JP2016201515A - Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same - Google Patents

Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same Download PDF

Info

Publication number
JP2016201515A
JP2016201515A JP2015082689A JP2015082689A JP2016201515A JP 2016201515 A JP2016201515 A JP 2016201515A JP 2015082689 A JP2015082689 A JP 2015082689A JP 2015082689 A JP2015082689 A JP 2015082689A JP 2016201515 A JP2016201515 A JP 2016201515A
Authority
JP
Japan
Prior art keywords
electrolytic solution
acid
electrolytic
electrolytic capacitor
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015082689A
Other languages
Japanese (ja)
Inventor
和人 西澤
Kazuto Nishizawa
和人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2015082689A priority Critical patent/JP2016201515A/en
Publication of JP2016201515A publication Critical patent/JP2016201515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an electrolytic solution for driving an electrolytic capacitor, capable of achieving reduced impedance of an electrolytic capacitor and improved reliability thereof; and an electrolytic capacitor using the electrolytic solution for driving an electrolytic capacitor.SOLUTION: A mixed solvent comprising water and an organic solvent is used as a solvent of an electrolytic solution for driving an electrolytic capacitor. By adding 3(or 5)-hydroxy-4-pyrone derivatives together with an electrolyte into the mixed solvent, water consumption in an electrolytic solution is minimized while minimizing an increase in specific resistance of an electrolytic solution, and thereby low impedance and high reliability of an electrolytic capacitor that uses the electrolytic solution can be achieved.SELECTED DRAWING: None

Description

本発明は、電解コンデンサの駆動用電解液(以下、単に電解液とも称する)の改良に関するものであり、特に信頼性の高い電解コンデンサを提供できる電解液に関するものである。また、本発明は、このような電解液を用いた電解コンデンサに関するものである。   The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter also simply referred to as an electrolytic solution), and particularly relates to an electrolytic solution capable of providing a highly reliable electrolytic capacitor. The present invention also relates to an electrolytic capacitor using such an electrolytic solution.

電解コンデンサは一般的な電子部品の1つであり、様々な電子部品、電気製品において、主に電源回路用やデジタル回路のノイズフィルタ用として、広く使用されている。
従来、電解コンデンサの低インピーダンス化を図るために、電解液中の水分量を増加させて、電解液の低比抵抗化を図る手法が知られている。しかしながら、何らの対策を施すことなしに電解液中の水分量を増加させていくと、高温度領域では電解液中の水分の蒸発の他、漏れ電流による水の電気分解によって電解液が消費される為に、電解コンデンサの信頼性が経時的に悪化していくという問題があった。
An electrolytic capacitor is one of common electronic components, and is widely used in various electronic components and electrical products, mainly for power supply circuits and digital circuit noise filters.
Conventionally, in order to reduce the impedance of an electrolytic capacitor, a technique for reducing the specific resistance of the electrolytic solution by increasing the amount of water in the electrolytic solution is known. However, if the amount of water in the electrolyte is increased without taking any measures, the electrolyte is consumed in the high temperature range by evaporation of water in the electrolyte and electrolysis of water due to leakage current. Therefore, there is a problem that the reliability of the electrolytic capacitor deteriorates with time.

一方、電解コンデンサの低インピーダンス化を実現できる電解液を提供することを目的として、有機溶媒と水とからなる溶媒にヒドロキシベンジルアルコールやニトロ化合物を添加した電解液も知られている(特許文献1および特許文献2)。
しかしながら、今なお、水を含む電解液を使用することによって電解コンデンサの低インピーダンス化を図りつつ、電解液中の水分の消費を抑制し、電解コンデンサの高信頼性化を実現することができる技術が求められている。
On the other hand, an electrolytic solution in which hydroxybenzyl alcohol or a nitro compound is added to a solvent composed of an organic solvent and water is also known for the purpose of providing an electrolytic solution that can reduce the impedance of the electrolytic capacitor (Patent Document 1). And Patent Document 2).
However, it is still possible to achieve high reliability of the electrolytic capacitor by reducing the consumption of water in the electrolytic solution while reducing the impedance of the electrolytic capacitor by using an electrolytic solution containing water. Is required.

