JP2016194678A - Electrophotographic photoreceptor, process cartridge and electrophotographic device - Google Patents

Electrophotographic photoreceptor, process cartridge and electrophotographic device Download PDF

Info

Publication number
JP2016194678A
JP2016194678A JP2016051294A JP2016051294A JP2016194678A JP 2016194678 A JP2016194678 A JP 2016194678A JP 2016051294 A JP2016051294 A JP 2016051294A JP 2016051294 A JP2016051294 A JP 2016051294A JP 2016194678 A JP2016194678 A JP 2016194678A
Authority
JP
Japan
Prior art keywords
charge transport
photosensitive member
electrophotographic photosensitive
electrophotographic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016051294A
Other languages
Japanese (ja)
Other versions
JP6681229B2 (en
Inventor
高橋 孝治
Koji Takahashi
孝治 高橋
直晃 市橋
Naoaki Ichihashi
直晃 市橋
剛志 嶋田
Takeshi Shimada
剛志 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/077,185 priority Critical patent/US9766561B2/en
Publication of JP2016194678A publication Critical patent/JP2016194678A/en
Application granted granted Critical
Publication of JP6681229B2 publication Critical patent/JP6681229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor capable of suppressing an image defect due to cracks in a photosensitive layer containing methoxybenzene, a process cartridge having the electrophotographic photoreceptor and an electrophotographic device.SOLUTION: An electrophotographic photoreceptor includes a support medium and a photosensitive layer on the support medium. The photosensitive layer includes a charge generating layer containing a charge generating material and a charge transport layer containing a charge transport material in this order. The charge transport layer contains (α) a specific polycarbonate resin or a specific polyester resin; (β) the charge transport material; (γ) methoxybenzene; and (δ) methoxybenzene, methoxy cyclohexane or methyl hexanol with a substituent group. The content Wδ of the (δ) is 0.001 to 1 mass% with regard to a total mass of the charge transport layer.SELECTED DRAWING: None

Description

本発明は、電子写真感光体、プロセスカートリッジおよび電子写真装置に関する。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus.

近年、電子写真装置のユーザーの多様化が進み、出力される画像には、従来のものよりも高画質および高安定性が求められている。それに伴って、電子写真装置に搭載される電子写真感光体についても、高画質および高安定性のさらなる向上が求められている。   In recent years, diversification of users of electrophotographic apparatuses has progressed, and output images are required to have higher image quality and higher stability than conventional ones. Along with this, further improvement in image quality and high stability is also demanded for the electrophotographic photosensitive member mounted in the electrophotographic apparatus.

画像形成の初期から長期にわたって良好な電子写真感光体の特性を得る技術として、特許文献1には、電荷輸送物質、バインダー樹脂、ジメトキシメタンおよび130℃以上の沸点を有する芳香族炭化水素溶媒を含有する塗布液の塗膜を乾燥させることによって、電荷輸送層を形成するという技術が記載されている。具体的には、特許文献1には、芳香族炭化水素溶媒としてアニソール(メトキシベンゼン)を用いる技術が記載されている。   As a technique for obtaining good electrophotographic photoreceptor characteristics from the initial stage of image formation over a long period of time, Patent Document 1 contains a charge transport material, a binder resin, dimethoxymethane, and an aromatic hydrocarbon solvent having a boiling point of 130 ° C. or higher. A technique of forming a charge transport layer by drying a coating film of a coating liquid to be described is described. Specifically, Patent Document 1 describes a technique using anisole (methoxybenzene) as an aromatic hydrocarbon solvent.

また、特許文献2には、溶剤として芳香族エーテルを含有する電荷輸送層用組成物および電子写真感光体に関する技術が記載されている。   Patent Document 2 describes a technique related to a composition for a charge transport layer and an electrophotographic photoreceptor containing an aromatic ether as a solvent.

特開2002−55466号公報JP 2002-55466 A 特開平7−261422号公報JP-A-7-261422

近年、電子写真装置の設置場所が世界各地に広がってきており、物流も世界各地に広がってきている。設置場所の温湿度の違いや、物流時の温湿度の変化によっても、電子写真感光体の特性の変化が生じにくくなるように、電子写真装置や電子写真感光体には、耐環境性(環境依存性の低さ)の向上が求められている。   In recent years, installation locations of electrophotographic apparatuses have been spreading all over the world, and logistics has also been spreading around the world. Electrophotographic equipment and electrophotographic photoconductors are resistant to the environment (environment) so that the characteristics of the electrophotographic photoconductor are less likely to change due to differences in temperature and humidity at the installation location and changes in temperature and humidity during distribution. Improvement of low dependency) is demanded.

しかしながら、特許文献1に記載されているように電子写真感光体を製造する際にメトキシベンゼンを用いた場合、高温高湿環境下で電子写真感光体を保管し、その後、常温環境で保管を行うと、電荷輸送物質の析出によると思われるクラックが生じる場合があった。
また、特許文献2に記載されているように電子写真感光体を製造する際に芳香族エーテルを用いた場合にも、上記同様の環境で保管を行うことで同様のクラックを生じる場合があった。
いずれの場合も、電子写真感光体を製造する際に用いたメトキシベンゼン(芳香族エーテル)が、電子写真感光体の電荷輸送層に存在することが原因であると考えられる。
However, when methoxybenzene is used in the production of an electrophotographic photoreceptor as described in Patent Document 1, the electrophotographic photoreceptor is stored in a high temperature and high humidity environment, and then stored in a room temperature environment. In some cases, cracks may occur due to the deposition of the charge transport material.
In addition, when an aromatic ether is used when producing an electrophotographic photosensitive member as described in Patent Document 2, the same crack may be caused by storing in the same environment as described above. .
In any case, it is considered that the cause is that methoxybenzene (aromatic ether) used in producing the electrophotographic photoreceptor is present in the charge transport layer of the electrophotographic photoreceptor.

本発明の目的は、メトキシベンゼンを含有する電荷輸送層のクラックおよびそれによる画像不良が抑制された電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。   An object of the present invention is to provide an electrophotographic photoreceptor in which cracks in the charge transport layer containing methoxybenzene and image defects caused thereby are suppressed, and a process cartridge and an electrophotographic apparatus having the electrophotographic photoreceptor. is there.

本発明は、支持体および該支持体上の感光層を有する電子写真感光体において、前記感光層が、電荷発生物質を含む電荷発生層、および、電荷輸送物質を含む電荷輸送層をこの順に有し、前記電荷輸送層が、
(α)下記式(A)で示される構造単位を有するポリカーボネート樹脂、および、下記式(B)で示される構造単位を有するポリエステル樹脂からなる群より選択される少なくとも1種と、
(β)電荷輸送物質と、
(γ)メトキシベンゼンと、
(δ)メトキシシクロヘキサン、メチルヘキサノール、および、置換基としてメチル基もしくはエチル基を有するメトキシベンゼンからなる群より選択される少なくとも1種の化合物と、
を含有し、前記(δ)の含有量Wδが、前記電荷輸送層の全質量に対して0.001質量%以上1質量%以下であることを特徴とする電子写真感光体である。
The present invention provides an electrophotographic photosensitive member having a support and a photosensitive layer on the support, the photosensitive layer having a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material in this order. And the charge transport layer is
(Α) at least one selected from the group consisting of a polycarbonate resin having a structural unit represented by the following formula (A) and a polyester resin having a structural unit represented by the following formula (B);
(Β) a charge transport material;
(Γ) methoxybenzene,
(Δ) at least one compound selected from the group consisting of methoxycyclohexane, methylhexanol, and methoxybenzene having a methyl group or an ethyl group as a substituent;
The electrophotographic photosensitive member is characterized in that a content Wδ of (δ) is 0.001% by mass or more and 1% by mass or less with respect to the total mass of the charge transport layer.

Figure 2016194678
(式(A)および(B)中、R11〜R14およびR21〜R24は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。XおよびXは、それぞれ独立に、単結合、または、2価の炭化水素基を示す。Yは、フェニレン基、または、ジフェニレンエーテル基を示す。)
Figure 2016194678
(In the formulas (A) and (B), R 11 to R 14 and R 21 to R 24 each independently represent a hydrogen atom, a methyl group, or an ethyl group. X 1 and X 2 are each independently Represents a single bond or a divalent hydrocarbon group, Y 1 represents a phenylene group or a diphenylene ether group.)

また、本発明は、上記電子写真感光体と、前記電子写真感光体を帯電する帯電手段、前記電子写真感光体の表面に露光光を照射して前記電子写真感光体の表面に静電潜像を形成する露光手段、前記静電潜像をトナーによって現像して前記電子写真感光体の表面にトナー像を形成する現像手段、前記トナー像を前記電子写真感光体の表面から転写材に転写する転写手段、および、前記電子写真感光体の表面をクリーニングするクリーニング手段からなる群より選択される少なくとも1つの手段と、を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。
また、本発明は、上記電子写真感光体、ならびに、前記電子写真感光体を帯電する帯電手段、前記電子写真感光体の表面に露光光を照射して前記電子写真感光体の表面に静電潜像を形成する露光手段、前記静電潜像をトナーによって現像して前記電子写真感光体の表面にトナー像を形成する現像手段、および、前記トナー像を前記電子写真感光体の表面から転写材に転写する転写手段、を有することを特徴とする電子写真装置である。
The present invention also provides the electrophotographic photosensitive member, a charging unit for charging the electrophotographic photosensitive member, and exposing the surface of the electrophotographic photosensitive member to exposure light to form an electrostatic latent image on the surface of the electrophotographic photosensitive member. Exposure means for forming the toner, developing means for developing the electrostatic latent image with toner to form a toner image on the surface of the electrophotographic photosensitive member, and transferring the toner image from the surface of the electrophotographic photosensitive member to a transfer material A transfer unit and at least one unit selected from the group consisting of a cleaning unit for cleaning the surface of the electrophotographic photosensitive member are integrally supported and detachable from the main body of the electrophotographic apparatus. Process cartridge.
The present invention also provides the electrophotographic photosensitive member, a charging means for charging the electrophotographic photosensitive member, and the surface of the electrophotographic photosensitive member is irradiated with exposure light so that an electrostatic latent image is formed on the surface of the electrophotographic photosensitive member. Exposure means for forming an image, developing means for developing the electrostatic latent image with toner to form a toner image on the surface of the electrophotographic photosensitive member, and transfer material for transferring the toner image from the surface of the electrophotographic photosensitive member An electrophotographic apparatus comprising transfer means for transferring to an electrophotographic apparatus.

本発明によれば、メトキシベンゼンを含有する電荷輸送層のクラックによる画像欠陥が抑制された電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。   According to the present invention, it is possible to provide an electrophotographic photoreceptor in which image defects due to cracks in the charge transport layer containing methoxybenzene are suppressed, and a process cartridge and an electrophotographic apparatus having the electrophotographic photoreceptor.

本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の構成例を示す概略図である。1 is a schematic diagram illustrating an example of the configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention.

