって、ガラスリボン上に多孔質膜(Y)を形成する方法を用いることができる。
As the above method (ii) or (iii), for example, when the substrate is a glass substrate, the molten glass is formed into a glass ribbon, the glass ribbon is slowly cooled, and then cut to produce a glass substrate. In the method, a method of forming a porous film (Y) on the glass ribbon by applying a coating liquid to the glass ribbon can be used. The glass ribbon is then cut. The glass substrate in this case is preferably a green glass substrate that is not strengthened.
That is, a porous film (Y) is formed on a glass ribbon by applying the coating liquid (X) to a glass ribbon to be a glass substrate, baking the hydrolyzate of alkoxysilane, and simultaneously removing the resin particles. The method can be used.

この方法(ii)または(iii)において、フロートバス中で溶融ガラスを成形して得られたガラスリボンに対し、フロートバスと徐冷工程との間または徐冷工程中、ガラスリボンが300〜650℃の温度範囲にある位置にてコーティング液を噴霧することが好ましい。フロート法でガラス基板を製造する場合、フロートバス直後の位置のガラスリボンの温度は、ガラス基板のガラス組成にもよるが、通常650℃程度であり、フロートバスを出たガラスリボンは徐冷工程で徐冷され、徐冷工程中で400℃以下に冷却される。
コーティング液を噴霧する位置をフロートバス内とすることは、フロートバス内の雰囲気を汚染するおそれがあるため現実的ではなく、この点からもコーティング液を噴霧する際の基板の温度が650℃以下であることが好ましい。
またこの方法(ii)または(iii)において、ドローダウンで溶融ガラスを成形して得られたガラスリボンに対し、徐冷工程中、ガラスリボンが300〜650℃の温度範囲にある位置にてコーティング液を噴霧することも好ましい。ドローダウンでの成形方法としては、フュージョンドロー法、チューブドロー法、スロットドロー法等が挙げられる。
In this method (ii) or (iii), with respect to the glass ribbon obtained by forming molten glass in a float bath, the glass ribbon is 300 to 650 between the float bath and the slow cooling step or during the slow cooling step. It is preferable to spray the coating liquid at a position in the temperature range of ° C. When manufacturing a glass substrate by the float process, the temperature of the glass ribbon at the position immediately after the float bath is usually about 650 ° C., although it depends on the glass composition of the glass substrate, and the glass ribbon exiting the float bath is a slow cooling step And is cooled to 400 ° C. or lower during the slow cooling process.
Setting the spraying position of the coating liquid in the float bath is not practical because it may contaminate the atmosphere in the float bath. Also from this point, the temperature of the substrate when spraying the coating liquid is 650 ° C. or less. It is preferable that
In this method (ii) or (iii), the glass ribbon obtained by forming molten glass by drawdown is coated at a position where the glass ribbon is in the temperature range of 300 to 650 ° C. during the slow cooling process. It is also preferable to spray the liquid. Examples of the draw down molding method include a fusion draw method, a tube draw method, and a slot draw method.

