JP6131136B2 - Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same - Google Patents

Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same Download PDF

Info

Publication number
JP6131136B2
JP6131136B2 JP2013146611A JP2013146611A JP6131136B2 JP 6131136 B2 JP6131136 B2 JP 6131136B2 JP 2013146611 A JP2013146611 A JP 2013146611A JP 2013146611 A JP2013146611 A JP 2013146611A JP 6131136 B2 JP6131136 B2 JP 6131136B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic capacitor
salt
electrolytic
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013146611A
Other languages
Japanese (ja)
Other versions
JP2015019009A (en
Inventor
清水 真
真 清水
功 溝田
功 溝田
万 横森
万 横森
潤一 清澤
潤一 清澤
良夫 伊藤
良夫 伊藤
田中 寛之
寛之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Mie University NUC
Original Assignee
Nichicon Capacitor Ltd
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd, Mie University NUC filed Critical Nichicon Capacitor Ltd
Priority to JP2013146611A priority Critical patent/JP6131136B2/en
Publication of JP2015019009A publication Critical patent/JP2015019009A/en
Application granted granted Critical
Publication of JP6131136B2 publication Critical patent/JP6131136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、熱安定性に優れ、耐電圧の高い電解コンデンサの駆動用電解液(以下、電解液と称する)に関するものである。また、本発明は、このような電解液を用いた電解コンデンサに関するものでもある。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor having excellent thermal stability and high withstand voltage (hereinafter referred to as an electrolytic solution). The present invention also relates to an electrolytic capacitor using such an electrolytic solution.

電解コンデンサは一般的な電子部品の1つであり、様々な電子部品、電気製品において、主に電源回路用やデジタル回路のノイズフィルタ用として、広く使用されている。
従来、高圧用電解コンデンサにおいては、エチレングリコールを主成分とする溶媒に、高級二塩基酸またはその塩を溶解してなる電解液が用いられており、耐電圧の高い電解液を得る方法としては、分子量の大きい電解質を使用する方法が知られている。この際、主な電解質は、セバシン酸、アゼライン酸、1,6−デカンジカルボン酸等の主骨格を直鎖のアルキル基とした高級二塩基酸を使用している。
An electrolytic capacitor is one of common electronic components, and is widely used in various electronic components and electrical products, mainly for power supply circuits and digital circuit noise filters.
Conventionally, in an electrolytic capacitor for high voltage, an electrolytic solution in which a higher dibasic acid or a salt thereof is dissolved in a solvent having ethylene glycol as a main component is used. As a method for obtaining an electrolytic solution having a high withstand voltage, A method using an electrolyte having a large molecular weight is known. At this time, as the main electrolyte, a higher dibasic acid having a main skeleton such as sebacic acid, azelaic acid, 1,6-decanedicarboxylic acid and the like as a linear alkyl group is used.

しかしながら、これらの電解質は高温雰囲気下で、溶媒(エチレングリコール)と反応し、電解質としての機能が低下(電導度の低下)するため、熱安定性が悪く、長寿命・高信頼用電解液としては不向きである。
また、カルボン酸は、分子量が多くなるにつれて溶媒に溶解しにくくなる欠点を有している。さらに、セバシン酸より高い分子量を有する主骨格を直鎖のアルキル基とした高級二塩基酸は、溶媒への溶解性が低いため、さらなる高耐電圧化が困難であると考えられていた。
However, these electrolytes react with a solvent (ethylene glycol) in a high-temperature atmosphere, and the function as the electrolyte is reduced (decrease in conductivity). Therefore, the thermal stability is poor, and the electrolyte is used for long life and high reliability. Is unsuitable.
Moreover, carboxylic acid has the fault which becomes difficult to melt | dissolve in a solvent as molecular weight increases. Furthermore, higher dibasic acids having a main chain having a higher molecular weight than that of sebacic acid and having a linear alkyl group have been considered to have difficulty in further increasing the withstand voltage because of their low solubility in solvents.

