JP2016191630A - Light wave range finder - Google Patents

Light wave range finder Download PDF

Info

Publication number
JP2016191630A
JP2016191630A JP2015071907A JP2015071907A JP2016191630A JP 2016191630 A JP2016191630 A JP 2016191630A JP 2015071907 A JP2015071907 A JP 2015071907A JP 2015071907 A JP2015071907 A JP 2015071907A JP 2016191630 A JP2016191630 A JP 2016191630A
Authority
JP
Japan
Prior art keywords
light
unit
output
light receiving
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015071907A
Other languages
Japanese (ja)
Other versions
JP6604623B2 (en
Inventor
雅穂 菊池
Masao Kikuchi
雅穂 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015071907A priority Critical patent/JP6604623B2/en
Publication of JP2016191630A publication Critical patent/JP2016191630A/en
Application granted granted Critical
Publication of JP6604623B2 publication Critical patent/JP6604623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light wave range finder capable of controlling power of a light emitting part without being affected by disturbance light.SOLUTION: The light wave range finder, which has a light receiving part for distance measurement and a light emitting part 12 for sending distance measuring light and reference light, comprises: a second light receiving part 201 arranged on an optical path not affected by disturbance light made incident to the distance measuring light, so as to receive light of the light emitting part 12; a received light output monitoring part 80 for monitoring output from the second light receiving part 201; and a light emission output adjusting part 90 for adjusting a light emission quantity of the light emitting part 12 based on monitoring by the output monitoring part so that the output from the second light receiving part 201 becomes a predetermined value. The light wave range finder adjusts the light emission quantity while blocking disturbance light.SELECTED DRAWING: Figure 2

Description

本発明は、位相差方式の光波距離計の発光部のパワーコントロールに関する。   The present invention relates to power control of a light emitting unit of a phase difference type lightwave distance meter.

位相差方式の光波距離計では、レーザダイオード(LD)等の発光部から、ターゲットに向かう測距光と内部光路へ向かう参照光を発光し、アンバランシェフォトダイオード(APD)等の受光部にて受光して、測距光と参照光との位相差から測距値を得る。   In a phase-difference optical distance meter, a distance measuring light toward a target and a reference light toward an internal optical path are emitted from a light emitting unit such as a laser diode (LD) and the light receiving unit such as an avalanche photodiode (APD). The light is received, and a distance measurement value is obtained from the phase difference between the distance measurement light and the reference light.

高精度な測距値を得るために、従来の光波距離計には、上記受光部の信号の乱れを補正するため、ターゲットから反射した測距光の受光レベルをみて、発光部の出力を調整するものがある(特許文献1、2等)。   In order to obtain high-precision distance measurement values, the conventional lightwave distance meter adjusts the output of the light emitting part by looking at the light receiving level of the distance measuring light reflected from the target in order to correct the disturbance of the signal of the light receiving part. (Patent Documents 1, 2, etc.).

この他に、一般的に、発光部にも利用されているレーザダイオード等の半導体レーザは、温度の上昇に伴い閾値電流が大きくなるため、定電流駆動では光出力が温度変化し不安定になる。このため、半導体レーザの駆動回路には、APC(Automatic Power Control)が用いられる。APCの手法としては、フォトダイオードとオペアンプを用いた電流帰還制御(特許文献3等)と、この他にはペルチェ素子やサーミスタ等の感温素子を用いた補正が知られている。   In addition, in general, a semiconductor laser such as a laser diode also used in a light emitting section has a threshold current that increases as the temperature rises. Therefore, in constant current driving, the light output changes in temperature and becomes unstable. . For this reason, APC (Automatic Power Control) is used for the drive circuit of the semiconductor laser. As an APC method, current feedback control using a photodiode and an operational amplifier (Patent Document 3 and the like) and correction using a temperature sensitive element such as a Peltier element or a thermistor are known.

特開2004−317259号公報JP 2004-317259 A 特開2006−214850号公報JP 2006-214850 A 特開2007−305920号公報JP 2007-305920 A

光波距離計においては、視準望遠鏡からターゲットに向けて送出され受光されるに至るまでの測距光の光路には、太陽光やターゲットからの反射光などの外乱光が入射される。これに対し、電流帰還制御型のAPCは、レーザダイオードの温度上昇による光出力は精度良く補正できるが、このような外乱因子が入ると帰還電流を乱してしまい、制御が機能しなくなるという問題がある。感温素子を用いたAPCは、レーザダイオードの温度特性と素子の特性を合わせる必要があり、使用できるレーザダイオードまたは感温素子に制限が生じるという不都合がある。測距光の受光レベルでレーザダイオードの出力を補正する手法では、測距する距離やターゲットが高反射か低反射かにも左右され、調整が複雑となる。   In the optical distance meter, disturbance light such as sunlight or reflected light from the target is incident on the optical path of the distance measuring light from the collimating telescope to the target to be received. On the other hand, the current feedback control type APC can accurately correct the light output due to the temperature rise of the laser diode, but if such a disturbance factor enters, the feedback current is disturbed and the control does not function. There is. APC using a temperature sensitive element needs to match the temperature characteristics of the laser diode and the characteristics of the element, and there is a disadvantage that the laser diode or the temperature sensitive element that can be used is limited. In the method of correcting the output of the laser diode with the light receiving level of the distance measuring light, the adjustment is complicated depending on the distance to be measured and whether the target is highly reflective or low reflected.

本発明は、かかる問題点に鑑みて為されたものであり、外乱光の影響を受けずに、発光部のパワーコントロールを行える光波距離計を提供することにある。   The present invention has been made in view of such problems, and it is an object of the present invention to provide an optical rangefinder that can control the power of a light emitting unit without being affected by ambient light.

前記目的を達成するために、本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記測距光に入射される外乱光の影響を受けない光路に配置され、前記発光部の光を受光する第2の受光部と、前記第2の受光部からの出力を監視する受光出力監視部と、前記出力監視部での監視に基づき前記第2の受光部からの出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   In order to achieve the above object, a lightwave distance meter according to an aspect of the present invention includes a light emitting unit that transmits distance measuring light and reference light, and a light receiving unit for distance measuring that receives the distance measuring light and reference light. And a second light receiving unit that is disposed in an optical path that is not affected by disturbance light incident on the distance measuring light, and that receives light from the light emitting unit, and A light receiving output monitoring unit for monitoring the output from the light receiving unit, and a light emitting output for adjusting the light emission amount of the light emitting unit based on the monitoring by the output monitoring unit so that the output from the second light receiving unit becomes a predetermined value An adjustment unit.

