JP2016180133A - Method for desulfurization of molten pig iron - Google Patents

Method for desulfurization of molten pig iron Download PDF

Info

Publication number
JP2016180133A
JP2016180133A JP2015060080A JP2015060080A JP2016180133A JP 2016180133 A JP2016180133 A JP 2016180133A JP 2015060080 A JP2015060080 A JP 2015060080A JP 2015060080 A JP2015060080 A JP 2015060080A JP 2016180133 A JP2016180133 A JP 2016180133A
Authority
JP
Japan
Prior art keywords
desulfurization
cao
hot metal
desulfurizing agent
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015060080A
Other languages
Japanese (ja)
Inventor
崇 杉谷
Takashi Sugitani
崇 杉谷
貴光 中須賀
Takamitsu Nakasuga
貴光 中須賀
慶太 大内
Keita Ouchi
慶太 大内
真也 大谷
Shinya Otani
真也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015060080A priority Critical patent/JP2016180133A/en
Publication of JP2016180133A publication Critical patent/JP2016180133A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for desulfurization of molten pig iron enabling desulfurization efficiency to be improved using existing equipment.SOLUTION: The method for desulfurization of molten pig iron of the present invention comprises: a step of determining the total supply amount S[kg] of a CaO-based desulfurizing agent based on a total desulfurization treatment time t [sec] and a target sulfur concentration in the desulfurized molten pig iron; a first step of feeding to a molten iron ladle, an aluminum-containing auxiliary material and the CaO-based desulfurizing agent of a first feeding amount S[kg]; and a second step, after the first step, of feeding to the ladle, the desulfurizing agent of a second feeding amount obtained by subtracting the first feeding amount Sfrom the total feeding amount Sand the auxiliary material. In the first step, the desulfurizing agent is charged within 30 sec after charging the auxiliary material. In the second step, the desulfurizing agent is charged within 30 sec after charging the auxiliary material in the second process and also after the elapse of the standby time p [sec] satisfying the following expression (1) from the charge of the desulfurizing agent in the first process: t×(S/S)≤p≤t×(S/S)... (1).SELECTED DRAWING: Figure 1

Description

本発明は、溶銑の脱硫方法に関する。   The present invention relates to a hot metal desulfurization method.

高炉から出銑される溶銑には鋼材の特性を低下させる硫黄が多量に含まれているため、鋼材に要求される硫黄濃度まで硫黄を低減する脱硫処理が行われる。この脱硫処理は溶銑又は溶鋼の段階で行われるが、近年の鋼材品質に対する要求の高まりから溶銑段階での脱硫処理が広く行われている。   Since the hot metal discharged from the blast furnace contains a large amount of sulfur that lowers the properties of the steel material, desulfurization treatment is performed to reduce the sulfur to the sulfur concentration required for the steel material. This desulfurization treatment is performed at the hot metal or molten steel stage, but desulfurization treatment at the hot metal stage is widely performed due to the recent increase in demand for steel material quality.

溶銑の脱硫処理方法として、混銑車などの溶銑搬送容器内の溶銑に脱硫剤を吹き込んで脱硫を行う方法や、溶銑鍋内に溶銑を装入し、この溶銑鍋内で機械撹拌しつつ脱硫を行う方法が採用される。これらの中でも、脱硫処理剤の反応効率が高く低硫黄濃度化が可能な点で、機械撹拌による脱硫方法が主に用いられる。   As a hot metal desulfurization treatment method, desulfurization is performed by blowing a desulfurizing agent into hot metal in a hot metal transport container such as a kneading vehicle, or hot metal is charged into a hot metal ladle and desulfurization is performed while mechanically stirring in the hot metal ladle. The method of doing is adopted. Among these, the desulfurization method by mechanical stirring is mainly used because the reaction efficiency of the desulfurization treatment agent is high and the sulfur concentration can be reduced.

機械撹拌による脱硫は、脱硫処理時間が長いほど硫黄濃度を低減できるが、脱硫処理に利用できる時間は、工場での操業状況に応じて制限される。そのため、より短時間で硫黄濃度を低減できるよう脱硫効率の向上が求められる。   In the desulfurization by mechanical stirring, the sulfur concentration can be reduced as the desulfurization treatment time is longer, but the time available for the desulfurization treatment is limited depending on the operation status in the factory. Therefore, improvement in desulfurization efficiency is required so that the sulfur concentration can be reduced in a shorter time.

このような機械撹拌による脱硫において脱硫効率を向上させる方法として、CaO系脱硫剤を3段階以上に分割し、かつ3分間以上の間隔を隔てて溶銑鍋に添加する脱硫方法が提案されている(特開2009−191300号公報参照)。この脱硫方法は、CaO系脱硫剤を分割添加することで、一括添加する場合に比べてCaOの凝集する比率を低減し、これにより脱硫反応効率を向上させている。   As a method for improving the desulfurization efficiency in such desulfurization by mechanical stirring, a desulfurization method is proposed in which the CaO-based desulfurization agent is divided into three or more stages and added to the hot metal ladle at intervals of 3 minutes or more ( JP, 2009-191300, A). In this desulfurization method, a CaO-based desulfurizing agent is added in a divided manner, thereby reducing the proportion of CaO to be aggregated as compared with the case of batch addition, thereby improving the desulfurization reaction efficiency.

しかし、上記公報で提案される脱硫方法は、アルミドロス粉末を使用した脱硫助剤とCaO系脱硫剤との混合により脱硫用フラックスを作成し、この脱硫用フラックスを溶銑鍋に添加している。つまり、この脱硫方法では、アルミニウムを含む脱硫助剤がCaO系脱硫剤と同時に添加される。このように脱硫助剤がCaO系脱硫剤と同時に添加されると、アルミニウムによる脱硫促進効果が十分に発揮されない状態でCaOが凝集し易くなるため、十分に脱硫効率が向上しないおそれがある。また、CaO系脱硫剤を溶銑に十分に巻き込ませるために上記脱硫用フラックスは撹拌羽根の回転軸近くに添加されるが、このとき脱硫用フラックスと共に大気も巻き込まれる。そのため、脱硫用フラックスの添加直後に脱硫助剤に含まれるアルミニウムが酸化し易くなり、アルミニウムによる十分な脱硫促進効果が得られず、その結果、十分に脱硫効率が向上しないおそれがある。   However, in the desulfurization method proposed in the above publication, a desulfurization flux is prepared by mixing a desulfurization aid using an aluminum dross powder and a CaO-based desulfurization agent, and this desulfurization flux is added to the hot metal ladle. That is, in this desulfurization method, the desulfurization aid containing aluminum is added simultaneously with the CaO-based desulfurization agent. When the desulfurization aid is added at the same time as the CaO-based desulfurization agent as described above, CaO tends to aggregate in a state where the effect of promoting desulfurization by aluminum is not sufficiently exhibited, so that the desulfurization efficiency may not be sufficiently improved. In addition, the desulfurization flux is added in the vicinity of the rotating shaft of the stirring blade in order to sufficiently entrain the CaO-based desulfurization agent in the hot metal. At this time, the atmosphere is also involved with the desulfurization flux. Therefore, aluminum contained in the desulfurization aid is easily oxidized immediately after the addition of the desulfurization flux, and a sufficient desulfurization promoting effect by aluminum cannot be obtained. As a result, the desulfurization efficiency may not be sufficiently improved.