そこで、このような従来技術における問題点を解決するために、例えば下記の特許文献1には、溶媒への溶解性の向上を図る目的で、主鎖のアルキル基の炭素間にシングルエーテル基を導入したカルボン酸を使用した電解液が記載されている。
しかしながら、この特許文献1記載の電解液の場合には、溶解可能な分子量に限界があり、高圧系電解液の用途として、溶解性が足りないという問題点がある。また、分子量を大きくすると、電解液の比抵抗が高くなるため、耐電圧及び電導度を共に高めることは困難であるという問題点もあった。
Therefore, in order to solve such problems in the prior art, for example, Patent Document 1 below discloses a single ether group between carbons of the alkyl group of the main chain in order to improve the solubility in a solvent. An electrolyte solution using the introduced carboxylic acid is described.
However, in the case of the electrolytic solution described in Patent Document 1, there is a limit to the molecular weight that can be dissolved, and there is a problem that the solubility is insufficient as a use of the high-pressure electrolytic solution. Further, when the molecular weight is increased, the specific resistance of the electrolytic solution is increased, so that it is difficult to increase both the withstand voltage and the electrical conductivity.

特開2009−272627号公報JP 2009-272627 A

本発明は、溶媒に対する溶解性が高く、熱安定性に優れ、高耐電圧化が可能な電解コンデンサの駆動用電解液およびそれを用いた電解コンデンサを提供することを課題とする。   An object of the present invention is to provide an electrolytic solution for driving an electrolytic capacitor having high solubility in a solvent, excellent thermal stability, and high withstand voltage, and an electrolytic capacitor using the electrolytic solution.

上記の課題を解決するために、本発明者等は鋭意検討を行なった結果、特定の高級二塩基酸を電解質とすることにより、高い耐電圧が維持でき、かつ熱安定性をより高くできることを見い出し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, by using a specific higher dibasic acid as an electrolyte, it is possible to maintain a high withstand voltage and to further improve the thermal stability. As a result, the present invention has been completed.

すなわち本発明は、溶媒に電解質を溶解してなる電解コンデンサの駆動用電解液であって、前記電解質が、下記の一般式を有する化合物、および当該化合物の塩からなる群より選ばれたものであることを特徴とする。   That is, the present invention is an electrolytic solution for driving an electrolytic capacitor obtained by dissolving an electrolyte in a solvent, wherein the electrolyte is selected from the group consisting of a compound having the following general formula and a salt of the compound: It is characterized by being.

Figure 0006131136
Figure 0006131136

このように構成された本発明の電解液によれば、電解質として、上記の一般式を有する化合物、および当該化合物の塩からなる群より選ばれたものを採用することにより、高い耐電圧を維持しながら、熱安定性をより高くすることができる。また、上記の一般式を有する化合物、および当該化合物の塩は、主鎖にエーテル基を2つ有しているため、エチレングリコール等の溶媒に対する溶解度が高いという利点もある。   According to the electrolytic solution of the present invention configured as described above, a high withstand voltage is maintained by employing a compound selected from the group consisting of a compound having the above general formula and a salt of the compound as the electrolyte. However, the thermal stability can be further increased. Moreover, since the compound which has said general formula, and the salt of the said compound have two ether groups in the principal chain, there also exists an advantage that the solubility with respect to solvents, such as ethylene glycol, is high.

また、本発明は、上記の特徴を有する電解液において、電解質が溶媒に1.0〜20.0重量%溶解していることを特徴とするものである。   The present invention is also characterized in that, in the electrolytic solution having the above characteristics, the electrolyte is dissolved in a solvent in an amount of 1.0 to 20.0% by weight.

また、本発明は、上記の特徴を有する電解液において、溶媒が、グリコール類、ラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、スルホラン、スルホラン誘導体および水からなる群より選ばれた一種または二種以上であることを特徴とするものである。   In the electrolytic solution having the above-described characteristics, the solvent includes glycols, lactones, nitriles, alcohols, ethers, ketones, esters, carbonates, sulfolane, sulfolane derivatives, and water. It is characterized by being one or more selected from the group.

また、本発明は、上記の特徴を有する電解液において、前記の塩が、一級アミン塩、二級アミン塩、三級アミン塩、四級アンモニウム塩、イミダゾリニウム塩、イミダゾリウム塩からなる群より選ばれたものであることを特徴とするものである。   Further, the present invention provides the electrolytic solution having the above-mentioned characteristics, wherein the salt is a primary amine salt, secondary amine salt, tertiary amine salt, quaternary ammonium salt, imidazolinium salt, or imidazolium salt. It is characterized by being more selected.

さらに本発明の電解コンデンサは、上記の電解液を含浸させてなるコンデンサ素子を有することを特徴とするものである。   Furthermore, the electrolytic capacitor of the present invention is characterized by having a capacitor element impregnated with the above electrolytic solution.