本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記発光部の送光光路において前記シャッターの前方に配置された第2の受光部と、前記第2の受光部の出力を監視する受光出力監視部と、前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   An optical distance meter according to an aspect of the present invention receives a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and the distance measuring light and the reference light. A light-wave distance meter having a light-receiving unit for distance measurement, wherein the second light-receiving unit disposed in front of the shutter in the light-transmitting light path of the light-emitting unit and the output of the second light-receiving unit are monitored And a light emission output adjusting unit that adjusts the light emission amount of the light emitting unit so that the output of the second light receiving unit becomes a predetermined value based on the monitoring of the output monitoring unit.

本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記参照光の参照光路に配置された第2の受光部と、前記第2の受光部の出力を監視する受光出力監視部と、前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   An optical distance meter according to an aspect of the present invention receives a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and the distance measuring light and the reference light. A distance measuring light receiving unit, a second light receiving unit disposed in a reference optical path of the reference light, and a light receiving output monitoring unit for monitoring an output of the second light receiving unit. A light emission output adjusting unit that adjusts the light emission amount of the light emitting unit so that the output of the second light receiving unit becomes a predetermined value based on the monitoring of the output monitoring unit.

本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記発光部の送光光路において前記シャッターの前方に配置された光路絞りと、前記光路絞り上に配置された第2の受光部と、前記第2の受光部の出力を監視する受光出力監視部と、前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   An optical distance meter according to an aspect of the present invention receives a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and the distance measuring light and the reference light. A light-wave distance meter having a distance-measuring light-receiving unit, an optical path stop disposed in front of the shutter in a light-transmitting optical path of the light-emitting unit, and a second light-receiving unit disposed on the optical path stop And a light receiving output monitoring unit for monitoring the output of the second light receiving unit, and adjusting the light emission amount of the light emitting unit based on the monitoring of the output monitoring unit so that the output of the second light receiving unit becomes a predetermined value A light emission output adjusting unit.

本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記発光部の送光光路において前記シャッターの前方に配置された光路絞りと、前記光路絞りに対し光路前方に配置された第2の受光部と、前記第2の受光部の出力を監視する受光出力監視部と、前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   An optical distance meter according to an aspect of the present invention receives a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and the distance measuring light and the reference light. A light-wave distance meter having a light-receiving unit for distance measurement, and an optical path stop disposed in front of the shutter in a light-transmitting optical path of the light-emitting unit, and a second optical path stop disposed in front of the optical path with respect to the optical path stop Light receiving unit, a light receiving output monitoring unit for monitoring the output of the second light receiving unit, and light emission of the light emitting unit so that the output of the second light receiving unit becomes a predetermined value based on the monitoring of the output monitoring unit A light emission output adjusting unit for adjusting the amount.

本発明のある態様に係る光波距離計は、測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、前記発光部の送光光路において前記シャッターの前方に配置された半透過部材と、前記半透過部材に対し光路前方に配置された第2の受光部と、前記第2の受光部の出力を監視する受光出力監視部と、前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備える。   An optical distance meter according to an aspect of the present invention receives a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and the distance measuring light and the reference light. A light-wave distance meter having a light-receiving unit for distance measurement, wherein the light-transmitting optical path of the light-emitting unit is disposed in front of the shutter in the light transmission optical path, and is disposed in front of the optical path with respect to the semi-transmissive member. A second light receiving unit; a light receiving output monitoring unit that monitors an output of the second light receiving unit; and the light emitting unit based on the monitoring of the output monitoring unit so that the output of the second light receiving unit becomes a predetermined value. A light emission output adjusting unit that adjusts the amount of light emission.

本発明によれば、外乱光の影響を遮断した状態で発光部の出力を制御することで、発光部の光出力を高精度に維持することができる。   According to the present invention, it is possible to maintain the light output of the light emitting unit with high accuracy by controlling the output of the light emitting unit in a state where the influence of disturbance light is blocked.

第1の実施形態に係る光波距離計の概略構成図である。It is a schematic block diagram of the lightwave distance meter which concerns on 1st Embodiment. 第1の実施形態における要部概略構成図である。It is a principal part schematic block diagram in 1st Embodiment. 第1の実施形態における制御を示すフロー図である。It is a flowchart which shows the control in 1st Embodiment. 第2の実施形態に係る光波距離計の概略構成図である。It is a schematic block diagram of the lightwave distance meter which concerns on 2nd Embodiment. 第2の実施形態を示す要部概略構成図である。It is a principal part schematic block diagram which shows 2nd Embodiment. 第2の実施形態における制御を示すフロー図である。It is a flowchart which shows the control in 2nd Embodiment. 本発明の第3の実施形態を示す要部概略構成図である。It is a principal part schematic block diagram which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す要部概略構成図である。It is a principal part schematic block diagram which shows the 4th Embodiment of this invention.

次に、図面を参照して本発明の好ましい実施の形態を説明する。   Next, a preferred embodiment of the present invention will be described with reference to the drawings.

(第1の実施形態)
まず、図1に基づき、第1の実施形態に係る光波距離計の構成を説明する。但し、第1の実施形態における光波距離計の構成は、従来と同様でよく、下記は一例であり、特に光学系については当業者の知識に基づく変更が行われてよい。
(First embodiment)
First, based on FIG. 1, the structure of the light wave distance meter which concerns on 1st Embodiment is demonstrated. However, the configuration of the optical distance meter in the first embodiment may be the same as the conventional one, and the following is an example. In particular, the optical system may be changed based on the knowledge of those skilled in the art.