特許第3366267号公報Japanese Patent No. 3366267 特許第3366268号公報Japanese Patent No. 3366268

したがって、本発明は、電解液中の水分消費を長期的に抑制し、電解コンデンサの低インピーダンス化と信頼性向上の両方が実現できる電解コンデンサの駆動用電解液およびそれを用いた電解コンデンサを提供することを課題とする。   Therefore, the present invention provides an electrolytic solution for driving an electrolytic capacitor that can suppress the consumption of moisture in the electrolytic solution for a long period of time and can realize both low impedance and improved reliability of the electrolytic capacitor, and an electrolytic capacitor using the electrolytic solution. The task is to do.

上記課題を解決するために、本発明者は鋭意検討を行なった結果、水と有機溶媒からなる混合溶媒に電解質を溶解してなる電解液中に、3(または5)−ヒドロキシ−4−ピロン誘導体を添加することにより、電解液の比抵抗を上昇させることなく、電解液の水分消費を長期的に抑制することに成功し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventor has intensively studied. As a result, 3 (or 5) -hydroxy-4-pyrone is contained in an electrolytic solution obtained by dissolving an electrolyte in a mixed solvent composed of water and an organic solvent. By adding a derivative, the inventors succeeded in suppressing the water consumption of the electrolytic solution for a long time without increasing the specific resistance of the electrolytic solution, thereby completing the present invention.

すなわち本発明は、電解コンデンサの駆動用電解液であって、水と有機溶媒からなる混合溶媒中に、電解質、および、3(または5)−ヒドロキシ−4−ピロン誘導体を含むことを特徴とする。   That is, the present invention is an electrolytic solution for driving an electrolytic capacitor, characterized in that an electrolyte and a 3 (or 5) -hydroxy-4-pyrone derivative are contained in a mixed solvent composed of water and an organic solvent. .

本発明の電解液は、電解液中の水の存在により、電解液の低比抵抗化を実現するとともに、3(または5)−ヒドロキシ−4−ピロン誘導体が水の減少を防ぐため、電解液中の水分の消費を抑制することができる。なお、前記4−ピロン誘導体は、電解液の比抵抗にほとんど影響を与えない。このため、本発明の電解液は、電解コンデンサの低インピーダンス化と高信頼性を実現することができる。   The electrolytic solution of the present invention realizes a low specific resistance of the electrolytic solution due to the presence of water in the electrolytic solution, and the 3 (or 5) -hydroxy-4-pyrone derivative prevents a decrease in water. It is possible to suppress the consumption of moisture. The 4-pyrone derivative hardly affects the specific resistance of the electrolytic solution. For this reason, the electrolytic solution of the present invention can realize low impedance and high reliability of the electrolytic capacitor.

また、本発明は、上記の特徴を有した電解コンデンサの駆動用電解液において、前記4−ピロン誘導体の濃度が0.001〜3.5重量%であることを特徴とするものである。   The present invention is also characterized in that, in the electrolytic solution for driving an electrolytic capacitor having the above characteristics, the concentration of the 4-pyrone derivative is 0.001 to 3.5% by weight.

また、本発明は、上記の特徴を有した電解コンデンサの駆動用電解液において、前記4−ピロン誘導体が、コウジ酸、マルトール、ピロメコン酸、2−エチルピロメコン酸およびそれらの塩からなる群より選択されることを特徴とするものである。   Further, the present invention provides the electrolytic solution for driving an electrolytic capacitor having the above characteristics, wherein the 4-pyrone derivative is a group consisting of kojic acid, maltol, pyromeconic acid, 2-ethylpyromeconic acid and salts thereof. It is characterized by being selected.

また、本発明は、上記の特徴を有した電解コンデンサの駆動用電解液において、前記混合溶媒が、水とエチレングリコールを主成分とすることを特徴とするものである。   The present invention is also characterized in that, in the electrolytic solution for driving an electrolytic capacitor having the above characteristics, the mixed solvent contains water and ethylene glycol as main components.

また、本発明は、上記の特徴を有した電解コンデンサの駆動用電解液において、前記電解質が、高級二塩基酸またはその塩であることを特徴とするものである。   In the electrolytic solution for driving an electrolytic capacitor having the above-mentioned characteristics, the present invention is characterized in that the electrolyte is a higher dibasic acid or a salt thereof.

さらに、本発明の電解コンデンサは、上記の電解液を含浸させてなるコンデンサ素子を有することを特徴とするものである。   Furthermore, the electrolytic capacitor of the present invention is characterized by having a capacitor element impregnated with the above electrolytic solution.

本発明に係る電解コンデンサの駆動用電解液を使用することにより、電解コンデンサの低インピーダンス化と高信頼性を実現することが可能となる。   By using the electrolytic solution for driving an electrolytic capacitor according to the present invention, it is possible to realize low impedance and high reliability of the electrolytic capacitor.