本発明によれば、電解質として上記の特定の化合物、および当該化合物の塩を用いることにより、高い耐電圧を維持しながら、熱安定性をより高くすることができる電解コンデンサの駆動用電解液およびそれを用いた電解コンデンサを提供することができる。   According to the present invention, by using the above-mentioned specific compound and a salt of the compound as an electrolyte, an electrolytic solution for driving an electrolytic capacitor capable of increasing thermal stability while maintaining high withstand voltage, and An electrolytic capacitor using the same can be provided.

本発明に係る電解液は、上記の一般式を有する化合物、および当該化合物の塩からなる群より選ばれた電解質を含むものであれば良く、当該電解質を1種のみ含んでも、2種以上含んでいてもよい。
上記の一般式を有する化合物、および当該化合物の塩は、主鎖にエーテル結合を2つ有しているため、エチレングリコール等の溶媒に対する溶解度が高く、電解液を低比抵抗化しつつ、耐電圧の向上(高耐電圧化)が可能なコンデンサ電解液用の電解質である。また、この化合物は、側鎖のα位に置換基(R,R,R,R)を有しているため、比抵抗変化の上昇を抑制することができ、この置換基の分子構造を選択することにより、熱劣化に伴う電解質とエチレングリコールとのエステル化が抑制でき、熱安定性(長寿命・高信頼性化)の向上が可能である。
The electrolyte solution according to the present invention only needs to contain an electrolyte selected from the group consisting of a compound having the above general formula and a salt of the compound. Even if it contains only one kind of the electrolyte, it contains two or more kinds. You may go out.
Since the compound having the above general formula and the salt of the compound have two ether bonds in the main chain, they have high solubility in a solvent such as ethylene glycol, and withstand voltage while reducing the specific resistance of the electrolyte. It is an electrolyte for a capacitor electrolyte solution that can improve (high withstand voltage). In addition, since this compound has a substituent (R 1 , R 2 , R 3 , R 4 ) at the α-position of the side chain, an increase in specific resistance can be suppressed. By selecting the molecular structure, esterification between the electrolyte and ethylene glycol accompanying thermal degradation can be suppressed, and thermal stability (long life and high reliability) can be improved.

上記の一般式における置換基R〜Rは、水素または炭素数1〜4のアルキル基(メチル基、エチル基、プロピル基、ブチル基など)であり、これらのうち単独または、二種類以上を含んでも良く、R,Rの少なくとも1つ、及び、R,Rの少なくとも1つはアルキル基であることがより好ましい。この際、エチレングリコールとのエステル化反応の抑制に対して、熱安定性をより高く出来る(比抵抗変化を小さく出来る)点から、ブチル基がより好ましい。
また、上記の一般式におけるnは、10〜16の整数を示し、主鎖の炭素数を大きくすることにより、高耐電圧化が可能である。
The substituents R 1 to R 4 in the above general formula are hydrogen or an alkyl group having 1 to 4 carbon atoms (such as a methyl group, an ethyl group, a propyl group, or a butyl group). More preferably, at least one of R 1 and R 2 and at least one of R 3 and R 4 is an alkyl group. Under the present circumstances, a butyl group is more preferable from the point which can improve thermal stability (it can make a specific resistance change small) with respect to suppression of esterification reaction with ethylene glycol.
Further, n represents the above formula, an integer of 10 to 16, by increasing the number of carbon atoms in the main chain, it is capable of high withstand voltage.

上記の一般式を有する化合物の好ましい塩として、2アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミンなどの一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミンなどの三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどの四級アンモニウム塩、イミダゾリニウム塩、イミダゾリウム塩等が挙げられる。   Preferred salts of the compound having the above general formula include diammonium salts, primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine and diethyl Examples thereof include tertiary amine salts such as methylamine, ethyldimethylamine and triethylamine, quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium, imidazolinium salts and imidazolium salts.