光波距離計は、三脚上に整準台を介して固設される基盤と、基盤に対し水平および鉛直方向に回転可能に支承された視準望遠鏡2を有する。視準望遠鏡2は、その筐体内に、測距系3と、視準光学系4と、制御部5を有する。   The light wave rangefinder has a base fixed on a tripod via a leveling base, and a collimating telescope 2 supported so as to be rotatable in horizontal and vertical directions with respect to the base. The collimating telescope 2 has a distance measuring system 3, a collimating optical system 4, and a control unit 5 in its casing.

図1に示すように、測距系3は、発光光学系と受光光学系を有する。一例として、発光光学系は順に、レーザダイオード(LD)からなる発光部12、発光レンズ14、ビームスプリッタ16、シャッター17、凹レンズ18、凸レンズ22、光路絞り23、ダイクロイックミラー24、送光プリズム26、平行ガラス28を有する。受光光学系は、対物レンズ30、ダイクロイックプリズム32、受光レンズ34、ダイクロイックプリズム36、バンドパスフィルタ38、受光絞り40、アンバランシェフォトダイオード(APD)からなる測距用の受光部42を有する。発光部12から送出された光は、ビームスプリッタ16で測距光と参照光に分けられ、シャッター17によって択一的に出射される。参照光は、符号100で示す参照光路を経て測距用の受光部42に受光される。測距光は、符号102で示す送光光路を経て、ターゲット64で反射され、符号104で示す受光光路を経て測距用の受光部42に受光される。なお、本明細書では、発光部12から送出され視準望遠鏡2から外部に送出される前の光路を送光光路102、送光光路102においてビームスプリッタ16を経て参照用に分割された内部光路を参照光路100、視準望遠鏡2からターゲット64に向けて外部に送出され視準望遠鏡2内に戻る光路を受光光路104と定義している。   As shown in FIG. 1, the distance measuring system 3 has a light emitting optical system and a light receiving optical system. As an example, the light-emitting optical system includes, in order, a light emitting unit 12 made of a laser diode (LD), a light emitting lens 14, a beam splitter 16, a shutter 17, a concave lens 18, a convex lens 22, an optical path stop 23, a dichroic mirror 24, a light transmitting prism 26, A parallel glass 28 is provided. The light receiving optical system includes an objective lens 30, a dichroic prism 32, a light receiving lens 34, a dichroic prism 36, a band pass filter 38, a light receiving aperture 40, and a light receiving unit 42 for distance measurement including an avalanche photodiode (APD). The light transmitted from the light emitting unit 12 is divided into distance measuring light and reference light by the beam splitter 16 and selectively emitted by the shutter 17. The reference light is received by the light receiving unit 42 for distance measurement through a reference light path denoted by reference numeral 100. The distance measuring light is reflected by the target 64 through a light transmission optical path indicated by reference numeral 102 and received by the light receiving section 42 for distance measurement through a light receiving optical path indicated by reference numeral 104. In this specification, the optical path before being transmitted from the light emitting unit 12 and transmitted from the collimating telescope 2 to the outside is the light transmission optical path 102, and the internal optical path divided for reference in the light transmission optical path 102 via the beam splitter 16. , The optical path sent out from the collimating telescope 2 toward the target 64 and returned to the collimating telescope 2 is defined as a light receiving optical path 104.

視準光学系4は、対物レンズ30、ダイクロイックプリズム32、合焦レンズ44、正立正像プリズム46、焦点板48、接眼レンズ50を有する。発光部12からの光は、ダイクロイックミラー24、送光プリズム26等により、視準光学系4の視準光軸と同軸で出射されるよう偏向される。   The collimating optical system 4 includes an objective lens 30, a dichroic prism 32, a focusing lens 44, an erect image prism 46, a focusing screen 48, and an eyepiece lens 50. The light from the light emitting unit 12 is deflected so as to be emitted coaxially with the collimating optical axis of the collimating optical system 4 by the dichroic mirror 24, the light transmitting prism 26, and the like.

上記の他に、自動追尾/自動視準光学系として、自動追尾/自動視準用発光部52、凸レンズ54、反射ミラー56、送光プリズム26、対物レンズ30、ダイクロイックプリズム32、ダイクロイックプリズム36、受光レンズ58、自動追尾/自動視準用受光部60を有していてもよい。   In addition to the above, as an automatic tracking / automatic collimating optical system, an automatic tracking / automatic collimating light emitting unit 52, a convex lens 54, a reflecting mirror 56, a light transmitting prism 26, an objective lens 30, a dichroic prism 32, a dichroic prism 36, a light receiving element. You may have the lens 58 and the light-receiving part 60 for automatic tracking / automatic collimation.

制御部5は、CPU71、ROM(図示略)、RAM(図示略)等を有するマイクロコンピュータである。ROMには各種制御プログラムが記録され、CPU71は、ROMに記録された各種制御プログラムをRAMにおいて実行し、各種制御信号を生成する。なお、制御部5は、ハードウェア的には半導体素子や電気回路で実現でき、ソフトウェア的にはコンピュータプログラムで実現されるが、これらの様々な組み合わせによって他のかたちでも実現可能であることは当業者には容易に想到される事項である。測距用の受光部42の出力および自動追尾/自動視準用受光部60の出力は、増幅器(図示略)、ローパスフィルタ(図示略)、ADコンバータ(図示略)などを経て、制御部5に入力される。制御部5は、測距光と参照光の位相差から測距値を算出する。   The control unit 5 is a microcomputer having a CPU 71, a ROM (not shown), a RAM (not shown), and the like. Various control programs are recorded in the ROM, and the CPU 71 executes the various control programs recorded in the ROM in the RAM to generate various control signals. The control unit 5 can be realized by a semiconductor element or an electric circuit in terms of hardware, and can be realized by a computer program in terms of software. However, it should be understood that the control unit 5 can be realized in other forms by various combinations thereof. This is a matter that is easily conceived by a contractor. The output of the light receiving unit 42 for distance measurement and the output of the light receiving unit 60 for automatic tracking / automatic collimation are sent to the control unit 5 through an amplifier (not shown), a low-pass filter (not shown), an AD converter (not shown), and the like. Entered. The control unit 5 calculates a distance measurement value from the phase difference between the distance measurement light and the reference light.

以上の光波距離計を基本構成とし、第1の実施形態は、以下の改変を備えている点を特徴とする。   The above optical wave distance meter is a basic configuration, and the first embodiment is characterized in that it includes the following modifications.