本発明に係る電解コンデンサの駆動用電解液は、3(または5)−ヒドロキシ−4−ピロン誘導体を含む。電解液中に含まれる前記4−ピロン誘導体は、1種のみでもよく2種以上でもよい。   The electrolytic solution for driving the electrolytic capacitor according to the present invention contains a 3 (or 5) -hydroxy-4-pyrone derivative. The said 4-pyrone derivative contained in electrolyte solution may be only 1 type, and 2 or more types may be sufficient as it.

本発明の電解コンデンサの駆動用電解液に含まれる前記4−ピロン誘導体の好ましい例として、下記の構造式で表される
(I)コウジ酸(2−ヒドロキシメチル−5−ヒドロキシ−4−ピロン)、
(II)マルトール(2−メチル−3−ヒドロキシ−4−ピロン)、
(III)ピロメコン酸(3−ヒドロキシ−4−ピロン)、
(IV)2−エチルピロメコン酸(2−エチル−3−ヒドロキシ−4−ピロン)
等が挙げられる。特に、コウジ酸が好ましい。
As a preferred example of the 4-pyrone derivative contained in the electrolyte for driving the electrolytic capacitor of the present invention, (I) kojic acid (2-hydroxymethyl-5-hydroxy-4-pyrone) represented by the following structural formula ,
(II) maltol (2-methyl-3-hydroxy-4-pyrone),
(III) pyromeconic acid (3-hydroxy-4-pyrone),
(IV) 2-ethylpyromeconic acid (2-ethyl-3-hydroxy-4-pyrone)
Etc. In particular, kojic acid is preferred.

Figure 2016201515
Figure 2016201515

本発明の電解液に含まれる前記4−ピロン誘導体の濃度は、0.001重量%以上4.0重量%未満であることが好ましく、寿命特性を考慮すると、より好ましい濃度は、0.001〜3.5重量%であり、特に好ましい濃度は、0.1〜3重量%である。   The concentration of the 4-pyrone derivative contained in the electrolytic solution of the present invention is preferably 0.001% by weight or more and less than 4.0% by weight. It is 3.5% by weight, and a particularly preferred concentration is 0.1 to 3% by weight.

本発明の溶媒は、水(純水)と有機溶媒の混合物からなる。混合溶媒中の水と有機溶媒の割合は、水20〜92重量%、有機溶媒80〜8重量%であることが好ましく、水30〜90重量%、有機溶媒70〜10重量%であることがより好ましく、水40〜70重量%、有機溶媒60〜30重量%であることが特に好ましい。 水を多量に含む電解液を用いた電解コンデンサは、高温度領域において電解液中の水分が消費されやすいため、電解コンデンサの信頼性が経時的に悪化していくという問題があるが(水分消費の要因としては蒸発と漏れ電流による電気分解が挙げられる)、本発明の電解液は、溶媒中の水の割合を20重量%以上に増やしても、電解コンデンサの信頼性の経時的悪化を抑制することができる。   The solvent of the present invention comprises a mixture of water (pure water) and an organic solvent. The proportion of water and organic solvent in the mixed solvent is preferably 20 to 92% by weight of water and 80 to 8% by weight of organic solvent, 30 to 90% by weight of water, and 70 to 10% by weight of organic solvent. More preferably, it is 40 to 70% by weight of water and 60 to 30% by weight of organic solvent is particularly preferable. Electrolytic capacitors using electrolytic solutions containing a large amount of water tend to consume water in the electrolytic solution at high temperatures, so there is a problem that the reliability of electrolytic capacitors deteriorates over time (water consumption) The reason is that the electrolytic solution of the present invention suppresses deterioration of the reliability of the electrolytic capacitor over time even if the proportion of water in the solvent is increased to 20% by weight or more. can do.

前記有機溶媒の例として、グリコール類、ラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、アミド類、スルホン類、スルホラン類、オキサゾリジノン類が挙げられる。これらの有機溶媒は一種だけでなく、二種以上を混合して使用することができる。
好ましい有機溶媒は、エチレングリコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコール等のグリコール類であり、特に好ましい有機溶媒は、温度特性に優れた電解液が得られるエチレングリコールである。
Examples of the organic solvent include glycols, lactones, nitriles, alcohols, ethers, ketones, esters, carbonates, amides, sulfones, sulfolanes, and oxazolidinones. These organic solvents can be used alone or in combination of two or more.
Preferable organic solvents are glycols such as ethylene glycol, propylene glycol, diethylene glycol, hexylene glycol, and the like, and particularly preferable organic solvents are ethylene glycol from which an electrolytic solution having excellent temperature characteristics can be obtained.