<多孔質膜(Y)>
このようにして基板上に形成される多孔質膜(Y)は、アルコキシシラン加水分解物が300〜650℃の所定温度で焼成されることによって得られる酸化ケイ素の相と、無機粒子とからなり、多孔構造を有する。
酸化ケイ素の相は、無機粒子を基板に固着させるバインダの役割を果たしている。したがって、該バインダが有機材料である場合に比べて、優れた耐熱性、耐侯性が得られる。
多孔質膜(Y)は酸化ケイ素と無機粒子とからなる膜であればよく、基板上に1種のコーティング液を連続的に噴霧して形成された膜であってもよく、1種のコーティング液を、間欠的に噴霧して形成された多層膜であってもよく、無機粒子の種類が異なる2種以上のコーティング液を順に噴霧して形成された多層膜であってもよい。
多孔質膜(Y)の厚さ(膜厚)は、100nm以上が好ましく、250nm以上がより好ましく、1000nm以上が特に好ましい。多孔質膜(Y)の厚さが100nm以上であると、多孔質膜(Y)が有する機能が十分に発揮されやすい。なお、多孔質膜(Y)が多層膜である場合、多孔質膜(Y)の厚さは1回の噴霧で形成された層の膜厚とする。多孔質膜(Y)が多層膜である場合の積算での厚さの上限値は特に限定されないが、生産性の点からは50μm以下が好ましく、30μm以下がより好ましい。
<Porous membrane (Y)>
The porous film (Y) thus formed on the substrate is composed of silicon oxide phases obtained by baking the alkoxysilane hydrolyzate at a predetermined temperature of 300 to 650 ° C. and inorganic particles. Has a porous structure.
The phase of silicon oxide plays a role of a binder for fixing inorganic particles to the substrate. Therefore, superior heat resistance and weather resistance can be obtained as compared with the case where the binder is an organic material.
The porous film (Y) may be a film made of silicon oxide and inorganic particles, and may be a film formed by continuously spraying one type of coating liquid on a substrate, and one type of coating. A multilayer film formed by intermittently spraying the liquid may be used, or a multilayer film formed by sequentially spraying two or more kinds of coating liquids having different kinds of inorganic particles.
The thickness (film thickness) of the porous membrane (Y) is preferably 100 nm or more, more preferably 250 nm or more, and particularly preferably 1000 nm or more. When the thickness of the porous film (Y) is 100 nm or more, the function of the porous film (Y) is sufficiently exhibited. When the porous film (Y) is a multilayer film, the thickness of the porous film (Y) is the thickness of the layer formed by one spray. The upper limit of the integrated thickness when the porous film (Y) is a multilayer film is not particularly limited, but is preferably 50 μm or less and more preferably 30 μm or less from the viewpoint of productivity.

多孔質膜(Y)の内部には複数の空孔が存在する。空孔の大きさは樹脂粒子の大きさ等によって調整可能である。例えば空孔の平均直径(以下「平均空孔直径」ともいう。)が10〜250nm程度の多孔質膜を得ることができる。
本明細書において、平均空孔直径は、SEMを用いて多孔質膜(Y)の断面を観察して得られる像により100個の空孔の直径を計測し、それらの平均値を算出することで求められる。空孔が楕円形になっている場合、長軸方向の直径と短軸方向の直径の平均値とする。
A plurality of pores exist inside the porous film (Y). The size of the pores can be adjusted depending on the size of the resin particles. For example, a porous film having an average pore diameter (hereinafter also referred to as “average pore diameter”) of about 10 to 250 nm can be obtained.
In this specification, the average pore diameter is obtained by measuring the diameter of 100 pores from an image obtained by observing the cross section of the porous membrane (Y) using SEM and calculating the average value thereof. Is required. When the pores are elliptical, the average value of the diameter in the major axis direction and the diameter in the minor axis direction is used.

<ガラス製造装置>
図1は、本発明の方法を用いて、ガラス基板上に多孔質膜が形成された多孔質膜付きガラス基板を製造するのに好適な、ガラス製造装置の一例を示す概略図である。
ガラス製造装置20は、ガラス原料を溶解して溶融ガラス30とする溶解窯22と、溶解窯22から供給された溶融ガラス30を溶融スズ24の表面に浮かべることで、溶融ガラス30をガラスリボン32に成形するフロートバス26と、該ガラスリボン32を徐冷する徐冷窯28と、フロートバス26の出口と徐冷窯28の入り口との間で、かつガラスリボン32の上方に設置されたエアー式のスプレーガン34とを備える。
<Glass manufacturing equipment>
FIG. 1 is a schematic view showing an example of a glass production apparatus suitable for producing a glass substrate with a porous film in which a porous film is formed on a glass substrate using the method of the present invention.
The glass manufacturing apparatus 20 melts the glass raw material to form the molten glass 30 and floats the molten glass 30 supplied from the melting furnace 22 on the surface of the molten tin 24, thereby causing the molten glass 30 to become the glass ribbon 32. A float bath 26 for forming the glass ribbon 32, a slow cooling furnace 28 for gradually cooling the glass ribbon 32, and an air disposed between the outlet of the float bath 26 and the entrance of the slow cooling furnace 28 and above the glass ribbon 32. A spray gun 34 of the type.