図2は本発明の第1の実施形態を示す要部概略構成図である。本形態では、図1の光波距離計の構成において、発光部12に対し、第2の受光部201を含む受光出力監視部80と、発光出力調整部90が追加される。第2の受光部201は、新規に追加されたフォトダイオード(PD)であり、参照光路100上に配置され、キャンパッケージにより発光部12と一体に構成されている。第2の受光部201は、本形態のように発光部12と一体部品として配置し小型化を図ってもよいし、これに限らず発光部12とは別部品として配置されてもよい。   FIG. 2 is a schematic configuration diagram of a main part showing the first embodiment of the present invention. In the present embodiment, in the configuration of the optical distance meter of FIG. 1, a light reception output monitoring unit 80 including a second light receiving unit 201 and a light emission output adjusting unit 90 are added to the light emitting unit 12. The second light receiving unit 201 is a newly added photodiode (PD), is disposed on the reference optical path 100, and is configured integrally with the light emitting unit 12 by a can package. The second light receiving unit 201 may be arranged as an integrated component with the light emitting unit 12 as in the present embodiment, and may be downsized. Alternatively, the second light receiving unit 201 may be arranged as a separate component from the light emitting unit 12.

受光出力監視部80は、第2の受光部201と、第2の受光部201の定電圧源81と、ローパスフィルタ82と、積分回路83と、CPU71を有する。ローパスフィルタ82および積分回路83は、第2の受光部201により電圧値に変換された受光信号の、発光部12の温度変化により生じたドリフトを平滑化した上で基準電圧との差分をとる。CPU71は、この電圧値をA/D変換して読み取る。なお、CPU71にA/Dコンバータが内蔵されていない場合は、オペアンプ、コンパレータを追加して構成されてよい。または、D/Aコンバータを利用して上記フィードバック制御を行い、制御時以外はフィードバック時の電圧/電流を保持する構成としてもよい。   The received light output monitoring unit 80 includes a second light receiving unit 201, a constant voltage source 81 of the second light receiving unit 201, a low-pass filter 82, an integration circuit 83, and a CPU 71. The low-pass filter 82 and the integration circuit 83 smooth the drift caused by the temperature change of the light emitting unit 12 of the received light signal converted into the voltage value by the second light receiving unit 201 and obtain a difference from the reference voltage. The CPU 71 reads this voltage value after A / D conversion. When the CPU 71 does not include an A / D converter, an operational amplifier and a comparator may be added. Or it is good also as a structure which performs the said feedback control using a D / A converter, and hold | maintains the voltage / current at the time of feedback except the time of control.

発光出力調整部90は、CPU71と、可変電流源91を有する。可変電流源91は、例えば、デジタルポテンショメータを使用し、CPU71からの制御信号に基づき、固定抵抗と可変抵抗の合成抵抗値による発光部12への負荷の増減を行い、発光部12の発光量を微細に調整する。可変電流源91は、この他に、低ドロップアウト電圧レギュレータ(LDO)や、異なる抵抗値を持つ複数の固定抵抗をスイッチングする構成等としてもよい。   The light emission output adjustment unit 90 includes a CPU 71 and a variable current source 91. The variable current source 91 uses, for example, a digital potentiometer. Based on a control signal from the CPU 71, the variable current source 91 increases or decreases the load on the light emitting unit 12 by the combined resistance value of the fixed resistor and the variable resistor, and the light emission amount of the light emitting unit 12 is increased. Make fine adjustments. In addition to this, the variable current source 91 may be configured to switch a low dropout voltage regulator (LDO) or a plurality of fixed resistors having different resistance values.

第1の実施形態では、受光出力監視部80および発光出力調整部90による制御を、参照光路100において実行する。   In the first embodiment, control by the light reception output monitoring unit 80 and the light emission output adjustment unit 90 is executed in the reference optical path 100.

図3は第1の実施形態における制御を示すフロー図である。まず、測距を行う前に、ステップS1で、発光部12が目的とする好ましい発光量のA/D変換値を、初期値(所定値)として制御部5で記憶する。初期値の値は、製造時において、その光波距離計に求められる適正光量と下限光量の仕様に応じて設定される。次に、ステップS2で、シャッター17で光路を参照光路100に切り換える。次に、ステップS3で、発光部12からレーザ光を送光する。次に、ステップS4で、第2の受光部201からの出力をA/D変換して、現在値としてCPU71で読み取る。次に、ステップS5で、CPU71において現在値と初期値の差分を演算し、現在値の電圧値が予め設定された初期値からずれている場合は、可変電流源91に制御信号を送る。現在値の電圧値が初期値よりも大きい場合は、抵抗値を上げて発光部12の発光量を減少させ、現在値の電圧値が初期値よりも小さい場合は、抵抗値を下げて発光量を増加させる。次に、ステップS6で、初期値との差分がなくなれば、測距用の受光部42のゲインを設定する。次に、ステップS7で、シャッター17で光路を測距光路102に切り換える。次に、ステップS8で、ステップS6で設定したゲインにて、測距光の受光光路104に可変濃度フィルタ等の受光絞り40が設けられていれば、受光絞り40を調整する。この調整手法は従来と同様でよい。次に、ステップS9以降から、従来通りの測距シーケンスに移り、発光部12のパワーコントロールは終了する。   FIG. 3 is a flowchart showing the control in the first embodiment. First, before the distance measurement, in step S1, the A / D conversion value of the preferable light emission amount intended by the light emitting unit 12 is stored in the control unit 5 as an initial value (predetermined value). The initial value is set according to the specifications of the appropriate light amount and the lower limit light amount required for the lightwave distance meter at the time of manufacture. Next, the optical path is switched to the reference optical path 100 by the shutter 17 in step S2. Next, laser light is transmitted from the light emitting unit 12 in step S3. Next, in step S4, the output from the second light receiving unit 201 is A / D converted and read as a current value by the CPU 71. Next, in step S5, the CPU 71 calculates the difference between the current value and the initial value, and sends a control signal to the variable current source 91 when the voltage value of the current value deviates from the preset initial value. When the current voltage value is larger than the initial value, the resistance value is increased to decrease the light emission amount of the light emitting unit 12, and when the current value voltage value is smaller than the initial value, the resistance value is decreased to emit light amount. Increase. Next, when the difference from the initial value disappears in step S6, the gain of the light receiving unit 42 for distance measurement is set. Next, in step S 7, the optical path is switched to the distance measuring optical path 102 by the shutter 17. Next, in step S8, if the light receiving stop 40 such as a variable density filter is provided in the light receiving optical path 104 of the distance measuring light with the gain set in step S6, the light receiving stop 40 is adjusted. This adjustment method may be the same as the conventional one. Next, from step S9 onward, the routine proceeds to a conventional distance measuring sequence, and the power control of the light emitting unit 12 ends.