本発明の電子写真感光体は、支持体および該支持体上の感光層を有する電子写真感光体において、前記感光層が、電荷発生物質を含む電荷発生層および電荷輸送物質を含む電荷輸送層をこの順に有し、前記電荷輸送層が、
(α)下記式(A)で示される構造単位を有するポリカーボネート樹脂、および、下記式(B)で示される構造単位を有するポリエステル樹脂からなる群より選択される少なくとも一種と、
(β)電荷輸送物質と、
(γ)メトキシベンゼンと、
(δ)メトキシシクロヘキサン、メチルヘキサノール、および、置換基としてメチル基もしくはエチル基を有するメトキシベンゼンからなる群より選択される少なくとも1種の化合物と、
を含有し、前記(δ)の含有量Wδが、前記電荷輸送層の全質量に対して0.001質量%以上1質量%以下であることを特徴とする。
The electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having a support and a photosensitive layer on the support, wherein the photosensitive layer includes a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. In this order, the charge transport layer has
(Α) at least one selected from the group consisting of a polycarbonate resin having a structural unit represented by the following formula (A) and a polyester resin having a structural unit represented by the following formula (B);
(Β) a charge transport material;
(Γ) methoxybenzene,
(Δ) at least one compound selected from the group consisting of methoxycyclohexane, methylhexanol, and methoxybenzene having a methyl group or an ethyl group as a substituent;
The content Wδ of (δ) is 0.001% by mass or more and 1% by mass or less with respect to the total mass of the charge transport layer.

Figure 2016194678
(式(A)および(B)中、R11〜R14およびR21〜R24は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。XおよびXは、それぞれ独立に、単結合、または、2価の炭化水素基を示す。Yは、フェニレン基、または、ジフェニレンエーテル基を示す。)
Figure 2016194678
(In the formulas (A) and (B), R 11 to R 14 and R 21 to R 24 each independently represent a hydrogen atom, a methyl group, or an ethyl group. X 1 and X 2 are each independently Represents a single bond or a divalent hydrocarbon group, Y 1 represents a phenylene group or a diphenylene ether group.)

以下、上記(α)を「樹脂α」とも表記し、上記(β)を「化合物β」とも表記し、上記(γ)を「化合物γ」とも表記し、上記(δ)を「化合物δ」とも表記する。   Hereinafter, the above (α) is also referred to as “resin α”, the above (β) is also referred to as “compound β”, the above (γ) is also referred to as “compound γ”, and the above (δ) is referred to as “compound δ”. Also written.

まず、本発明者らが推測している、効果の発現メカニズムについて述べる。
本発明の電子写真感光体は、電荷輸送層が、メトキシベンゼン(化合物γ)と、特定の量の、メトキシベンゼンと似た構造を有する化合物(化合物δ)と、を含有する。
本発明者らは、電荷輸送物質の析出によると推測される電荷輸送層のクラック、および、このクラック由来の画像欠陥を、電荷輸送層に化合物δを含有させることによって抑制できる理由を以下のように推測している。
First, the effect manifestation mechanism that the present inventors presume will be described.
In the electrophotographic photoreceptor of the present invention, the charge transport layer contains methoxybenzene (compound γ) and a specific amount of a compound (compound δ) having a structure similar to methoxybenzene.
The inventors of the present invention have the following reasons why it is possible to suppress the cracks in the charge transport layer presumed to be due to the precipitation of the charge transport material and the image defects derived from the cracks by containing the compound δ in the charge transport layer. I guess.

高温高湿環境におかれた場合、分子の運動性が上がり、電荷輸送層中の電荷輸送物質およびメトキシベンゼンはお互いに安定な状態になるように動く。また、本発明者らの検討の結果から、電荷輸送物質とメトキシベンゼンとが共存すると、メトキシベンゼンを伴った電荷輸送物質のパッキング構造は、エネルギー的に極めて安定なものになると推測している。そのため、電荷輸送層に含有されるメトキシベンゼンの量がごくわずかであっても、高温高湿環境中で分子の運動性が上がる。そして、その後、常温で保管されることにより、高温高湿保管前よりも安定なパッキング構造で安定化することで、電荷輸送物質が結晶化すると推測される。これに対して、メトキシベンゼンと似た構造を有する化合物δは、メトキシベンゼンと電荷輸送物質との相互作用を効率的に阻害する働きを有していると考えられる。   When placed in a high-temperature and high-humidity environment, the mobility of molecules increases, and the charge transport material and methoxybenzene in the charge transport layer move so as to be in a stable state with respect to each other. Further, from the results of the study by the present inventors, it is presumed that when the charge transport material and methoxybenzene coexist, the packing structure of the charge transport material accompanied with methoxybenzene becomes extremely stable in terms of energy. Therefore, even if the amount of methoxybenzene contained in the charge transport layer is very small, the mobility of molecules increases in a high temperature and high humidity environment. Then, it is presumed that the charge transport material is crystallized by being stored at room temperature and then being stabilized with a packing structure that is more stable than before high-temperature and high-humidity storage. On the other hand, the compound δ having a structure similar to methoxybenzene is considered to have a function of efficiently inhibiting the interaction between methoxybenzene and the charge transport material.

本発明の電子写真感光体の電荷輸送層を構成する樹脂α、化合物β、化合物γおよび化合物δについて説明する。   The resin α, compound β, compound γ and compound δ constituting the charge transport layer of the electrophotographic photoreceptor of the present invention will be described.

〈樹脂αについて〉
樹脂αは、下記式(A)で示される構造単位(繰り返し構造単位)を有するポリカーボネート樹脂、および、下記式(B)で示される構造単位(繰り返し構造単位)を有するポリエステル樹脂からなる群より選択される少なくとも1種の樹脂である。
<About Resin α>
The resin α is selected from the group consisting of a polycarbonate resin having a structural unit (repeating structural unit) represented by the following formula (A) and a polyester resin having a structural unit (repeating structural unit) represented by the following formula (B). At least one kind of resin.

Figure 2016194678
Figure 2016194678

上記式(A)中、R11〜R14は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。好ましくは、R11〜R14は、それぞれ独立に、水素原子、または、メチル基である。
上記式(A)中、Xは、単結合、または、2価の炭化水素基を示す。好ましくは、Xは、単結合、シクロヘキシリデン基、または、下記式(C)で示される構造を有する2価の基である。
上記式(B)中、R21〜R24は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。好ましくは、R21〜R24は、それぞれ独立に、水素原子、または、メチル基である。
上記式(B)中、Xは、単結合、または、2価の炭化水素基を示す。好ましくは、Xは、単結合、シクロヘキシリデン基、または、下記式(C)で示される構造を有する2価の基である。
上記式(B)中、Yは、フェニレン基、または、ジフェニレンエーテル基を示す。フェニレン基の中でも、好ましくは、m−フェニレン基、または、p−フェニレン基である。ジフェニレンエーテル基の中でも、好ましくは、2つのp−フェニレン基が酸素原子を介して結合してなる2価の基(4,4’−ジフェニレンエーテル基、または、p,p’−ジフェニレンエーテル基とも呼ばれる。)である。
In said formula (A), R < 11 > -R < 14 > shows a hydrogen atom, a methyl group, or an ethyl group each independently. Preferably, R 11 to R 14 are each independently a hydrogen atom or a methyl group.
In the above formula (A), X 1 represents a single bond or a divalent hydrocarbon group. X 1 is preferably a single bond, a cyclohexylidene group, or a divalent group having a structure represented by the following formula (C).
In the formula (B), R 21 ~R 24 each independently represent a hydrogen atom, a methyl group, or, an ethyl group. Preferably, R 21 to R 24 are each independently a hydrogen atom or a methyl group.
In the above formula (B), X 2 represents a single bond or a divalent hydrocarbon group. X 2 is preferably a single bond, a cyclohexylidene group, or a divalent group having a structure represented by the following formula (C).
In the above formula (B), Y 1 represents a phenylene group or a diphenylene ether group. Among the phenylene groups, an m-phenylene group or a p-phenylene group is preferable. Among the diphenylene ether groups, a divalent group (4,4′-diphenylene ether group or p, p′-diphenylene formed by bonding two p-phenylene groups through an oxygen atom is preferable. Also called an ether group).

Figure 2016194678
Figure 2016194678

上記式(C)中、R31およびR32は、それぞれ独立に、水素原子、メチル基、または、フェニル基を示す。
以下に、上記式(A)で示される構造単位の具体例を示す。
In the above formula (C), R 31 and R 32 each independently represent a hydrogen atom, a methyl group, or a phenyl group.
Specific examples of the structural unit represented by the above formula (A) are shown below.

Figure 2016194678
Figure 2016194678

これらの中でも、(A−1)、(A−2)、(A−4)が好ましい。
上記式(A)で示される構造単位を有するポリカーボネート樹脂は、上記式(A)で示される構造単位の1種のみを有する単独重合体のポリカーボネート樹脂であってもよいし、2種以上を有する共重合体のポリカーボネート樹脂であってもよい。
Among these, (A-1), (A-2), and (A-4) are preferable.
The polycarbonate resin having the structural unit represented by the above formula (A) may be a homopolymer polycarbonate resin having only one of the structural units represented by the above formula (A), or two or more kinds. A copolymer polycarbonate resin may also be used.

以下に、上記式(B)で示される構造単位の具体例を示す。   Specific examples of the structural unit represented by the above formula (B) are shown below.

Figure 2016194678
Figure 2016194678

これらの中でも、(B−1)、(B−2)、(B−3)、(B−6)、(B−7)、(B−8)が好ましい。
上記式(B)で示される構造単位を有するポリエステル樹脂は、上記式(B)で示される構造単位の1種のみを有する単独重合体のポリエステル樹脂であってもよいし、2種以上を有する共重合体のポリエステル樹脂であってもよい。
以下、上記式(A)で示される構造単位を有するポリカーボネート樹脂を「ポリカーボネート樹脂A」とも表記し、上記式(B)で示される構造単位を有するポリエステル樹脂を「ポリエステル樹脂B」とも表記する。
Among these, (B-1), (B-2), (B-3), (B-6), (B-7), and (B-8) are preferable.
The polyester resin having the structural unit represented by the above formula (B) may be a homopolymer polyester resin having only one type of the structural unit represented by the above formula (B), or has two or more types. A polyester resin of a copolymer may be used.
Hereinafter, the polycarbonate resin having the structural unit represented by the above formula (A) is also referred to as “polycarbonate resin A”, and the polyester resin having the structural unit represented by the above formula (B) is also referred to as “polyester resin B”.

ポリカーボネート樹脂Aは、例えば、公知のホスゲン法で合成することができ、また、ポリエステル樹脂Bは、例えば、公知のエステル交換法によって合成することができる。   Polycarbonate resin A can be synthesized, for example, by a known phosgene method, and polyester resin B can be synthesized, for example, by a known transesterification method.

ポリカーボネート樹脂Aやポリエステル樹脂Bが共重合体である場合、その共重合形態は、ブロック共重合、ランダム共重合、交互共重合などいずれの形態の共重合体であってもよい。   When the polycarbonate resin A or the polyester resin B is a copolymer, the form of copolymerization may be any form of copolymer such as block copolymerization, random copolymerization, and alternating copolymerization.

ポリカーボネート樹脂Aおよびポリエステル樹脂Bの重量平均分子量は、20000以上300000以下であることが好ましく、50000以上250000以下であることがより好ましい。
本発明における樹脂の重量平均分子量は、特開2007−79555号公報に記載の方法により測定されたポリスチレン換算の重量平均分子量である。
The weight average molecular weight of the polycarbonate resin A and the polyester resin B is preferably 20,000 or more and 300,000 or less, and more preferably 50,000 or more and 250,000 or less.
The weight average molecular weight of the resin in the present invention is a polystyrene equivalent weight average molecular weight measured by the method described in JP-A-2007-79555.