本発明において特に好ましい溶媒は、水とエチレングリコールを主成分とする混合溶媒である。
なお、本明細書において、水(純水)とエチレングリコールを主成分とする混合溶媒とは、水とエチレングリコールの割合が合計で、50重量%を超える溶媒を意味する。より好ましい溶媒は、水とエチレングリコールが合計で95重量%以上を占める溶媒であり、特に好ましい溶媒は、水とエチレングリコールのみからなる溶媒である。
A particularly preferred solvent in the present invention is a mixed solvent containing water and ethylene glycol as main components.
In addition, in this specification, the mixed solvent which has water (pure water) and ethylene glycol as a main component means the solvent in which the ratio of water and ethylene glycol exceeds 50 weight% in total. A more preferable solvent is a solvent in which water and ethylene glycol occupy 95% by weight or more, and a particularly preferable solvent is a solvent composed only of water and ethylene glycol.

水とエチレングリコールの混合溶媒は従来から用いられており、溶媒中の水分量を減らし、エチレングリコール量を増加することによって、電解液中の水分の蒸散を低減することができるが、エチレングリコールの量を増やしすぎると、電解液の比抵抗及び製品のインピーダンス増大等の問題が生じるため、水とエチレングリコールの割合の調節だけで、電解液中の水分の減少と電解コンデンサのインピーダンス増加の両方を抑制するには限界があった。これに対し、本発明では、3(または5)−ヒドロキシ−4−ピロン誘導体を添加することにより、電解液中の水分の消費を防ぐことができ、また、前記4−ピロン誘導体を添加しても電解液の比抵抗は、実質的に上昇しないため、本発明の電解液によれば、製品のインピーダンス増加を抑制しながら、電解液の水分消費も長期的に抑制することができ、電解コンデンサの信頼性を向上させることができる。   A mixed solvent of water and ethylene glycol has been conventionally used. By reducing the amount of water in the solvent and increasing the amount of ethylene glycol, the evaporation of moisture in the electrolyte can be reduced. If the amount is increased too much, problems such as the specific resistance of the electrolytic solution and the increase in the impedance of the product will occur. Therefore, just adjusting the ratio of water and ethylene glycol will both reduce the water content in the electrolytic solution and increase the impedance of the electrolytic capacitor. There was a limit to suppression. On the other hand, in the present invention, by adding the 3 (or 5) -hydroxy-4-pyrone derivative, it is possible to prevent the consumption of moisture in the electrolytic solution, and by adding the 4-pyrone derivative. However, since the specific resistance of the electrolytic solution does not substantially increase, according to the electrolytic solution of the present invention, it is possible to suppress the water consumption of the electrolytic solution for a long time while suppressing the increase in the impedance of the product. Reliability can be improved.

特定の理論に拘束されることを意図しないが、本発明の4−ピロン誘導体が、電解液中の水分の消費を防ぐ理由は、4−ピロンの6員環に隣接して結合しているカルボニル基と水酸基の2つの酸素原子が、アルミに配位し吸着し、電解液中の水分が電極箔表面にて電気分解する反応を抑制するためと考えられる。その結果、長期的に電解液中の水分の消費、減少を抑制することが可能となり、電解液の消費が抑えられるため、電解コンデンサの寿命特性が向上すると考えられる。   While not intending to be bound by any particular theory, the reason why the 4-pyrone derivative of the present invention prevents the consumption of moisture in the electrolyte is that the carbonyl bonded adjacent to the 6-membered ring of 4-pyrone It is considered that two oxygen atoms, a group and a hydroxyl group, coordinate to and adsorb on aluminum, and suppress the reaction in which water in the electrolytic solution is electrolyzed on the electrode foil surface. As a result, it is possible to suppress the consumption and reduction of moisture in the electrolytic solution over a long period of time, and the consumption of the electrolytic solution can be suppressed. Therefore, it is considered that the life characteristics of the electrolytic capacitor are improved.