特開2009−191300号公報JP 2009-191300 A

本発明は、上述のような事情に基づいてなされたものであり、従来の設備を用いて脱硫効率を向上できる溶銑の脱硫方法の提供を目的とする。   This invention is made | formed based on the above situations, and it aims at provision of the desulfurization method of the hot metal which can improve desulfurization efficiency using the conventional installation.

上記課題を解決するためになされた発明は、溶銑鍋内で撹拌羽根を回転させつつ、CaO系脱硫剤及びアルミニウム含有副原料を上記溶銑鍋内に供給する溶銑の脱硫方法であって、
全脱硫処理時間t[sec]及び脱硫処理後の溶銑中の目標硫黄濃度から、溶銑へのCaOの全供給量が2.4kg/ton以上10.0kg/ton以下となるCaO系脱硫剤の全供給量S[kg]を決定する工程と、上記副原料及び第1供給量S[kg]のCaO系脱硫剤を溶銑鍋へ供給する第1工程と、上記第1工程後に、上記副原料及び上記全供給量Sから第1供給量Sを減じた第2供給量のCaO系脱硫剤を溶銑鍋へ供給する第2工程とを備え、
上記撹拌羽根の回転数が90rpm以上140rpm以下であり、
上記第1工程が、上記第1供給量Sを上記全供給量Sの40質量%以上70質量%以下とし、回転軸を中心とする撹拌羽根の半径をr[m]、撹拌羽根の先端と溶銑鍋の側壁との距離をL[m]とした場合、上記回転軸中心からr+L/3[m]以上の領域に、第1供給量Sに含まれるCaOに対する質量比が0.005以上0.3以下のアルミニウムを含む上記副原料を投入する第1副原料投入工程と、上記第1副原料投入工程での副原料投入後30sec以内に、上記回転軸中心からr+L/3[m]未満の領域に、第1供給量SのCaO系脱硫剤を投入する第1脱硫剤投入工程とを有し、
上記第2工程が、上記第1脱硫剤投入工程でのCaO系脱硫剤投入後、上記回転軸中心からr+L/3[m]以上の領域に、上記第2供給量に含まれるCaOに対する質量比が0.005以上0.3以下のアルミニウムを含む上記副原料を投入する第2副原料投入工程と、上記第2副原料投入工程での副原料投入後30sec以内、かつ上記第1脱硫剤投入工程でのCaO系脱硫剤投入から下記式(1)を満たす待機時間p[sec]経過後、上記回転軸中心からr+L/3[m]未満の領域に、上記第2供給量のCaO系脱硫剤を投入する第2脱硫剤投入工程とを有することを特徴とする溶銑の脱硫方法である。
t×(S/S2.3≦p≦t×(S/S0.4 ・・・(1)
The invention made to solve the above problems is a hot metal desulfurization method for supplying a CaO-based desulfurizing agent and an aluminum-containing auxiliary material into the hot metal ladle while rotating a stirring blade in the hot metal pan,
Based on the total desulfurization treatment time t [sec] and the target sulfur concentration in the hot metal after the desulfurization treatment, the total supply amount of CaO to the hot metal is 2.4 kg / ton or more and 10.0 kg / ton or less. A step of determining a supply amount S t [kg], a first step of supplying the CaO-based desulfurization agent of the auxiliary material and the first supply amount S 1 [kg] to the hot metal ladle, and the sub step after the first step. material and CaO-based desulfurizing agent in the second supply amount obtained by subtracting the first supply amount S 1 from the total feed amount S t and a second step of supplying the molten iron pan,
The rotation speed of the stirring blade is 90 rpm or more and 140 rpm or less,
The first step, the first feed amount S 1 and less than 70 wt% 40 wt% or more of the total feed amount S t, the radius of the stirring blades around the rotation axis r [m], the stirring blades If the distance between the side walls of the tip and the hot metal pan was L [m], the r + L / 3 [m] or more areas from the rotation axis center, the mass ratio CaO contained in the first feed amount S 1 is 0. Within the first auxiliary material charging step of charging the auxiliary material containing aluminum of 005 or more and 0.3 or less, and within 30 seconds after the charging of the auxiliary material in the first auxiliary material charging step, r + L / 3 [ m] in a region less than m], a first desulfurization agent charging step of charging a CaO-based desulfurization agent having a first supply amount S 1 ,
After the CaO-based desulfurizing agent is charged in the first desulfurizing agent charging step, the second step is a mass ratio with respect to CaO included in the second supply amount in a region of r + L / 3 [m] or more from the rotation shaft center. Within a period of 30 seconds after charging the secondary raw material in the second secondary raw material charging step, and charging the first desulfurizing agent within the second secondary raw material charging step. After the standby time p [sec] satisfying the following formula (1) has elapsed since the CaO-based desulfurization agent was charged in the process, the CaO-based desulfurization with the second supply amount is performed in a region less than r + L / 3 [m] from the rotation axis center. And a second desulfurizing agent charging step for charging the hot metal.
t × (S 1 / S t ) 2.3 ≦ p ≦ t × (S 1 / S t ) 0.4 (1)

当該溶銑の脱硫方法は、CaO系脱硫剤及びアルミニウム含有副原料を2回に分割して溶銑に添加することにより、未反応のまま凝集するCaOを低減できると共に全供給量のうち一部のCaO系脱硫剤を供給した状態で脱硫反応を進行させられるので、脱硫効率を向上できる。また、当該溶銑の脱硫方法は、第2工程で上記式(1)で決定される待機時間pにCaO系脱硫剤を投入することで、第1工程及び第2工程において高い脱硫効率が得られる。また、当該溶銑の脱硫方法は、アルミニウム含有副原料の投入後であって、アルミニウム含有副原料の投入から30sec以内にCaO系脱硫剤を投入することにより、アルミニウムによる脱硫促進効果の低下を抑制できる。また、当該溶銑の脱硫方法は、アルミニウム含有副原料を上記領域に投入することにより、溶銑内に巻き込まれる大気によるアルミニウムの酸化が抑制されるので、アルミニウムによる脱硫促進効果の低下を抑制できる。また、当該溶銑の脱硫方法は、CaO系脱硫剤を上記領域に投入することにより、CaO系脱硫剤が溶銑内へ巻き込まれ易くなり、CaO系脱硫剤の反応効率が向上し易い。当該溶銑の脱硫方法は、このような構成を有することにより、従来の設備を用いて脱硫効率を向上できる。ここで、「アルミニウム」とは、金属アルミニウムを意味し、合金中のアルミニウム等を含むものである。   In the hot metal desulfurization method, the CaO-based desulfurization agent and the aluminum-containing auxiliary raw material are divided into two portions and added to the hot metal to reduce the unreacted CaO and reduce a part of the total supply amount of CaO. Since the desulfurization reaction is allowed to proceed with the system desulfurization agent supplied, the desulfurization efficiency can be improved. Further, in the hot metal desulfurization method, a high desulfurization efficiency is obtained in the first step and the second step by introducing the CaO-based desulfurization agent in the waiting time p determined by the above formula (1) in the second step. . Moreover, the desulfurization method of the hot metal can suppress a decrease in the desulfurization promoting effect by aluminum by adding a CaO-based desulfurization agent within 30 seconds after the addition of the aluminum-containing auxiliary material. . In addition, in the hot metal desulfurization method, by introducing the aluminum-containing auxiliary raw material into the region, the oxidation of aluminum by the atmosphere entrained in the hot metal is suppressed, so that the reduction of the desulfurization promoting effect by aluminum can be suppressed. Further, in the hot metal desulfurization method, by introducing the CaO-based desulfurizing agent into the above-mentioned region, the CaO-based desulfurizing agent is easily caught in the hot metal, and the reaction efficiency of the CaO-based desulfurizing agent is easily improved. Since the hot metal desulfurization method has such a configuration, desulfurization efficiency can be improved using conventional equipment. Here, “aluminum” means metallic aluminum and includes aluminum in the alloy.