また、ポリカーボネート樹脂Aおよびポリエステル樹脂Bは、上記式(A)または上記式(B)で示される構造単位に加えて、シロキサン構造を含む構造単位を有する共重合体であってもよい。
以下に、シロキサン構造を含む構造単位の具体例を示す。
Further, the polycarbonate resin A and the polyester resin B may be a copolymer having a structural unit including a siloxane structure in addition to the structural unit represented by the above formula (A) or the above formula (B).
Below, the specific example of the structural unit containing a siloxane structure is shown.

Figure 2016194678
Figure 2016194678

以下に、樹脂αの具体例を示す。   Specific examples of the resin α are shown below.

Figure 2016194678
Figure 2016194678

〈化合物βについて〉
化合物βは、電荷輸送物質である。電荷輸送物質は1種のみでもよいし、2種以上でもよい。電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、エナミン化合物などが挙げられる。
<About compound β>
Compound β is a charge transport material. Only one type of charge transport material may be used, or two or more types may be used. Examples of the charge transport material include triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, enamine compounds, and the like.

本発明において、電荷輸送物質は、下記式(E)で示される部分構造を有する電荷輸送物質であることが好ましい。   In the present invention, the charge transport material is preferably a charge transport material having a partial structure represented by the following formula (E).

Figure 2016194678
Figure 2016194678

上記式(E)中、R41〜R46およびR41’〜R45’は、それぞれ独立に、水素原子、メチル基、エチル基、置換もしくは無置換のアリール基、または、不飽和炭化水素基を示す。
上記不飽和炭化水素基としては、例えば、ブタジエンのような不飽和結合を有する置換基などの不飽和炭化水素基が挙げられる。
上記アリール基としては、例えば、フェニル基、ビフェニリル基、フルオレニル基などが挙げられる。上記アリール基が有してもよい置換基としては、例えば、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアミノ基などが挙げられる。
In the above formula (E), R 41 to R 46 and R 41 ′ to R 45 ′ are each independently a hydrogen atom, a methyl group, an ethyl group, a substituted or unsubstituted aryl group, or an unsaturated hydrocarbon group. Indicates.
Examples of the unsaturated hydrocarbon group include unsaturated hydrocarbon groups such as a substituent having an unsaturated bond such as butadiene.
Examples of the aryl group include a phenyl group, a biphenylyl group, and a fluorenyl group. Examples of the substituent that the aryl group may have include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, and a substituted or unsubstituted amino group.

より好ましくは、下記構造式(E−1)〜(E−9)で示される化合物である。
本発明において、電荷輸送物質の分子量は、3000以下であることが好ましい。
More preferred are compounds represented by the following structural formulas (E-1) to (E-9).
In the present invention, the charge transport material preferably has a molecular weight of 3000 or less.

Figure 2016194678
Figure 2016194678

〈化合物δについて〉
化合物δは、メトキシシクロヘキサン、メチルヘキサノール、置換基を有するメトキシベンゼンからなる群より選択される少なくとも1種の化合物である。
本発明の電子写真感光体の電荷輸送層は、上記化合物δを含有する。
<Compound δ>
The compound δ is at least one compound selected from the group consisting of methoxycyclohexane, methylhexanol, and methoxybenzene having a substituent.
The charge transport layer of the electrophotographic photoreceptor of the present invention contains the compound δ.

上記置換基を有するメトキシベンゼンとしては、下記式(F)で示される構造の化合物であることが好ましい。   The methoxybenzene having the above substituent is preferably a compound having a structure represented by the following formula (F).

Figure 2016194678
上記式(F)中、R51〜R55は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。ただし、R51〜R55のうち、少なくとも1つは、メチル基、または、エチル基である。
Figure 2016194678
In the formula (F), R 51 ~R 55 each independently represent a hydrogen atom, a methyl group, or, an ethyl group. However, at least one of R 51 to R 55 is a methyl group or an ethyl group.

上記式(F)で示される化合物の中でも、電荷輸送物質の析出を効率的に抑制する観点から、メトキシベンゼンと構造が類似しているメトキシトルエンが好ましい。メトキシトルエンの中でも、R51がメチル基で他が水素原子である2−メトキシトルエンや、R53がメチル基で他が水素原子である4−メトキシトルエンがより好ましい。 Among the compounds represented by the formula (F), methoxytoluene having a structure similar to that of methoxybenzene is preferable from the viewpoint of efficiently suppressing the precipitation of the charge transport material. Among methoxytoluenes, 2-methoxytoluene in which R 51 is a methyl group and the other is a hydrogen atom, and 4-methoxytoluene in which R 53 is a methyl group and the other is a hydrogen atom are more preferable.

〈化合物γの含有量Wγと化合物δの含有量Wδについて〉
化合物δの電荷輸送層中の含有量Wδを好適な範囲にすることにより、電荷輸送層のクラックを抑制する効果が得られる。含有量Wδは、電荷輸送層の全質量に対して0.001質量%以上1質量%以下であり、多すぎても少なすぎても電荷輸送層のクラックを抑制する効果が得られない場合がある。
<Concerning Compound γ Content Wγ and Compound δ Content Wδ>
By making the content Wδ of the compound δ in the charge transport layer into a suitable range, an effect of suppressing cracks in the charge transport layer can be obtained. The content Wδ is not less than 0.001% by mass and not more than 1% by mass with respect to the total mass of the charge transport layer. is there.

また、化合物γの含有量Wγは、電荷輸送層の全質量に対して0.001質量%以上2質量%以下であることが好ましい。化合物γの含有量Wγおよび化合物δの含有量Wδは、より効果的にクラックを抑制するという観点および長時間放置における当接部材による変形を抑制する観点から、次の(a)、(b)および(c)を満たすことがより好ましい。
(a)化合物γの電荷輸送層中の含有量Wγが、0.001質量%以上1質量%以下である。
(b)化合物δの電荷輸送層中の含有量Wδが、0.001質量%以上0.5質量%以下である。
(c)化合物γの含有量Wγの化合物δの含有量Wδに対する比(Wγ/Wδ)が、0.5以上200以下である。
より効果的に電荷輸送物質の析出を抑制するためには、化合物γおよび化合物δが、電荷輸送層により好ましい比率で存在することが好ましいと考えられる。
In addition, the content Wγ of the compound γ is preferably 0.001% by mass to 2% by mass with respect to the total mass of the charge transport layer. The content Wγ of the compound γ and the content Wδ of the compound δ are the following (a) and (b) from the viewpoint of more effectively suppressing cracks and suppressing deformation due to the contact member when left for a long time. More preferably, and (c) are satisfied.
(A) The content Wγ of the compound γ in the charge transport layer is 0.001% by mass or more and 1% by mass or less.
(B) The content Wδ of the compound δ in the charge transport layer is 0.001% by mass or more and 0.5% by mass or less.
(C) The ratio (Wγ / Wδ) of the content Wγ of the compound γ to the content Wδ of the compound δ is 0.5 or more and 200 or less.
In order to suppress the precipitation of the charge transport material more effectively, it is considered that the compound γ and the compound δ are preferably present in a preferable ratio in the charge transport layer.

電荷輸送層中の化合物γの含有量Wγおよび化合物δの含有量Wδは、以下に示す測定方法により求めることができる。
本発明においては、四重極型GC/MSシステムTRACE ISQ(サーモフィッシャーサイエンティフィック(株)製)を用いて測定した。
The content Wγ of the compound γ and the content Wδ of the compound δ in the charge transport layer can be determined by the following measurement method.
In the present invention, measurement was performed using a quadrupole GC / MS system TRACE ISQ (manufactured by Thermo Fisher Scientific Co., Ltd.).

製造した電子写真感光体を5mm×40mmの試料片として切り出した。試料片をバイアル瓶に入れ、ヘッドスペースサンプラー(TurboMatrix HS40(Perkin Elmer(株)))の設定をOven 200℃、Loop 205℃、TransferLine 205℃に設定し、発生したガスをガスクロマトグラフィで測定した。試料片における電荷輸送層の質量は、測定後にバイアル瓶から取り出した試料片の質量と、当該取り出した試料片の電荷輸送層を剥がしたものとの差分から求められる。電荷輸送層を剥がした試料片とは、メチルエチルケトンに5分間浸漬して電荷輸送層を剥がした後、試料片を50℃で5分乾燥させたものである。   The produced electrophotographic photosensitive member was cut out as a 5 mm × 40 mm sample piece. The sample piece was put into a vial, the setting of the headspace sampler (TurboMatrix HS40 (Perkin Elmer Co., Ltd.)) was set to Even 200 ° C., Loop 205 ° C., and Transfer Line 205 ° C., and the generated gas was measured by gas chromatography. The mass of the charge transport layer in the sample piece is obtained from the difference between the mass of the sample piece taken out from the vial after the measurement and the one obtained by peeling off the charge transport layer from the sample piece taken out. The sample piece from which the charge transport layer has been peeled is obtained by immersing in methyl ethyl ketone for 5 minutes to remove the charge transport layer and then drying the sample piece at 50 ° C. for 5 minutes.

本発明においては、上述の方法を用いて、電荷輸送層中の化合物γの含有量Wγ、および、化合物δの含有量Wδを測定した。   In the present invention, the content Wγ of the compound γ and the content Wδ of the compound δ in the charge transport layer were measured using the method described above.

〈電子写真感光体の構成〉
次に、本発明の電子写真感光体の構成について説明する。
本発明の電子写真感光体は、支持体および該支持体上の感光層を有する電子写真感光体である。
<Configuration of electrophotographic photoreceptor>
Next, the configuration of the electrophotographic photosensitive member of the present invention will be described.
The electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having a support and a photosensitive layer on the support.

本発明の電子写真感光体の感光層は、電荷発生物質を含む電荷発生層と電荷輸送物質を含む電荷輸送層とが積層された積層型感光層(機能分離型感光層)である。また、積層型感光層の中でも、支持体側から電荷発生層、電荷輸送層の順に積層した感光層(順層型感光層)である。電荷発生層を積層構成(複数層構成)としてもよいし、電荷輸送層を積層構成(複数層構成)としてもよい。   The photosensitive layer of the electrophotographic photoreceptor of the present invention is a laminated photosensitive layer (functionally separated photosensitive layer) in which a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material are laminated. Further, among the laminated photosensitive layers, the photosensitive layer is laminated in the order of a charge generation layer and a charge transport layer from the support side (a normal photosensitive layer). The charge generation layer may have a laminated configuration (multiple layer configuration), and the charge transport layer may have a laminated configuration (multiple layer configuration).

支持体としては、導電性を示すもの(導電性支持体)であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレス鋼などの金属(合金)が挙げられる。
また、例えば、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金を用いて真空蒸着によって形成した被膜を有する金属製支持体やプラスチック製支持体を支持体として用いることもできる。
The support is preferably one that exhibits conductivity (conductive support). Examples of the material of the support include metals (alloys) such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel.
Further, for example, a metal support or a plastic support having a coating formed by vacuum deposition using aluminum, an aluminum alloy, or an indium oxide-tin oxide alloy can be used as the support.