本発明の電解液に含まれる好ましい電解質として、高級二塩基酸(例えば、炭素数6〜25の脂肪族ジカルボン酸)またはその塩が挙げられる。高級二塩基酸の好ましい例として、アジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を挙げることができる。また、安息香酸などの芳香族カルボン酸またはその塩も使用できる。   As a preferable electrolyte contained in the electrolytic solution of the present invention, higher dibasic acid (for example, aliphatic dicarboxylic acid having 6 to 25 carbon atoms) or a salt thereof may be mentioned. Preferred examples of the higher dibasic acid include adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like. it can. An aromatic carboxylic acid such as benzoic acid or a salt thereof can also be used.

前記高級二塩基酸や芳香族カルボン酸の塩としては、メチルアミン、エチルアミン、t−ブチルアミン等の1級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の2級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の3級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の4級アンモニウム塩などのアンモニウム塩等を挙げることができる。
特に好ましい電解質として、高級二塩基酸の二アンモニウム塩が挙げられる。
Examples of the salt of the higher dibasic acid or aromatic carboxylic acid include primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine and diethylmethylamine. And tertiary amine salts such as ethyldimethylamine and triethylamine, and ammonium salts such as quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium.
Particularly preferred electrolytes include diammonium salts of higher dibasic acids.

本発明の電解液中に含まれる上記電解質の濃度は1〜20重量%の範囲であることが好ましく、3〜15重量%であることがより好ましく、5〜10重量%であることが特に好ましい。   The concentration of the electrolyte contained in the electrolytic solution of the present invention is preferably in the range of 1 to 20% by weight, more preferably 3 to 15% by weight, and particularly preferably 5 to 10% by weight. .

また、本発明では、漏れ電流の低減、耐電圧の向上、ガス吸収剤の目的で他の種々の添加剤を加えることができる。
他の添加剤としては、ギ酸、クエン酸、酒石酸、グルコン酸、リンゴ酸、乳酸、グリコール酸、α−ヒドロキシ酪酸、ヒドロキシマロン酸、α−メチルリンゴ酸、ジヒドロキシ酒石酸等のヒドロキシカルボン酸類、γ−レゾルシル酸、β−レゾルシル酸、トリヒドロキシ安息香酸、ヒドロキシフタル酸、ジヒドロキシフタル酸、フェノールトリカルボン酸、アウリントリカルボン酸等の芳香族ヒドロキシカルボン酸類、または、これらの塩、エチレンジアミン二酢酸、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、グリコールエーテルジアミン四酢酸(GEDTA)、ジエチレントリアミン五酢酸(DTPA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、トリエチレンテトラミン六酢酸(TTHA)、トランス−1,2−ジアミノシクロヘキサン−N、N、N’、N’−四酢酸(CyDTA)、エチレンジアミンテトラキス(メチレンホスホン酸)(EDTPO)、エチレンジアミン−N,N’−ビス(メチレンホスホン酸)、ヒドロキシエチルエチレンジアミン三酢酸(EDTA−OH)、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸(DPTA−OH)、1,3−プロパンジアミン四酢酸(1,3−PDTA)、ジヒドロキシエチルグリシン(DHEG)、1,6−ヘキサンジアミン四酢酸(1,6−HDTA)、1,5−ペンタンジアミン四酢酸(1,5−PDTA)、1,4−ブタンジアミン四酢酸(1,4−BDTA)等のアミノポリカルボン酸に代表されるキレート剤を挙げることができる。
さらに、リン酸、リン酸エチレングリコールエステル、オルトリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸イソプロピル、リン酸ジブチル、リン酸ジオクチルなどのリン酸化合物、ホウ酸およびその錯化合物などのホウ酸化合物、マンニトール、ソルビトール、キシリトール、ペンタエリスリトール、ポリビニルアルコールなどの多価アルコール類、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールのランダム共重合体およびブロック共重合体に代表される高分子化合物、p−ニトロ安息香酸、m−ニトロアセトフェノンなどのニトロ化合物などが挙げられる。特にリン酸およびリン酸エチレングリコールエステルが好ましい。前記電解液中の添加剤の濃度は、0.1〜5重量%であることが好ましく、0.5〜1.5重量%であることがより好ましい。
In the present invention, various other additives can be added for the purpose of reducing leakage current, improving withstand voltage, and gas absorbent.
Other additives include formic acid, citric acid, tartaric acid, gluconic acid, malic acid, lactic acid, glycolic acid, α-hydroxybutyric acid, hydroxymalonic acid, α-methylmalic acid, dihydroxytartaric acid and other hydroxycarboxylic acids, γ- Aromatic hydroxycarboxylic acids such as resorcylic acid, β-resorcylic acid, trihydroxybenzoic acid, hydroxyphthalic acid, dihydroxyphthalic acid, phenoltricarboxylic acid, aurintricarboxylic acid, or salts thereof, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid ( EDTA), nitrilotriacetic acid (NTA), glycol etherdiaminetetraacetic acid (GEDTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylenetetraminehexaacetic acid (TTHA), -1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid (CyDTA), ethylenediaminetetrakis (methylenephosphonic acid) (EDTPO), ethylenediamine-N, N′-bis (methylenephosphonic acid), Hydroxyethylethylenediaminetriacetic acid (EDTA-OH), 1,3-diamino-2-hydroxypropanetetraacetic acid (DPTA-OH), 1,3-propanediaminetetraacetic acid (1,3-PDTA), dihydroxyethylglycine (DHEG) ), 1,6-hexanediaminetetraacetic acid (1,6-HDTA), 1,5-pentanediaminetetraacetic acid (1,5-PDTA), 1,4-butanediaminetetraacetic acid (1,4-BDTA), etc. And chelating agents represented by aminopolycarboxylic acids.
Furthermore, phosphoric acid, phosphoric acid ethylene glycol ester, orthophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, methyl phosphate, ethyl phosphate, butyl phosphate, isopropyl phosphate, dibutyl phosphate, phosphorus Phosphoric acid compounds such as dioctyl acid, boric acid compounds such as boric acid and its complex compounds, polyhydric alcohols such as mannitol, sorbitol, xylitol, pentaerythritol, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene polyoxypropylene Examples thereof include polymer compounds typified by random copolymers and block copolymers of glycols, and nitro compounds such as p-nitrobenzoic acid and m-nitroacetophenone. In particular, phosphoric acid and phosphoric acid ethylene glycol ester are preferable. The concentration of the additive in the electrolytic solution is preferably 0.1 to 5% by weight, and more preferably 0.5 to 1.5% by weight.