(第2の実施形態)
次に、図4に基づき、第2の実施形態に係る光波距離計の構成を説明する。第1の実施形態と同様の要素については同一の符号を引用する。第2の実施形態では、測距系3の発光光学系は順に、発光部12、発光レンズ14、凸レンズ22、光路絞り23、ビームスプリッタ16、シャッター17、凹レンズ18、ダイクロイックミラー24、送光プリズム26、平行ガラス28を有する。すなわち本形態に好適な光波距離計は、送光光路102上、シャッター17より前に光路絞り23が配置される。この条件以外の光学系については当業者の知識に基づく変更が行われてよい。
(Second Embodiment)
Next, based on FIG. 4, the structure of the light wave distance meter which concerns on 2nd Embodiment is demonstrated. The same code | symbol is quoted about the element similar to 1st Embodiment. In the second embodiment, the light emitting optical system of the distance measuring system 3 is in order of the light emitting unit 12, the light emitting lens 14, the convex lens 22, the optical path stop 23, the beam splitter 16, the shutter 17, the concave lens 18, the dichroic mirror 24, and the light transmitting prism. 26 and parallel glass 28. That is, in the lightwave distance meter suitable for this embodiment, the optical path stop 23 is arranged on the light transmission optical path 102 before the shutter 17. Modifications based on the knowledge of those skilled in the art may be made for optical systems other than these conditions.

図5は、第2の実施形態を示す要部概略構成図である。本形態では、図4の光波距離計の構成において、発光部12に対し発光出力調整部90が追加されている点は第1の実施形態と同様であるが、送光光路102に配置された光路絞り23上に新規にフォトダイオード(第2の受光部)202が追加され、受光出力監視部80はこの第2の受光部202を含んで構成されている。   FIG. 5 is a main part schematic configuration diagram showing the second embodiment. In the present embodiment, in the configuration of the optical distance meter of FIG. 4, the point that a light emission output adjusting unit 90 is added to the light emitting unit 12 is the same as that in the first embodiment, but the light wave distance meter is arranged in the light transmission optical path 102. A photodiode (second light receiving unit) 202 is newly added on the optical path stop 23, and the light reception output monitoring unit 80 includes the second light receiving unit 202.

本形態では、発光部12から送出された光は、送光光路102に沿って、発光レンズ14、凸レンズ22、光路絞り23、を通過したのち、ビームスプリッタ16で測距光と参照光に分けられ、シャッター17によって択一的に出射される。参照光は、参照光路100を経て測距用の受光部42に受光される。測距光は、送光光路102を経て、ターゲット64で反射され、受光光路104を経て測距用の受光部42に受光される。   In this embodiment, the light transmitted from the light emitting unit 12 passes through the light emitting lens 14, the convex lens 22, and the optical path stop 23 along the light transmitting optical path 102, and then is divided into distance measuring light and reference light by the beam splitter 16. And alternatively emitted by the shutter 17. The reference light is received by the ranging light receiving unit 42 through the reference optical path 100. The distance measuring light is reflected by the target 64 through the light transmission optical path 102 and is received by the light receiving section 42 for distance measurement through the light receiving optical path 104.

光路絞り23は、従来周知の構成のものでよいが、例えば図5に示すように、遮光性の板材の中央に孔231を空け、通過した測距光を細くし、発光部12からの送光が送光光路102の光軸から拡散しないように構成されている。図5において、網掛け部は発光部12により発されたレーザスポットである。第2の受光部202は、このような光路絞り23の板材に、孔231とは異なる任意の位置に他の孔232を形成し、そこに接着等の周知の固定手段により配置されている。   The optical path stop 23 may be of a conventionally known configuration. For example, as shown in FIG. 5, a hole 231 is formed in the center of the light-shielding plate, and the distance measuring light that has passed therethrough is narrowed. Light is configured not to diffuse from the optical axis of the light transmission optical path 102. In FIG. 5, the shaded part is a laser spot emitted from the light emitting part 12. The second light receiving unit 202 is formed with another hole 232 in an arbitrary position different from the hole 231 in the plate material of the optical path stop 23, and is disposed there by a known fixing means such as adhesion.

第2の実施形態では、受光出力監視部80および発光出力調整部90による制御を、送光光路102で必然的に生じる漏れ光に対して実行する。   In the second embodiment, the control by the light reception output monitoring unit 80 and the light emission output adjustment unit 90 is executed for leakage light that inevitably occurs in the light transmission optical path 102.

図6は第2の実施形態における制御を示すフロー図である。第2の実施形態では、第1の実施形態(図3)と同じフローにより制御を行うことも可能であるが、以下が好適である。まず、ステップS11で、第1の実施形態(S1)と同様に、発光部12の初期値(所定値)を制御部5で記憶する。次に、ステップS12で、第1の実施形態(S2)と同様に、発光部12からレーザ光を送光する。次に、ステップS13〜S14で、第1の実施形態(S4〜S5)と同様に、第2の受光部202からの出力をA/D変換して現在値とし、初期値の差分を演算し、発光部12をパワーコントロールする。そしてステップS12に戻り、これを繰り返す。   FIG. 6 is a flowchart showing the control in the second embodiment. In the second embodiment, it is possible to perform control by the same flow as in the first embodiment (FIG. 3), but the following is preferable. First, in step S11, the initial value (predetermined value) of the light emitting unit 12 is stored in the control unit 5 as in the first embodiment (S1). Next, in step S12, laser light is transmitted from the light emitting unit 12 as in the first embodiment (S2). Next, in steps S13 to S14, as in the first embodiment (S4 to S5), the output from the second light receiving unit 202 is A / D converted to the current value, and the difference between the initial values is calculated. The power of the light emitting unit 12 is controlled. And it returns to step S12 and repeats this.