以上説明したように、本発明の溶銑の脱硫方法は、従来の設備を用いて脱硫効率を向上できる。   As described above, the hot metal desulfurization method of the present invention can improve the desulfurization efficiency using conventional equipment.

本発明の一実施形態に係る溶銑の脱硫方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the desulfurization method of the hot metal which concerns on one Embodiment of this invention. 図1の溶銑の脱硫方法を用いる溶銑脱硫装置の概略を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an outline of a hot metal desulfurization apparatus using the hot metal desulfurization method of FIG. 1. 図2Aの溶銑脱硫装置の模式的平面図である。It is a typical top view of the hot metal desulfurization apparatus of FIG. 2A. 全脱硫処理時間420secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 420sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間480secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 480sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間540secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 540sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間600secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 600sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間720secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 720sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間780secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 780sec (S 1 / S t) and the CaO-based desulfurizing agent. 全脱硫処理時間900secの場合の第1工程でのCaO系脱硫剤の供給比率(S/S)とCaO系脱硫剤の供給間隔との関係を示すグラフである。It is a graph showing the relationship between the interval of supply of all desulfurization treatment time supply ratio of CaO based desulfurizing agent in the first step in the case of 900sec (S 1 / S t) and the CaO-based desulfurizing agent. 実施例で用いた溶銑脱硫装置の模式的断面図である。It is typical sectional drawing of the hot metal desulfurization apparatus used in the Example. 図4Aの溶銑脱硫装置の撹拌羽根の模式的平面図である。It is a typical top view of the stirring blade of the hot metal desulfurization apparatus of FIG. 4A. 実施例における石灰及びアルミ灰の投入方法毎のE値の相対度数を示すグラフである。It is a graph which shows the relative frequency of E value for every injection | throwing-in method of the lime and aluminum ash in an Example. 実施例における第1工程での石灰の供給比率(S/S)とE値との関係を示すグラフである。It is a graph showing the relationship between the supply ratio (S 1 / S t) and E values of lime in the first step in Example. 実施例における第1工程又は第2工程での石灰に含まれるCaOに対するアルミ灰に含まれるアルミニウムの質量比とE値との関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of the aluminum contained in the aluminum ash with respect to CaO contained in the lime in the 1st process in an Example, or a 2nd process, and E value. 図7AのグラフにおけるAl/CaO比の0.003以上0.006以下の範囲を拡大したグラフである。It is the graph which expanded the range of 0.003 or more and 0.006 or less of Al / CaO ratio in the graph of Drawing 7A. 実施例における第1工程又は第2工程でのアルミ灰投入から石灰投入までの時間とE値との関係を示すグラフである。It is a graph which shows the relationship between the time from the aluminum ash injection | throwing-in in the Example in the 1st process or the 2nd process, and lime injection | throwing-in, and E value. 実施例におけるアルミ灰の投入位置とE値との関係を示すグラフである。It is a graph which shows the relationship between the injection position of the aluminum ash in an Example, and E value. 実施例における石灰の投入位置とE値との関係を示すグラフである。It is a graph which shows the relationship between the injection | throwing-in position of the lime in an Example, and E value.

以下、適宜図面を参照しつつ本発明の溶銑の脱硫方法の実施形態について説明する。   Hereinafter, embodiments of the hot metal desulfurization method of the present invention will be described with reference to the drawings as appropriate.

当該溶銑の脱硫方法は、溶銑鍋内で撹拌羽根を回転させつつ、CaO系脱硫剤及びアルミニウム含有副原料を上記溶銑鍋内に供給する溶銑の脱硫方法であって、図1に示すように、全脱硫処理時間t[sec]及び脱硫処理後の溶銑中の目標硫黄濃度からCaO系脱硫剤の全供給量S[kg]を決定する工程(脱硫剤供給量決定工程:ステップs1)と、上記副原料及び第1供給量S[kg]のCaO系脱硫剤を溶銑鍋へ供給する第1工程(ステップs2)と、ステップs2の第1工程後に、上記副原料及び上記全供給量Sから第1供給量Sを減じた第2供給量のCaO系脱硫剤を溶銑鍋へ供給する第2工程(ステップs3)とを備える。 The hot metal desulfurization method is a hot metal desulfurization method in which a CaO-based desulfurizing agent and an aluminum-containing auxiliary material are supplied into the hot metal ladle while rotating a stirring blade in the hot metal pan, as shown in FIG. A step of determining the total supply amount S t [kg] of the CaO-based desulfurization agent from the total desulfurization treatment time t [sec] and the target sulfur concentration in the hot metal after the desulfurization treatment (desulfurization agent supply amount determination step: step s1); After the first step (step s2) for supplying the auxiliary raw material and the first supply amount S 1 [kg] of the CaO-based desulfurizing agent to the hot metal ladle, and after the first step of step s2, the auxiliary raw material and the total supply amount S and a second step of supplying the hot metal pan (step s3) and the second supply amount of CaO-based desulfurizing agent obtained by subtracting the first supply amount S 1 from t.

当該溶銑の脱硫方法は、図2Aのような機械撹拌方式の溶銑脱硫装置で用いられる。高炉から出銑された溶銑は、溶銑鍋1に装入されて精錬工程を行う転炉などへ移送されるが、転炉に達するまでの間に脱硫処理が行われる。この溶銑脱硫装置は、溶銑鍋1の中心に挿入される耐火物製の撹拌羽根2を備える。つまり、撹拌羽根2は、回転軸が平面視円形の溶銑鍋1の中心と一致するよう溶銑鍋1内に挿入される。この撹拌羽根2は、回転軸の先端から径方向に突出する4枚の羽根を有する。この溶銑脱硫装置は、撹拌羽根2の回転により溶銑Mを撹拌しながらCaO系脱硫剤及びアルミニウム含有副原料を混合することで溶銑Mの脱硫処理を行う。   The hot metal desulfurization method is used in a hot metal desulfurization apparatus of a mechanical stirring type as shown in FIG. 2A. The hot metal discharged from the blast furnace is loaded into the hot metal ladle 1 and transferred to a converter or the like that performs a refining process. The hot metal desulfurization apparatus includes a refractory stirring blade 2 inserted in the center of the hot metal ladle 1. That is, the stirring blade 2 is inserted into the hot metal ladle 1 so that the rotation axis coincides with the center of the hot metal ladle 1 having a circular shape in plan view. The stirring blade 2 has four blades protruding in the radial direction from the tip of the rotating shaft. In this hot metal desulfurization apparatus, the hot metal M is desulfurized by mixing the CaO-based desulfurizing agent and the aluminum-containing auxiliary raw material while stirring the hot metal M by the rotation of the stirring blade 2.