所定の搬送速度で移動するガラスリボン32に、フロートバス26と徐冷窯28の間でガラスリボン32の表面温度が300〜650℃にある位置にて、スプレーガン34からコーティング液を噴霧し、ガラスリボン32上に無機膜を形成する。
徐冷窯28を出たガラスリボン32は図示されていない切断装置により切断されて、多孔質膜付きガラス基板とされる。
The coating liquid is sprayed from the spray gun 34 to the glass ribbon 32 moving at a predetermined conveying speed at a position where the surface temperature of the glass ribbon 32 is 300 to 650 ° C. between the float bath 26 and the slow cooling furnace 28. An inorganic film is formed on the glass ribbon 32.
The glass ribbon 32 exiting the slow cooling furnace 28 is cut by a cutting device (not shown) to obtain a glass substrate with a porous film.

本発明の多孔質膜付き基板の製造方法によれば、樹脂粒子、無機粒子、アルコキシシラン加水分解物、および特定の液状媒体を含むコーティング液を、300〜650℃に保持された基板に噴霧することで、クラック、膜剥がれの発生を防止しつつ、多孔構造を有する無機膜を厚く形成することができる。   According to the method for producing a substrate with a porous film of the present invention, a coating liquid containing resin particles, inorganic particles, alkoxysilane hydrolyzate, and a specific liquid medium is sprayed onto a substrate maintained at 300 to 650 ° C. Thus, an inorganic film having a porous structure can be formed thick while preventing the occurrence of cracks and film peeling.

<用途>
本発明の製造方法により、基板上に形成される多孔質膜は、無機膜の内部に空孔を有することから、空孔を有さない場合に比べて屈折率が低くなっている。また空孔の存在に起因して光の散乱効果も得ることが可能である。したがって、本発明にかかる多孔質膜付き基板は、これらの特性を利用した光学材料に好適である。
<Application>
Since the porous film formed on the substrate by the manufacturing method of the present invention has pores inside the inorganic film, the refractive index is lower than that in the case where there are no pores. It is also possible to obtain a light scattering effect due to the presence of the holes. Therefore, the substrate with a porous film according to the present invention is suitable for an optical material utilizing these characteristics.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
材料は以下のものを用いた。
[アルコキシシラン]
・テトラエトキシシラン:関東化学社製、SiO換算固形分:99.9質量%。
[樹脂粒子]
・ポリスチレン粒子(50nm):熱分解温度400℃、球状粒子、平均粒子径50nm、固形分濃度50質量%の水分散液。
・ポリスチレン粒子(70nm):熱分解温度400℃、球状粒子、平均粒子径70nm、固形分12質量%の水分散液。
・ポリスチレン粒子(90nm):熱分解温度400℃、球状粒子、平均粒子径90nm、固形分濃度12質量%の水分散液。
・ポリスチレン粒子(200nm):熱分解温度400℃、球状粒子、平均粒子径200nm、固形分濃度50質量%の水分散液。
・ポリメチルメタクリレート粒子(70nm):熱分解温度370℃、球状粒子、平均粒子径70nm、固形分濃度12質量%の水分散液。
[無機粒子]
・鎖状酸化ケイ素粒子:鎖状シリカゾル、日産化学社製、スノーテックスOUP(製品名)、平均凝集粒子径:65nm、固形分濃度15質量%の水分散液。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
The following materials were used.
[Alkoxysilane]
Tetraethoxysilane: manufactured by Kanto Chemical Co., Inc., SiO 2 equivalent solid content: 99.9% by mass.
[Resin particles]
Polystyrene particles (50 nm): An aqueous dispersion having a thermal decomposition temperature of 400 ° C., spherical particles, an average particle diameter of 50 nm, and a solid content concentration of 50% by mass.
Polystyrene particles (70 nm): An aqueous dispersion having a thermal decomposition temperature of 400 ° C., spherical particles, an average particle diameter of 70 nm, and a solid content of 12% by mass.
Polystyrene particles (90 nm): An aqueous dispersion having a thermal decomposition temperature of 400 ° C., spherical particles, an average particle diameter of 90 nm, and a solid content concentration of 12% by mass.
Polystyrene particles (200 nm): An aqueous dispersion having a thermal decomposition temperature of 400 ° C., spherical particles, an average particle size of 200 nm, and a solid content concentration of 50% by mass.
Polymethylmethacrylate particles (70 nm): An aqueous dispersion having a thermal decomposition temperature of 370 ° C., spherical particles, an average particle diameter of 70 nm, and a solid content concentration of 12% by mass.
[Inorganic particles]
-Chain silicon oxide particles: Chain silica sol, manufactured by Nissan Chemical Co., Ltd., Snowtex OUP (product name), average aggregated particle size: 65 nm, solid dispersion having a solid content concentration of 15% by mass.