本発明に係る電解液は、重量モル濃度に対する耐電圧が高い。そして、前記電解質を1.0〜20.0重量%とすることで、比抵抗の上昇を抑制しながら、高い耐電圧を好適に実現できる。
従来の電解質は、溶媒への溶解性が低いため、高耐電圧化が困難であるという問題点や、電解質濃度を高めると耐電圧が低下しやすいという問題点があったが、本発明に係る電解質は、溶媒への溶解性が高く、また、電解質濃度を高めても耐電圧が低下しにくいため、高い耐電圧を維持することが可能である。
The electrolytic solution according to the present invention has a high withstand voltage with respect to the molar concentration. And the high withstand voltage is suitably realizable, suppressing the raise of a specific resistance by making the said electrolyte into 1.0 to 20.0 weight%.
Conventional electrolytes have a problem that it is difficult to increase the withstand voltage due to low solubility in a solvent, and that the withstand voltage tends to decrease when the electrolyte concentration is increased. The electrolyte has high solubility in a solvent, and even if the electrolyte concentration is increased, the withstand voltage is unlikely to decrease, so that a high withstand voltage can be maintained.

本発明で用いる溶媒としては、グリコール類、ラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、スルホラン、スルホラン誘導体および水が挙げられ、これらの溶媒は一種だけでなく、二種以上を混合して使用することができる。溶媒の具体例は以下のとおりである。   Examples of the solvent used in the present invention include glycols, lactones, nitriles, alcohols, ethers, ketones, esters, carbonates, sulfolane, sulfolane derivatives, and water. Two or more types can be mixed and used. Specific examples of the solvent are as follows.

グリコール類としては、エチレングリコール、プロピレングリコールなどが挙げられ、温度特性に優れた電解液が得られる溶媒であるエチレングリコールが好ましい。エチレングリコールは単独で用いることもできるが、比抵抗を低減するため、水との混合液を用いることが好ましい。
溶媒がエチレングリコールである場合、電解液中の濃度は75〜99重量%が好ましく、83〜97重量%がより好ましい。水が併用される場合には、電解液中の水の濃度は0.5〜10.0重量%が好ましく、1.0〜3.0重量%がより好ましい。
Examples of glycols include ethylene glycol and propylene glycol, and ethylene glycol, which is a solvent for obtaining an electrolyte solution having excellent temperature characteristics, is preferable. Although ethylene glycol can be used alone, it is preferable to use a mixed solution with water in order to reduce the specific resistance.
When the solvent is ethylene glycol, the concentration in the electrolytic solution is preferably 75 to 99% by weight, more preferably 83 to 97% by weight. When water is used in combination, the concentration of water in the electrolytic solution is preferably 0.5 to 10.0% by weight, more preferably 1.0 to 3.0% by weight.

ラクトン類としては、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなどが挙げられる。   Examples of lactones include γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, and δ-valerolactone.

ニトリル類としては、アセトニトリル、アクリロニトリル、アジポニトリル、3−メトキシプロピオニトリルなどが挙げられる。   Examples of nitriles include acetonitrile, acrylonitrile, adiponitrile, 3-methoxypropionitrile and the like.

アルコール類としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミルアルコール、フルフリルアルコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコール、グリセリン、ヘキシトールなどが挙げられる。
また、アルコール類の高分子量体として、ポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール及びその共重合体なども使用できる。
Examples of alcohols include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amyl alcohol, furfuryl alcohol, propylene glycol, diethylene glycol, hexylene glycol, glycerin and hexitol.
In addition, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, copolymers thereof, and the like can be used as high molecular weights of alcohols.

エーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールフェニルエーテル、テトラヒドロフラン、3−メチルテトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどが挙げられる。   Ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol phenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol Examples include diethyl ether.

ケトン類としては、アセトン、メチルエチルケトンなどが挙げられる。   Examples of ketones include acetone and methyl ethyl ketone.

エステル類としては、酢酸メチル、酢酸エチル、酢酸ブチルなどが挙げられる。   Esters include methyl acetate, ethyl acetate, butyl acetate and the like.

カーボネート類としては、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。   Examples of carbonates include ethylene carbonate and propylene carbonate.

スルホラン誘導体としては、3−メチルスルホラン、2,4−ジメチルスルホランなどが挙げられる。   Examples of the sulfolane derivative include 3-methylsulfolane and 2,4-dimethylsulfolane.