上記撹拌羽根2の回転数は、90rpm以上140rpm以下である。上記回転数が上記下限に満たないと、CaO系脱硫剤が溶銑に混合され難く、脱硫剤の反応効率が低下するおそれがある。逆に、上記回転数が上記上限を超えると、撹拌羽根2の回転に要する動力が大きくなり、設備コストが増加するおそれがある。なお、脱硫処理の初期における回転数上昇時や処理終了直前における回転数低下時など、撹拌羽根2の回転数は脱硫処理中常に一定とは限らない。従って、上記回転数とは脱硫処理中の平均回転数を意味する。   The rotation speed of the stirring blade 2 is 90 rpm or more and 140 rpm or less. If the rotation speed is less than the lower limit, the CaO-based desulfurization agent is difficult to be mixed with the hot metal, and the reaction efficiency of the desulfurization agent may be reduced. On the contrary, when the rotation speed exceeds the upper limit, the power required for the rotation of the stirring blade 2 increases, and the equipment cost may increase. It should be noted that the rotational speed of the stirring blade 2 is not always constant during the desulfurization process, such as when the rotational speed is increased at the initial stage of the desulfurization process or when the rotational speed is decreased immediately before the end of the process. Therefore, the rotation speed means an average rotation speed during the desulfurization process.

ここで、溶銑中の硫黄(S)は、下記式(3)に示すように、酸化カルシウム(CaO)との反応により硫化カルシウム(CaS)として固定化される。また、下記式(3)とアルミニウム(Al)の酸化反応を示す下記式(4)とを合せた下記式(5)から分かるように、アルミニウムを添加することにより、脱硫によってCaOから放出された酸素(O)をアルミニウムと反応させて酸化アルミニウム(Al)とすることができる。従って、アルミニウムを添加することで、溶銑の酸素濃度を低減できるので、より脱硫が進行し易くなる。そのため、当該溶銑の脱硫方法は、脱硫効率を向上させるため、主成分がCaOである石灰を脱硫剤として用いると共に、金属のアルミニウムを含有する副原料を用いる。なお、下記式(3)〜(5)において、()内はスラグ中又は脱硫剤中の成分を表し、[]内は溶銑中の成分を表す。
(CaO)+[S]→(CaS)+[O] ・・・(3)
2[Al]+3[O]→(Al) ・・・(4)
3(CaO)+3[S]+2[Al]→3(CaS)+(Al) ・・・(5)
Here, sulfur (S) in the hot metal is immobilized as calcium sulfide (CaS) by reaction with calcium oxide (CaO) as shown in the following formula (3). Further, as can be seen from the following formula (5), which is a combination of the following formula (3) and the following formula (4) showing the oxidation reaction of aluminum (Al), it was released from CaO by desulfurization by adding aluminum. Oxygen (O) can be reacted with aluminum to form aluminum oxide (Al 2 O 3 ). Therefore, by adding aluminum, the oxygen concentration of the hot metal can be reduced, so that desulfurization proceeds more easily. Therefore, in order to improve the desulfurization efficiency, the hot metal desulfurization method uses lime whose main component is CaO as a desulfurization agent and an auxiliary material containing metallic aluminum. In addition, in following formula (3)-(5), () represents the component in slag or a desulfurization agent, and [] represents the component in hot metal.
(CaO) + [S] → (CaS) + [O] (3)
2 [Al] +3 [O] → (Al 2 O 3 ) (4)
3 (CaO) +3 [S] +2 [Al] → 3 (CaS) + (Al 2 O 3 ) (5)

<脱硫剤供給量決定工程>
まず、ステップs1の脱硫剤供給量決定工程において、全脱硫処理時間t[sec]及び脱硫処理後の溶銑中の目標硫黄濃度からCaO系脱硫剤の全供給量S[kg]を決定する。
<Desulfurization agent supply amount determination step>
First, in the desulfurization agent supply amount determination step of step s1, the total supply amount S t [kg] of the CaO-based desulfurization agent is determined from the total desulfurization treatment time t [sec] and the target sulfur concentration in the hot metal after the desulfurization treatment.

ここで、機械撹拌による脱硫処理において、処理時間が長いほど脱硫は進行するが、長時間の処理は鋼材の生産量の低下を招く。そのため、チャージ毎の全脱硫処理時間tは、次工程の処理開始までの時間余裕や溶銑鍋の物流の状況等によって決定される。一方、溶銑中の硫黄濃度の低減量は、CaO系脱硫剤の供給量を多くすることで大きくできる。また、脱硫処理後の溶銑中の目標硫黄濃度は、鋼種によって決定される。従って、全脱硫処理時間tを決定すると、脱硫処理後の溶銑中の目標硫黄濃度から必要なCaO系脱硫剤の供給量が算出できる。なお、撹拌羽根2は、全脱硫処理時間t回転し続け、その間溶銑の撹拌が行われる。   Here, in the desulfurization process by mechanical stirring, the longer the process time, the more the desulfurization proceeds. However, the long-time process causes a decrease in the production amount of the steel material. Therefore, the total desulfurization processing time t for each charge is determined by the time margin until the start of the processing of the next process, the state of the hot metal ladle distribution, and the like. On the other hand, the reduction amount of the sulfur concentration in the hot metal can be increased by increasing the supply amount of the CaO-based desulfurization agent. Moreover, the target sulfur concentration in the hot metal after the desulfurization treatment is determined by the steel type. Therefore, when the total desulfurization treatment time t is determined, the necessary supply amount of the CaO-based desulfurization agent can be calculated from the target sulfur concentration in the hot metal after the desulfurization treatment. In addition, the stirring blade 2 continues to rotate for the entire desulfurization processing time t, during which the hot metal is stirred.

一方、鋼種によらず溶銑へのCaOの全供給量が2.4kg/ton未満であると、溶銑の質量に対してCaOが少なすぎるため、十分に硫黄濃度の低減ができないおそれがある。逆に、鋼種によらず溶銑へのCaOの全供給量が10.0kg/tonを超えると、未反応で凝集するCaOの割合が多くなるため、硫黄濃度の低減効果のさらなる向上が見込めない。   On the other hand, if the total supply amount of CaO to the hot metal is less than 2.4 kg / ton regardless of the steel type, there is a possibility that the sulfur concentration cannot be sufficiently reduced because CaO is too small relative to the mass of the hot metal. Conversely, if the total amount of CaO supplied to the hot metal exceeds 10.0 kg / ton regardless of the steel type, the proportion of CaO that aggregates unreacted increases, so that further improvement in the effect of reducing the sulfur concentration cannot be expected.

そのため、上記脱硫剤供給量決定工程では、脱硫処理対象の溶銑中の硫黄濃度及び脱硫処理後の溶銑中の目標硫黄濃度の差と上記決定された全脱硫処理時間tとから、溶銑へのCaOの全供給量が2.4kg/ton以上10.0kg/ton以下となるCaO系脱硫剤の全供給量Sを決定する。 Therefore, in the desulfurization agent supply amount determination step, the difference between the sulfur concentration in the hot metal to be desulfurized and the target sulfur concentration in the hot metal after the desulfurization treatment and the determined total desulfurization processing time t are calculated as follows. total supply amount to determine the total supply amount S t of CaO-based desulfurizing agent comprising less 2.4 kg / ton or 10.0 kg / ton of.

<第1工程>
ステップs2の第1工程は、上記副原料を投入する第1副原料投入工程(ステップs21)と、ステップs21の第1副原料投入工程での副原料投入後30sec以内に、第1供給量SのCaO系脱硫剤を投入する第1脱硫剤投入工程(ステップs22)とを有する。
<First step>
The first process of step s2 includes the first supply amount S within 30 seconds after the first sub-material input process (step s21) for inputting the sub-material and the sub-material input in the first sub-material input process of step s21. A first desulfurization agent charging step (step s22) for charging one CaO-based desulfurization agent.