本発明に係る電解液は、アルミニウム電解コンデンサの電解液として好適である。本発明に係る電解液を用いたアルミニウム電解コンデンサは、通常の方法で製造することができ、例えば、エッチング処理および酸化皮膜形成処理をしたアルミニウム陽極箔と、エッチング処理をしたアルミニウム陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、該コンデンサ素子に電解液を含浸した後、有底筒状の外装ケースに収納する方法によって製造することができる。   The electrolytic solution according to the present invention is suitable as an electrolytic solution for an aluminum electrolytic capacitor. The aluminum electrolytic capacitor using the electrolytic solution according to the present invention can be produced by a usual method. For example, an aluminum anode foil subjected to etching treatment and oxide film formation treatment and an aluminum cathode foil subjected to etching treatment as a separator It can be manufactured by a method in which a capacitor element is formed by winding through an electrode, and the capacitor element is impregnated with an electrolytic solution and then stored in a bottomed cylindrical outer case.

以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by an Example.

[電解液の調製]
下記の表1に記載される組成を有した電解液(実施例1〜11、比較例1〜3)をそれぞれ調製し、各電解液を使用して、定格電圧6.3V‐静電容量1000μF(ケースサイズφ10×12.5mmL)のアルミニウム電解コンデンサを各10個作製し、静電容量、誘電正接(%)について初期特性測定後、105℃にてDC6.3V負荷試験を行い、1000時間、3000時間、5000時間経過後に再度これらの特性値を測定した。結果を表2に示す。なお、表2において、損失(%)は誘電正接を示し、「電解液減少による特性悪化」は、具体的な数値が測定できない程、特性が悪化したことを示す。
[Preparation of electrolyte]
Electrolytic solutions (Examples 1 to 11 and Comparative Examples 1 to 3) having the compositions described in Table 1 below were prepared, and using each electrolytic solution, rated voltage 6.3 V-capacitance 1000 μF 10 pieces of aluminum electrolytic capacitors (case size φ10 × 12.5 mmL) were prepared, and after initial characteristics measurement of capacitance and dielectric loss tangent (%), a DC6.3V load test was performed at 105 ° C. for 1000 hours. These characteristic values were measured again after lapse of 3000 hours and 5000 hours. The results are shown in Table 2. In Table 2, loss (%) indicates dielectric loss tangent, and “deterioration of characteristics due to decrease in electrolyte” indicates that the characteristics deteriorated such that specific numerical values could not be measured.