また、本発明では、漏れ電流の低減、耐電圧の向上、ガス吸収剤の目的で種々の添加剤を加えることができる。
添加剤としては、オルトリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸イソプロピル、リン酸ジブチル、リン酸ジオクチルなどのリン酸化合物、ホウ酸及びその錯化合物などのホウ酸化合物、マンニトール、ソルビトール、キシリトール、ペンタエリスリトール、ポリビニルアルコールなどの多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレン、ポリオキシプロピレングリコールのランダム共重合体及びブロック共重合体に代表される高分子化合物、p−ニトロ安息香酸、m−ニトロアセトフェノンなどのニトロ化合物などが挙げられる。
In the present invention, various additives can be added for the purpose of reducing leakage current, improving withstand voltage, and gas absorbent.
Additives include phosphoric acid such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, methyl phosphate, ethyl phosphate, butyl phosphate, isopropyl phosphate, dibutyl phosphate, dioctyl phosphate Compounds, boric acid compounds such as boric acid and its complex compounds, mannitol, sorbitol, xylitol, pentaerythritol, polyhydric alcohols such as polyvinyl alcohol, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene, polyoxypropylene glycol Examples thereof include polymer compounds represented by random copolymers and block copolymers, nitro compounds such as p-nitrobenzoic acid and m-nitroacetophenone.

さらに、必要に応じて電解液に高級二塩基酸であるアジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸などの脂肪族カルボン酸、安息香酸などの芳香族カルボン酸、またはその塩を含有させることもできる。   Further, if necessary, the electrolyte solution may be adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid, which are higher dibasic acids. An aliphatic carboxylic acid such as an acid, an aromatic carboxylic acid such as benzoic acid, or a salt thereof can also be contained.

本発明の電解液は、例えば巻回型の電解コンデンサに用いることができる。本発明に係る電解液を用いたコンデンサは、通常の方法で製造することができ、例えば、エッチング処理及び酸化皮膜形成処理をした陽極箔と、エッチング処理をした陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、該コンデンサ素子を電解液に含浸した後、有底筒状の外装ケースに収納する方法によって製造することができる。   The electrolytic solution of the present invention can be used for, for example, a wound electrolytic capacitor. The capacitor using the electrolytic solution according to the present invention can be manufactured by a usual method. For example, an anode foil subjected to etching treatment and oxide film formation treatment and a cathode foil subjected to etching treatment are wound through a separator. It can be manufactured by a method of turning to form a capacitor element, impregnating the capacitor element with an electrolytic solution, and then storing the capacitor element in a bottomed cylindrical outer case.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by these Examples.

[電解液の調製]
溶媒として、エチレングリコール(EG)と水との混合液を使用し、電解質として前記[化1]で示されるジカルボン酸のアンモニウム塩(表1〜表3に記載される置換基の種類およびnの数を有する化合物、R,R:水素)を使用し、表1〜表3に記載される電解液組成を有した本発明による電解液を調製した(実施例1〜5)。
一方、比較電解質として、セバシン酸のアンモニウム塩、1,6−デカンジカルボン酸のアンモニウム塩、下記の[化2]で示される化合物、1,14−テトラデカンジカルボン酸のアンモニウム塩を使用し、溶媒にはエチレングリコールと水との混合液を用いて、表1〜表3に記載される電解液組成を有した電解液を調製した(従来例1〜4)。
[Preparation of electrolyte]
As a solvent, a mixed solution of ethylene glycol (EG) and water is used, and an ammonium salt of a dicarboxylic acid represented by the above [Chemical Formula 1] (as shown in Tables 1 to 3) and n Compounds having a number, R 2 , R 4 : hydrogen) were used to prepare electrolytes according to the present invention having the electrolyte compositions described in Tables 1 to 3 (Examples 1 to 5).
On the other hand, as a comparative electrolyte, an ammonium salt of sebacic acid, an ammonium salt of 1,6-decanedicarboxylic acid, a compound represented by the following [Chemical Formula 2], and an ammonium salt of 1,14-tetradecanedicarboxylic acid were used as solvents. Prepared the electrolyte solution which has the electrolyte solution composition described in Table 1-Table 3 using the liquid mixture of ethylene glycol and water (conventional examples 1-4).

Figure 0006131136
Figure 0006131136

そして、実施例1〜5および従来例1〜4の電解液について、比抵抗、熱安定性、耐電圧、溶媒への溶解性を評価した。尚、熱安定性および耐電圧については、以下の方法により評価を行なった。   And about the electrolyte solution of Examples 1-5 and Conventional Examples 1-4, the specific resistance, thermal stability, withstand voltage, and the solubility to a solvent were evaluated. The thermal stability and withstand voltage were evaluated by the following methods.