(第1副原料投入工程)
ステップs21の第1副原料投入工程は、撹拌羽根2の回転により溶銑Mを撹拌している溶銑鍋1内に上記副原料を投入する。
(First auxiliary material input process)
In the first auxiliary material charging step of step s21, the auxiliary material is charged into the hot metal ladle 1 in which the hot metal M is being stirred by the rotation of the stirring blade 2.

ステップs21の第1副原料投入工程で投入する上記副原料の供給量は、後述するステップs22の第1脱硫剤投入工程で供給するCaO系脱硫剤の第1供給量Sに含まれるCaOの量に対する質量比が所定範囲となるアルミニウムを含む量とする。上記質量比の下限としては、0.005である。一方、上記質量比の下限としては、0.3である。供給する副原料中のアルミニウムの上記質量比が上記下限に満たないと、脱硫促進に十分なアルミニウムが確保できず、反応効率が低下するおそれがある。一方、投入されたアルミニウムは脱硫反応や大気中酸素によってAlとなり、CaOと反応してCaO−Al系スラグ(カルシウムアルミネート)を生成するが、このカルシウムアルミネートについて、CaOに対するAl濃度が増加すると脱硫能が低下することが知られている。そのため、供給する副原料中のアルミニウムの上記質量比が上記上限を超えると、脱硫能の低下を招き、かえって反応効率が低下するおそれがある。 Step feed rate of the auxiliary material to be introduced in the first auxiliary material adding step of s21 is the CaO contained in the first feed amount S 1 of supplies CaO-based desulfurizing agent in the first desulfurization agent adding step of step s22 to be described later It is set as the quantity containing the aluminum whose mass ratio with respect to quantity becomes a predetermined range. The lower limit of the mass ratio is 0.005. On the other hand, the lower limit of the mass ratio is 0.3. If the mass ratio of aluminum in the auxiliary raw material to be supplied is less than the lower limit, sufficient aluminum for promoting desulfurization cannot be secured, and the reaction efficiency may be lowered. On the other hand, the supplied aluminum becomes Al 2 O 3 by desulfurization reaction or oxygen in the atmosphere, and reacts with CaO to produce CaO—Al 2 O 3 slag (calcium aluminate). It is known that the desulfurization ability decreases when the Al 2 O 3 concentration with respect to the concentration increases. Therefore, when the mass ratio of aluminum in the auxiliary raw material to be supplied exceeds the upper limit, desulfurization ability is lowered, and the reaction efficiency may be lowered.

また、ステップs21の第1副原料投入工程では、回転軸を中心とする撹拌羽根2の半径をr[m]、撹拌羽根2の先端と溶銑鍋1の側壁との距離をL[m]とした場合、図2Bに示すような上記回転軸中心からr+L/3[m]以上の領域Aに上記副原料を投入する。 Further, in the first auxiliary material charging step of step s21, the radius of the stirring blade 2 around the rotation axis is r [m], and the distance between the tip of the stirring blade 2 and the side wall of the hot metal ladle 1 is L [m]. If, the auxiliary materials charged into r + L / 3 [m] or more regions a 1 from the rotation axis center as shown in Figure 2B.

ここで、上記副原料を溶銑鍋1の領域Aに投入する理由について説明する。撹拌羽根2により溶銑鍋1内を撹拌しているときの鉛直方向の溶銑Mの動きFは、図2Aに示すように撹拌羽根2の挿入位置を中心として外周部が上向き、中心部は下向きとなる。つまり、副原料を中心部に投入した場合、溶銑M内へ巻き込まれ易いのに対し、副原料を外周部へ投入した場合、溶銑M内へ巻き込まれ難い。一方、撹拌羽根2を用いる機械撹拌では大気も溶銑M中に巻き込まれるが、大気が巻き込まれた場合、渦中心付近では大気が溶銑M中に溶解した状態又は気体のままの状態で存在するため、酸素ポテンシャルの高い状態、すなわち酸化し易い状態となる。このような状態でアルミニウムを渦中心付近に投入すると、大気によって酸化される量が多くなる。発明者らが確認したところ、撹拌羽根2の回転数が90rpm以上140rpm以下の条件において、回転数によっては巻込み大気の影響が大きくなり、アルミニウムによる脱硫促進効果がほとんど得られない場合もあった。これにより、発明者らは、回転数によらず確実に酸素ポテンシャルを低減するために、アルミニウム含有副原料は溶銑鍋1の外周部に投入し、脱硫反応で溶銑M中の硫黄と結合するCaO系脱硫剤は溶銑鍋1の中心付近に投入すればよいことを見出した。さらに、発明者らは、撹拌羽根2の回転数によらず確実に酸素ポテンシャルを低減できる投入位置について鋭意検討した結果、r+L/3の位置を閾値として、アルミニウム含有副原料は上記位置又はそれよりも外側に投入し、CaO系脱硫剤は上記位置よりも内側に投入すればよいことを見出した。具体的には、アルミニウム含有副原料は、例えば図2Aの添加位置Pから直下に投入すればよい。 The following describes the reason for introducing the auxiliary materials in the area A 1 of the molten iron pan 1. When the inside of the hot metal ladle 1 is being stirred by the stirring blade 2, the vertical movement F of the hot metal M is as shown in FIG. 2A. Become. That is, when the auxiliary raw material is introduced into the central portion, it is easily caught in the hot metal M, whereas when the auxiliary raw material is introduced into the outer peripheral portion, it is difficult to be caught in the hot metal M. On the other hand, in the mechanical stirring using the stirring blade 2, the atmosphere is also involved in the hot metal M, but when the air is involved, the air exists in the molten metal M or in a gas state near the vortex center. In this state, the oxygen potential is high, that is, it is easily oxidized. When aluminum is introduced near the vortex center in such a state, the amount oxidized by the atmosphere increases. As a result of confirmation by the inventors, under the condition where the rotation speed of the stirring blade 2 is 90 rpm or more and 140 rpm or less, depending on the rotation speed, the influence of the entrained atmosphere becomes large, and the desulfurization promoting effect by aluminum may be hardly obtained. . Thereby, in order to reduce oxygen potential reliably regardless of the number of revolutions, the inventors put the aluminum-containing auxiliary material into the outer periphery of the hot metal ladle 1 and combine it with sulfur in the hot metal M by a desulfurization reaction. It has been found that the system desulfurization agent may be introduced near the center of the hot metal ladle 1. Furthermore, as a result of earnestly examining the charging position where the oxygen potential can be reliably reduced regardless of the rotation speed of the stirring blade 2, the inventors have determined that the position of r + L / 3 is a threshold value, and the aluminum-containing auxiliary material is at the above position or more than that. It was also found that the CaO-based desulfurization agent may be introduced inside the above position. Specifically, the aluminum-containing auxiliary raw material may be introduced directly below, for example, from the addition position P 1 of Figure 2A.

(第1脱硫剤投入工程)
ステップs22の第1脱硫剤投入工程は、上記ステップs21の第1副原料投入工程での副原料投入後30sec以内に、つまり副原料投入よりも後で、かつ副原料投入時から30sec以内に、撹拌羽根2の回転軸中心からr+L/3[m]未満の領域Aに、第1供給量SのCaO系脱硫剤を投入する。
(First desulfurization agent charging step)
The first desulfurizing agent charging step of step s22 is performed within 30 seconds after the auxiliary raw material is charged in the first auxiliary raw material charging step of step s21, that is, after the auxiliary raw material is charged and within 30 seconds after the auxiliary raw material is charged. A CaO-based desulfurizing agent having a first supply amount S 1 is charged into a region A 2 less than r + L / 3 [m] from the rotation axis center of the stirring blade 2.