また、例えば、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子をプラスチックや紙に含浸させた支持体や、導電性結着樹脂で形成された支持体を用いることもできる。   In addition, for example, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated with plastic or paper, or a support formed with a conductive binder resin can be used. .

支持体の表面には、レーザー光の散乱による干渉縞の抑制を目的として、例えば、切削処理、粗面化処理、アルマイト処理を施してもよい。   The surface of the support may be subjected to, for example, cutting treatment, roughening treatment, or alumite treatment for the purpose of suppressing interference fringes due to scattering of laser light.

支持体と、電荷発生層または後述の下引き層との間には、例えば、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆を目的として、導電層を設けてもよい。   A conductive layer may be provided between the support and the charge generation layer or the undercoat layer described below for the purpose of, for example, suppressing interference fringes due to scattering of laser light or covering scratches on the support.

導電層は、カーボンブラック、導電性顔料、抵抗調節顔料を結着樹脂とともに溶剤に分散処理することによって得られる導電層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、導電層用塗布液には、例えば、加熱、紫外線照射、放射線照射により硬化重合する化合物を含有させてもよい。   The conductive layer is formed by applying a coating solution for conductive layer obtained by dispersing carbon black, conductive pigment, and resistance adjusting pigment in a solvent together with a binder resin to form a coating film, and then drying the obtained coating film. Can be formed. Further, the conductive layer coating solution may contain, for example, a compound that undergoes curing polymerization by heating, ultraviolet irradiation, or radiation irradiation.

導電層に用いられる結着樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エチルセルロース樹脂、エチレン−アクリル酸コポリマー、エポキシ樹脂、カゼイン樹脂、シリコーン樹脂、ゼラチン樹脂、フェノール樹脂、ブチラール樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂が挙げられる。   Examples of the binder resin used for the conductive layer include acrylic resin, allyl resin, alkyd resin, ethyl cellulose resin, ethylene-acrylic acid copolymer, epoxy resin, casein resin, silicone resin, gelatin resin, phenol resin, butyral resin, poly Examples thereof include acrylate resins, polyacetal resins, polyamideimide resins, polyamide resins, polyallyl ether resins, polyimide resins, polyurethane resins, polyester resins, polycarbonate resins, and polyethylene resins.

導電性顔料および抵抗調節顔料としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレス鋼などの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズがドープされている酸化インジウム、アンチモンやタンタルがドープされている酸化スズなどの金属酸化物の粒子を用いることもできる。これらは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
さらに、導電性顔料および抵抗調節顔料には、表面処理を施してもよい。表面処理剤としては、例えば、界面活性剤、シランカップリング剤、チタンカップリング剤などが挙げられる。
Examples of the conductive pigment and the resistance adjusting pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by vapor deposition on the surfaces of plastic particles. . It is also possible to use metal oxide particles such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide. it can. These may be used alone or in combination of two or more.
Further, the conductive pigment and the resistance adjusting pigment may be subjected to a surface treatment. Examples of the surface treatment agent include a surfactant, a silane coupling agent, and a titanium coupling agent.

また、光散乱を目的として、導電層にシリコーン樹脂粒子やアクリル樹脂粒子などの粒子を含有させてもよい。   Further, for the purpose of light scattering, the conductive layer may contain particles such as silicone resin particles and acrylic resin particles.

また、導電層にレベリング剤、分散剤、酸化防止剤、紫外線吸収剤、可塑剤、整流性材料などの添加剤を含有させてもよい。   The conductive layer may contain an additive such as a leveling agent, a dispersant, an antioxidant, an ultraviolet absorber, a plasticizer, and a rectifying material.

導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。   The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less.

支持体または導電層と、電荷発生層との間には、感光層の接着性改良、支持体からの電荷注入性改良を目的として、下引き層(中間層)を設けてもよい。
下引き層は、結着樹脂を溶剤に溶解させることによって得られる下引き層用塗布液の塗膜を形成し、この塗膜を乾燥させることによって形成することができる。
An undercoat layer (intermediate layer) may be provided between the support or conductive layer and the charge generation layer for the purpose of improving adhesion of the photosensitive layer and improving charge injection from the support.
The undercoat layer can be formed by forming a coating film of the coating solution for the undercoat layer obtained by dissolving the binder resin in a solvent and drying the coating film.

下引き層に用いられる樹脂としては、例えば、ポリビニルアルコール樹脂、ポリエチレンオキシド樹脂、エチルセルロース樹脂、メチルセルロース樹脂、カゼイン樹脂、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロンおよびN−アルコキシメチル化ナイロンなど)樹脂、ポリウレタン樹脂、アクリル樹脂、アリル樹脂、アルキッド樹脂、フェノール樹脂、エポキシ樹脂が挙げられる。   Examples of the resin used for the undercoat layer include polyvinyl alcohol resin, polyethylene oxide resin, ethyl cellulose resin, methyl cellulose resin, casein resin, polyamide (nylon 6, nylon 66, nylon 610, copolymer nylon and N-alkoxymethylated nylon). Etc.) resin, polyurethane resin, acrylic resin, allyl resin, alkyd resin, phenol resin, epoxy resin.

下引き層の膜厚は、0.05μm以上40μm以下であることが好ましい。   The thickness of the undercoat layer is preferably 0.05 μm or more and 40 μm or less.

下引き層には、金属酸化物粒子を含有させてもよい。
下引き層に用いられる金属酸化物粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化アルミニウムからなる群より選択される少なくとも1種を含有する粒子であることが好ましい。上記の金属酸化物を含有する粒子の中でも、酸化亜鉛を含有する粒子がより好ましい。
The undercoat layer may contain metal oxide particles.
The metal oxide particles used for the undercoat layer are preferably particles containing at least one selected from the group consisting of titanium oxide, zinc oxide, tin oxide, zirconium oxide, and aluminum oxide, for example. Among the particles containing the above metal oxide, particles containing zinc oxide are more preferable.

金属酸化物粒子は、金属酸化物粒子の表面がシランカップリング剤などの表面処理剤で処理されている粒子であってもよい。   The metal oxide particles may be particles in which the surface of the metal oxide particles is treated with a surface treatment agent such as a silane coupling agent.

分散方法としては、例えば、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機を用いた方法などが挙げられる。   Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, a vibration mill, an attritor, and a liquid collision type high-speed disperser.

下引き層には、例えば、下引き層の表面粗さの調整、または下引き層のひび割れ軽減を目的として、有機樹脂粒子や、レベリング剤を含有させてもよい。
有機樹脂粒子としては、例えば、シリコーン粒子などの疎水性有機樹脂粒子や、架橋型ポリメタクリレート樹脂(PMMA)粒子などの親水性有機樹脂粒子などが挙げられる。
The undercoat layer may contain, for example, organic resin particles or a leveling agent for the purpose of adjusting the surface roughness of the undercoat layer or reducing cracks in the undercoat layer.
Examples of the organic resin particles include hydrophobic organic resin particles such as silicone particles, and hydrophilic organic resin particles such as cross-linked polymethacrylate resin (PMMA) particles.

下引き層には、各種添加物を含有させることができる。
添加物としては、例えば、金属、導電性物質、電子輸送性物質、金属キレート化合物、シランカップリング剤などの有機金属化合物などが挙げられる。
Various additives can be contained in the undercoat layer.
Examples of the additive include metals, conductive substances, electron transporting substances, metal chelate compounds, organometallic compounds such as silane coupling agents, and the like.

電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散して得られる電荷発生層用塗布液を塗布して塗膜を形成し、これを乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。   The charge generation layer can be formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent to form a coating film and drying the coating film. The charge generation layer may be a vapor generation film of a charge generation material.

電荷発生層に用いられる電荷発生物質としては、例えば、アゾ顔料、フタロシアニン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、スクワリリウム色素、チアピリリウム塩、トリフェニルメタン色素、キナクリドン顔料、アズレニウム塩顔料、シアニン染料、アントアントロン顔料、ピラントロン顔料、キサンテン色素、キノンイミン色素、スチリル色素などが挙げられる。
これら電荷発生物質は、1種のみ用いてもよく、2種以上用いてもよい。
これらの中でも、感度の観点から、オキシチタニウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニンが好ましい。
ヒドロキシガリウムフタロシアニンの中でも、CuKα特性X線回折におけるブラッグ角2θの7.4°±0.3°および28.2°±0.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶が好ましい。
Examples of the charge generation material used in the charge generation layer include azo pigments, phthalocyanine pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, squarylium dyes, thiapyrylium salts, triphenylmethane dyes, quinacridone pigments, azurenium salt pigments, cyanine. Examples thereof include dyes, anthrone pigments, pyranthrone pigments, xanthene pigments, quinoneimine pigments, and styryl pigments.
These charge generation materials may be used alone or in combination of two or more.
Among these, oxytitanium phthalocyanine, chlorogallium phthalocyanine, and hydroxygallium phthalocyanine are preferable from the viewpoint of sensitivity.
Among the hydroxygallium phthalocyanines, crystalline gallium phthalocyanine crystals having strong peaks at 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 ° of the Bragg angle 2θ in CuKα characteristic X-ray diffraction are preferable.

電荷発生層に用いられる結着樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、アクリル樹脂、酢酸ビニル樹脂、尿素樹脂などが挙げられる。これらの中でも、ブチラール樹脂が好ましい。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。   Examples of the binder resin used for the charge generation layer include polycarbonate resin, polyester resin, butyral resin, polyvinyl acetal resin, acrylic resin, vinyl acetate resin, urea resin, and the like. Among these, a butyral resin is preferable. These may be used alone or in combination as a mixture or copolymer.

分散方法としては、例えば、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、アトライターを用いた方法などが挙げられる。   Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, and an attritor.

電荷発生層における電荷発生物質と結着樹脂との割合は、結着樹脂1質量部に対して電荷発生物質が0.3質量部以上10質量部以下であることが好ましい。   The ratio of the charge generation material and the binder resin in the charge generation layer is preferably 0.3 parts by mass or more and 10 parts by mass or less of the charge generation material with respect to 1 part by mass of the binder resin.

電荷発生層には、必要に応じて、例えば、増感剤、レベリング剤、分散剤、酸化防止剤、紫外線吸収剤、可塑剤、整流性材料を含有させることもできる。   If necessary, the charge generation layer can contain, for example, a sensitizer, a leveling agent, a dispersant, an antioxidant, an ultraviolet absorber, a plasticizer, and a rectifying material.

電荷発生層の膜厚は、0.01μm以上5μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。   The thickness of the charge generation layer is preferably from 0.01 μm to 5 μm, and more preferably from 0.1 μm to 2 μm.

電荷発生層上には、電荷輸送層が形成される。
電荷輸送層は、電荷輸送物質および結着樹脂を溶剤に溶解させて得られる電荷輸送層用塗布液を塗布して塗膜を形成し、この塗膜を乾燥させることによって形成することができる。
A charge transport layer is formed on the charge generation layer.
The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent to form a coating film, and then drying the coating film.