〔実験例1〕
(コーティング液の調製)
トリエチレングリコールに、テトラエトキシシランを、コーティング液中8.65質量%となるように加え、さらに硝酸(70質量%水溶液)を、コーティング液中0.35質量%となるように加え、1時間撹拌した。次いで、ポリスチレン粒子の水分散液を加えて5〜10分撹拌し、続いて鎖状シリカゾルを加えて5〜10分撹拌した。
こうして、アルコキシシラン加水分解物としてテトラエトキシシランの加水分解物、無機粒子として酸化ケイ素粒子、樹脂粒子としてポリスチレン粒子、および水を含むコーティング液を得た。
(1)コーティング液の固形分濃度(コーティング液中の樹脂粒子、無機粒子およびアルコキシシラン加水分解物(SiO換算)の合計の濃度)、(2)膜形成成分である無機粒子とアルコキシシラン加水分解物(SiO換算)の合計に対する無機粒子の割合、(3)膜形成成分である無機粒子とアルコキシシラン加水分解物(SiO換算)の合計を1とするときの樹脂粒子の質量比を、それぞれ表1に示す。
[Experimental Example 1]
(Preparation of coating solution)
Tetraethoxysilane is added to triethylene glycol so as to be 8.65% by mass in the coating liquid, and nitric acid (70% by mass aqueous solution) is further added to 0.35% by mass in the coating liquid for 1 hour. Stir. Next, an aqueous dispersion of polystyrene particles was added and stirred for 5 to 10 minutes, and then chain silica sol was added and stirred for 5 to 10 minutes.
Thus, a coating solution containing tetraethoxysilane hydrolyzate as alkoxysilane hydrolyzate, silicon oxide particles as inorganic particles, polystyrene particles as resin particles, and water was obtained.
(1) Solid content concentration of coating liquid (total concentration of resin particles, inorganic particles and alkoxysilane hydrolyzate (SiO 2 equivalent) in coating liquid), (2) Inorganic particles and alkoxysilane hydrolysis as film forming components The ratio of the inorganic particles to the total of the decomposition products (in terms of SiO 2 ), (3) The mass ratio of the resin particles when the total of the inorganic particles that are film forming components and the alkoxysilane hydrolyzate (in terms of SiO 2 ) is 1. Are shown in Table 1, respectively.

(コーティング液の塗布)
塗布装置としては、二流体ノズル方式のスプレーガンを備えたKM−100(SPD研究所社製)を用いた。ガラス基板としては、10cm×10cm×4mmの高透過ガラス(旭硝子社製)を用いた。
ガラス基板を塗布装置のステージ上に載置し、ステージ裏面側にステージと非接触でヒーターを設置した。ヒーターの放射熱により、ステージを介してガラス基板を400℃に加熱した。
ガラス基板の温度は、ガラス基板の一側面に熱伝対を接触させることにより測定した。スプレーガンでコーティング液を噴霧する前にガラス基板を充分な時間加熱したため、ここで測定された温度はガラス基板の表面温度とほぼ同じとみなしてよい。
ガラス基板を400℃まで昇温した後、ガラス基板の上方に配置したスプレーガンからガラス基板上にコーティング液を噴霧した。噴霧する際の条件は、送液速度0.3〜0.6mL/秒、噴霧圧力1MPa、噴霧時間21秒とした。なお、ステージ、ガラス基板、スプレーガンは防爆装置で囲われた状態で噴霧を行い、雰囲気温度は調整しなかった。
こうしてガラス基板上に、酸化ケイ素粒子と、アルコキシシランの加水分解物の焼成物(酸化ケイ素)とからなる多孔質膜が形成されると同時に、樹脂粒子が加熱分解、除去されることによって塗膜の内部に空孔が形成された、多孔質膜付き基板が得られた。
(Coating solution application)
As the coating device, KM-100 (SPD Laboratory) equipped with a two-fluid nozzle spray gun was used. As the glass substrate, 10 cm × 10 cm × 4 mm high transmission glass (Asahi Glass Co., Ltd.) was used.
The glass substrate was placed on the stage of the coating apparatus, and a heater was installed on the back side of the stage in a non-contact manner with the stage. The glass substrate was heated to 400 ° C. through the stage by the radiant heat of the heater.
The temperature of the glass substrate was measured by bringing a thermocouple into contact with one side of the glass substrate. Since the glass substrate was heated for a sufficient time before spraying the coating liquid with the spray gun, the temperature measured here may be regarded as almost the same as the surface temperature of the glass substrate.
After the temperature of the glass substrate was raised to 400 ° C., the coating liquid was sprayed onto the glass substrate from a spray gun disposed above the glass substrate. The conditions at the time of spraying were set to a liquid feeding speed of 0.3 to 0.6 mL / second, a spraying pressure of 1 MPa, and a spraying time of 21 seconds. The stage, glass substrate, and spray gun were sprayed in a state surrounded by an explosion-proof device, and the ambient temperature was not adjusted.
Thus, a porous film composed of silicon oxide particles and a calcined product of hydrolyzed alkoxysilane (silicon oxide) is formed on the glass substrate, and at the same time, the resin particles are thermally decomposed and removed, whereby the coating film is formed. A substrate with a porous film in which pores were formed was obtained.

〔実験例2〜7〕
製造条件を表1に示す通りに変更したほかは、実験例1と同様にして多孔質膜付き基板を製造した。
[Experimental Examples 2 to 7]
A substrate with a porous film was produced in the same manner as in Experimental Example 1, except that the production conditions were changed as shown in Table 1.

〔実験例8〕
(コーティング液の調製)
トリエチレングリコールに、テトラエトキシシランを、コーティング液中8.65質量%となるように加え、さらに硝酸(70質量%水溶液)を、コーティング液中0.35質量%となるように加え、1時間撹拌した。次いで、平均粒径が200nmのポリスチレン粒子の水分散液を0.1質量%となるように加えて5〜10分撹拌し、続いて鎖状シリカゾルを濃度が1質量%となるように加えて5〜10分撹拌した。さらにこの液を80℃で1時間加熱してテトラエトキシシランの加水分解を生じさせることによってポリスチレン粒子がシリカで被覆された状態とした。
こうして、アルコキシシラン加水分解物としてテトラエトキシシランの加水分解物、無機粒子として酸化ケイ素粒子、樹脂粒子としてシリカで被覆されたポリスチレン粒子、および水を含むコーティング液を得た。
実験例1と同様にコーティング液を塗布した。この結果、膜厚の平均値が1.4μmである、空孔が形成された膜が得られた。
[Experimental Example 8]
(Preparation of coating solution)
Tetraethoxysilane is added to triethylene glycol so as to be 8.65% by mass in the coating liquid, and nitric acid (70% by mass aqueous solution) is further added to 0.35% by mass in the coating liquid for 1 hour. Stir. Next, an aqueous dispersion of polystyrene particles having an average particle size of 200 nm is added to 0.1% by mass and stirred for 5 to 10 minutes, and then a chain silica sol is added to a concentration of 1% by mass. Stir for 5-10 minutes. Furthermore, this liquid was heated at 80 ° C. for 1 hour to cause hydrolysis of tetraethoxysilane so that polystyrene particles were coated with silica.
Thus, a coating liquid containing tetraethoxysilane hydrolyzate as alkoxysilane hydrolyzate, silicon oxide particles as inorganic particles, polystyrene particles coated with silica as resin particles, and water was obtained.
A coating solution was applied in the same manner as in Experimental Example 1. As a result, a film in which pores were formed with an average film thickness of 1.4 μm was obtained.

(評価)
得られた多孔質膜付き基板を走査型電子顕微で鏡察して断面像および表面像を得た。断面像におけるガラス基板の表面から塗膜(多孔質膜)の表面までの膜厚の平均値を測定した。
また断面像および表面像観察して空孔の形成状態(孔の有無)を確認した。
図2、3は、例4で得られた多孔質膜付き基板を走査型電子顕微鏡にて観察して得られる像の写真であり、図2は断面像、図3は表面像である。図2、3の右下に記載の目盛りは1目盛りが0.1μm(=100nm)である。
評価結果を表1に示す。表1には主な製造条件も合わせて示す。
(Evaluation)
The obtained substrate with a porous film was observed with a scanning electron microscope to obtain a cross-sectional image and a surface image. The average value of the film thickness from the surface of the glass substrate to the surface of the coating film (porous film) in the cross-sectional image was measured.
Moreover, the formation state of the pores (presence / absence of pores) was confirmed by observing the cross-sectional image and the surface image.
2 and 3 are photographs of images obtained by observing the substrate with a porous film obtained in Example 4 with a scanning electron microscope, FIG. 2 is a cross-sectional image, and FIG. 3 is a surface image. 2 and 3, one scale is 0.1 μm (= 100 nm).
The evaluation results are shown in Table 1. Table 1 also shows the main manufacturing conditions.

表1の結果より、実験例1〜8において、21秒間の塗布時間で、基板上に膜厚0.3μm以上の無機材料からなる多孔質膜を形成することができた。得られた多孔質膜にクラックまたは膜剥がれは生じていなかった。   From the result of Table 1, in Experimental Examples 1-8, the porous film which consists of an inorganic material with a film thickness of 0.3 micrometer or more was able to be formed on the board | substrate with the application | coating time of 21 seconds. No cracks or film peeling occurred in the obtained porous film.

20 ガラス製造装置
22 溶解窯
24 溶融スズ
26 フロートバス
28 徐冷窯
30 溶融ガラス
32 ガラスリボン
34 スプレーガン
20 Glass Manufacturing Equipment 22 Melting Kiln 24 Molten Tin 26 Float Bath 28 Slow Cooling Kiln 30 Molten Glass 32 Glass Ribbon 34 Spray Gun

Claims (8)

多孔質膜付き基板の製造方法であって、
樹脂粒子と、無機粒子と、アルコキシシラン加水分解物と、多価水酸基含有化合物および水の少なくとも一方を含む液状媒体とを含むコーティング液を準備し;
基板を準備し;
前記基板を300〜650℃に保持し;
前記基板に前記コーティング液を噴霧し;
多孔質膜を得る、多孔質膜付き基板の製造方法。
A method for producing a substrate with a porous film,
Providing a coating liquid comprising resin particles, inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium containing at least one of a polyhydric hydroxyl group-containing compound and water;
Preparing a substrate;
Holding the substrate at 300-650 ° C .;
Spraying the coating liquid onto the substrate;
The manufacturing method of the board | substrate with a porous membrane which obtains a porous membrane.
樹脂粒子、無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液を、300〜650℃に保持された基板に噴霧して多孔質膜を形成する工程を有し、
前記液状媒体が多価水酸基含有化合物および水の少なくとも一方を含む、多孔質膜付き基板の製造方法。
A step of spraying a coating liquid containing resin particles, inorganic particles, alkoxysilane hydrolyzate, and a liquid medium onto a substrate held at 300 to 650 ° C. to form a porous film;
A method for producing a substrate with a porous film, wherein the liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water.
前記樹脂粒子の平均粒子径が250nm以下である、請求項1または2に記載の多孔質膜付き基板の製造方法。   The manufacturing method of the board | substrate with a porous film of Claim 1 or 2 whose average particle diameter of the said resin particle is 250 nm or less. 前記無機粒子の平均凝集粒子径が100nm以下である、請求項1〜3のいずれか一項に記載の多孔質膜付き基板の製造方法。   The manufacturing method of the board | substrate with a porous film as described in any one of Claims 1-3 whose average aggregate particle diameter of the said inorganic particle is 100 nm or less. 前記コーティング液中、前記無機粒子とアルコキシシラン加水分解物の合計に対する、前記樹脂粒子の質量比[樹脂粒子/(無機粒子+アルコキシシラン加水分解物)]が0.01〜1である、請求項1〜4のいずれか一項に記載の多孔質膜付き基板の製造方法。   The mass ratio [resin particles / (inorganic particles + alkoxysilane hydrolyzate)] of the resin particles to the total of the inorganic particles and the alkoxysilane hydrolyzate in the coating liquid is 0.01 to 1. The manufacturing method of the board | substrate with a porous film as described in any one of 1-4. 前記液状媒体が、多価水酸基含有化合物、または、水と多価水酸基含有化合物の混合物である、請求項1〜5のいずれか一項に記載の多孔質膜付き基板の製造方法。   The manufacturing method of the board | substrate with a porous film as described in any one of Claims 1-5 whose said liquid medium is a mixture of a polyhydric hydroxyl group containing compound or water and a polyhydric hydroxyl group containing compound. 前記無機粒子がシリカ粒子である、請求項1〜6のいずれか一項に記載の多孔質膜付き基板の製造方法。   The manufacturing method of the board | substrate with a porous film as described in any one of Claims 1-6 whose said inorganic particle is a silica particle. 前記無機粒子が鎖状粒子である、請求項1〜7のいずれか一項に記載の多孔質膜付き基板の製造方法。   The manufacturing method of the board | substrate with a porous film as described in any one of Claims 1-7 whose said inorganic particle is chain | strand-shaped particle | grains.
JP2013203454A 2013-09-30 2013-09-30 Method for manufacturing substrate with porous film Pending JP2016204165A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013203454A JP2016204165A (en) 2013-09-30 2013-09-30 Method for manufacturing substrate with porous film
PCT/JP2014/075308 WO2015046260A1 (en) 2013-09-30 2014-09-24 Method for manufacturing substrate having porous film attached thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203454A JP2016204165A (en) 2013-09-30 2013-09-30 Method for manufacturing substrate with porous film

Publications (1)

Publication Number Publication Date
JP2016204165A true JP2016204165A (en) 2016-12-08

Family

ID=52743395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203454A Pending JP2016204165A (en) 2013-09-30 2013-09-30 Method for manufacturing substrate with porous film

Country Status (2)