上記全供給量Sに対するステップs22の第1脱硫剤投入工程で投入するCaO系脱硫剤の第1供給量Sの質量比の下限としては、40質量%であり、45質量%がより好ましい。一方、上記第1供給量Sの質量比の上限としては、70質量%であり、65質量%がより好ましい。ここで、溶鉄中の硫黄濃度はCaOと溶鉄との接触角、すなわち濡れ易さに影響を及ぼし、上記硫黄濃度が0.01質量%以上であればCaOと溶鉄とが濡れ易く、CaOは凝集し難いと考えられる。これに対し、脱硫処理前の溶銑の硫黄濃度は一般的に0.01質量%程度であるため、脱硫反応の初期はCaOの凝集抑制効果が期待できる。従って、第1供給量Sが上記下限に満たないと、反応効率が低下するおそれがある。一方、機械撹拌による脱硫処理においてCaOは互いに凝集し、脱硫反応に寄与する界面積が減少する。また、凝集後のCaO粒子の粒径はCaOの供給量に依存する。従って、第1供給量Sが上記上限を超えると、CaOが未反応のまま凝集し易くなり、CaOの反応効率が低下するおそれがある。 The lower limit of the first supply amount S 1 of the mass ratio of the CaO-based desulfurizing agent to be introduced in the first desulfurization agent adding step of step s22 against the total feed amount S t, is 40 wt%, more preferably 45 wt% . On the other hand, the upper limit of the first mass ratio of the feed amount S 1, a 70 wt%, more preferably 65% by mass. Here, the sulfur concentration in molten iron affects the contact angle between CaO and molten iron, that is, the ease of wetting. When the sulfur concentration is 0.01% by mass or more, CaO and molten iron are easily wetted, and CaO aggregates. It seems difficult. On the other hand, since the sulfur concentration of the hot metal before the desulfurization treatment is generally about 0.01% by mass, an effect of suppressing aggregation of CaO can be expected at the initial stage of the desulfurization reaction. Therefore, when the first feed amount S 1 is less than the above lower limit, there is a possibility that the reaction efficiency decreases. On the other hand, in the desulfurization treatment by mechanical stirring, CaO aggregates with each other and the interfacial area contributing to the desulfurization reaction decreases. Moreover, the particle diameter of the CaO particle | grains after aggregation is dependent on the supply amount of CaO. Therefore, when the first feed amount S 1 is greater than the upper limit, CaO tends to agglomerate remains unreacted, reaction efficiency of CaO may be reduced.

次に、ステップs22の第1脱硫剤投入工程で、上記ステップs21の第1副原料投入工程での副原料投入よりも後で、かつ副原料投入時から30sec以内にCaO系脱硫剤を投入する理由について説明する。上述したように、撹拌羽根2を用いる機械撹拌では大気も溶銑M中に巻き込まれるため、溶銑M中の大気によりアルミニウムが酸化されると考えられる。そこで、発明者らは、CaO系脱硫剤の投入タイミングを変えて調査したところ、アルミニウム含有副原料の投入から30秒経過時以降にCaO系脱硫剤を投入した場合、アルミニウムによる脱硫促進効果が得られなくなることを見出した。また、副原料よりも先にCaO系脱硫剤を投入した場合、アルミニウムによる脱硫促進効果が得られないままCaOが凝集する時間帯が生じるため、反応効率が低下する。また、アルミニウム含有副原料とCaO系脱硫剤とを同時に投入した場合、アルミニウムによる酸素ポテンシャル低減効果の無い状態でCaO系脱硫剤を投入することになるので、アルミニウムによる脱硫促進効果が得られず、反応効率が低下する。従って、CaO系脱硫剤は、上記副原料投入後に投入する。   Next, in the first desulfurizing agent charging step of step s22, the CaO-based desulfurizing agent is charged after the auxiliary raw material charging in the first auxiliary raw material charging step of step s21 and within 30 seconds from the charging of the auxiliary raw material. The reason will be explained. As described above, in the mechanical stirring using the stirring blade 2, the atmosphere is also involved in the hot metal M, so that it is considered that aluminum is oxidized by the air in the hot metal M. Therefore, the inventors investigated by changing the timing of introducing the CaO-based desulfurizing agent. As a result, when the CaO-based desulfurizing agent was introduced after 30 seconds from the introduction of the aluminum-containing auxiliary material, the effect of promoting desulfurization by aluminum was obtained. I found it impossible. In addition, when the CaO-based desulfurization agent is introduced before the auxiliary raw material, a reaction time is lowered because CaO is aggregated without obtaining the desulfurization promoting effect by aluminum. Further, when the aluminum-containing auxiliary raw material and the CaO-based desulfurizing agent are simultaneously added, since the CaO-based desulfurizing agent is charged in a state where there is no oxygen potential reduction effect due to aluminum, the desulfurization promoting effect due to aluminum cannot be obtained. Reaction efficiency decreases. Therefore, the CaO-based desulfurizing agent is added after the auxiliary raw material is charged.

上述したように、発明者らは、撹拌羽根2の回転数によらず、r+L/3の位置を閾値としてCaO系脱硫剤を上記位置よりも内側に投入することで高い反応効率が得られることを見出した。従って、CaO系脱硫剤は、例えば図2Aの添加位置Pから直下に投入するとよい。 As described above, the inventors can obtain high reaction efficiency by introducing the CaO-based desulfurization agent to the inside of the above position with the position of r + L / 3 as a threshold regardless of the rotation speed of the stirring blade 2. I found. Thus, CaO-based desulfurizing agent, it is preferable to put just below, for example, from the addition position P 2 in Figure 2A.

<第2工程>
ステップs3の第2工程は、ステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入後、上記副原料を投入する第2副原料投入工程(ステップs31)と、ステップs31の第2副原料投入工程での副原料投入後30sec以内、かつステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入から下記式(1)を満たす待機時間p[sec]経過後、第2供給量SのCaO系脱硫剤を投入する第2脱硫剤投入工程(ステップs32)とを有する。
t×(S/S2.3≦p≦t×(S/S0.4 ・・・(1)
<Second step>
The second step of step s3 includes the second auxiliary material charging step (step s31) in which the auxiliary material is charged after the CaO-based desulfurizing agent is charged in the first desulfurizing agent charging step of step s22, and the second auxiliary material of step s31. Within 30 seconds after the auxiliary raw material is charged in the raw material charging step, and after the standby time p [sec] satisfying the following expression (1) has elapsed from the CaO-based desulfurizing agent charging in the first desulfurizing agent charging step of step s22, the second supply amount and a second desulfurization agent adding step of introducing CaO-based desulfurizing agent S 2 (step s32).
t × (S 1 / S t ) 2.3 ≦ p ≦ t × (S 1 / S t ) 0.4 (1)

(第2副原料投入工程)
ステップs31の第2副原料投入工程は、上記ステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入後、溶銑鍋1内に上記副原料を投入する。
(Second auxiliary material input process)
In the second auxiliary material charging step of step s31, the auxiliary raw material is charged into the hot metal ladle 1 after the CaO-based desulfurizing agent is charged in the first desulfurizing agent charging step of step s22.