化合物βである電荷輸送物質としては、例えば、前述したトリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、エナミン化合物の他に、ピレン化合物、N−アルキルカルバゾール化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、ブタジエン化合物などが挙げられる。これら電荷輸送物質は、1種のみ用いてもよく、2種以上用いてもよい。これら電荷輸送物質の中でも、前記式(E)の部分構造を有するものが電荷輸送層のクラック抑制の観点から好ましい。より好ましくは、式(E−1)〜(E−9)のいずれかで示される化合物である。   Examples of the charge transport material that is the compound β include, in addition to the triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, and enamine compounds described above, pyrene compounds, N-alkylcarbazole compounds, N, N-dialkylaniline compounds. , Diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, butadiene compounds and the like. These charge transport materials may be used alone or in combination of two or more. Among these charge transport materials, those having the partial structure of the formula (E) are preferable from the viewpoint of suppressing cracks in the charge transport layer. More preferred is a compound represented by any one of formulas (E-1) to (E-9).

電荷輸送層に用いられる結着樹脂としては、上記式(A)で示される構造単位を有するポリカーボネート樹脂A、または、上記式(B)で示される構造単位を有するポリエステル樹脂B、つまり樹脂αであることが好ましい。また、上記樹脂αとともに、例えば、アクリル樹脂、ポリビニルカルバゾール樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、ポリサルホン樹脂、ポリ塩化ビニリデン樹脂、アクリロニトリル共重合体、ポリビニルベンザール樹脂を電荷輸送層中に含有させても構わない。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。   As the binder resin used for the charge transport layer, polycarbonate resin A having the structural unit represented by the above formula (A), or polyester resin B having the structural unit represented by the above formula (B), that is, resin α Preferably there is. In addition to the above resin α, for example, acrylic resin, polyvinyl carbazole resin, phenoxy resin, polyvinyl butyral resin, polystyrene resin, polyvinyl acetate resin, polysulfone resin, polyvinylidene chloride resin, acrylonitrile copolymer, polyvinyl benzal resin are transported as charges. You may make it contain in a layer. These may be used alone or in combination as a mixture or copolymer.

電荷輸送層における電荷輸送物質と結着樹脂との割合は、結着樹脂1質量部に対して電荷輸送物質が0.3質量部以上3質量部以下であることが好ましい。   The ratio of the charge transport material and the binder resin in the charge transport layer is preferably 0.3 parts by mass or more and 3 parts by mass or less of the charge transport material with respect to 1 part by mass of the binder resin.

電荷輸送層が1層である場合、その電荷輸送層の膜厚は、5μm以上40μm以下であることが好ましく、8μm以上40μm以下であることがより好ましい。電荷輸送層を積層構成とした場合、支持体側の電荷輸送層の膜厚は、5μm以上30μm以下であることが好ましく、表面側の電荷輸送層の膜厚は、1μm以上10μm以下であることが好ましい。   When the charge transport layer is a single layer, the thickness of the charge transport layer is preferably 5 μm or more and 40 μm or less, and more preferably 8 μm or more and 40 μm or less. When the charge transport layer has a laminated structure, the thickness of the charge transport layer on the support side is preferably 5 μm to 30 μm, and the thickness of the charge transport layer on the surface side is preferably 1 μm to 10 μm. preferable.

電荷輸送層用塗布液に用いられる溶剤は、上述した化合物γであるメトキシベンゼン(アニソール)のほか、アルコール系溶剤、スルホキシド溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤などが挙げられる。具体的にはキシレン、トルエン、テトラヒドロフランが挙げられる。   Examples of the solvent used in the charge transport layer coating solution include methoxybenzene (anisole) which is the compound γ described above, alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, and the like. Specific examples include xylene, toluene, and tetrahydrofuran.

本発明の電子写真感光体の電荷輸送層は、化合物δを含有する。
電荷輸送層には、必要に応じて、例えば酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤、有機粒子、無機粒子を化合物δとともに含有させてもよい。
酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系耐光安定剤、硫黄原子含有酸化防止剤、リン原子含有酸化防止剤などが挙げられる。
有機粒子としては、例えば、フッ素原子含有樹脂粒子、ポリスチレン粒子、ポリエチレン樹脂粒子のような樹脂粒子などが挙げられる。
無機粒子としては、例えば、シリカ、アルミナのような金属酸化物などの粒子が挙げられる。
The charge transport layer of the electrophotographic photoreceptor of the present invention contains compound δ.
If necessary, the charge transport layer may contain, for example, an antioxidant, an ultraviolet absorber, a plasticizer, a leveling agent, organic particles, and inorganic particles together with the compound δ.
Examples of the antioxidant include a hindered phenol antioxidant, a hindered amine light resistance stabilizer, a sulfur atom-containing antioxidant, and a phosphorus atom-containing antioxidant.
Examples of the organic particles include resin particles such as fluorine atom-containing resin particles, polystyrene particles, and polyethylene resin particles.
Examples of the inorganic particles include particles of metal oxides such as silica and alumina.

電子写真感光体の耐摩耗性やクリーニング性の向上を目的として、電荷輸送層上に保護層を形成してもよい。
保護層は、結着樹脂を溶剤に溶解させて得られる保護層用塗布液の塗膜を形成し、塗膜を乾燥させることによって形成することができる。
A protective layer may be formed on the charge transport layer for the purpose of improving the abrasion resistance and cleaning properties of the electrophotographic photosensitive member.
The protective layer can be formed by forming a coating film of a coating solution for the protective layer obtained by dissolving the binder resin in a solvent and drying the coating film.

保護層に用いられる結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、フェノール樹脂などが挙げられる。   Examples of the binder resin used for the protective layer include polyvinyl butyral resin, polyester resin, polycarbonate resin, polyamide resin, polyimide resin, polyurethane resin, and phenol resin.

また、保護層は、重合性のモノマーあるいはオリゴマーを溶剤に溶解させて得られる保護層用塗布液の塗膜を形成し、塗膜を架橋または重合反応を用いて硬化(重合)させて保護層を形成してもよい。
重合性のモノマーあるいはオリゴマーとしては、例えば、アクリロイルオキシ基やメタクリロイルオキシ基やスチリル基などの連鎖重合性官能基を有する化合物や、ヒドロキシ基、アルコキシシリル基、イソシアネート基、エポキシ基などの逐次重合性官能基を有する化合物が挙げられる。
硬化させる反応としては、例えば、ラジカル重合、イオン重合、熱重合、光重合、放射線重合(電子線重合)、プラズマCVD法、光CVD法などが挙げられる。
In addition, the protective layer is formed by forming a coating film of a coating solution for the protective layer obtained by dissolving a polymerizable monomer or oligomer in a solvent, and curing (polymerizing) the coating film using a crosslinking or polymerization reaction. May be formed.
As the polymerizable monomer or oligomer, for example, a compound having a chain polymerizable functional group such as acryloyloxy group, methacryloyloxy group or styryl group, or sequentially polymerizable such as hydroxy group, alkoxysilyl group, isocyanate group, epoxy group, etc. The compound which has a functional group is mentioned.
Examples of the curing reaction include radical polymerization, ionic polymerization, thermal polymerization, photopolymerization, radiation polymerization (electron beam polymerization), plasma CVD method, and photo CVD method.

また、保護層には、導電性粒子や電荷輸送物質を含有させてもよい。
導電性粒子としては、例えば、上述の導電層に用いられる導電性顔料を用いることができる。電荷輸送物質としては、例えば、上述の電荷輸送層に用いられる電荷輸送物質を用いることができる。
The protective layer may contain conductive particles and a charge transport material.
As the conductive particles, for example, conductive pigments used in the above-described conductive layer can be used. As the charge transport material, for example, the charge transport material used in the above-described charge transport layer can be used.

また、耐摩耗性と電荷輸送能力の両立の観点から、重合性官能基を有する電荷輸送物質を用いることがより好ましい。重合性官能基としてはアクリロイルオキシ基が好ましい。また、同一分子内に重合性官能基を2つ以上有する電荷輸送物質が好ましい。   Moreover, it is more preferable to use a charge transport material having a polymerizable functional group from the viewpoint of achieving both wear resistance and charge transport capability. As the polymerizable functional group, an acryloyloxy group is preferred. Further, a charge transport material having two or more polymerizable functional groups in the same molecule is preferable.

また、電子写真感光体の表面層(電荷輸送層または保護層)には、有機樹脂粒子や無機粒子を含有させてもよい。
有機樹脂粒子としては、例えば、フッ素原子含有樹脂粒子、アクリル樹脂粒子などが挙げられる。
無機粒子としては、アルミナ、シリカ、チタニアなどの粒子が挙げられる。
また、電子写真感光体の表面層(電荷輸送層または保護層)には、導電性粒子、酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤などを含有させてもよい。
Further, the surface layer (charge transport layer or protective layer) of the electrophotographic photoreceptor may contain organic resin particles or inorganic particles.
Examples of the organic resin particles include fluorine atom-containing resin particles and acrylic resin particles.
Examples of the inorganic particles include alumina, silica, titania and the like.
The surface layer (charge transport layer or protective layer) of the electrophotographic photoreceptor may contain conductive particles, an antioxidant, an ultraviolet absorber, a plasticizer, a leveling agent, and the like.

保護層の膜厚は、0.1μm以上30μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。   The thickness of the protective layer is preferably 0.1 μm or more and 30 μm or less, and more preferably 1 μm or more and 10 μm or less.

上記各層の塗布液を塗布する方法としては、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などが挙げられる。   Examples of the method for applying the coating liquid for each layer include a dip coating method (dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, a blade coating method, and the like.

〈プロセスカートリッジおよび電子写真装置の構成〉
図1に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す。
<Configuration of process cartridge and electrophotographic apparatus>
FIG. 1 shows an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.

図1において、円筒状の電子写真感光体1は、軸2を中心に矢印方向(時計回り方向)に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1の表面は、回転過程において、帯電手段3(例えば、帯電ローラーなど)により、正または負の所定電位に均一に帯電される。次いで、帯電された電子写真感光体1の表面には、露光手段(画像露光手段)(不図示)から露光光(画像露光光)4が照射され、目的の画像情報に対応した静電潜像が形成されていく。露光光4は、例えば、スリット露光やレーザービーム走査露光などの露光手段から出力される、目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された光である。   In FIG. 1, a cylindrical electrophotographic photosensitive member 1 is rotationally driven with a predetermined peripheral speed (process speed) in an arrow direction (clockwise direction) around an axis 2. The surface of the electrophotographic photosensitive member 1 is uniformly charged to a predetermined positive or negative potential by a charging unit 3 (for example, a charging roller) during the rotation process. Next, the surface of the charged electrophotographic photosensitive member 1 is irradiated with exposure light (image exposure light) 4 from exposure means (image exposure means) (not shown), and an electrostatic latent image corresponding to target image information. Will be formed. The exposure light 4 is light that has been intensity-modulated in response to a time-series electrical digital image signal of target image information that is output from an exposure means such as slit exposure or laser beam scanning exposure.