[熱安定性の評価]
電解液についての熱安定性は、以下の式を用いて、初期比抵抗に対する高温放置後の比抵抗変化率により評価した。
比抵抗変化率(%)=(高温放置後の比抵抗値−初期比抵抗)/初期比抵抗
初期比抵抗は、調合後の電解液の比抵抗を測定した。
次に、各電解液をアンプル管に封入し、高温放置(105℃‐500時間、105℃‐1000時間)した後に、電解液の比抵抗を各々測定した。これを高温放置後の比抵抗とし、初期比抵抗に対する変化率で熱安定性を評価した。
[Evaluation of thermal stability]
The thermal stability of the electrolytic solution was evaluated from the specific resistance change rate after standing at high temperature with respect to the initial specific resistance, using the following formula.
Specific resistance change rate (%) = (specific resistance value after standing at high temperature−initial specific resistance) / initial specific resistance The initial specific resistance was measured by measuring the specific resistance of the electrolyte after preparation.
Next, each electrolyte solution was sealed in an ampule tube and allowed to stand at high temperature (105 ° C.-500 hours, 105 ° C.-1000 hours), and then the specific resistance of the electrolyte solution was measured. This was defined as the specific resistance after standing at high temperature, and the thermal stability was evaluated by the rate of change with respect to the initial specific resistance.

[耐電圧の評価]
電解液についての耐電圧の評価は、電解コンデンサに2.5mAの定電流を105℃にて印加したときに時間‐電圧の上昇カーブを測定し、はじめにスパークまたはシンチレーションが観測された電圧を測定し、これを耐電圧とした。使用した電解コンデンサ素子は、ケースサイズφ16×25L(mm)、定格電圧500V(化成電圧940V)、静電容量は17μFを用いた。
その結果を以下の表1〜表3に示す。
[Evaluation of withstand voltage]
The withstand voltage of the electrolyte was evaluated by measuring the time-voltage rise curve when a constant current of 2.5 mA was applied to the electrolytic capacitor at 105 ° C., and first measuring the voltage at which sparking or scintillation was observed. This was taken as the withstand voltage. The electrolytic capacitor element used had a case size φ16 × 25 L (mm), a rated voltage of 500 V (chemical conversion voltage 940 V), and a capacitance of 17 μF.
The results are shown in Tables 1 to 3 below.

Figure 0006131136
Figure 0006131136

Figure 0006131136
Figure 0006131136

Figure 0006131136
Figure 0006131136

上記表1に示される熱安定性の評価結果から、電解質として、側鎖に置換基が導入された前記[化1]で示されるジカルボン酸のアンモニウム塩を用いた場合(実施例1、2)には、従来の高級二塩基酸を含む電解液(従来例1、2)に比べて、比抵抗の変化率が小さいことがわかる。このことから、本発明の電解液は、比抵抗変化の上昇を抑制することができ、高温での長寿命・高信頼性化が可能であることが確認された。
さらに表2の結果から、前記[化1]で示される化合物の直鎖の炭素数を増やすことによって、シンチレーション発生電圧が高くなり、高耐電圧化が可能であることがわかった(実施例1、3、4参照)。
また、表3の結果から、前記[化1]で示される化合物は、主鎖に2つのエーテル基が導入されているために、カルボキシル基間の炭素数が同じでも溶媒に対する溶解性が高いことがわかった(実施例5と従来例3、4参照)。
From the thermal stability evaluation results shown in Table 1 above, when the ammonium salt of the dicarboxylic acid represented by the above [Chemical Formula 1] having a substituent introduced into the side chain was used as the electrolyte (Examples 1 and 2) It can be seen that the rate of change in specific resistance is small compared to the conventional electrolytes containing higher dibasic acids (Conventional Examples 1 and 2). From this, it was confirmed that the electrolytic solution of the present invention can suppress an increase in specific resistance change, and can achieve a long life and high reliability at high temperatures.
Furthermore, from the results of Table 2, it was found that by increasing the number of straight-chain carbons of the compound represented by [Chemical Formula 1], the scintillation generation voltage was increased, and a high withstand voltage was possible (Example 1). 3, 4).
Further, from the results in Table 3, the compound represented by [Chemical Formula 1] has high solubility in a solvent even if the number of carbon atoms between the carboxyl groups is the same because two ether groups are introduced into the main chain. (See Example 5 and Conventional Examples 3 and 4).