ステップs31の第2副原料投入工程で投入する上記副原料の供給量は、後述するステップs32の第2脱硫剤投入工程で供給するCaO系脱硫剤の第2供給量Sに含まれるCaOに対する質量比が所定範囲となるアルミニウムを含む量とする。上記質量比の下限としては、0.005である。一方、上記質量比の下限としては、0.3である。供給する副原料中のアルミニウムの上記質量比が上記下限に満たないと、脱硫促進に十分なアルミニウムが確保できず、反応効率が低下するおそれがある。逆に、供給する副原料中のアルミニウムの上記質量比が上記上限を超えると、脱硫能の低下を招き、かえって反応効率が低下するおそれがある。 Feed rate of the auxiliary material to be introduced in the second sub-material injection process in step s31, the relative CaO contained in the second feed amount S 2 of CaO-based desulfurizing agent is supplied in the second desulfurization agent adding step of step s32 to be described later It is set as the quantity containing the aluminum whose mass ratio becomes a predetermined range. The lower limit of the mass ratio is 0.005. On the other hand, the lower limit of the mass ratio is 0.3. If the mass ratio of aluminum in the auxiliary raw material to be supplied is less than the lower limit, sufficient aluminum for promoting desulfurization cannot be secured, and the reaction efficiency may be lowered. On the contrary, when the mass ratio of aluminum in the auxiliary raw material to be supplied exceeds the upper limit, the desulfurization ability is lowered, and the reaction efficiency may be lowered.

また、ステップs31の第2副原料投入工程では、ステップs21の第1副原料投入工程と同様に、撹拌羽根2の回転軸中心からr+L/3[m]以上の溶銑鍋1の領域Aに上記副原料を投入する。撹拌羽根2の回転軸中心からr+L/3[m]未満の溶銑鍋1の領域Aへ上記副原料を投入すると、アルミニウムによる脱硫促進効果が十分に得られないおそれがある。 Further, in the second auxiliary raw material charging step of step s31, in the same manner as the first auxiliary raw material charging step of step s21, the region A 1 of the hot metal ladle 1 is r + L / 3 [m] or more from the rotation axis center of the stirring blade 2. The above auxiliary materials are charged. When turning the stirring blade 2 from the rotation axis center to r + L / 3 [m] less than the molten iron pan 1 region A 2 auxiliary material, there is a possibility that the desulfurization effect of promoting aluminum can not be obtained sufficiently.

(第2脱硫剤投入工程)
ステップs32の第2脱硫剤投入工程は、上記ステップs31の第2副原料投入工程での副原料投入後30sec以内で、つまり副原料投入よりも後であって副原料投入時から30sec以内で、かつステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入から上記式(1)を満たす待機時間p[sec]経過後に、全供給量Sから第1供給量Sを減じた第2供給量のCaO系脱硫剤を投入する。
(Second desulfurization agent charging step)
The second desulfurizing agent charging step of step s32 is within 30 seconds after the auxiliary raw material is charged in the second auxiliary raw material charging step of step s31, that is, after the auxiliary raw material is charged and within 30 seconds after the auxiliary raw material is charged. and the above equation (1) waiting time satisfy p [sec] elapses after the CaO-based desulfurizing agent introduced in the first desulfurization agent adding step of step s22, the a total feed amount S t by subtracting the first feed amount S 1 2 Supply amount of CaO-based desulfurization agent is charged.

次に、ステップs32の第2脱硫剤投入工程で、上記ステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入から上記式(1)を満たす待機時間p[sec]経過後、上記第2供給量のCaO系脱硫剤を投入する理由について以下に説明する。   Next, in the second desulfurizing agent charging step in step s32, after the standby time p [sec] satisfying the above formula (1) has elapsed from the CaO-based desulfurizing agent charging in the first desulfurizing agent charging step in step s22, the first The reason why the two supply amounts of the CaO-based desulfurizing agent are added will be described below.

機械撹拌による脱硫方法では、CaOは処理中に互いに凝集し脱硫反応に寄与する界面積が減少すること、及び凝集後のCaO粒子の粒径はCaO供給量に依存することから、発明者らは、第1工程でのCaO系脱硫剤の供給量に応じて第2工程でのCaO系脱硫剤の供給タイミングを制御することでCaOの反応効率を向上できると推測した。その結果、発明者らは、CaO系脱硫剤の全供給量Sに対する第1工程で供給する第1供給量Sの比率と、第1工程でのCaO系脱硫剤の供給及び第2工程でのCaO系脱硫剤の供給の間隔との間にCaOの反応効率に関連づけられる関係があることを見出した。 In the desulfurization method by mechanical stirring, CaO aggregates with each other during the treatment, and the interfacial area contributing to the desulfurization reaction decreases, and the particle size of the CaO particles after aggregation depends on the supply amount of CaO. It was speculated that the reaction efficiency of CaO could be improved by controlling the supply timing of the CaO-based desulfurizing agent in the second step according to the supply amount of the CaO-based desulfurizing agent in the first step. As a result, the inventors first the ratio of the feed amount S 1 supplied in the first step to the total feed amount S t of CaO-based desulfurizing agent, supply of CaO-based desulfurizing agent in the first step and the second step It was found that there is a relationship related to the reaction efficiency of CaO with the interval of supplying the CaO-based desulfurization agent at the same time.

具体的には、以下の方法で、上記CaO系脱硫剤の供給比率に対して、上記CaO系脱硫剤の供給間隔の範囲のうち、CaOの反応効率を向上できる範囲が得られる下記式(1)を導出した。まず、後述する実施例の各チャージのデータを用いて、全脱硫処理時間tが同一の条件毎に、横軸を第1工程でのCaO系脱硫剤の供給比率(S/S)、縦軸を第1工程及び第2工程でのCaO系脱硫剤の供給間隔の実績値とし、これらのデータを全脱硫処理時間tごとに撒布図としてグラフ化した。全脱硫処理時間420sec、480sec、540sec、600sec、720sec、780sec及び900secにおけるこれらのグラフを図3A〜図3Gに示す。このグラフ化によって、脱硫効率の高いチャージと低いチャージとに区別することができたので、脱硫効率の高いチャージのうち上限の2点及び下限の2点を用い、上記供給間隔をt[sec]とし、上記全脱硫処理時間tごとに「t=α×(S/S」の形で累乗近似した。なお、累乗近似を用いた理由は、上記CaO系脱硫剤の供給比率に応じて第2工程のCaO系脱硫剤の供給タイミング及びそのタイミングの許容範囲が変化するため、第1工程の上記比率の一次式では表現できないと推測したからである。この近似による解析の結果、αは全脱硫処理時間tと等しくなることがわかった。また、上記Zの値は、脱硫効率の高いチャージが含まれる範囲の下限において2.3、上限において0.4の値が得られ、下記式(1)が導出できた。なお、αとZの値は、小数点以下2桁目を四捨五入した。
t×(S/S2.3≦p≦t×(S/S0.4 ・・・(1)
Specifically, in the following method, a range in which the CaO reaction efficiency can be improved within the range of the CaO-based desulfurization agent supply interval is obtained with respect to the supply ratio of the CaO-based desulfurization agent. ) Was derived. First, using the data of each charge in the examples described later, for each condition where the total desulfurization treatment time t is the same, the horizontal axis represents the supply ratio of the CaO-based desulfurizing agent in the first step (S 1 / S t ), The vertical axis is the actual value of the supply interval of the CaO-based desulfurization agent in the first step and the second step, and these data are graphed as a distribution diagram for each total desulfurization treatment time t. These graphs at the total desulfurization treatment time of 420 sec, 480 sec, 540 sec, 600 sec, 720 sec, 780 sec and 900 sec are shown in FIGS. 3A to 3G. This graph, so it was possible to distinguish a high charge and low charge desulfurization efficiency, using a two-point two points and lower limit of the high desulfurization efficiency charge, the feed interval t R [sec ] And approximated to the power in the form of “t R = α × (S 1 / S t ) Z ” for each total desulfurization treatment time t. The reason why the power approximation is used is that the supply timing of the CaO-based desulfurization agent in the second step and the allowable range of the timing change according to the supply ratio of the CaO-based desulfurization agent. This is because it is assumed that it cannot be expressed by a linear expression. As a result of analysis by this approximation, it was found that α is equal to the total desulfurization treatment time t. Further, the value of Z was 2.3 at the lower limit of the range including the charge with high desulfurization efficiency and 0.4 at the upper limit, and the following formula (1) was derived. The values of α and Z are rounded off to the second decimal place.
t × (S 1 / S t ) 2.3 ≦ p ≦ t × (S 1 / S t ) 0.4 (1)