(第3の実施形態)
図7は本発明の第3の実施形態を示す要部概略構成図である。本形態も、第2の実施形態と同様に、図4の光波距離計の構成が好適である。本形態では、図4の構成に対し、発光部12に対し発光出力調整部90が追加されている点は第1および第2の実施形態と同様であるが、送光光路102に配置されている光路絞り23に対し光路前方に新規にフォトダイオード(第2の受光部)203が追加され、受光出力監視部80はこの第2の受光部203を含んで構成されている。
(Third embodiment)
FIG. 7 is a schematic configuration diagram of a main part showing a third embodiment of the present invention. As in the second embodiment, the configuration of the optical distance meter of FIG. 4 is also suitable for this embodiment. In the present embodiment, the point that a light emission output adjustment unit 90 is added to the light emitting unit 12 is the same as that of the first and second embodiments in the configuration of FIG. A photodiode (second light receiving unit) 203 is newly added to the front of the optical path with respect to the optical path stop 23, and the light reception output monitoring unit 80 is configured to include the second light receiving unit 203.

第2の受光部203は、送光光路102上、光路絞り23の前方に、孔231からの光出射を阻害しない位置に、所要の固定手段により配置されている。   The second light receiving unit 203 is disposed on the light transmission optical path 102 and in front of the optical path stop 23 at a position that does not obstruct light emission from the hole 231 by a required fixing means.

第3の実施形態も、受光出力監視部80および発光出力調整部90による制御を、送光光路102で必然的に生じる漏れ光に対して実行する。   In the third embodiment as well, the control by the light reception output monitoring unit 80 and the light emission output adjustment unit 90 is executed for leakage light that inevitably occurs in the light transmission optical path 102.

第3の実施形態も、第1の実施形態(図3)と同じフローにより制御を行うことも可能であるが、第2の実施形態(図6)と同じフローで行うのが好適である。ステップS13において、第2の受光部203からの出力を読み取ればよい。   Although the third embodiment can also be controlled by the same flow as the first embodiment (FIG. 3), it is preferable to perform the control by the same flow as the second embodiment (FIG. 6). In step S13, the output from the second light receiving unit 203 may be read.

(第4の実施形態)
図8は本発明の第4の実施形態を示す要部概略構成図である。本形態では、発光部12に対し発光出力調整部90が追加されている点は第1〜第3の実施形態と同様であるが、受光出力監視部80は、送光光路102に追加された半透過ミラー(半透過部材)441に対し光路前方に新規にフォトダイオード(第2の受光部)204が追加され、受光出力監視部80はこの第2の受光部204を含んで構成されている。
(Fourth embodiment)
FIG. 8 is a schematic configuration diagram of a main part showing a fourth embodiment of the present invention. In this embodiment, the light emission output adjustment unit 90 is added to the light emitting unit 12 in the same manner as in the first to third embodiments, but the light reception output monitoring unit 80 is added to the light transmission optical path 102. A photodiode (second light receiving unit) 204 is newly added in front of the optical path with respect to the semi-transmissive mirror (semi-transmissive member) 441, and the light reception output monitoring unit 80 is configured to include the second light receiving unit 204. .

半透過ミラー441は、ガラスなど、一部を測距光として透過でき、その他を漏れ光として反射させることのできる構成であれば、使用されてよい。半透過ミラー441は、所要の固定手段により送光光路102の光軸上に配置され、好ましくは発光部12への反射を避けるため光軸に直交する配置から傾けて配置される。半透過ミラー441は、送光光路102において、シャッター17の前であればどの位置に配置されてもよい。図4に示す位置は一例である。   The semi-transmissive mirror 441 may be used as long as it can transmit a part of it as distance measuring light and reflect the other as leakage light, such as glass. The semi-transmissive mirror 441 is disposed on the optical axis of the light transmission optical path 102 by a required fixing means, and is preferably disposed at an angle from the position orthogonal to the optical axis in order to avoid reflection on the light emitting unit 12. The semi-transmissive mirror 441 may be arranged at any position in the light transmission optical path 102 as long as it is in front of the shutter 17. The position shown in FIG. 4 is an example.

第4の実施形態では、受光出力監視部80および発光出力調整部90による制御を、送光光路102から新規に作成した第3の光路において実行する。   In the fourth embodiment, control by the light reception output monitoring unit 80 and the light emission output adjustment unit 90 is executed in a third optical path newly created from the light transmission optical path 102.

第4の実施形態も、第1の実施形態(図3)と同じフローにより制御を行うことも可能であるが、第2の実施形態(図6)と同じフローで行うのが好適である。ステップS13において、第2の受光部204からの出力を読み取ればよい。   Although the fourth embodiment can also be controlled by the same flow as the first embodiment (FIG. 3), it is preferable to perform the control by the same flow as the second embodiment (FIG. 6). In step S13, the output from the second light receiving unit 204 may be read.

以上のように、第1〜第4の実施形態の光波距離計によれば、受光光路104を経ることで入射される外乱光を遮断した光路を選択または作成し、これらの光路に対し、受光出力監視部80および発光出力調整部90によるオープンループ制御が実行される。   As described above, according to the lightwave distance meter of the first to fourth embodiments, an optical path that blocks the disturbance light incident through the light receiving optical path 104 is selected or created, and light is received with respect to these optical paths. Open loop control by the output monitoring unit 80 and the light emission output adjustment unit 90 is executed.