次に、前記[化1]で示される化合物の置換基の種類および主鎖のメチレン基の数(nの数)が、以下の表4〜表6に記載されるものである化合物(いずれもアンモニウム塩)を準備し、これら化合物を電解質として含む、表4〜表6記載の電解液組成を有する電解液を調製した。そして、前記と同様の評価方法を用いて、比抵抗、熱安定性、耐電圧、溶媒への溶解性を評価した。
その結果を以下の表4〜表6に示す。
Next, the types of substituents of the compound represented by [Chemical Formula 1] and the number of methylene groups in the main chain (the number of n) are those described in the following Tables 4 to 6 (all Ammonium salt) was prepared, and electrolytic solutions having the electrolytic solution compositions shown in Tables 4 to 6 containing these compounds as electrolytes were prepared. Then, using the same evaluation method as described above, specific resistance, thermal stability, withstand voltage, and solubility in a solvent were evaluated.
The results are shown in Tables 4 to 6 below.

Figure 0006131136
Figure 0006131136

Figure 0006131136
Figure 0006131136

Figure 0006131136
Figure 0006131136

上記表4の実験結果は、前記[化1]で示される化合物の置換基R,Rが、メチル基、エチル基、ブチル基のいずれであっても、比抵抗変化の上昇を抑制できることを示しており、その中でも、特にブチル基の場合に、熱安定性をより高くできる(比抵抗変化を小さくできる)ことが示されている。
また、表5には、前記[化1]で示される化合物の主鎖のメチレン基の数(nの数)が、特に4〜16の間において良好な耐電圧向上効果および溶解性が得られ、nが3以下の場合(比較例1)には耐電圧向上効果が低くなり、nが17以上の場合(比較例2)には溶媒への溶解性が悪くなることが示されている。
さらに、上記表6より、本発明の電解液において、前記電解質が溶媒に0.5〜25.0重量%溶解していることが好ましく、1.0〜20.0重量%溶解していることがより好ましいことが確認された。
The experimental results in Table 4 show that the increase in resistivity change can be suppressed even when the substituents R 1 and R 3 of the compound represented by [Chemical Formula 1] are any of a methyl group, an ethyl group, and a butyl group. Among them, it is shown that, particularly in the case of a butyl group, the thermal stability can be further increased (change in specific resistance can be reduced).
Further, Table 5 shows that a favorable withstand voltage improving effect and solubility are obtained when the number of methylene groups (the number of n) in the main chain of the compound represented by [Chemical Formula 1] is 4 to 16. It is shown that when n is 3 or less (Comparative Example 1), the withstand voltage improvement effect is low, and when n is 17 or more (Comparative Example 2), the solubility in a solvent is poor.
Furthermore, from the above Table 6, in the electrolytic solution of the present invention, the electrolyte is preferably dissolved in a solvent in an amount of 0.5 to 25.0% by weight, and is dissolved in an amount of 1.0 to 20.0% by weight. Was confirmed to be more preferable.

なお、本発明は、上記実施例に限られるものではなく、上記の電解質を単独または複数使用した場合にも、上記と同様の効果が得られる。   In addition, this invention is not restricted to the said Example, When the said electrolyte is used individually or in multiple, the effect similar to the above is acquired.

また、本発明の電解液は、目的に応じて公知の添加剤を添加することができる。添加剤として、リン酸化合物、ホウ酸化合物、多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレン、ポリオキシプロピレングリコールのランダム共重合体及びブロック共重合体、ニトロ化合物等を例示することができる。   Moreover, the electrolyte solution of this invention can add a well-known additive according to the objective. Examples of additives include phosphoric acid compounds, boric acid compounds, polyhydric alcohols, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene, polyoxypropylene glycol random copolymers and block copolymers, nitro compounds, etc. can do.

本発明の電解液を用いることで、優れた熱安定性、耐電圧特性を示す電解コンデンサを製造することができ、本発明の電解液は非常に有用である。   By using the electrolytic solution of the present invention, an electrolytic capacitor exhibiting excellent thermal stability and withstand voltage characteristics can be produced, and the electrolytic solution of the present invention is very useful.