電子写真感光体1の表面に形成された静電潜像は、現像手段5内に収容された現像剤(トナー)で現像(正規現像または反転現像)され、電子写真感光体の表面にはトナー像が形成される。電子写真感光体1の表面に形成されたトナー像は、転写手段(例えば、転写ローラーなど)6からの転写バイアスによって、転写材P上に転写されていく。このとき、転写材Pは、転写材供給手段(不図示)から電子写真感光体1の回転と同期して取り出されて、電子写真感光体1と転写手段6との間(当接部)に給送される。また、転写手段には、トナーの保有電荷とは逆極性のバイアス電圧がバイアス電源(不図示)から印加される。   The electrostatic latent image formed on the surface of the electrophotographic photosensitive member 1 is developed (regular development or reversal development) with a developer (toner) accommodated in the developing means 5, and toner is applied to the surface of the electrophotographic photosensitive member. An image is formed. The toner image formed on the surface of the electrophotographic photosensitive member 1 is transferred onto the transfer material P by a transfer bias from a transfer unit (for example, a transfer roller) 6. At this time, the transfer material P is taken out from the transfer material supply means (not shown) in synchronism with the rotation of the electrophotographic photosensitive member 1 and is placed between the electrophotographic photosensitive member 1 and the transfer means 6 (contact portion). Be fed. Further, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).

トナー像が転写された転写材Pは、電子写真感光体1の表面から分離されて、定着手段8へ搬送されて、トナー像の定着処理を受け、画像形成物(プリント、コピー)として電子写真装置1の外へプリントアウトされる。   The transfer material P onto which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member 1, transported to the fixing means 8, undergoes a toner image fixing process, and is electrophotographic as an image formed product (print, copy). Printed out of device 1.

トナー像が転写材Pに転写された後の電子写真感光体1の表面は、クリーニング手段7により、転写残りの現像剤(転写残トナー)などの付着物の除去を受けて清浄される。   The surface of the electrophotographic photosensitive member 1 after the toner image is transferred to the transfer material P is cleaned by the cleaning unit 7 after removal of deposits such as a developer remaining after transfer (transfer residual toner).

さらに、電子写真感光体1の表面には、前露光手段(不図示)からの前露光光が照射され、除電処理されて電荷がキャンセルされた後、繰り返し画像形成に使用される。なお、図1に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光手段は必ずしも必要ではない。   Further, the surface of the electrophotographic photosensitive member 1 is irradiated with pre-exposure light from a pre-exposure unit (not shown), is subjected to a charge removal process, cancels electric charges, and is repeatedly used for image formation. As shown in FIG. 1, when the charging unit 3 is a contact charging unit using a charging roller or the like, the pre-exposure unit is not necessarily required.

本発明においては、上述の電子写真感光体1、帯電手段3、露光手段(不図示)、現像手段5、転写手段6およびクリーニング手段7などの構成要素のうち、電子写真感光体1を含む複数の構成要素を容器に納めて一体に支持してプロセスカートリッジを形成してもよい。このプロセスカートリッジを電子写真装置本体に対して着脱自在に構成することができる。例えば、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段7から選択される少なくとも1つとを一体に支持してカートリッジ化する。そして、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9とすることができる。   In the present invention, among the above-described components such as the electrophotographic photoreceptor 1, the charging means 3, the exposure means (not shown), the developing means 5, the transfer means 6, and the cleaning means 7, a plurality including the electrophotographic photoreceptor 1 is included. These components may be housed in a container and integrally supported to form a process cartridge. The process cartridge can be configured to be detachable from the main body of the electrophotographic apparatus. For example, the electrophotographic photosensitive member 1 and at least one selected from the charging unit 3, the developing unit 5, and the cleaning unit 7 are integrally supported to form a cartridge. Then, the process cartridge 9 can be detachably attached to the main body of the electrophotographic apparatus using the guide means 10 such as a rail of the main body of the electrophotographic apparatus.

露光光4は、電子写真装置が複写機である場合には、原稿からの反射光や透過光であってもよい。または、センサで原稿を読み取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動もしくは液晶シャッターアレイの駆動などにより放射される光が露光光4であってもよい。   When the electrophotographic apparatus is a copying machine, the exposure light 4 may be reflected light or transmitted light from a document. Alternatively, the exposure light 4 may be light emitted by reading a document with a sensor, converting the signal into a signal, scanning a laser beam performed according to the signal, driving an LED array, or driving a liquid crystal shutter array.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、電子写真感光体を、以下単に「感光体」とも表記する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. The electrophotographic photoreceptor is also simply referred to as “photoreceptor” hereinafter.

・電子写真感光体の製造例
(感光体1の製造例)
直径30mm、長さ357.5mmのアルミニウムシリンダーを支持体(円筒状の導電性支持体)とした。
-Production example of electrophotographic photoreceptor (Production example of photoreceptor 1)
An aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm was used as a support (cylindrical conductive support).

次に、酸化スズで被覆されている硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60質量部、酸化チタン粒子(商品名:TITANIX JR、テイカ(株)製)15質量部、レゾール型フェノール樹脂(商品名:フェノライト J−325、DIC(株)(旧名:大日本インキ化学工業(株))製、固形分70質量%)43質量部、シリコーンオイル(商品名:SH28PA、東レ・ダウコーニング(株)(旧名:東レ・シリコーン(株)製))0.015質量部、シリコーン樹脂粒子(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ社(旧名:東芝シリコーン(株)製))3.6質量部、2−メトキシ−1−プロパノール50質量部、および、メタノール50質量部を、ボールミルに入れ、20時間分散処理することによって、導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、得られた塗膜を1時間140℃で加熱し、硬化させることによって、膜厚15μmの導電層を形成した。   Next, 60 parts by mass of barium sulfate particles coated with tin oxide (trade name: Pastoran PC1, manufactured by Mitsui Kinzoku Mining Co., Ltd.), titanium oxide particles (trade name: TITANIX JR, manufactured by Teika Co., Ltd.) 15 masses Parts, resol type phenol resin (trade name: Phenolite J-325, DIC Corporation (former name: Dainippon Ink & Chemicals, Inc., solid content 70% by mass) 43 parts by mass, silicone oil (trade name: SH28PA, Toray Dow Corning Co., Ltd. (former name: Toray Silicone Co., Ltd.) 0.015 parts by mass, silicone resin particles (trade name: Tospearl 120, Momentive Performance Materials (former name: Toshiba Silicone) Co., Ltd.))) 3.6 parts by mass, 50 parts by mass of 2-methoxy-1-propanol, and 50 parts by mass of methanol in a ball mill. Then, a conductive layer coating solution was prepared by dispersing for 20 hours. The conductive layer coating solution was dip-coated on a support, and the resulting coating film was heated at 140 ° C. for 1 hour to cure, thereby forming a conductive layer having a thickness of 15 μm.

次に、共重合ナイロン(商品名:アミランCM8000、東レ(株)製)10質量部およびメトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス(株)製)30質量部を、メタノール400質量部/n−ブタノール200質量部の混合溶剤に溶解させることによって、下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚0.45μmの下引き層を形成した。   Next, 10 parts by mass of copolymer nylon (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts by mass of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation) A coating solution for undercoat layer was prepared by dissolving in a mixed solvent of 400 parts by mass of methanol / 200 parts by mass of n-butanol. This undercoat layer coating solution was dip-coated on the conductive layer, and the resulting coating film was dried at 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 0.45 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20質量部、下記構造式(1)で示されるカリックスアレーン化合物0.2質量部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10質量部、および、シクロヘキサノン600質量部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した後、酢酸エチル700質量部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃で乾燥させることによって、膜厚0.17μmの電荷発生層を形成した。   Next, 20 parts by mass of a crystal form hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.2 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, the following structure 0.2 parts by mass of the calixarene compound represented by the formula (1), 10 parts by mass of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.), and 600 parts by mass of cyclohexanone are obtained with a glass having a diameter of 1 mm. After putting into a sand mill using beads and dispersing for 4 hours, 700 parts by mass of ethyl acetate was added to prepare a charge generation layer coating solution. The charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.

Figure 2016194678
Figure 2016194678

次に、上記構造式(E−1)で示される化合物(電荷輸送物質(正孔輸送性化合物))7.2質量部、上記構造式(E−2)で示される化合物(電荷輸送物質(正孔輸送性化合物))0.8質量部、および、前述の樹脂B2(段落[0036]表1参照)を10質量部、2−メトキシトルエン0.2質量部、メトキシベンゼン48質量部、ジメトキシメタン(メチラール)35質量部を混合し、電荷輸送層用塗布液とした。   Next, 7.2 parts by mass of the compound represented by the structural formula (E-1) (charge transporting material (hole transporting compound)) and the compound represented by the structural formula (E-2) (charge transporting material ( Hole transporting compound)) 0.8 part by mass and the above-mentioned resin B2 (see paragraph [0036] Table 1) 10 parts by mass, 0.2 parts by mass of 2-methoxytoluene, 48 parts by mass of methoxybenzene, dimethoxy 35 parts by mass of methane (methylal) was mixed to obtain a charge transport layer coating solution.

この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を60分間120℃で乾燥させることによって、膜厚30μmの電荷輸送層を形成した。
以上のようにして電荷輸送層が表面層である電子写真感光体を作製した。
The charge transport layer coating solution was dip coated on the charge generation layer, and the resulting coating film was dried at 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 30 μm.
As described above, an electrophotographic photoreceptor having a charge transport layer as a surface layer was produced.

作製した電子写真感光体から上記したサイズの試料片を切り出し、ガスクロマトグラフィを用いて上述の方法でメトキシベンゼン(化合物γ)の含有量Wγおよび2−メトキシトルエン(化合物δ)の含有量Wδを測定した。メトキシベンゼンは0.6質量%、2−メトキシトルエン(化合物δ)は0.2質量%であった。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体1」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。   A sample piece of the size described above was cut out from the electrophotographic photoreceptor thus prepared, and the content Wγ of methoxybenzene (compound γ) and the content Wδ of 2-methoxytoluene (compound δ) were measured by the above-described method using gas chromatography. did. Methoxybenzene was 0.6% by mass, and 2-methoxytoluene (compound δ) was 0.2% by mass. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photosensitive member is referred to as “photosensitive member 1”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体2〜4の製造例)
感光体1の製造例において化合物γの添加量(含有量)および化合物δの種類、化合物δの添加量(含有量)を表2に示したように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体2〜4」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Production example of photoconductors 2 to 4)
Production Example of Photoreceptor 1 except that the addition amount (content) of compound γ, the type of compound δ, and the addition amount (content) of compound δ were changed as shown in Table 2 in the production example of Photoreceptor 1. In the same manner as above, an electrophotographic photosensitive member was produced. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photosensitive member is designated as “photosensitive member 2 to 4”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体5〜6の製造例)
感光体1の製造例において樹脂αの種類を表2に示したように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体5〜6」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Production example of photoconductors 5 to 6)
An electrophotographic photosensitive member was prepared in the same manner as in the manufacturing example of the photosensitive member 1 except that the type of the resin α was changed as shown in Table 2 in the manufacturing example of the photosensitive member 1. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photosensitive member is designated as “photosensitive member 5-6”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体7〜25の製造例)
感光体1の製造例において化合物γの添加量(含有量)、化合物δの添加量(含有量)、その他の溶剤の量、および、乾燥温度、乾燥時間を表2に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体7〜25」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Production example of photoconductors 7 to 25)
Except that the addition amount (content) of compound γ, the addition amount (content) of compound δ, the amount of other solvents, the drying temperature, and the drying time were changed as shown in Table 2 in the production example of photoreceptor 1. Were produced in the same manner as in the production example of the photoreceptor 1. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 7 to 25”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体26〜28の製造例)
感光体1の製造例において樹脂αの種類、化合物γの添加量(含有量)、化合物δの添加量(含有量)、その他の溶剤の量、および、乾燥時間を表2に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体26〜28」とする。また、含有量Wγおよび含有量Wδの測定結果ならびに電荷輸送層の膜厚を表6に示す。
(Example of production of photoconductors 26 to 28)
In the production example of the photoreceptor 1, the type of resin α, the addition amount (content) of compound γ, the addition amount (content) of compound δ, the amount of other solvents, and the drying time are changed as shown in Table 2. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member 1 except that. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photosensitive member is designated as “photosensitive member 26 to 28”. Table 6 shows the measurement results of the content Wγ and the content Wδ and the thickness of the charge transport layer.