Country Link
JP (1) JP2016204165A (en)
WO (1) WO2015046260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731871A (en) * 2016-12-15 2017-05-31 天津工业大学 The method that inorganic particulate induction phase separation prepares super-hydrophobic mixed substrate membrane containing nano-grade molecular sieve
JP2020518684A (en) * 2017-04-18 2020-06-25 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Coatings and coating formulations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114950A (en) * 2015-12-21 2017-06-29 旭化成株式会社 Coating film and method for producing coating film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475460B2 (en) * 1993-09-30 2003-12-08 日本板硝子株式会社 Method of forming transparent coating with reduced refractive index
CN101675133A (en) * 2007-05-08 2010-03-17 中央硝子株式会社 Coating fluid applicable by hand for sol-gel film formation
JP4346665B2 (en) * 2008-02-20 2009-10-21 財団法人川村理化学研究所 Method for producing structural color film, structural color film-coated substrate and structural color film
CN103842098A (en) * 2011-10-03 2014-06-04 旭硝子株式会社 Method of manufacturing object with low reflection film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731871A (en) * 2016-12-15 2017-05-31 天津工业大学 The method that inorganic particulate induction phase separation prepares super-hydrophobic mixed substrate membrane containing nano-grade molecular sieve
CN106731871B (en) * 2016-12-15 2019-11-01 天津工业大学 Inorganic particulate induction mutually separates the method for preparing super-hydrophobic mixed substrate membrane containing nano-grade molecular sieve
JP2020518684A (en) * 2017-04-18 2020-06-25 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Coatings and coating formulations
US11578215B2 (en) 2017-04-18 2023-02-14 Covestro (Netherlands) B.V. Coating and coating formulation
JP7276775B2 (en) 2017-04-18 2023-05-18 コベストロ (ネザーランズ) ビー.ブイ. Coatings and coating formulations

Also Published As

Publication number Publication date
WO2015046260A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
TWI509048B (en) Composition for antireflection film of solar battery, antireflection film of solar battery, method for manufacturing antireflection film of solar battery, and solar battery
TWI691505B (en) Liquid composition for film formation and manufacturing method thereof
US20130034653A1 (en) Antireflective silica coatings based on sol-gel technique with controllable pore size, density, and distribution by manipulation of inter-particle interactions using pre-functionalized particles and additives
TWI480345B (en) Paint, preparing method thereof, and film formed from the paint
JP2010254553A (en) Precursor sol of aluminum oxide and method for producing optical member
JP2016001199A (en) Silica-based porous film, article with silica-based porous film and method of manufacturing the same
JP2014079920A (en) Article and production method of the same
TW201402496A (en) Method for producing glass substrate with silicon oxide film containing inorganic fine particles
JP2016204165A (en) Method for manufacturing substrate with porous film
WO2017150132A1 (en) Manufacturing method for laminate, glass with anti-reflection film and solar cell module
Tao et al. A hydrophobic ultralow refractive-index silica coating towards double-layer broadband antireflective coating with exceptionally high vacuum stability and laser-induced damage threshold
WO2015001979A1 (en) Method for producing substrate with coating film
TW201700615A (en) Low refractive index film-forming liquid composition
JP2009297626A (en) Method for forming silica-based coating film and coating liquid
JP2010204394A (en) Method of manufacturing antireflection film, and antireflection film and optical element
JPWO2015111660A1 (en) Base material with antiglare layer and method for producing the same
JP6459489B2 (en) Silica porous membrane forming liquid composition and silica porous membrane formed from the liquid composition
WO2016143297A1 (en) Glass plate provided with coating film and method for manufacturing same
JP2011195806A (en) Fingerprint-resistant coating film-formed article and fingerprint-resistant coating material composition
JP6847243B2 (en) Coating composition, laminate and solar cell module, and method for manufacturing the laminate
JP6451424B2 (en) High durability low refractive index film
JP6455142B2 (en) Silica sol dispersion and silica porous film forming composition
JP6914330B2 (en) Method for manufacturing coating composition and laminate
JP6285152B2 (en) Laminate manufacturing method, laminate, solar cell cover glass, and solar power generation mirror
JPWO2018101277A1 (en) Coating composition, antireflection film, laminate, method for producing laminate, and solar cell module