Claims (5)

溶媒に電解質を溶解してなる電解コンデンサの駆動用電解液であって、前記電解質が、下記の一般式を有する化合物、および当該化合物の塩からなる群より選ばれたものであることを特徴とする電解コンデンサの駆動用電解液。
Figure 0006131136
An electrolytic solution for driving an electrolytic capacitor obtained by dissolving an electrolyte in a solvent, wherein the electrolyte is selected from the group consisting of a compound having the following general formula and a salt of the compound: Electrolytic solution for driving electrolytic capacitors.
Figure 0006131136
前記電解質が前記溶媒に1.0〜20.0重量%溶解していることを特徴とする請求項1に記載の電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolyte is dissolved in the solvent in an amount of 1.0 to 20.0 wt%. 前記溶媒が、グリコール類、ラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、スルホラン、スルホラン誘導体および水からなる群より選ばれた一種または二種以上であることを特徴とする請求項1または2に記載の電解コンデンサの駆動用電解液。   The solvent is one or more selected from the group consisting of glycols, lactones, nitriles, alcohols, ethers, ketones, esters, carbonates, sulfolane, sulfolane derivatives, and water. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolytic solution is for driving the electrolytic capacitor. 前記の塩が、一級アミン塩、二級アミン塩、三級アミン塩、四級アンモニウム塩、イミダゾリニウム塩、イミダゾリウム塩からなる群より選ばれたものであることを特徴とする請求項1〜3のいずれか1項に記載の電解コンデンサの駆動用電解液。   2. The salt is selected from the group consisting of a primary amine salt, a secondary amine salt, a tertiary amine salt, a quaternary ammonium salt, an imidazolinium salt, and an imidazolium salt. The electrolyte solution for a drive of the electrolytic capacitor of any one of -3. 請求項1〜4のいずれか1項に記載の駆動用電解液を含浸させてなるコンデンサ素子を有することを特徴とする電解コンデンサ。   5. An electrolytic capacitor comprising a capacitor element impregnated with the driving electrolyte solution according to claim 1.
JP2013146611A 2013-07-12 2013-07-12 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same Active JP6131136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146611A JP6131136B2 (en) 2013-07-12 2013-07-12 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146611A JP6131136B2 (en) 2013-07-12 2013-07-12 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2015019009A JP2015019009A (en) 2015-01-29
JP6131136B2 true JP6131136B2 (en) 2017-05-17

Family

ID=52439739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146611A Active JP6131136B2 (en) 2013-07-12 2013-07-12 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP6131136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167710B2 (en) * 2013-07-12 2017-07-26 日油株式会社 Electrolytic solution for electrolytic capacitors
JP6241715B2 (en) * 2013-07-12 2017-12-06 日油株式会社 Electrolytic solution for electrolytic capacitors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104144A (en) * 1992-09-18 1994-04-15 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP3254981B2 (en) * 1995-09-11 2002-02-12 日立エーアイシー株式会社 Electrolyte for electrolytic capacitors
JP2003012598A (en) * 2001-06-28 2003-01-15 Kyowa Yuka Co Ltd Method for producing ether-dicarboxylic acid or its salt
JP2004047595A (en) * 2002-07-10 2004-02-12 Sanyo Chem Ind Ltd Electrolyte
JP4304242B2 (en) * 2002-08-05 2009-07-29 日油株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Also Published As

Publication number Publication date
JP2015019009A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP2007080888A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP6131136B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2015090949A (en) Electrolyte for aluminum electrolytic capacitors and aluminum electrolytic capacitor arranged by use thereof
JP2016192465A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor employing the same
JP6566305B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2015069985A (en) Electrolytic solution for driving electrolytic capacitor
JP6399466B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JPWO2011118234A1 (en) Electrolytic solution for electrolytic capacitors
JP6619573B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP6459540B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4134360B2 (en) Electrolytic solution for electrolytic capacitors
JP6459432B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6829160B2 (en) Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it
JP2021086870A (en) Electrolyte solution for driving electrolytic capacitor, and electrolytic capacitor arranged to use the same
JP5488998B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP6201172B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
EP0956573B1 (en) Electrolyte for electrolytic capacitor
JP4724336B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2004214637A (en) Electrolyte for electrolytic capacitor, and the electrolytic capacitor using same
JP4699652B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2005005336A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor using the same
JPH0810663B2 (en) Electrolytic solution for electrolytic capacitors
JP2008300684A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6131136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250