(感光体29〜34の製造例)
感光体1の製造例において、化合物βの添加量(含有量)、化合物βの質量比、化合物γの添加量(含有量)、化合物δの種類、化合物δの添加量(含有量)、その他の溶剤の量、および、乾燥時間を表2に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体29〜34」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Example of production of photoconductors 29 to 34)
In the production example of the photoreceptor 1, the addition amount (content) of compound β, the mass ratio of compound β, the addition amount (content) of compound γ, the type of compound δ, the addition amount (content) of compound δ, and others An electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor 1 except that the amount of the solvent and the drying time were changed as shown in Table 2. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 29 to 34”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体35の製造例)
感光体1の製造例において、メチラールをテトラヒドロフラン(THF)に変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体35」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Production example of photoconductor 35)
An electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member 1, except that methylal was changed to tetrahydrofuran (THF) in the manufacturing example of the photosensitive member 1. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptor 35”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体36の製造例)
感光体27の製造例において、メチラールをテトラヒドロフラン(THF)に変更した以外は、感光体27の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体36」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Manufacturing example of the photoreceptor 36)
An electrophotographic photosensitive member was prepared in the same manner as in the manufacturing example of the photosensitive member 27 except that methylal was changed to tetrahydrofuran (THF) in the manufacturing example of the photosensitive member 27. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptor 36”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体37〜38の製造例)
感光体1の製造例において、化合物γの添加量(含有量)、化合物δの種類、化合物δの添加量(含有量)、その他の溶剤の量、ならびに乾燥温度および乾燥時間を表2に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表2に示す。得られた電子写真感光体を「感光体37〜38」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表6に示す。
(Example of production of photoconductors 37 to 38)
Table 2 shows the addition amount (content) of compound γ, the type of compound δ, the addition amount (content) of compound δ, the amount of other solvents, the drying temperature and the drying time in the production example of photoreceptor 1. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member 1 except that the above changes were made. Table 2 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 37 to 38”. Table 6 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

Figure 2016194678
Figure 2016194678

(感光体101〜105の製造例)
感光体1の製造例において、化合物βの種類、化合物βの添加量(含有量)、化合物βの質量比、化合物γの添加量(含有量)、化合物δの添加量(含有量)を表3に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表3に示す。得られた電子写真感光体を「感光体101〜105」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表7に示す。
(Production example of photoconductors 101 to 105)
In the production example of the photoreceptor 1, the type of compound β, the addition amount (content) of compound β, the mass ratio of compound β, the addition amount (content) of compound γ, and the addition amount (content) of compound δ are shown. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member 1 except that changes were made as shown in FIG. Table 3 shows the details of the formulation and manufacturing conditions of the charge transport layer coating solution. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 101 to 105”. Table 7 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体106〜109の製造例)
感光体1の製造例において、樹脂αの種類、化合物βの種類、化合物βの質量比、化合物γの添加量(含有量)を表3に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表3に示す。得られた電子写真感光体を「感光体106〜109」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表7に示す。
(Example of production of photoconductors 106 to 109)
Production of Photoreceptor 1 except that the type of resin α, the type of Compound β, the mass ratio of Compound β, and the addition amount (content) of Compound γ were changed as shown in Table 3 in the production example of Photoreceptor 1. An electrophotographic photosensitive member was produced in the same manner as in the example. Table 3 shows the details of the formulation and manufacturing conditions of the charge transport layer coating solution. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 106 to 109”. Table 7 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

(感光体110〜111の製造例)
感光体1の製造例において、化合物βの種類、化合物βの質量比、化合物γの添加量(含有量)、化合物δの添加量(含有量)、その他の溶剤の量、および、乾燥時間を表3に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表3に示す。得られた電子写真感光体を「感光体110〜111」とする。また、含有量Wγおよび含有量Wδの測定結果および電荷輸送層の膜厚を表7に示す。
(Production example of photoconductors 110 to 111)
In the production example of the photoreceptor 1, the type of compound β, the mass ratio of compound β, the addition amount (content) of compound γ, the addition amount (content) of compound δ, the amount of other solvents, and the drying time An electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor 1 except that the changes were made as shown in Table 3. Table 3 shows the details of the formulation and manufacturing conditions of the charge transport layer coating solution. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 110 to 111”. Table 7 shows the measurement results of the content Wγ and the content Wδ and the film thickness of the charge transport layer.

Figure 2016194678
Figure 2016194678

(感光体201〜205の製造例)
感光体1の製造例において、樹脂αの種類、化合物βの質量比、化合物γの添加量(含有量)、化合物δの添加量(含有量)を表4に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表4に示す。得られた電子写真感光体を「感光体201〜205」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表8に示す。
(Example of production of photoconductors 201 to 205)
In the production example of the photoreceptor 1, except that the type of the resin α, the mass ratio of the compound β, the addition amount (content) of the compound γ, and the addition amount (content) of the compound δ are changed as shown in Table 4, An electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor 1. Table 4 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 201 to 205”. Table 8 shows the measurement results of the contents Wγ and Wδ and the film thickness of the charge transport layer.

Figure 2016194678
Figure 2016194678

(感光体1001〜1003の製造例)
感光体1の製造例において化合物γの添加量(含有量)、化合物δの種類、化合物δの添加量(含有量)、および、乾燥時間を表5に示すように変更した以外は、感光体1の製造例と同様にして電子写真感光体を作製した。電荷輸送層用塗布液の処方の詳細および製造条件を表5に示す。得られた電子写真感光体を「感光体1001〜1003」とする。また、含有量Wγ,Wδの測定結果および電荷輸送層の膜厚を表9に示す。
(Production example of photoconductors 1001 to 1003)
Except that the amount of addition (content) of compound γ, the type of compound δ, the amount of addition (content) of compound δ, and the drying time in the production example of photoreceptor 1 were changed as shown in Table 5, In the same manner as in Production Example 1, an electrophotographic photosensitive member was produced. Table 5 shows the details of the formulation of the coating solution for the charge transport layer and the production conditions. The obtained electrophotographic photoreceptor is referred to as “photoreceptors 1001 to 1003”. Table 9 shows the measurement results of the contents Wγ and Wδ and the thickness of the charge transport layer.

Figure 2016194678
Figure 2016194678

・電子写真感光体の実機評価
(実施例1)
〈初期画像評価〉
作製した感光体1を、評価装置であるキヤノン(株)製の電子写真装置(複合機)(商品名:iR−ADV C5255)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。
まず、温度23℃/湿度50%RH環境下で、電子写真感光体の暗部電位(Vd)が−700V、明部電位(Vl)が−200Vになるように帯電装置および画像露光装置の条件を設定し、電子写真感光体の初期電位を調整した。
次に、シアン濃度30%のスクリーン画像をハーフトーン画像として出力し、画像欠陥がないことを確認した。
・ Evaluation of actual electrophotographic photosensitive member (Example 1)
<Initial image evaluation>
The produced photoreceptor 1 is mounted on a cyan station of a modified machine of an electrophotographic apparatus (composite machine) (trade name: iR-ADV C5255) manufactured by Canon, which is an evaluation apparatus, and tested and evaluated as follows. Went.
First, under conditions of a temperature of 23 ° C./humidity of 50% RH, the conditions of the charging device and the image exposure apparatus are set so that the dark portion potential (Vd) of the electrophotographic photosensitive member is −700 V and the light portion potential (Vl) is −200 V The initial potential of the electrophotographic photosensitive member was adjusted.
Next, a screen image having a cyan density of 30% was output as a halftone image, and it was confirmed that there was no image defect.

〈電位変動評価〉
電子写真感光体の表面電位(暗部電位および明部電位)の測定は上記評価装置のカートリジを改造し、電子写真感光体の端部から178mm位置(およそ中央部)に電位測定用プローブが位置するように固定された冶具と現像機とを交換して現像位置で行った。電子写真感光体の非露光部の暗部電位が−700Vになるように印加バイアスを設定し、レーザー光(0.26μJ/cm)を照射して暗部電位から光減衰させた明部電位(表中の初期明部電位)を測定した。また、A4サイズの普通紙を用い、連続して画像出力を2000枚行い、その後の明部電位(表中の耐久後明部電位)を測定した。さらに画像出力後の明部電位と画像出力前の明部電位との差をΔとして算出した。結果を表6に示す。
<Evaluation of potential fluctuation>
The surface potential (dark portion potential and bright portion potential) of the electrophotographic photosensitive member is measured by modifying the cartridge of the evaluation apparatus, and the potential measuring probe is located at a position (approximately central portion) 178 mm from the end of the electrophotographic photosensitive member. The fixing jig and the developing machine were exchanged in this manner, and the development was performed. The applied bias was set so that the dark portion potential of the non-exposed portion of the electrophotographic photosensitive member was −700 V, and the light portion potential (table) was attenuated from the dark portion potential by irradiation with laser light (0.26 μJ / cm 2 ). The initial bright area potential) was measured. In addition, A4 size plain paper was used, 2000 image outputs were performed continuously, and the subsequent bright portion potential (bright portion potential after durability in the table) was measured. Further, the difference between the bright part potential after image output and the bright part potential before image output was calculated as Δ. The results are shown in Table 6.

〈保存性評価〉
電子写真感光体の保存性試験は以下のように試験および評価を行った。
まず、電子写真感光体を温度50℃/湿度95%RHの環境下で30日間保管する。その後23℃/50%RHで30日間保管を行った後、上記評価機を用いて初期画像と同様にシアン濃度30%のスクリーン画像をハーフトーン画像として出力し、下記のように画像欠陥がないことを確認した。
その後、感光体の表面を顕微鏡により観察し、電荷輸送物質の析出および電荷輸送層のクラックが生じていないことを確認した。結果を表6に示す。
<Preservation evaluation>
The storability test of the electrophotographic photoreceptor was tested and evaluated as follows.
First, the electrophotographic photosensitive member is stored for 30 days in an environment of temperature 50 ° C./humidity 95% RH. Then, after storing for 30 days at 23 ° C./50% RH, a screen image with a cyan density of 30% is output as a halftone image in the same manner as the initial image using the evaluation machine, and there is no image defect as described below. It was confirmed.
Thereafter, the surface of the photoconductor was observed with a microscope, and it was confirmed that no charge transport material was deposited and no cracks occurred in the charge transport layer. The results are shown in Table 6.