すなわち、外乱の影響を受けるとき(測距時)は制御を行わず、外乱光を除去した状態にて制御が行われるため、太陽光の影響による温度変化の問題は勿論、測距する距離やターゲットの種類が高反射であるか低反射であるかによる受光レベルの問題も生じない状態で、発光量の制御が行える。このため、発光部12の温度上昇による出力変化のみ制御すればよく、これには受光出力監視部80および発光出力調整部90による制御により高精度に対処することができる。このため、発光部12の光出力が安定し、結果として測距時(図3のステップS9)における測距用の受光部42の受光レベルが安定し、高精度な測距値が得られる。   In other words, when it is affected by disturbance (during ranging), control is performed without disturbing light, so of course the problem of temperature change due to the influence of sunlight, The amount of emitted light can be controlled without causing a problem of the light receiving level depending on whether the target type is high reflection or low reflection. For this reason, it is only necessary to control the output change due to the temperature rise of the light emitting unit 12, and this can be handled with high accuracy by the control by the light reception output monitoring unit 80 and the light emission output adjusting unit 90. For this reason, the light output of the light emitting unit 12 is stabilized, and as a result, the light receiving level of the light receiving unit for distance measurement at the time of distance measurement (step S9 in FIG. 3) is stabilized, and a highly accurate distance value can be obtained.

また、いずれの実施形態も、感温素子を用いないため、発光部12に採用する部品の選択肢を狭めることもない。   In addition, since any of the embodiments does not use a temperature sensitive element, the options of components employed in the light emitting unit 12 are not narrowed.

また、第1の実施形態であれば、参照光を利用するため、既存の光波距離計の構成に対し、制御部5のプログラム変更と、フォトダイオード(第2の受光部201)を1つ追加するだけでよいから、容易に実施可能である。   In the first embodiment, since the reference light is used, the program of the control unit 5 is changed and one photodiode (second light receiving unit 201) is added to the configuration of the existing optical distance meter. Since it is only necessary to do this, it can be easily implemented.

第2および第3の実施形態であれば、視準望遠鏡2内の測距系3に従来一般に備えられている光路絞り23における漏れ光を利用するため、既存の光波距離計の構成に対し、制御部5のプログラム変更と、フォトダイオード(第2の受光部202または203)を1つ追加するだけで、容易に実施可能である。   In the case of the second and third embodiments, in order to use the leaked light in the optical path stop 23 that is conventionally provided in the distance measuring system 3 in the collimating telescope 2, This can be easily implemented by changing the program of the control unit 5 and adding one photodiode (second light receiving unit 202 or 203).

第4の実施形態であれば、既存の光波距離計の構成に対し、制御部5のプログラム変更と、視準望遠鏡2内の測距系3に半透過ミラーとフォトダイオード(第2の受光部204)を1つ追加するだけで、容易に実施可能である。   In the case of the fourth embodiment, the program of the control unit 5 is changed with respect to the configuration of the existing lightwave rangefinder, and a semi-transmission mirror and a photodiode (second light receiving unit) are added to the ranging system 3 in the collimating telescope 2 204), it can be easily implemented.

また、第2〜第4の実施形態であれば、必ずしも参照光を選択して制御を行う必要がない。第1の実施形態のように(図3のS2およびS7の動作)シャッター17の切り換えが必要なく、図6に示すように常時フィードバックをかけることが可能となる。   In the second to fourth embodiments, it is not always necessary to perform control by selecting reference light. As in the first embodiment (operations S2 and S7 in FIG. 3), it is not necessary to switch the shutter 17, and it is possible to always apply feedback as shown in FIG.

なお、このようにシャッターの移動に関わらずフィードバックを実行する場合、発光部12の端面からの外乱光の反射や受光光路104を介して送光光路102に戻ってくる測距光の反射等が第2の受光部202、203または204に入射することが考えられるため、送光光路102に低反射塗装を施す、第2の受光部202、203、204に光学バンドパスフィルタを追加する等し、第2の受光部に外乱が入るおそれを排除または低減する構成とすると、より好適である。   When feedback is executed regardless of the movement of the shutter in this manner, reflection of disturbance light from the end face of the light emitting unit 12, reflection of ranging light returning to the light transmission optical path 102 through the light receiving optical path 104, etc. Since it may be incident on the second light receiving unit 202, 203, or 204, a low reflection coating is applied to the light transmission optical path 102, an optical bandpass filter is added to the second light receiving unit 202, 203, 204, etc. It is more preferable to adopt a configuration that eliminates or reduces the possibility of disturbance entering the second light receiving unit.

また、第2の受光部に、PINフォトダイオードなどフォトダイオードより周波数特性の優れる他のフォトセンサーを使用することも可能である。   In addition, it is possible to use another photosensor having better frequency characteristics than the photodiode, such as a PIN photodiode, for the second light receiving portion.

以上、本発明について、好ましい実施の形態を述べたが、これらは本発明の一例であり、当業者の知識に基づいて変更または組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。   The preferred embodiments of the present invention have been described above. However, these are merely examples of the present invention, and can be changed or combined based on the knowledge of those skilled in the art. Such forms are also within the scope of the present invention. included.

12 発光部
23 光路絞り
42 測距用の受光部
71 CPU
80 受光出力監視部
90 発光出力調整部
100 参照光路
102 送光光路
104 受光光路
201、202、203、204 第2の受光部
441 半透過ミラー(半透過部材)
12 Light Emitting Unit 23 Optical Path Aperture 42 Light Receiving Unit 71 for Distance Measurement CPU
80 Light reception output monitoring unit 90 Light emission output adjustment unit 100 Reference light path 102 Light transmission light path 104 Light reception light paths 201, 202, 203, 204 Second light reception unit 441 Semi-transmissive mirror (semi-transmissive member)

Claims (6)

測距光および参照光を送光する発光部と、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記測距光に入射される外乱光の影響を受けない光路に配置され、前記発光部の光を受光する第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance meter having a light emitting unit that transmits distance measuring light and reference light, and a light receiving unit for distance measurement that receives the distance measuring light and reference light,
A second light receiving unit that is disposed in an optical path that is not affected by disturbance light incident on the distance measuring light, and that receives light from the light emitting unit;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記発光部の送光光路において前記シャッターの前方に配置された第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance having a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and a light receiving unit for distance measurement that receives the distance measuring light and the reference light A total of
A second light receiving unit disposed in front of the shutter in the light transmission path of the light emitting unit;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記参照光の参照光路に配置された第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance having a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and a light receiving unit for distance measurement that receives the distance measuring light and the reference light A total of
A second light receiving portion disposed in a reference optical path of the reference light;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記発光部の送光光路において前記シャッターの前方に配置された光路絞りと、
前記光路絞り上に配置された第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance having a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and a light receiving unit for distance measurement that receives the distance measuring light and the reference light A total of
An optical path stop disposed in front of the shutter in the light transmission optical path of the light emitting unit;
A second light receiving portion disposed on the optical path stop;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記発光部の送光光路において前記シャッターの前方に配置された光路絞りと、
前記光路絞りに対し光路前方に配置された第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance having a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and a light receiving unit for distance measurement that receives the distance measuring light and the reference light A total of
An optical path stop disposed in front of the shutter in the light transmission optical path of the light emitting unit;
A second light receiving portion disposed in front of the optical path with respect to the optical path stop;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
測距光および参照光を送光する発光部と、前記測距光と前記参照光とを切り換えるシャッターと、前記測距光および参照光を受光する測距用の受光部と、を有する光波距離計であって、
前記発光部の送光光路において前記シャッターの前方に配置された半透過部材と、
前記半透過部材に対し光路前方に配置された第2の受光部と、
前記第2の受光部の出力を監視する受光出力監視部と、
前記出力監視部の監視に基づき前記第2の受光部の出力が所定値となるように前記発光部の発光量を調整する発光出力調整部と、を備えることを特徴とする光波距離計。
A lightwave distance having a light emitting unit that transmits distance measuring light and reference light, a shutter that switches between the distance measuring light and the reference light, and a light receiving unit for distance measurement that receives the distance measuring light and the reference light A total of
A semi-transmissive member disposed in front of the shutter in the light transmission path of the light emitting unit;
A second light receiving portion disposed in front of the optical path with respect to the semi-transmissive member;
A light receiving output monitoring unit for monitoring the output of the second light receiving unit;
A lightwave distance meter comprising: a light emission output adjusting unit that adjusts a light emission amount of the light emitting unit so that an output of the second light receiving unit becomes a predetermined value based on monitoring of the output monitoring unit.
JP2015071907A 2015-03-31 2015-03-31 Light wave distance meter Active JP6604623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071907A JP6604623B2 (en) 2015-03-31 2015-03-31 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071907A JP6604623B2 (en) 2015-03-31 2015-03-31 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2016191630A true JP2016191630A (en) 2016-11-10
JP6604623B2 JP6604623B2 (en) 2019-11-13

Family

ID=57245477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071907A Active JP6604623B2 (en) 2015-03-31 2015-03-31 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP6604623B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067361A (en) * 2018-10-24 2020-04-30 パイオニア株式会社 Measurement device, method for measuring distance, program, and recording medium
WO2020223879A1 (en) * 2019-05-06 2020-11-12 深圳市大疆创新科技有限公司 Distance measurement apparatus and mobile platform
JP2021043153A (en) * 2019-09-13 2021-03-18 株式会社トプコン Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
JP2021089223A (en) * 2019-12-05 2021-06-10 株式会社トプコン measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111488A (en) * 1986-10-29 1988-05-16 Sotsukishiya:Kk Distance measuring method by light wave range finder
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
US20040070745A1 (en) * 2002-04-15 2004-04-15 Robert Lewis Distance measurement device with short distance optics
JP2010008088A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Spatial information detection device
JP2012237720A (en) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd Light wave range finder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111488A (en) * 1986-10-29 1988-05-16 Sotsukishiya:Kk Distance measuring method by light wave range finder
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
US20040070745A1 (en) * 2002-04-15 2004-04-15 Robert Lewis Distance measurement device with short distance optics
JP2010008088A (en) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd Spatial information detection device
JP2012237720A (en) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd Light wave range finder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067361A (en) * 2018-10-24 2020-04-30 パイオニア株式会社 Measurement device, method for measuring distance, program, and recording medium
WO2020223879A1 (en) * 2019-05-06 2020-11-12 深圳市大疆创新科技有限公司 Distance measurement apparatus and mobile platform
CN112204427A (en) * 2019-05-06 2021-01-08 深圳市大疆创新科技有限公司 Distance measuring device and mobile platform
JP2021043153A (en) * 2019-09-13 2021-03-18 株式会社トプコン Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
US11692823B2 (en) 2019-09-13 2023-07-04 Topcon Corporation Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP7336927B2 (en) 2019-09-13 2023-09-01 株式会社トプコン Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
JP2021089223A (en) * 2019-12-05 2021-06-10 株式会社トプコン measuring device
JP7406971B2 (en) 2019-12-05 2023-12-28 株式会社トプコン measuring device

Also Published As

Publication number Publication date
JP6604623B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6604623B2 (en) Light wave distance meter
US6504602B1 (en) Tacheometer telescope
JP5690541B2 (en) Distance measuring device
US7177015B2 (en) Distance-measuring device
US6226076B1 (en) Distance measuring apparatus using pulse light
US20040027554A1 (en) Light wave distance-measuring system
CN107209267A (en) LIDAR based on MEMS
US8520192B2 (en) Distance-measuring system
US6288775B1 (en) Lightwave distance measuring apparatus and method
JP4686277B2 (en) Distance measuring device and distance measuring method
EP3190428B1 (en) Electronic distance measuring instrument
JP5137106B2 (en) Light wave distance meter
JP2017072466A (en) Light wave distance measuring device
JP2001317938A (en) Surveying machine with light wave range finder
JP2006329797A (en) Light wave range finder
US6580495B2 (en) Surveying instrument having a phase-difference detection type focus detecting device and a beam-splitting optical system
EP1469279B1 (en) Surveying instrument
CN111983630A (en) Single photon ranging system, method, terminal equipment and storage medium
US6469777B2 (en) Surveying instrument having an optical distance meter
JP2003057032A (en) Automatic adjustment device for optical axis of surveying instrument
EP1106963B1 (en) Distance measuring device and method for adjusting photodetection unit
EP3936817A1 (en) Close-range electronic distance measurement
US10663296B2 (en) Surveying instrument
CN108369347B (en) Beam shaping unit, distance measuring device and laser lighting device
JP7082892B2 (en) Laser rangefinder and surveying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6604623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250