Figure 2016201515
Figure 2016201515

Figure 2016201515
Figure 2016201515

上記表1から分かるように、エチレングリコールの量を増加すると比抵抗値は上昇するが、水とエチレングリコールの混合割合が同程度の実施例と比較例とを比べると、比抵抗は、ほぼ同等であるため、3(または5)−ヒドロキシ−4−ピロン誘導体(コウジ酸)の添加の有無は、電解液の比抵抗にほとんど影響を与えないことが分かる。   As can be seen from Table 1 above, the specific resistance value increases as the amount of ethylene glycol increases, but the specific resistance is almost the same when comparing the comparative example with an example in which the mixing ratio of water and ethylene glycol is about the same. Therefore, it can be seen that the presence or absence of the addition of the 3 (or 5) -hydroxy-4-pyrone derivative (kojic acid) hardly affects the specific resistance of the electrolytic solution.

また、上記表2の結果から、水とエチレングリコールの混合割合が同程度である実施例1〜3(コウジ酸添加有り)と比較例1〜3(コウジ酸添加無し)とを比較すると、105℃定格電圧印加の時間が長くなるにつれ、静電容量変化率(%)および損失(%)の増加傾向に差がみられ、3000時間後、5000時間後において、本発明の電解コンデンサの特性は、対応比較例の電解コンデンサの特性に比べ、有意に優れていた。   Further, from the results of Table 2 above, when Examples 1 to 3 (with kojic acid added) and Comparative Examples 1 to 3 (without kojic acid added) were compared, the mixing ratio of water and ethylene glycol was about 105. As the time of applying the rated voltage at 0 ° C. becomes longer, the difference in capacitance change rate (%) and loss (%) tend to increase. After 3000 hours and 5000 hours, the characteristics of the electrolytic capacitor of the present invention are as follows. It was significantly superior to the characteristics of the electrolytic capacitor of the corresponding comparative example.

また、コウジ酸を添加した実施例1〜11のうち、実施例2、4〜10はエチレングリコールとコウジ酸の量以外は同じ組成である。ここで、実施例2、5〜9(コウジ酸添加量0.001〜3.5重量%)は、実施例4(コウジ酸添加量0.0008重量%)、実施例10(コウジ酸添加量4.0重量%)と比較して、表2の結果から明らかなように特性変化が小さく、良好な寿命特性を示すことが分かった。
よって、寿命特性を考慮すると、本発明に係る4−ピロン誘導体の添加量は、0.001〜3.5重量%が特に好ましい範囲と考えられる。
Moreover, Examples 2 and 4-10 are the same composition except the quantity of ethylene glycol and kojic acid among Examples 1-11 which added kojic acid. Here, Examples 2 and 5 to 9 (kojic acid addition amount 0.001 to 3.5% by weight) were used in Example 4 (kojic acid addition amount 0.0008% by weight) and Example 10 (kojic acid addition amount). 4.0% by weight), as is clear from the results in Table 2, the change in characteristics was small, and it was found that good life characteristics were exhibited.
Therefore, considering the life characteristics, the amount of the 4-pyrone derivative according to the present invention is considered to be a particularly preferable range of 0.001 to 3.5% by weight.

上記実施例から分かるように、本発明に係る電解液は、電解液中の水により電解液の低比抵抗化を図りつつ、3(または5)−ヒドロキシ−4−ピロン誘導体が、電解液中の水分の消費を防ぐため、低インピーダンスで寿命特性が良好な電解コンデンサを提供することができる。   As can be seen from the above examples, the electrolytic solution according to the present invention is such that the 3 (or 5) -hydroxy-4-pyrone derivative is contained in the electrolytic solution while reducing the specific resistance of the electrolytic solution with water in the electrolytic solution. Therefore, it is possible to provide an electrolytic capacitor with low impedance and good life characteristics.

なお、本発明は上記実施例に限定されるものではなく、先に例示した各種溶質を単独または複数溶解した電解液や、アルミニウム電解コンデンサの駆動用電解液に使用される一般的な添加剤を加えた電解液についても、上記実施例と同等の効果があった。   In addition, this invention is not limited to the said Example, The general additive used for the electrolyte solution which melt | dissolved the various solute illustrated previously individually or in multiple, and the drive electrolyte solution of an aluminum electrolytic capacitor The added electrolyte also had the same effect as the above example.

本発明に係る電解液は、溶媒中の水分の割合が高い場合でも、水分の消費による電解液の減少を抑制することができるため、電解コンデンサの低インピーダンス化と信頼性の向上を図ることができる。   Since the electrolytic solution according to the present invention can suppress the decrease of the electrolytic solution due to the consumption of moisture even when the proportion of moisture in the solvent is high, the impedance of the electrolytic capacitor can be reduced and the reliability can be improved. it can.