A:保存性試験後の画像に欠陥がなく、感光体表面を観察しても電荷輸送物質の析出を確認することができない。
B:保存性試験後の画像に欠陥がないが、感光体表面を観察すると電荷輸送物質の析出と思われる状況を確認できる。
C:保存性試験後の画像に欠陥がないが、感光体表面を観察すると一部電荷輸送物質の析出が確認できるが、電荷輸送層のクラックは生じていない。
D:保存性試験後の画像に欠陥がないが、感光体表面を観察すると電荷輸送物質の析出が確認される。電荷輸送層にわずかにクラックのようなものがみられることはあるがクラックであるかどうかの確認はできない。
E:保存性試験後の画像に黒ポチなどの画像欠陥が顕著に生じ、感光体表面を観察すると電荷輸送物質の析出およびクラックが確認できる。
A: There is no defect in the image after the storage stability test, and the precipitation of the charge transport material cannot be confirmed even when the surface of the photoreceptor is observed.
B: Although there is no defect in the image after the storage stability test, when the surface of the photoreceptor is observed, it can be confirmed that the charge transporting substance is precipitated.
C: Although there is no defect in the image after the storage stability test, when the surface of the photoconductor is observed, some precipitation of the charge transport material can be confirmed, but the charge transport layer is not cracked.
D: There is no defect in the image after the storage stability test, but when the surface of the photoreceptor is observed, the deposition of the charge transport material is confirmed. Although there are some cracks in the charge transport layer, it cannot be confirmed whether or not they are cracks.
E: Image defects such as black spots are remarkably generated in the image after the storage stability test, and precipitation and cracks of the charge transport material can be confirmed by observing the surface of the photoreceptor.

(実施例2〜38)
実施例1において感光体1を感光体2〜38に変更した以外は、実施例1と同様にして評価を行った。結果を表6に示す。
(Examples 2-38)
Evaluation was performed in the same manner as in Example 1 except that the photosensitive member 1 was changed to the photosensitive members 2 to 38 in Example 1. The results are shown in Table 6.

(実施例101〜111)
実施例1において感光体1を感光体101〜111に変更し、電位評価を行わなかった以外は、実施例1と同様にして評価を行った。結果を表7に示す。
(Examples 101 to 111)
Evaluation was performed in the same manner as in Example 1 except that the photoreceptor 1 was changed to the photoreceptors 101 to 111 in Example 1 and the potential evaluation was not performed. The results are shown in Table 7.

(実施例201〜205)
実施例1において感光体1を感光体201〜205に変更した以外は、実施例1と同様にして評価を行った。結果を表8に示す。
(Examples 201 to 205)
Evaluation was performed in the same manner as in Example 1 except that the photosensitive member 1 was changed to the photosensitive members 201 to 205 in Example 1. The results are shown in Table 8.

(比較例1〜3)
実施例1において感光体1を感光体1001〜1003に変更した以外は、実施例1と同様にして評価を行った。結果を表9に示す。
(Comparative Examples 1-3)
Evaluation was performed in the same manner as in Example 1 except that the photosensitive member 1 was changed to the photosensitive members 1001 to 1003 in Example 1. The results are shown in Table 9.

Figure 2016194678
Figure 2016194678

Figure 2016194678
Figure 2016194678

Figure 2016194678
Figure 2016194678

Figure 2016194678
Figure 2016194678

Claims (7)

支持体および該支持体上の感光層を有する電子写真感光体において、
前記感光層が、電荷発生物質を含む電荷発生層および電荷輸送物質を含む電荷輸送層をこの順に有し、
前記電荷輸送層が、
(α)下記式(A)で示される構造単位を有するポリカーボネート樹脂、および、下記式(B)で示される構造単位を有するポリエステル樹脂からなる群より選択される少なくとも1種と、
(β)電荷輸送物質と、
(γ)メトキシベンゼンと、
(δ)メトキシシクロヘキサン、メチルヘキサノール、および、置換基としてメチル基もしくはエチル基を有するメトキシベンゼンからなる群より選択される少なくとも1種の化合物と、
を含有し、
前記(δ)の含有量Wδが、前記電荷輸送層の全質量に対して0.001質量%以上1質量%以下である
ことを特徴とする電子写真感光体。
Figure 2016194678
(式(A)および(B)中、R11〜R14およびR21〜R24は、それぞれ独立に、水素原子、メチル基、または、エチル基を示す。XおよびXは、それぞれ独立に、単結合、または、2価の炭化水素基を示す。Yは、フェニレン基、または、ジフェニレンエーテル基を示す。)
In an electrophotographic photosensitive member having a support and a photosensitive layer on the support,
The photosensitive layer has a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material in this order,
The charge transport layer comprises:
(Α) at least one selected from the group consisting of a polycarbonate resin having a structural unit represented by the following formula (A) and a polyester resin having a structural unit represented by the following formula (B);
(Β) a charge transport material;
(Γ) methoxybenzene,
(Δ) at least one compound selected from the group consisting of methoxycyclohexane, methylhexanol, and methoxybenzene having a methyl group or an ethyl group as a substituent;
Containing
The electrophotographic photoreceptor, wherein the content (δ) of (δ) is 0.001% by mass or more and 1% by mass or less based on the total mass of the charge transport layer.
Figure 2016194678
(In the formulas (A) and (B), R 11 to R 14 and R 21 to R 24 each independently represent a hydrogen atom, a methyl group, or an ethyl group. X 1 and X 2 are each independently Represents a single bond or a divalent hydrocarbon group, Y 1 represents a phenylene group or a diphenylene ether group.)
前記置換基としてメチル基もしくはエチル基を有するメトキシベンゼンが、メトキシトルエンである請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the methoxybenzene having a methyl group or an ethyl group as the substituent is methoxytoluene. 前記(γ)の含有量Wγが、前記電荷輸送層の全質量に対して0.001質量%以上2質量%以下である請求項1または2に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the content (γ) of (γ) is 0.001% by mass or more and 2% by mass or less based on the total mass of the charge transport layer. 前記(γ)の含有量Wγが、前記電荷輸送層の全質量に対して0.001質量%以上1質量%以下であり、
前記(δ)の含有量Wδが、前記電荷輸送層の全質量に対して0.001質量%以上0.5質量%以下であり、
前記(γ)の含有量Wγの前記(δ)の含有量Wδに対する比(Wγ/Wδ)が、0.5以上200以下である
請求項1〜3のいずれか1項に記載の電子写真感光体。
The content Wγ of (γ) is 0.001% by mass to 1% by mass with respect to the total mass of the charge transport layer,
The content Wδ of (δ) is 0.001% by mass to 0.5% by mass with respect to the total mass of the charge transport layer,
The electrophotographic photosensitive member according to claim 1, wherein a ratio (Wγ / Wδ) of the content (γ) of (γ) to the content Wδ of (δ) is 0.5 or more and 200 or less. body.
前記(β)が、下記式(E)で示される構造を有する化合物である請求項1〜4のいずれか1項に記載の電子写真感光体。
Figure 2016194678
(式(E)中、R41〜R46およびR41’〜R45’は、それぞれ独立に、水素原子、メチル基、エチル基、置換もしくは無置換のアリール基、または、不飽和炭化水素基である。)
The electrophotographic photoreceptor according to claim 1, wherein (β) is a compound having a structure represented by the following formula (E).
Figure 2016194678
(In the formula (E), R 41 to R 46 and R 41 ′ to R 45 ′ are each independently a hydrogen atom, a methyl group, an ethyl group, a substituted or unsubstituted aryl group, or an unsaturated hydrocarbon group. .)
請求項1〜5のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体を帯電する帯電手段、前記電子写真感光体の表面に露光光を照射して前記電子写真感光体の表面に静電潜像を形成する露光手段、前記静電潜像をトナーによって現像して前記電子写真感光体の表面にトナー像を形成する現像手段、前記トナー像を前記電子写真感光体の表面から転写材に転写する転写手段、および、前記電子写真感光体の表面をクリーニングするクリーニング手段からなる群より選択される少なくとも1つの手段と、
を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。
The electrophotographic photosensitive member according to any one of claims 1 to 5,
Charging means for charging the electrophotographic photosensitive member; exposure means for irradiating the surface of the electrophotographic photosensitive member with exposure light to form an electrostatic latent image on the surface of the electrophotographic photosensitive member; Developing means for forming a toner image on the surface of the electrophotographic photosensitive member by transfer, transfer means for transferring the toner image from the surface of the electrophotographic photosensitive member to a transfer material, and the surface of the electrophotographic photosensitive member. At least one means selected from the group consisting of cleaning means for cleaning;
A process cartridge characterized by being integrally supported and detachable from the main body of the electrophotographic apparatus.
請求項1〜5のいずれか1項に記載の電子写真感光体、ならびに、
前記電子写真感光体を帯電する帯電手段、
前記電子写真感光体の表面に露光光を照射して前記電子写真感光体の表面に静電潜像を形成する露光手段、
前記静電潜像をトナーによって現像して前記電子写真感光体の表面にトナー像を形成する現像手段、および、
前記トナー像を前記電子写真感光体の表面から転写材に転写する転写手段、
を有することを特徴とする電子写真装置。
The electrophotographic photosensitive member according to any one of claims 1 to 5, and
Charging means for charging the electrophotographic photosensitive member,
Exposure means for irradiating the surface of the electrophotographic photosensitive member with exposure light to form an electrostatic latent image on the surface of the electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image with toner to form a toner image on the surface of the electrophotographic photoreceptor; and
Transfer means for transferring the toner image from the surface of the electrophotographic photosensitive member to a transfer material;
An electrophotographic apparatus comprising:
JP2016051294A 2015-03-31 2016-03-15 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus Expired - Fee Related JP6681229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/077,185 US9766561B2 (en) 2015-03-31 2016-03-22 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072654 2015-03-31
JP2015072654 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016194678A true JP2016194678A (en) 2016-11-17
JP6681229B2 JP6681229B2 (en) 2020-04-15

Family

ID=57323112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051294A Expired - Fee Related JP6681229B2 (en) 2015-03-31 2016-03-15 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP6681229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020674A (en) * 2017-07-21 2019-02-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
CN110209019A (en) * 2018-02-28 2019-09-06 佳能株式会社 Handle box and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020674A (en) * 2017-07-21 2019-02-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
CN110209019A (en) * 2018-02-28 2019-09-06 佳能株式会社 Handle box and image forming apparatus

Also Published As

Publication number Publication date
JP6681229B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US9766561B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6372397B1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP6433238B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus
US6835512B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP3897522B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
US8097388B2 (en) Crosslinking outer layer and process for preparing the same
JP6436815B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6681229B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2003345049A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2007156081A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2019139225A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JPH0572753A (en) Electrophotographic sensitive body
JP6824731B2 (en) Electrophotographic photosensitive members, process cartridges and electrophotographic equipment
JP2017156473A (en) Method for manufacturing electrophotographic photoreceptor
JP6884547B2 (en) Manufacturing method of electrophotographic photosensitive member
JP4229352B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP5264378B2 (en) Laminated electrophotographic photoreceptor manufacturing method
JP2017116841A (en) Electrophotographic photoreceptor manufacturing method, process cartridge, and electrophotographic device
JP2016017999A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6622553B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3201134B2 (en) Electrophotographic photoreceptor
JP2005055729A (en) Electrophotographic photoreceptor, method for manufacturing the same, process cartridge and electrophotographic apparatus
JP2017215463A (en) Method for manufacturing electrophotographic photoreceptor
JP2017090605A (en) Electrophotographic photoreceptor, process cartridge, electrophotography device and electrophotographic photoreceptor manufacturing method
JP4124923B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R151 Written notification of patent or utility model registration

Ref document number: 6681229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees