JP2016186285A - Rotary Compressor - Google Patents

Rotary Compressor Download PDF

Info

Publication number
JP2016186285A
JP2016186285A JP2015067242A JP2015067242A JP2016186285A JP 2016186285 A JP2016186285 A JP 2016186285A JP 2015067242 A JP2015067242 A JP 2015067242A JP 2015067242 A JP2015067242 A JP 2015067242A JP 2016186285 A JP2016186285 A JP 2016186285A
Authority
JP
Japan
Prior art keywords
stator
compressor
cylinder
end plate
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015067242A
Other languages
Japanese (ja)
Other versions
JP6477137B2 (en
Inventor
駒井 裕二
Yuji Komai
裕二 駒井
尚哉 両角
Naoya Morozumi
尚哉 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2015067242A priority Critical patent/JP6477137B2/en
Priority to AU2016201894A priority patent/AU2016201894B2/en
Priority to US15/080,328 priority patent/US20160281717A1/en
Priority to EP16162407.7A priority patent/EP3073118A1/en
Priority to CN201610177100.0A priority patent/CN106014992B/en
Publication of JP2016186285A publication Critical patent/JP2016186285A/en
Application granted granted Critical
Publication of JP6477137B2 publication Critical patent/JP6477137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • F04C2230/231Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rotary compressor that causes no compressive strain in a stator of a motor arranged in a compressor casing, has high motor efficiency and is suppressed in cost increase.SOLUTION: A rotary compressor comprises a compressor casing, a compression part that is arranged in the compressor casing, compresses a refrigerant sucked in through a suction part and discharges the same from a discharge part, and a motor that is arranged in the compressor casing and drives the compression part via a rotating shaft. In the rotary compressor, representing the inner diameter of a body part of the compressor casing as φDm, the outer diameter of an upper end plate of the compression part as φDb, and the outer diameter of a stator or the motor as φDs, the φDm, φDb and φDs are set to satisfy two inequalities of -0.05 mm≤φDm-φDb≤0.05 mm and 0.1 mm≤φDm-φDs≤0.2 mm. Plural portions circumferentially spaced of the outer peripheral part of the upper end plate and the outer peripheral part of the stator are spot-welded to the body part of the compressor casing.SELECTED DRAWING: Figure 5

Description

本発明は、空気調和機や冷凍機などに用いられるロータリ圧縮機に関する。   The present invention relates to a rotary compressor used for an air conditioner, a refrigerator, and the like.

ロータリ圧縮機では、圧縮機筐体内に配置されるモータのステータに圧縮歪みが生じると、ステータの磁化特性が劣化して鉄損が増加し、モータの効率が低下する。   In the rotary compressor, when compression distortion occurs in the stator of the motor disposed in the compressor casing, the magnetization characteristics of the stator deteriorate, the iron loss increases, and the efficiency of the motor decreases.

例えば、特許文献1には、密閉容器と、前記密閉容器に配置され、ステータとロータとを少なくとも含むモータと、前記ロータで駆動されるシャフトを少なくとも含む圧縮機構とを備え、前記圧縮機構の外径は前記固定子の外径より大きく、前記密閉容器と前記ステータの外径との間に挿入され、前記ステータの外周に締り嵌めで固定され、前記密閉容器に3箇所で溶接されるリング状の固定部材をさらに備える圧縮機が記載されている。   For example, Patent Document 1 includes an airtight container, a motor that is disposed in the airtight container and includes at least a stator and a rotor, and a compression mechanism that includes at least a shaft driven by the rotor. A diameter larger than the outer diameter of the stator, inserted between the sealed container and the outer diameter of the stator, fixed to the outer periphery of the stator with an interference fit, and welded to the sealed container at three locations A compressor further comprising a fixing member is described.

また、特許文献1には、密閉容器と、前記密閉容器に配置され、ステータとロータとを少なくとも含むモータと、前記ロータで駆動されるシャフトを少なくとも含む圧縮機構とを備え、前記圧縮機構の外径は前記ステータの外径より大きく、前記密閉容器の一部が絞り加工され、該絞り加工された部分が前記ステータに当接する絞り部をさらに備え、該絞り部と前記ステータとがレーザー溶接により固定される圧縮機が記載されている。   Patent Document 1 includes a sealed container, a motor disposed in the sealed container and including at least a stator and a rotor, and a compression mechanism including at least a shaft driven by the rotor. The diameter is larger than the outer diameter of the stator, a part of the hermetic container is drawn, and the drawn part further includes a drawn part that contacts the stator, and the drawn part and the stator are joined by laser welding. A fixed compressor is described.

また、特許文献2には、環状のステータと、前記ステータの内部空間に回転自在に配置されたロータと、前記ステータおよびロータを収納する筒状部を含む密閉容器と、前記ステータの外周面と前記筒状部の内周面との間に0.01〜0.30mmの隙間を確保した状態で、前記ステータと前記筒状部とを周方向に3箇所以上のスポット溶接によって固定した圧縮機が記載されている。この圧縮機の圧縮機構は、マウンティングプレートにネジ止めされ、マウンティングプレートは、密閉容器の筒状部にスポット溶接されている。   Further, Patent Document 2 discloses an annular stator, a rotor rotatably disposed in the internal space of the stator, a sealed container including a cylindrical portion that houses the stator and the rotor, and an outer peripheral surface of the stator. The compressor which fixed the said stator and the said cylindrical part by the spot welding of three or more places in the circumferential direction in the state which ensured the clearance of 0.01-0.30 mm between the internal peripheral surfaces of the said cylindrical part. Is described. The compression mechanism of this compressor is screwed to the mounting plate, and the mounting plate is spot welded to the cylindrical portion of the sealed container.

特開2010−255623号公報JP 2010-255623 A 特開2008−248889号公報JP 2008-248889 A

しかしながら、特許文献1に記載された、密閉容器と固定子の外径との間に挿入され、前記固定子の外周に締り嵌めで固定され、密閉容器に3箇所で溶接されるリング状の固定部材を備える圧縮機は、リング状の固定部材が固定子の外周に締り嵌めで固定されるので、固定子に圧縮歪みが生じ、モータの効率が低下するという問題がある。また、固定部材を用いる分、コストアップとなるという問題がある。   However, the ring-shaped fixing described in Patent Document 1 is inserted between the sealed container and the outer diameter of the stator, is fixed to the outer periphery of the stator with an interference fit, and is welded to the sealed container at three locations. The compressor including the members has a problem in that since the ring-shaped fixing member is fixed to the outer periphery of the stator by an interference fit, compression distortion occurs in the stator, and the efficiency of the motor decreases. Further, there is a problem that the cost is increased by using the fixing member.

また、特許文献1に記載された、密閉容器の一部が絞り加工され、該絞り加工された部分がステータに当接する絞り部を備え、該絞り部と前記ステータとがレーザー溶接により固定される圧縮機は、密閉容器の一部を絞り加工するので、その分、コストアップとなる、という問題がある。   Further, a part of the sealed container described in Patent Document 1 is drawn, and the drawn part includes a drawn part that comes into contact with the stator, and the drawn part and the stator are fixed by laser welding. Since the compressor draws a part of the sealed container, there is a problem that the cost increases accordingly.

また、特許文献2に記載された圧縮機は、ステータと筒状部との間に0.01〜0.30mmの半径隙間を確保した状態で、前記ステータと前記筒状部とを周方向に3箇所以上のスポット溶接によって固定され、圧縮機構がマウンティングプレートにネジ止めされ、マウンティングプレートが、密閉容器の筒状部にスポット溶接されている。そのため、ステータと筒状部との間に0.30mmの半径隙間を設けた場合には、半径隙間が大きすぎ、ステータを筒状部に対して芯出しする必要があり組立工数が増大するという問題がある。また、圧縮機構がマウンティングプレートを介して筒状部に固定されているので、マウンティングプレートの分、コストアップとなる、という問題がある。   Moreover, the compressor described in patent document 2 is the state which ensured the radial gap of 0.01-0.30 mm between the stator and the cylindrical part, and made the said stator and the said cylindrical part into the circumferential direction. It is fixed by spot welding at three or more locations, the compression mechanism is screwed to the mounting plate, and the mounting plate is spot welded to the cylindrical portion of the sealed container. Therefore, when a 0.30 mm radial gap is provided between the stator and the cylindrical part, the radial gap is too large, and it is necessary to center the stator with respect to the cylindrical part, which increases the number of assembly steps. There's a problem. In addition, since the compression mechanism is fixed to the cylindrical portion via the mounting plate, there is a problem that the cost is increased by the amount of the mounting plate.

本発明は、圧縮機筐体内に配置されるモータのステータに圧縮歪みが生じることがなく、モータの効率が高く、コストアップを抑えたロータリ圧縮機を得ることを目的とする。   An object of the present invention is to obtain a rotary compressor in which compression distortion does not occur in a stator of a motor disposed in a compressor housing, the motor efficiency is high, and cost increase is suppressed.

本発明は、上部に冷媒の吐出部が設けられ、下部に冷媒の吸入部が設けられると共に潤滑油が貯留される密閉された縦置きの圧縮機筐体と、該圧縮機筐体内に配置され、環状のシリンダと該シリンダの端部を閉塞する上端板及び下端板とを有し、前記吸入部から吸入した冷媒を前記シリンダで圧縮して前記吐出部から吐出する圧縮部と、前記圧縮機筐体内に配置され、円筒状のステータと回転軸に固定され前記ステータ内で回転するロータとを有し、前記回転軸を介して前記圧縮部を駆動するモータと、を備えるロータリ圧縮機において、前記圧縮機筐体の胴部の内径をφDm、前記圧縮部の上端板の外径をφDb、前記モータのステータの外径をφDsとするとき、−0.05mm≦φDm−φDb≦0.05mm、及び、0.1mm≦φDm−φDs≦0.2mmの二つの式を満たすように、前記φDm、φDb及びφDsを設定するとともに、前記上端板の外周部及び前記ステータの外周部の夫々の周方向に離間した複数箇所を前記圧縮機筐体の胴部にスポット溶接したことを特徴とする。   The present invention includes a vertically disposed compressor housing in which a refrigerant discharge portion is provided at an upper portion, a refrigerant suction portion is provided in a lower portion and lubricating oil is stored, and the compressor housing is disposed in the compressor housing. A compressor having an annular cylinder and an upper end plate and a lower end plate for closing the end of the cylinder, and compressing the refrigerant sucked from the suction portion by the cylinder and discharging the refrigerant from the discharge portion; and the compressor In a rotary compressor comprising: a cylindrical stator, a cylindrical stator and a rotor that is fixed to a rotation shaft and rotates within the stator; and a motor that drives the compression unit via the rotation shaft. When the inner diameter of the body of the compressor housing is φDm, the outer diameter of the upper end plate of the compressor is φDb, and the outer diameter of the stator of the motor is φDs, −0.05 mm ≦ φDm−φDb ≦ 0.05 mm And 0.1 mm ≦ φDm The φDm, φDb, and φDs are set so as to satisfy the two formulas of φDs ≦ 0.2 mm, and the outer peripheral portion of the upper end plate and the outer peripheral portion of the stator are compressed at a plurality of locations separated in the circumferential direction. It is characterized by spot welding to the body of the machine casing.

本発明は、圧縮機筐体の胴部の内径をφDm、圧縮部の上端板の外径をφDb、モータのステータの外径をφDsとするとき、−0.05mm≦φDm−φDb≦0.05mm、及び、0.1mm≦φDm−φDs≦0.2mmの二つの式を満たすように、φDm、φDb及びφDsを設定するとともに、上端板の外周部及びステータの外周部の夫々の周方向に離間した複数箇所を圧縮機筐体の胴部にスポット溶接したので、圧縮機筐体内に配置されるモータのステータに圧縮歪みが生じることがなく、ステータの磁化特性が劣化しないので、モータの効率が高く、コストアップを抑えることができる。   In the present invention, when the inner diameter of the body of the compressor housing is φDm, the outer diameter of the upper end plate of the compression section is φDb, and the outer diameter of the stator of the motor is φDs, −0.05 mm ≦ φDm−φDb ≦ 0. ΦDm, φDb, and φDs are set so as to satisfy two formulas of 05 mm and 0.1 mm ≦ φDm−φDs ≦ 0.2 mm, and in the circumferential direction of the outer peripheral portion of the upper end plate and the outer peripheral portion of the stator. Since the plurality of spaced apart spots are spot welded to the body of the compressor casing, the stator of the motor disposed in the compressor casing does not undergo compressive strain, and the magnetizing characteristics of the stator do not deteriorate. The cost can be suppressed.

図1は、本発明に係るロータリ圧縮機の実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary compressor according to the present invention. 図2は、実施例のロータリ圧縮機の第1の圧縮部及び第2の圧縮部の上から見た横断面図である。FIG. 2 is a cross-sectional view of the rotary compressor of the embodiment as viewed from above the first compression unit and the second compression unit. 図3は、実施例のロータリ圧縮機のステータとロータの組立前を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing the stator and the rotor before assembly of the rotary compressor of the embodiment. 図4は、実施例のロータリ圧縮機のステータとロータの組立後を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a state after assembly of the stator and the rotor of the rotary compressor of the embodiment. 図5は、実施例のロータリ圧縮機の圧縮部及びステータと圧縮機筐体の胴部の嵌合前を示す縦断面図である。FIG. 5 is a longitudinal cross-sectional view showing a state before the compression portion of the rotary compressor and the stator and the body portion of the compressor housing of the embodiment are fitted. 図6は、実施例のロータリ圧縮機の圧縮部及びステータと圧縮機筐体の胴部の嵌合後を示す縦断面図である。FIG. 6 is a longitudinal cross-sectional view showing the compression portion of the rotary compressor and the stator after the fitting of the body portion of the compressor housing of the embodiment. 図7は、図6のA−A線に沿う横断面図である。FIG. 7 is a cross-sectional view taken along line AA in FIG. 図8は、図6のB−B線に沿う横断面図である。FIG. 8 is a cross-sectional view taken along line BB in FIG.

以下に、本発明を実施するための形態(実施例)につき、図面を参照しつつ詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form (Example) for implementing this invention is demonstrated in detail, referring drawings.

図1は、本発明に係るロータリ圧縮機の実施例を示す縦断面図である。図2は、実施例のロータリ圧縮機の第1の圧縮部及び第2の圧縮部の上から見た横断面図である。   FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary compressor according to the present invention. FIG. 2 is a cross-sectional view of the rotary compressor of the embodiment as viewed from above the first compression unit and the second compression unit.

図1に示すように、ロータリ圧縮機1は、密閉された縦置き円筒状の圧縮機筐体10の下部に配置された圧縮部12と、圧縮機筐体10の上部に配置され、回転軸15を介して圧縮部12を駆動するモータ11と、を備えている。   As shown in FIG. 1, the rotary compressor 1 includes a compression unit 12 disposed at a lower portion of a hermetically sealed cylindrical compressor housing 10 and an upper portion of the compressor housing 10. And a motor 11 that drives the compression unit 12 via 15.

モータ11のステータ111は、円筒状に形成され、圧縮機筐体10の胴部10Aの内周面にスポット溶接されて固定される。本発明のロータリ圧縮機1の特徴的な構成である圧縮機筐体10の胴部10Aとステータ111との寸法関係及び組立方法については後述する。ロータ112は、円筒状のステータ111の内部に配置され、モータ11と圧縮部12とを機械的に接続する回転軸15に焼きばめされて固定されている。   The stator 111 of the motor 11 is formed in a cylindrical shape, and is fixed by spot welding to the inner peripheral surface of the body portion 10 </ b> A of the compressor housing 10. A dimensional relationship between the body portion 10A of the compressor housing 10 and the stator 111, which is a characteristic configuration of the rotary compressor 1 of the present invention, and an assembling method will be described later. The rotor 112 is disposed inside the cylindrical stator 111 and is fixed by being shrink-fitted to a rotating shaft 15 that mechanically connects the motor 11 and the compression unit 12.

圧縮部12は、第1の圧縮部12Sと第2の圧縮部12Tとを備えており、第2の圧縮部12Tは、第1の圧縮部12Sの上側に配置されている。図2に示すように、第1の圧縮部12Sは、環状の第1シリンダ121Sを備えている。第1シリンダ121Sは、環状の外周から張り出した第1側方張出部122Sを備え、第1側方張出部122Sには、第1吸入孔135Sと第1ベーン溝128Sが放射状に設けられている。また、第2の圧縮部12Tは、環状の第2シリンダ121Tを備えている。第2シリンダ121Tは、環状の外周から張り出した第2側方張出部122Tを備え、第2側方張出部122Tには、第2吸入孔135Tと第2ベーン溝128Tが放射状に設けられている。   The compression unit 12 includes a first compression unit 12S and a second compression unit 12T, and the second compression unit 12T is disposed on the upper side of the first compression unit 12S. As shown in FIG. 2, the first compression unit 12S includes an annular first cylinder 121S. The first cylinder 121S includes a first lateral projecting portion 122S projecting from an annular outer periphery, and the first lateral projecting portion 122S is provided with first suction holes 135S and first vane grooves 128S radially. ing. The second compression unit 12T includes an annular second cylinder 121T. The second cylinder 121T includes a second lateral projecting portion 122T projecting from an annular outer periphery, and the second lateral projecting portion 122T is provided with second suction holes 135T and second vane grooves 128T radially. ing.

図2に示すように、第1シリンダ121Sには、モータ11の回転軸15と同心に、円形の第1シリンダ内壁123Sが形成されている。第1シリンダ内壁123S内には、第1シリンダ121Sの内径よりも小さい外径の第1環状ピストン125Sが配置され、第1シリンダ内壁123Sと第1環状ピストン125Sとの間に、冷媒を吸入し圧縮して吐出する第1シリンダ室130Sが形成される。第2シリンダ121Tには、モータ11の回転軸15と同心に、円形の第2シリンダ内壁123Tが形成されている。第2シリンダ内壁123T内には、第2シリンダ121Tの内径よりも小さい外径の第2環状ピストン125Tが配置され、第2シリンダ内壁123Tと第2環状ピストン125Tとの間に、冷媒を吸入し圧縮して吐出する第2シリンダ室130Tが形成される。   As shown in FIG. 2, a circular first cylinder inner wall 123 </ b> S is formed in the first cylinder 121 </ b> S concentrically with the rotating shaft 15 of the motor 11. A first annular piston 125S having an outer diameter smaller than the inner diameter of the first cylinder 121S is disposed in the first cylinder inner wall 123S, and the refrigerant is sucked between the first cylinder inner wall 123S and the first annular piston 125S. A first cylinder chamber 130S for compressing and discharging is formed. In the second cylinder 121T, a circular second cylinder inner wall 123T is formed concentrically with the rotating shaft 15 of the motor 11. A second annular piston 125T having an outer diameter smaller than the inner diameter of the second cylinder 121T is disposed in the second cylinder inner wall 123T, and the refrigerant is sucked between the second cylinder inner wall 123T and the second annular piston 125T. A second cylinder chamber 130T that discharges after compression is formed.

第1シリンダ121Sには、第1シリンダ内壁123Sから径方向に、シリンダ高さ全域に亘る第1ベーン溝128Sが形成され、第1ベーン溝128S内に、平板状の第1ベーン127Sが、摺動自在に嵌合されている。第2シリンダ121Tには、第2シリンダ内壁123Tから径方向に、シリンダ高さ全域に亘る第2ベーン溝128Tが形成され、第2ベーン溝128T内に、平板状の第2ベーン127Tが、摺動自在に嵌合されている。   The first cylinder 121S is formed with a first vane groove 128S extending in the radial direction from the first cylinder inner wall 123S over the entire cylinder height. A flat plate-like first vane 127S is slid in the first vane groove 128S. It is movably fitted. The second cylinder 121T is formed with a second vane groove 128T extending in the radial direction from the second cylinder inner wall 123T over the entire cylinder height, and a flat plate-like second vane 127T is slid in the second vane groove 128T. It is movably fitted.

図2に示すように、第1ベーン溝128Sの径方向外側には、第1側方張出部122Sの外周部から第1ベーン溝128Sに連通するように第1スプリング穴124Sが形成されている。第1スプリング穴124Sには、第1ベーン127Sの背面を押圧する第1ベーンスプリング126S(図1参照)が挿入されている。第2ベーン溝128Tの径方向外側には、第2側方張出部122Tの外周部から第2ベーン溝128Tに連通するように第2スプリング穴124Tが形成されている。第2スプリング穴124Tには、第2ベーン127Tの背面を押圧する第2ベーンスプリング126T(図1参照)が挿入されている。   As shown in FIG. 2, a first spring hole 124S is formed on the outer side in the radial direction of the first vane groove 128S so as to communicate with the first vane groove 128S from the outer peripheral portion of the first laterally extending portion 122S. Yes. A first vane spring 126S (see FIG. 1) that presses the back surface of the first vane 127S is inserted into the first spring hole 124S. A second spring hole 124T is formed on the radially outer side of the second vane groove 128T so as to communicate with the second vane groove 128T from the outer peripheral portion of the second laterally extending portion 122T. A second vane spring 126T (see FIG. 1) that presses the back surface of the second vane 127T is inserted into the second spring hole 124T.

ロータリ圧縮機1の起動時は、この第1ベーンスプリング126Sの反発力により、第1ベーン127Sが、第1ベーン溝128S内から第1シリンダ室130S内に突出し、その先端が、第1環状ピストン125Sの外周面に当接し、第1ベーン127Sにより、第1シリンダ室130Sが、第1吸入室131Sと、第1圧縮室133Sとに区画される。また、同様に、第2ベーンスプリング126Tの反発力により、第2ベーン127Tが、第2ベーン溝128T内から第2シリンダ室130T内に突出し、その先端が、第2環状ピストン125Tの外周面に当接し、第2ベーン127Tにより、第2シリンダ室130Tが、第2吸入室131Tと、第2圧縮室133Tとに区画される。   When the rotary compressor 1 is started, the first vane 127S protrudes from the first vane groove 128S into the first cylinder chamber 130S by the repulsive force of the first vane spring 126S, and the tip thereof is the first annular piston. The first cylinder chamber 130S is partitioned into a first suction chamber 131S and a first compression chamber 133S by the first vane 127S in contact with the outer peripheral surface of 125S. Similarly, due to the repulsive force of the second vane spring 126T, the second vane 127T protrudes from the second vane groove 128T into the second cylinder chamber 130T, and the tip of the second vane 127T extends to the outer peripheral surface of the second annular piston 125T. The second cylinder chamber 130T is partitioned into a second suction chamber 131T and a second compression chamber 133T by the second vane 127T.

また、第1シリンダ121Sには、第1ベーン溝128Sの径方向外側と圧縮機筐体10内とを開口部R(図1参照)で連通して圧縮機筐体10内の圧縮された冷媒を導入し、第1ベーン127Sに冷媒の圧力により背圧をかける第1圧力導入路129Sが形成されている。なお、圧縮機筐体10内の圧縮された冷媒は、第1スプリング穴124Sからも導入される。また、第2シリンダ121Tには、第2ベーン溝128Tの径方向外側と圧縮機筐体10内とを開口部R(図1参照)で連通して圧縮機筐体10内の圧縮された冷媒を導入し、第2ベーン127Tに冷媒の圧力により背圧をかける第2圧力導入路129Tが形成されている。なお、圧縮機筐体10内の圧縮された冷媒は、第2スプリング穴124Tからも導入される。   In addition, the first cylinder 121S communicates the radially outer side of the first vane groove 128S with the inside of the compressor casing 10 through the opening R (see FIG. 1), and the compressed refrigerant in the compressor casing 10 is compressed. And a first pressure introduction path 129S is formed in which back pressure is applied to the first vane 127S by the refrigerant pressure. The compressed refrigerant in the compressor housing 10 is also introduced from the first spring hole 124S. In addition, the second cylinder 121T communicates the radially outer side of the second vane groove 128T with the inside of the compressor casing 10 through an opening R (see FIG. 1), and the compressed refrigerant in the compressor casing 10 is compressed. , And a second pressure introduction path 129T is formed in which back pressure is applied to the second vane 127T by the refrigerant pressure. The compressed refrigerant in the compressor housing 10 is also introduced from the second spring hole 124T.

第1シリンダ121Sの第1側方張出部122Sには、第1吸入室131Sに外部から冷媒を吸入するために、第1吸入室131Sと外部とを連通させる第1吸入孔135Sが設けられている。第2シリンダ121Tの第2側方張出部122Tには、第2吸入室131Tに外部から冷媒を吸入するために、第2吸入室131Tと外部とを連通させる第2吸入孔135Tが設けられている。第1吸入孔135S及び第2吸入孔135Tの断面は円形である。   The first side overhanging portion 122S of the first cylinder 121S is provided with a first suction hole 135S that allows the first suction chamber 131S to communicate with the outside in order to suck the refrigerant from the outside into the first suction chamber 131S. ing. The second side overhanging portion 122T of the second cylinder 121T is provided with a second suction hole 135T that allows the second suction chamber 131T to communicate with the outside in order to suck the refrigerant from the outside into the second suction chamber 131T. ing. The cross section of the first suction hole 135S and the second suction hole 135T is circular.

また、図1に示すように、第1シリンダ121Sと第2シリンダ121Tの間には、中間仕切板140が配置され、第1シリンダ121Sの第1シリンダ室130S(図2参照)と第2シリンダ121Tの第2シリンダ室130T(図2参照)とを仕切っている。中間仕切板140は、第1シリンダ121Sの上端部と第2シリンダ121Tの下端部を閉塞している。   Further, as shown in FIG. 1, an intermediate partition plate 140 is disposed between the first cylinder 121S and the second cylinder 121T, and the first cylinder chamber 130S (see FIG. 2) of the first cylinder 121S and the second cylinder. The second cylinder chamber 130T (see FIG. 2) of 121T is partitioned. The intermediate partition plate 140 closes the upper end portion of the first cylinder 121S and the lower end portion of the second cylinder 121T.

第1シリンダ121Sの下端部には、下端板160Sが配置され、第1シリンダ121Sの第1シリンダ室130Sを閉塞している。また、第2シリンダ121Tの上端部には、上端板160Tが配置され、第2シリンダ121Tの第2シリンダ室130Tを閉塞している。下端板160Sは、第1シリンダ121Sの下端部を閉塞し、上端板160Tは、第2シリンダ121Tの上端部を閉塞している。   A lower end plate 160S is disposed at the lower end of the first cylinder 121S and closes the first cylinder chamber 130S of the first cylinder 121S. An upper end plate 160T is disposed at the upper end of the second cylinder 121T, and closes the second cylinder chamber 130T of the second cylinder 121T. The lower end plate 160S closes the lower end portion of the first cylinder 121S, and the upper end plate 160T closes the upper end portion of the second cylinder 121T.

下端板160Sには、副軸受部161Sが形成され、副軸受部161Sに、回転軸15の副軸部151が回転自在に支持されている。上端板160Tには、主軸受部161Tが形成され、主軸受部161Tに、回転軸15の主軸部153が回転自在に支持されている。   A sub-bearing portion 161S is formed on the lower end plate 160S, and the sub-shaft portion 151 of the rotary shaft 15 is rotatably supported by the sub-bearing portion 161S. A main bearing portion 161T is formed on the upper end plate 160T, and the main shaft portion 153 of the rotary shaft 15 is rotatably supported by the main bearing portion 161T.

回転軸15は、互いに180°位相をずらして偏心させた第1偏心部152Sと第2偏心部152Tとを備え、第1偏心部152Sは、第1の圧縮部12Sの第1環状ピストン125Sに回転自在に嵌合し、第2偏心部152Tは、第2の圧縮部12Tの第2環状ピストン125Tに回転自在に嵌合している。   The rotating shaft 15 includes a first eccentric portion 152S and a second eccentric portion 152T that are eccentric with a phase difference of 180 ° from each other. The first eccentric portion 152S is connected to the first annular piston 125S of the first compression portion 12S. The second eccentric portion 152T is rotatably fitted to the second annular piston 125T of the second compression portion 12T.

回転軸15が回転すると、第1環状ピストン125Sが、第1シリンダ内壁123Sに沿って第1シリンダ121S内を図2の時計回りに公転し、これに追随して第1ベーン127Sが往復運動する。この第1環状ピストン125S及び第1ベーン127Sの運動により、第1吸入室131S及び第1圧縮室133Sの容積が連続的に変化し、圧縮部12は、連続的に冷媒を吸入し圧縮して吐出する。また、回転軸15が回転すると、第2環状ピストン125Tが、第2シリンダ内壁123Tに沿って第2シリンダ121T内を図2の時計回りに公転し、これに追随して第2ベーン127Tが往復運動する。この第2環状ピストン125T及び第2ベーン127Tの運動により、第2吸入室131T及び第2圧縮室133Tの容積が連続的に変化し、圧縮部12は、連続的に冷媒を吸入し圧縮して吐出する。   When the rotary shaft 15 rotates, the first annular piston 125S revolves in the first cylinder 121S in the clockwise direction in FIG. 2 along the first cylinder inner wall 123S, and the first vane 127S reciprocates following this. . Due to the movement of the first annular piston 125S and the first vane 127S, the volumes of the first suction chamber 131S and the first compression chamber 133S continuously change, and the compression unit 12 continuously sucks and compresses the refrigerant. Discharge. When the rotary shaft 15 rotates, the second annular piston 125T revolves in the second cylinder 121T in the clockwise direction of FIG. 2 along the second cylinder inner wall 123T, and the second vane 127T reciprocates following this. Exercise. By the movement of the second annular piston 125T and the second vane 127T, the volumes of the second suction chamber 131T and the second compression chamber 133T are continuously changed, and the compression unit 12 continuously sucks and compresses the refrigerant. Discharge.

図1に示すように、下端板160Sの下側には、下端板カバー170Sが配置され、下端板160Sとの間に下マフラー室180Sを形成している。そして、第1の圧縮部12Sは、下マフラー室180Sに開口している。すなわち、下端板160Sの第1ベーン127S近傍には、第1シリンダ121Sの第1圧縮室133Sと下マフラー室180Sとを連通する第1吐出孔190S(図2参照)が設けられ、第1吐出孔190Sには、圧縮された冷媒の逆流を防止する図示しないリード弁型の第1吐出弁が配置されている。   As shown in FIG. 1, a lower end plate cover 170S is disposed below the lower end plate 160S, and a lower muffler chamber 180S is formed between the lower end plate 160S and the lower end plate cover 170S. And the 1st compression part 12S is opened to lower muffler room 180S. That is, a first discharge hole 190S (see FIG. 2) that connects the first compression chamber 133S of the first cylinder 121S and the lower muffler chamber 180S is provided in the vicinity of the first vane 127S of the lower end plate 160S. A reed valve type first discharge valve (not shown) that prevents the backflow of the compressed refrigerant is disposed in the hole 190S.

下マフラー室180Sは、環状に形成された1つの室であり、第1の圧縮部12Sの吐出側を、下端板160S、第1シリンダ121S、中間仕切板140、第2シリンダ121T及び上端板160Tを貫通する冷媒通路136(図2参照)を通して上マフラー室180T内に連通させる連通路の一部である。下マフラー室180Sは、吐出冷媒の圧力脈動を低減させる。また、第1吐出弁に重ねて、第1吐出弁の撓み開弁量を制限するための図示しない第1吐出弁押さえが、第1吐出弁とともにリベットにより固定されている。第1吐出孔190S、第1吐出弁及び第1吐出弁押さえは、下端板160Sの第1吐出弁部を構成している。   The lower muffler chamber 180S is one chamber formed in an annular shape, and the lower end plate 160S, the first cylinder 121S, the intermediate partition plate 140, the second cylinder 121T, and the upper end plate 160T are arranged on the discharge side of the first compression unit 12S. This is a part of the communication passage that communicates with the upper muffler chamber 180T through the refrigerant passage 136 (see FIG. 2) that passes through the upper muffler chamber. The lower muffler chamber 180S reduces the pressure pulsation of the discharged refrigerant. In addition, a first discharge valve presser (not shown) for limiting the amount of deflection opening of the first discharge valve is fixed to the first discharge valve by a rivet together with the first discharge valve. The first discharge hole 190S, the first discharge valve, and the first discharge valve presser constitute a first discharge valve portion of the lower end plate 160S.

図1に示すように、上端板160Tの上側には、上端板カバー170Tが配置され、上端板160Tとの間に上マフラー室180Tを形成している。上端板160Tの第2ベーン127T近傍には、第2シリンダ121Tの第2圧縮室133Tと上マフラー室180Tとを連通する第2吐出孔190T(図2参照)が設けられ、第2吐出孔190Tには、圧縮された冷媒の逆流を防止する図示しないリード弁型の第2吐出弁が配置されている。また、第2吐出弁に重ねて、第2吐出弁の撓み開弁量を制限するための図示しない第2吐出弁押さえが、第2吐出弁とともにリベットにより固定されている。上マフラー室180Tは、吐出冷媒の圧力脈動を低減させる。第2吐出孔190T、第2吐出弁及び第2吐出弁押さえは、上端板160Tの第2吐出弁部を構成している。   As shown in FIG. 1, an upper end plate cover 170T is arranged above the upper end plate 160T, and an upper muffler chamber 180T is formed between the upper end plate 160T and the upper end plate cover 170T. In the vicinity of the second vane 127T of the upper end plate 160T, a second discharge hole 190T (see FIG. 2) that communicates the second compression chamber 133T of the second cylinder 121T and the upper muffler chamber 180T is provided, and the second discharge hole 190T. Is provided with a reed valve type second discharge valve (not shown) for preventing the backflow of the compressed refrigerant. In addition, a second discharge valve presser (not shown) for limiting the amount of deflection opening of the second discharge valve is fixed to the second discharge valve by a rivet together with the second discharge valve. The upper muffler chamber 180T reduces the pressure pulsation of the discharged refrigerant. The second discharge hole 190T, the second discharge valve, and the second discharge valve presser constitute a second discharge valve portion of the upper end plate 160T.

下端板カバー170S、下端板160S、第1シリンダ121S及び中間仕切板140は、下側から挿通されて第2シリンダ121Tに設けられたメネジにネジ込まれた複数の通しボルト175により第2シリンダ121Tに締結される。上端板カバー170T及び上端板160Tは、上側から挿通されて第2シリンダ121Tに設けられたメネジにネジ込まれた通しボルト174により第2シリンダ121Tに締結される。複数の通しボルト174,175等により一体に締結された下端板カバー170S、下端板160S、第1シリンダ121S、中間仕切板140、第2シリンダ121T、上端板160T及び上端板カバー170Tは、圧縮部12を構成している。圧縮部12のうち、上端板160Tの外周部が、圧縮機筐体10の胴部10Aにスポット溶接163により固着され、圧縮部12を圧縮機筐体10に固定している。上端板160Tと胴部10Aとの寸法関係については後述する。   The lower end plate cover 170S, the lower end plate 160S, the first cylinder 121S, and the intermediate partition plate 140 are inserted into the second cylinder 121T by a plurality of through bolts 175 that are inserted from below and screwed into female screws provided in the second cylinder 121T. To be concluded. The upper end plate cover 170T and the upper end plate 160T are fastened to the second cylinder 121T by through bolts 174 that are inserted from above and screwed into female screws provided in the second cylinder 121T. The lower end plate cover 170S, the lower end plate 160S, the first cylinder 121S, the intermediate partition plate 140, the second cylinder 121T, the upper end plate 160T, and the upper end plate cover 170T integrally fastened by a plurality of through bolts 174, 175, etc. 12 is constituted. The outer peripheral portion of the upper end plate 160 </ b> T is fixed to the body portion 10 </ b> A of the compressor housing 10 by spot welding 163, and the compression portion 12 is fixed to the compressor housing 10. The dimensional relationship between the upper end plate 160T and the trunk portion 10A will be described later.

冷媒回路の低圧冷媒は、図示しないアキュムレータ及び第1シリンダ121Sの第1吸入孔135S(図2参照)を介して第1の圧縮部12Sに導かれる。また、冷媒回路の低圧冷媒は、図示しないアキュムレータ及び第2シリンダ121Tの第2吸入孔135T(図2参照)を介して第2の圧縮部12Tに導かれる。すなわち、第1吸入孔135S及び第2吸入孔135Tは、冷媒回路の蒸発器に並列に接続されている。   The low-pressure refrigerant in the refrigerant circuit is guided to the first compression unit 12S via an accumulator (not shown) and the first suction hole 135S (see FIG. 2) of the first cylinder 121S. Further, the low-pressure refrigerant in the refrigerant circuit is guided to the second compression portion 12T through an accumulator (not shown) and the second suction hole 135T (see FIG. 2) of the second cylinder 121T. That is, the first suction hole 135S and the second suction hole 135T are connected in parallel to the evaporator of the refrigerant circuit.

圧縮機筐体10の天部には、冷媒回路と接続し高圧冷媒を冷媒回路の凝縮器側に吐出する吐出部としての吐出管107が接続されている。すなわち、第1吐出孔190S及び第2吐出孔190Tは、冷媒回路の凝縮器に接続されている。   Connected to the top of the compressor housing 10 is a discharge pipe 107 that is connected to the refrigerant circuit and discharges high-pressure refrigerant to the condenser side of the refrigerant circuit. That is, the first discharge hole 190S and the second discharge hole 190T are connected to the condenser of the refrigerant circuit.

圧縮機筐体10内には、およそ第2シリンダ121Tの高さまで潤滑油が封入されている。また、潤滑油は、回転軸15の下部に挿入される図示しないポンプ羽根により、回転軸15の下端部に取付けられた給油パイプ16から吸上げられ、圧縮部12を循環し、摺動部品(第1環状ピストン125S及び第2環状ピストン125T)の潤滑を行なうとともに、圧縮部12の微小隙間のシールをする。   Lubricating oil is sealed in the compressor housing 10 up to the height of the second cylinder 121T. The lubricating oil is sucked up from an oil supply pipe 16 attached to the lower end of the rotating shaft 15 by a pump blade (not shown) inserted into the lower portion of the rotating shaft 15, circulates through the compressing portion 12, and slides ( The first annular piston 125S and the second annular piston 125T) are lubricated and a minute gap in the compression portion 12 is sealed.

次に、図3〜図8を参照して実施例のロータリ圧縮機1の特徴的な構成について説明する。図3は、実施例のロータリ圧縮機のステータとロータの組立前を示す縦断面図である。図4は、実施例のロータリ圧縮機のステータとロータの組立後を示す縦断面図である。図5は、実施例のロータリ圧縮機の圧縮部及びステータと圧縮機筐体の胴部の嵌合前を示す縦断面図である。図6は、実施例のロータリ圧縮機の圧縮部及びステータと圧縮機筐体の胴部の嵌合後を示す縦断面図である。図7は、図6のA−A線に沿う横断面図である。図8は、図6のB−B線に沿う横断面図である。   Next, a characteristic configuration of the rotary compressor 1 according to the embodiment will be described with reference to FIGS. FIG. 3 is a longitudinal sectional view showing the stator and the rotor before assembly of the rotary compressor of the embodiment. FIG. 4 is a longitudinal sectional view showing a state after assembly of the stator and the rotor of the rotary compressor of the embodiment. FIG. 5 is a longitudinal cross-sectional view showing a state before the compression portion of the rotary compressor and the stator and the body portion of the compressor housing of the embodiment are fitted. FIG. 6 is a longitudinal cross-sectional view showing the compression portion of the rotary compressor and the stator after the fitting of the body portion of the compressor housing of the embodiment. FIG. 7 is a cross-sectional view taken along line AA in FIG. FIG. 8 is a cross-sectional view taken along line BB in FIG.

図3に示すように、モータ11のロータ112の外径φDrは、ステータ111の内径φDtよりも1.4mm小さく形成されていて、ロータ112の外周面とステータ111の内周面との間の隙間は0.7mmとなっている。ロータ112とステータ111とを芯出しするギャップゲージ200のシム201の厚さは、ロータ112の外周面とステータ111の内周面との間の隙間0.7mmより0.1mm薄く、0.6mmとなっている。   As shown in FIG. 3, the outer diameter φDr of the rotor 112 of the motor 11 is 1.4 mm smaller than the inner diameter φDt of the stator 111, and is between the outer peripheral surface of the rotor 112 and the inner peripheral surface of the stator 111. The gap is 0.7 mm. The thickness of the shim 201 of the gap gauge 200 that centers the rotor 112 and the stator 111 is 0.1 mm thinner than the gap 0.7 mm between the outer peripheral surface of the rotor 112 and the inner peripheral surface of the stator 111, and is 0.6 mm. It has become.

図5に示すように、モータ11のステータ111の外径φDsは、圧縮部12の上端板160Tの外径φDbよりも小さく形成されている(φDs<φDb)。また、圧縮機筐体10の胴部10Aの内径φDmは、ステータ111の外径φDsよりも0.1mm〜0.2mm大きく形成されている(0.1mm≦φDm−φDs≦0.2mm)。また、胴部10Aの内径φDmは、上端板160Tの外径φDbに対して−0.05mm〜+0.05mmの範囲に形成されている(−0.05mm≦φDm−φDb≦0.05mm)。図7及び図8に示すように、胴部10Aは、鋼板を巻いて端部同士を突合せ溶接により溶接して円筒形に形成したものであり、内径φDmの寸法精度及び真円度は、深絞り加工や機械加工されたものに比べて低い(図7及び図8に突合せ溶接部位165を示す)。   As shown in FIG. 5, the outer diameter φDs of the stator 111 of the motor 11 is formed smaller than the outer diameter φDb of the upper end plate 160T of the compression portion 12 (φDs <φDb). Further, the inner diameter φDm of the body portion 10A of the compressor housing 10 is formed to be 0.1 mm to 0.2 mm larger than the outer diameter φDs of the stator 111 (0.1 mm ≦ φDm−φDs ≦ 0.2 mm). Further, the inner diameter φDm of the body portion 10A is formed in a range of −0.05 mm to +0.05 mm with respect to the outer diameter φDb of the upper end plate 160T (−0.05 mm ≦ φDm−φDb ≦ 0.05 mm). As shown in FIGS. 7 and 8, the body portion 10A is formed by winding a steel plate and welding the end portions by butt welding to form a cylindrical shape. The dimensional accuracy and roundness of the inner diameter φDm are as follows. It is lower than that which has been drawn or machined (a butt weld site 165 is shown in FIGS. 7 and 8).

次に、圧縮機筐体10の胴部10A内に、回転軸15により接続されたモータ11及び圧縮部12を固定する方法を説明する。図3及び図4に示すように、モータ11を組立てるときは、底部に円形の凹部211を有する円筒形の組立治具210の上端部にステータ111を載置し、ステータ111の上部には、外周部に複数のシム201が取付けられたギャップゲージ200をセットする。   Next, a method for fixing the motor 11 and the compression unit 12 connected by the rotary shaft 15 in the body 10A of the compressor housing 10 will be described. As shown in FIGS. 3 and 4, when assembling the motor 11, the stator 111 is placed on the upper end of a cylindrical assembly jig 210 having a circular recess 211 at the bottom. A gap gauge 200 having a plurality of shims 201 attached to the outer periphery is set.

回転軸15にロータ112が固定された圧縮部12を、ロータ112を下側にして下降させ、回転軸15の端部をギャップゲージ200の上側凸部202に当接させる。圧縮部12をさらに下降させると、ロータ112は、ギャップゲージ200のシム201にガイドされてステータ111内に挿入され、ギャップゲージ200を下方に押し込む。図4に示すように、ギャップゲージ200の下側凸部203が組立治具210の凹部211に嵌合すると、ロータ112がステータ111内に完全に挿入されてシム201により芯出しされ、モータ11が組立てられる。   The compression part 12 having the rotor 112 fixed to the rotating shaft 15 is lowered with the rotor 112 facing downward, and the end of the rotating shaft 15 is brought into contact with the upper convex part 202 of the gap gauge 200. When the compression unit 12 is further lowered, the rotor 112 is guided by the shim 201 of the gap gauge 200 and inserted into the stator 111, and pushes the gap gauge 200 downward. As shown in FIG. 4, when the lower convex portion 203 of the gap gauge 200 is fitted into the concave portion 211 of the assembly jig 210, the rotor 112 is completely inserted into the stator 111 and centered by the shim 201. Are assembled.

次に、図5及び図6に示すように、組立治具210上にモータ11及び圧縮部12が載置された状態で、圧縮機筐体10の胴部10Aを圧縮部12の上端板160T及びモータ11のステータ111に嵌合する。胴部10Aの内径φDmは、上端板160Tの外径φDbに対して−0.05mm〜0.05mmとなっているので、胴部10Aと上端板160Tとの嵌合は、一般的な圧入や焼嵌めに比べて軽い圧入か軽い焼嵌めとする。胴部10Aの内径φDmは、ステータ111の外径φDsよりも0.1mm〜0.2mm大きく形成されているので、胴部10Aとステータ111との嵌合は、非接触か又は圧縮力がかからない片側接触で行うことができる。図6に示すように、胴部10Aを、下端が組立治具210の段部212に当接するまで下降させ、嵌合作業を終了する。この状態で、胴部10Aの内周部とステータ111の外周部との間には、0.05mm〜0.10mmの隙間が形成され、かつ、ステータ111とロータ112とは芯出しされた状態にある。   Next, as shown in FIGS. 5 and 6, with the motor 11 and the compression unit 12 placed on the assembly jig 210, the body 10 </ b> A of the compressor housing 10 is moved to the upper end plate 160 </ b> T of the compression unit 12. And fitted to the stator 111 of the motor 11. Since the inner diameter φDm of the trunk portion 10A is −0.05 mm to 0.05 mm with respect to the outer diameter φDb of the upper end plate 160T, fitting between the trunk portion 10A and the upper end plate 160T can be performed by general press-fitting or Compared with shrink fitting, it should be light press-fit or light shrink fitting. Since the inner diameter φDm of the trunk portion 10A is formed to be 0.1 mm to 0.2 mm larger than the outer diameter φDs of the stator 111, the fitting between the trunk portion 10A and the stator 111 is non-contact or does not require a compressive force. Can be done with one side contact. As shown in FIG. 6, the body portion 10 </ b> A is lowered until the lower end comes into contact with the step portion 212 of the assembly jig 210, and the fitting operation is completed. In this state, a gap of 0.05 mm to 0.10 mm is formed between the inner peripheral portion of the body portion 10A and the outer peripheral portion of the stator 111, and the stator 111 and the rotor 112 are centered. It is in.

次に、図6〜図8を参照して、圧縮機筐体10の胴部10Aに対する圧縮部12の上端板160T及びモータ11のステータ111の固定方法を説明する。胴部10Aには、上端板160Tが嵌合された位置、及びステータ111の圧縮部12側位置と反圧縮部12側位置に、周方向に互いに120°離間して三つの孔164が夫々設けられている(孔164は三つ以上としてもよい)。この孔164に溶接ワイヤを挿入し、スポット溶接により、胴部10Aと上端板160Tを先に溶接し、次に、胴部10Aとステータ111の圧縮部12側位置及び反圧縮部12側位置を溶接する。圧縮部12側位置の溶接と反圧縮部12側位置の溶接は、どちらを先に行ってもよい。図6にスポット溶接部位163を示す(孔164はスポット溶接により完全に埋められ、圧縮された冷媒の圧力に耐える)。その後、ギャップゲージ200を取り外す。   Next, a method of fixing the upper end plate 160T of the compression unit 12 and the stator 111 of the motor 11 to the body 10A of the compressor housing 10 will be described with reference to FIGS. The body portion 10A is provided with three holes 164 spaced from each other by 120 ° in the circumferential direction at the position where the upper end plate 160T is fitted and at the compression portion 12 side position and the anti-compression portion 12 side position of the stator 111. (The number of holes 164 may be three or more). A welding wire is inserted into the hole 164, and the barrel portion 10A and the upper end plate 160T are welded first by spot welding. Next, the position of the barrel portion 10A and the stator 111 on the compression portion 12 side and the position on the anti-compression portion 12 side are determined. Weld. Either the compression part 12 side position welding or the anti-compression part 12 side position welding may be performed first. FIG. 6 shows a spot weld site 163 (the hole 164 is completely filled by spot welding to withstand the pressure of the compressed refrigerant). Thereafter, the gap gauge 200 is removed.

胴部10Aと上端板160Tを先に溶接して圧縮部12及びギャップゲージ200により芯出しされたモータ11を胴部10A内で位置決め固定し、次に、芯出しされた状態で、かつ、胴部10Aから径方向の圧縮力を受けない状態で、ステータ111を胴部10Aに直接溶接するので、ステータ111に圧縮歪みが生じることがなく、ステータの磁化特性が劣化して鉄損が増加することもなく、モータ11の効率が高く、コストアップを抑えることができる。   The body 11A and the upper end plate 160T are first welded, and the motor 11 centered by the compression unit 12 and the gap gauge 200 is positioned and fixed in the body 10A. Next, in the centered state, the body 11 Since the stator 111 is directly welded to the body portion 10A without receiving the radial compressive force from the portion 10A, the stator 111 is not subjected to compressive strain, the magnetization characteristics of the stator are deteriorated, and the iron loss is increased. In addition, the efficiency of the motor 11 is high, and the cost increase can be suppressed.

また、ステータ111の圧縮部12側位置と反圧縮部12側位置を胴部10Aにスポット溶接して固定するので、ロータリ圧縮機1が落下などの衝撃を受けても、積層した鋼板をカシメて形成したステータ111の、圧縮部12側溶接位置と反圧縮部12側溶接位置との間のカシメが外れてステータ111が破損することはない。なお、図8に示すように、上端板160Tのスポット溶接部位163の周方向位置、ステータ111の圧縮部12側のスポット溶接部位163の周方向位置、及び、ステータ111の反圧縮部12側のスポット溶接部位163の周方向位置を、夫々周方向に位相をずらすようにすれば、溶接部位が軸方向に一直線上に並ばないので、比較的に強度が弱い溶接部位間の距離が長くなり、胴部10Aの強度が弱くならない。また、胴部10Aの内周部とステータ111の外周部との間の最大隙間は、0.10mmであるので、溶接によるスパッタが圧縮機筐体10内に侵入することはない。   Further, since the compression portion 12 side position and the anti-compression portion 12 side position of the stator 111 are fixed by spot welding to the body portion 10A, even if the rotary compressor 1 receives an impact such as dropping, the laminated steel plates should be caulked. The formed stator 111 is not caulked between the welding position on the compression part 12 side and the welding position on the anti-compression part 12 side and the stator 111 is not damaged. In addition, as shown in FIG. 8, the circumferential position of the spot welded part 163 of the upper end plate 160T, the circumferential position of the spot welded part 163 on the compression part 12 side of the stator 111, and the anti-compression part 12 side of the stator 111 If the circumferential position of the spot welded part 163 is shifted in the circumferential direction, the welded parts do not line up in a straight line in the axial direction, so the distance between welded parts with relatively low strength increases. The strength of the trunk portion 10A does not become weak. Further, since the maximum gap between the inner peripheral portion of the body portion 10A and the outer peripheral portion of the stator 111 is 0.10 mm, spatter due to welding does not enter the compressor housing 10.

胴部10Aに圧縮部12及びモータ11を溶接固定した後、図1に示すように、胴部10Aに底部10C及び天部10Bを全周溶接すれば、ロータリ圧縮機1の組立が完了する。なお、本発明は、単シリンダ式ロータリ圧縮機及び2段圧縮式ロータリ圧縮機に適用することができる。   After the compression portion 12 and the motor 11 are welded and fixed to the barrel portion 10A, as shown in FIG. 1, the assembly of the rotary compressor 1 is completed by welding the bottom portion 10C and the top portion 10B to the barrel portion 10A. The present invention can be applied to a single cylinder type rotary compressor and a two-stage compression type rotary compressor.

以上、実施例を説明したが、前述した内容により実施例が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施例の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。   Although the embodiments have been described above, the embodiments are not limited to the above-described contents. In addition, the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the above-described components can be appropriately combined. Furthermore, at least one of various omissions, substitutions, and changes of the components can be made without departing from the scope of the embodiments.

1 ロータリ圧縮機
10 圧縮機筐体
10A 胴部
10B 天部
10C 底部
11 モータ
12 圧縮部
15 回転軸
16 給油パイプ
107 吐出管(吐出部)
111 ステータ
112 ロータ
12S 第1の圧縮部(圧縮部)
12T 第2の圧縮部(圧縮部)
121S 第1シリンダ(シリンダ)
121T 第2シリンダ(シリンダ)
122S 第1側方張出部(側方張出部)
122T 第2側方張出部(側方張出部)
123S 第1シリンダ内壁(シリンダ内壁)
123T 第2シリンダ内壁(シリンダ内壁)
124S 第1スプリング穴(スプリング穴)
124T 第2スプリング穴(スプリング穴)
125S 第1環状ピストン(環状ピストン)
125T 第2環状ピストン(環状ピストン)
126S 第1ベーンスプリング(ベーンスプリング)
126T 第2ベーンスプリング(ベーンスプリング)
127S 第1ベーン(ベーン)
127T 第2ベーン(ベーン)
128S 第1ベーン溝(ベーン溝)
128T 第2ベーン溝(ベーン溝)
129S 第1圧力導入路(圧力導入路)
129T 第2圧力導入路(圧力導入路)
130S 第1シリンダ室(シリンダ室)
130T 第2シリンダ室(シリンダ室)
131S 第1吸入室(吸入室)
131T 第2吸入室(吸入室)
133S 第1圧縮室(圧縮室)
133T 第2圧縮室(圧縮室)
135S 第1吸入孔(吸入孔)
135T 第2吸入孔(吸入孔)
136 冷媒通路
140 中間仕切板
151 副軸部
152S 第1偏心部(偏心部)
152T 第2偏心部(偏心部)
153 主軸部
160S 下端板(端板)
160T 上端板(端板)
161S 副軸受部(軸受部)
161T 主軸受部(軸受部)
163 スポット溶接部位
164 孔
165 突合せ溶接部位
170S 下端板カバー
170T 上端板カバー
174 通しボルト
175 通しボルト
180S 下マフラー室
180T 上マフラー室
190S 第1吐出孔(吐出弁部)
190T 第2吐出孔(吐出弁部)
200 ギャップゲージ
201 シム
202 上側凸部
203 下側凸部
210 組立治具
211 凹部
212 段部
DESCRIPTION OF SYMBOLS 1 Rotary compressor 10 Compressor housing | casing 10A Body part 10B Top part 10C Bottom part 11 Motor 12 Compression part 15 Rotating shaft 16 Oil supply pipe 107 Discharge pipe (discharge part)
111 Stator 112 Rotor 12S 1st compression part (compression part)
12T 2nd compression part (compression part)
121S 1st cylinder (cylinder)
121T 2nd cylinder (cylinder)
122S first lateral overhang (side overhang)
122T Second lateral overhang (side overhang)
123S 1st cylinder inner wall (cylinder inner wall)
123T 2nd cylinder inner wall (cylinder inner wall)
124S 1st spring hole (spring hole)
124T Second spring hole (spring hole)
125S first annular piston (annular piston)
125T second annular piston (annular piston)
126S 1st vane spring (vane spring)
126T 2nd vane spring (vane spring)
127S 1st vane (vane)
127T 2nd vane (vane)
128S 1st vane groove (vane groove)
128T 2nd vane groove (vane groove)
129S First pressure introduction path (pressure introduction path)
129T Second pressure introduction path (pressure introduction path)
130S 1st cylinder chamber (cylinder chamber)
130T Second cylinder chamber (cylinder chamber)
131S First suction chamber (suction chamber)
131T Second suction chamber (suction chamber)
133S 1st compression chamber (compression chamber)
133T Second compression chamber (compression chamber)
135S 1st suction hole (suction hole)
135T 2nd suction hole (suction hole)
136 Refrigerant passage 140 Intermediate partition plate 151 Secondary shaft portion 152S First eccentric portion (eccentric portion)
152T second eccentric part (eccentric part)
153 Main shaft portion 160S Lower end plate (end plate)
160T Top plate (end plate)
161S Sub bearing part (bearing part)
161T Main bearing (bearing)
163 Spot welding part 164 hole 165 Butt welding part 170S Lower end plate cover 170T Upper end plate cover 174 Through bolt 175 Through bolt 180S Lower muffler chamber 180T Upper muffler chamber 190S First discharge hole (discharge valve part)
190T 2nd discharge hole (discharge valve part)
200 Gap gauge 201 Shim 202 Upper convex part 203 Lower convex part 210 Assembly jig 211 Concave part 212 Step part

Claims (3)

上部に冷媒の吐出部が設けられ、下部に冷媒の吸入部が設けられると共に潤滑油が貯留される密閉された縦置きの圧縮機筐体と、
該圧縮機筐体内に配置され、環状のシリンダと該シリンダの端部を閉塞する上端板及び下端板とを有し、前記吸入部から吸入した冷媒を前記シリンダで圧縮して前記吐出部から吐出する圧縮部と、
前記圧縮機筐体内に配置され、円筒状のステータと回転軸に固定され前記ステータ内で回転するロータとを有し、前記回転軸を介して前記圧縮部を駆動するモータと、
を備えるロータリ圧縮機において、
前記圧縮機筐体の胴部の内径をφDm、前記圧縮部の上端板の外径をφDb、前記モータのステータの外径をφDsとするとき、−0.05mm≦φDm−φDb≦0.05mm、及び、0.1mm≦φDm−φDs≦0.2mmの二つの式を満たすように、前記φDm、φDb及びφDsを設定するとともに、前記上端板の外周部及び前記ステータの外周部の夫々の周方向に離間した複数箇所を前記圧縮機筐体の胴部にスポット溶接したことを特徴とするロータリ圧縮機。
A hermetic vertical compressor housing in which a refrigerant discharge part is provided at the upper part, a refrigerant suction part is provided in the lower part and lubricating oil is stored;
An annular cylinder and an upper end plate and a lower end plate that close the end of the cylinder are disposed in the compressor casing, and the refrigerant sucked from the suction portion is compressed by the cylinder and discharged from the discharge portion. A compression unit to perform,
A motor disposed in the compressor housing, having a cylindrical stator and a rotor fixed to a rotating shaft and rotating in the stator, and driving the compression unit via the rotating shaft;
A rotary compressor comprising:
When the inner diameter of the body of the compressor housing is φDm, the outer diameter of the upper end plate of the compressor is φDb, and the outer diameter of the stator of the motor is φDs, −0.05 mm ≦ φDm−φDb ≦ 0.05 mm And φDm, φDb, and φDs are set so as to satisfy the two expressions of 0.1 mm ≦ φDm−φDs ≦ 0.2 mm, and the outer periphery of the upper end plate and the outer periphery of the stator A rotary compressor characterized in that a plurality of locations separated in a direction are spot-welded to the body of the compressor casing.
前記モータのステータと前記圧縮機筐体の胴部とのスポット溶接は、前記圧縮部の上端板と前記胴部とのスポット溶接の後に行われることを特徴とする請求項1に記載のロータリ圧縮機。   2. The rotary compression according to claim 1, wherein spot welding of the stator of the motor and the body portion of the compressor housing is performed after spot welding of the upper end plate of the compression portion and the body portion. Machine. 前記モータのステータと前記圧縮機筐体の胴部とのスポット溶接は、該ステータと前記モータのロータが芯出しされた状態で行われることを特徴とする請求項2に記載のロータリ圧縮機。   3. The rotary compressor according to claim 2, wherein spot welding of the stator of the motor and the body portion of the compressor housing is performed in a state where the stator and the rotor of the motor are centered.
JP2015067242A 2015-03-27 2015-03-27 Rotary compressor Active JP6477137B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015067242A JP6477137B2 (en) 2015-03-27 2015-03-27 Rotary compressor
AU2016201894A AU2016201894B2 (en) 2015-03-27 2016-03-24 Rotary compressor
US15/080,328 US20160281717A1 (en) 2015-03-27 2016-03-24 Rotary compressor
EP16162407.7A EP3073118A1 (en) 2015-03-27 2016-03-24 Rotary compressor
CN201610177100.0A CN106014992B (en) 2015-03-27 2016-03-25 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067242A JP6477137B2 (en) 2015-03-27 2015-03-27 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2016186285A true JP2016186285A (en) 2016-10-27
JP6477137B2 JP6477137B2 (en) 2019-03-06

Family

ID=55628952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067242A Active JP6477137B2 (en) 2015-03-27 2015-03-27 Rotary compressor

Country Status (5)

Country Link
US (1) US20160281717A1 (en)
EP (1) EP3073118A1 (en)
JP (1) JP6477137B2 (en)
CN (1) CN106014992B (en)
AU (1) AU2016201894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102148716B1 (en) * 2014-01-23 2020-08-27 삼성전자주식회사 The freezing apparatus and compressor
JP7451210B2 (en) * 2020-02-13 2024-03-18 瀋陽中航機電三洋制冷設備有限公司 rotary compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041851A (en) * 2008-08-06 2010-02-18 Daikin Ind Ltd Structure of fixing stator and casing, and compressor equipped with the same
JP2012127256A (en) * 2010-12-15 2012-07-05 Daikin Industries Ltd Rotary fluid machine
JP2013162676A (en) * 2012-02-07 2013-08-19 Daikin Ind Ltd Electric motor and compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182386A (en) * 1984-02-28 1985-09-17 Toshiba Corp Sealed type compressor and its assembly
JPS6248988A (en) * 1985-08-16 1987-03-03 Hitachi Ltd Closed type scroll compressor
WO1991019590A1 (en) * 1990-06-21 1991-12-26 Nippon Steel Welding Products & Engineering Co., Ltd. Method of manufacturing tube filled with powder and granular material
JP2000278892A (en) * 1999-03-19 2000-10-06 Mitsubishi Electric Corp Fixed core of ac generator for vehicle and manufacture of stator core thereof
JP2001355582A (en) * 2000-06-14 2001-12-26 Matsushita Electric Ind Co Ltd Hermetically sealed motor-driven compressor and method for assembling it
JP2007255332A (en) * 2006-03-24 2007-10-04 Daikin Ind Ltd Compressor
JP2008045431A (en) * 2006-08-11 2008-02-28 Daikin Ind Ltd Hermetic compressor
JP4241849B2 (en) * 2007-04-02 2009-03-18 ダイキン工業株式会社 Compressor
JP2008248889A (en) 2008-07-02 2008-10-16 Daikin Ind Ltd Hermetic compressor
JP5535511B2 (en) * 2009-03-31 2014-07-02 三菱重工業株式会社 Method for manufacturing hermetic fluid machine and hermetic fluid machine
JP2010255623A (en) 2009-04-01 2010-11-11 Panasonic Corp Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041851A (en) * 2008-08-06 2010-02-18 Daikin Ind Ltd Structure of fixing stator and casing, and compressor equipped with the same
JP2012127256A (en) * 2010-12-15 2012-07-05 Daikin Industries Ltd Rotary fluid machine
JP2013162676A (en) * 2012-02-07 2013-08-19 Daikin Ind Ltd Electric motor and compressor

Also Published As

Publication number Publication date
US20160281717A1 (en) 2016-09-29
AU2016201894A1 (en) 2016-10-13
CN106014992B (en) 2019-11-29
CN106014992A (en) 2016-10-12
EP3073118A1 (en) 2016-09-28
AU2016201894B2 (en) 2020-06-04
JP6477137B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
EP2644894B1 (en) Rotary compressor
EP2530324A2 (en) Rotary compressor
WO2013047064A1 (en) Compressor
JP2016118142A (en) Rotary compressor
CN107237751B (en) Rotary compressor
JP6477137B2 (en) Rotary compressor
JP5561421B1 (en) Rotary compressor
JP5998522B2 (en) Rotary compressor
JP6274041B2 (en) Rotary compressor
JP6201341B2 (en) Rotary compressor
JP2021161878A (en) Rotary compressor
JP2013245628A (en) Rotary compressor
JP5929050B2 (en) Rotary compressor
JP5914975B2 (en) Manufacturing method of rotary compressor
JP2014070596A (en) Rotary compressor
WO2023189038A1 (en) Compressor
JP2014185619A (en) Rotary compressor
JP2017053316A (en) Rotary Compressor
JP2014185529A (en) Rotary compressor
JP6051936B2 (en) Rotary compressor and assembly method thereof
JP6111695B2 (en) Rotary compressor
JP6011647B2 (en) Rotary compressor
JP2017053361A (en) Rotary Compressor
JP2014015850A (en) Rotary compressor
JP2016133000A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151