Claims (6)

電解コンデンサの駆動用電解液であって、水と有機溶媒からなる混合溶媒中に、電解質、および、3(または5)−ヒドロキシ−4−ピロン誘導体を含むことを特徴とする電解コンデンサの駆動用電解液。   An electrolytic solution for driving an electrolytic capacitor, comprising an electrolyte and a 3 (or 5) -hydroxy-4-pyrone derivative in a mixed solvent composed of water and an organic solvent. Electrolytic solution. 前記4−ピロン誘導体の濃度が0.001〜3.5重量%であることを特徴とする、請求項1に記載の電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the concentration of the 4-pyrone derivative is 0.001 to 3.5% by weight. 前記4−ピロン誘導体が、コウジ酸、マルトール、ピロメコン酸、2−エチルピロメコン酸およびそれらの塩からなる群より選択されることを特徴とする、請求項1または2に記載の電解コンデンサの駆動用電解液。   The driving of an electrolytic capacitor according to claim 1 or 2, wherein the 4-pyrone derivative is selected from the group consisting of kojic acid, maltol, pyromeconic acid, 2-ethylpyromeconic acid and salts thereof. Electrolyte. 前記混合溶媒が、水とエチレングリコールを主成分とすることを特徴とする、請求項1〜3のいずれか1項に記載の電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to any one of claims 1 to 3, wherein the mixed solvent contains water and ethylene glycol as main components. 前記電解質が、高級二塩基酸またはその塩であることを特徴とする、請求項1〜4のいずれか1項に記載の電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to any one of claims 1 to 4, wherein the electrolyte is a higher dibasic acid or a salt thereof. 請求項1〜5のいずれか1項に記載の電解液を含浸させてなるコンデンサ素子を有することを特徴とする電解コンデンサ。   An electrolytic capacitor comprising a capacitor element impregnated with the electrolytic solution according to claim 1.
JP2015082689A 2015-04-14 2015-04-14 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same Pending JP2016201515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082689A JP2016201515A (en) 2015-04-14 2015-04-14 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082689A JP2016201515A (en) 2015-04-14 2015-04-14 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Publications (1)

Publication Number Publication Date
JP2016201515A true JP2016201515A (en) 2016-12-01

Family

ID=57424560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082689A Pending JP2016201515A (en) 2015-04-14 2015-04-14 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP2016201515A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002351093A (en) * 2001-05-22 2002-12-04 Nagase Chemtex Corp Composition for stripping resist
JP2004287288A (en) * 2003-03-24 2004-10-14 Nagase Chemtex Corp Resist stripping composition and method for stripping resist
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor
WO2005040931A1 (en) * 2003-10-29 2005-05-06 Nagase Chemtex Corporation Composition for separating photoresist and separating method
JP2008058624A (en) * 2006-08-31 2008-03-13 Tokyo Ohka Kogyo Co Ltd Photoresist stripping liquid, and substrate treatment method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002351093A (en) * 2001-05-22 2002-12-04 Nagase Chemtex Corp Composition for stripping resist
JP2004287288A (en) * 2003-03-24 2004-10-14 Nagase Chemtex Corp Resist stripping composition and method for stripping resist
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor
WO2005040931A1 (en) * 2003-10-29 2005-05-06 Nagase Chemtex Corporation Composition for separating photoresist and separating method
JP2008058624A (en) * 2006-08-31 2008-03-13 Tokyo Ohka Kogyo Co Ltd Photoresist stripping liquid, and substrate treatment method using the same

Similar Documents

Publication Publication Date Title
CN104036958B (en) Electrolyte for aluminum electrolytic capacitor and aluminium electrolutic capacitor
JP5789950B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JPWO2011004616A1 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2016201515A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4582798B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6131136B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2016192465A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor employing the same
JP2011204949A (en) Electrolyte for electrolytic capacitor
JP4589218B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4582797B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6566305B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2011216744A (en) Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP6829160B2 (en) Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it
WO2019049848A1 (en) Solid electrolytic capacitor
JP4653593B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3902061B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6459540B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4913327B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3366267B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2009054691A (en) Electrolytic solution for driving electrolytic capacitor
JP4571021B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2007115947A (en) Electrolyte for driving electrolytic capacitor
JP6459432B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2007129112A (en) Electrolyte for driving electrolytic capacitor
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181017