従って、ステップs32の第2脱硫剤投入工程が、上記ステップs22の第1脱硫剤投入工程でのCaO系脱硫剤投入から上記式(1)を満たす待機時間p[sec]経過後、かつ上記ステップs31の第2副原料投入工程での副原料投入後30sec以内に第2供給量SのCaO系脱硫剤を投入することで、CaOの反応効率を向上できる。なお、上記ステップs31の第2副原料投入工程での副原料投入後30sec以内にCaO系脱硫剤を投入する理由は、上記ステップs22の第1脱硫剤投入工程で、ステップs21の第1副原料投入工程での副原料投入後30sec以内にCaO系脱硫剤を投入する理由と同じである。 Accordingly, the second desulfurizing agent charging step of step s32 is performed after the standby time p [sec] satisfying the above formula (1) has elapsed from the CaO-based desulfurizing agent charging in the first desulfurizing agent charging step of step s22, and the above step within the sub-material injection after 30sec of the second auxiliary raw material introduction step of s31 by introducing second CaO-based desulfurizing agent supply amount S 2, it can be improved reaction efficiency of CaO. The reason why the CaO-based desulfurizing agent is added within 30 seconds after the auxiliary raw material is charged in the second auxiliary raw material charging step of step s31 is that the first auxiliary raw material of step s21 is the first desulfurizing agent charging step of step s22. This is the same as the reason why the CaO-based desulfurizing agent is added within 30 seconds after the auxiliary raw material is charged in the charging step.

また、ステップs32の第2脱硫剤投入工程では、ステップs22の第1脱硫剤投入工程と同様に、撹拌羽根2の回転軸中心からr+L/3[m]未満の領域Aに第2供給量SのCaO系脱硫剤を投入する。このように、領域Aに第2供給量SのCaO系脱硫剤を投入することで、反応効率が向上し易い。 In the second desulfurization agent adding step of step s32, as in the first desulfurization agent adding step of step s22, the second supply amount from the rotation center of the stirring blade 2 in r + L / 3 [m] less than the area A 2 turning on the CaO-based desulfurization agent of S 2. Thus, the reaction efficiency is easily improved by introducing the CaO-based desulfurization agent having the second supply amount S 2 into the region A 2 .

<利点>
当該溶銑の脱硫方法は、CaO系脱硫剤及びアルミニウム含有副原料を2回に分割して溶銑に添加することにより、未反応のまま凝集するCaOを低減できると共に全供給量のうち一部のCaO系脱硫剤を供給した状態で脱硫反応を進行させられるので、脱硫効率を向上できる。また、当該溶銑の脱硫方法は、第2工程で上記式(1)で決定される待機時間pにCaO系脱硫剤を投入することで、第1工程及び第2工程において高い脱硫効率が得られる。また、当該溶銑の脱硫方法は、アルミニウム含有副原料の投入後であって、アルミニウム含有副原料の投入から30sec以内にCaO系脱硫剤を投入することにより、アルミニウムによる脱硫促進効果の低下を抑制できる。また、当該溶銑の脱硫方法は、アルミニウム含有副原料を上記領域Aに投入することにより、溶銑内に巻き込まれる大気によるアルミニウムの酸化が抑制されるので、アルミニウムによる脱硫促進効果の低下を抑制できる。また、当該溶銑の脱硫方法は、CaO系脱硫剤を上記領域Aに投入することにより、CaO系脱硫剤が溶銑内へ巻き込まれ易くなり、CaO系脱硫剤の反応効率が向上し易い。当該溶銑の脱硫方法は、このような構成を有することにより、従来の設備を用いて脱硫効率を向上できる。
<Advantages>
In the hot metal desulfurization method, the CaO-based desulfurization agent and the aluminum-containing auxiliary raw material are divided into two portions and added to the hot metal to reduce the unreacted CaO and reduce a part of the total supply amount of CaO. Since the desulfurization reaction is allowed to proceed with the system desulfurization agent supplied, the desulfurization efficiency can be improved. Further, in the hot metal desulfurization method, a high desulfurization efficiency is obtained in the first step and the second step by introducing the CaO-based desulfurization agent in the waiting time p determined by the above formula (1) in the second step. . Moreover, the desulfurization method of the hot metal can suppress a decrease in the desulfurization promoting effect by aluminum by adding a CaO-based desulfurization agent within 30 seconds after the addition of the aluminum-containing auxiliary material. . Further, the desulfurization method of the molten iron, by placing the aluminum-containing auxiliary materials to the regions A 1, since the oxidation of aluminum by the atmosphere to be entrained in the hot metal is suppressed, it is possible to suppress the deterioration of the desulfurization promoting effect of aluminum . Further, the desulfurization method of the molten iron, by injecting CaO series desulfurizing agent to the region A 2, easily CaO-based desulfurizing agent is involved into the molten iron, easy to improve the reaction efficiency of the CaO-based desulfurizing agent. Since the hot metal desulfurization method has such a configuration, desulfurization efficiency can be improved using conventional equipment.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

実機設備を用いて、溶銑の脱硫効果を評価する実験を行った。具体的には、溶銑鍋として、図4Aの内径Dが4mの取鍋を用い、溶銑Mの浴面から取鍋の内側底面までの深さZを2.7m以上3m以下、溶銑量を240ton以上260ton以下、溶銑温度を1250℃以上1350℃以下、撹拌羽根の回転開始から停止までの全脱硫処理時間tを7分以上15分以下として脱硫処理を行った。撹拌羽根は、4枚の羽根を有し、羽根の高さbが0.8m、羽根の直径dが1.4m、図4Bの羽根のねじれ角θが90°のものを用い、溶銑鍋の平面視で中心となる位置に挿入し、回転数90rpm以上140rpm以下で回転させた。   Experiments were conducted to evaluate the desulfurization effect of hot metal using actual equipment. Specifically, a ladle having an inner diameter D of 4 m in FIG. 4A is used as the hot metal ladle, the depth Z from the bath surface of the hot metal M to the inner bottom surface of the ladle is 2.7 m to 3 m, and the hot metal amount is 240 ton. The desulfurization treatment was performed at 260 ton or less, the hot metal temperature at 1250 ° C. or more and 1350 ° C. or less, and the total desulfurization treatment time t from the start to the stop of the stirring blades at 7 to 15 minutes. The stirring blade has four blades, the blade height b is 0.8 m, the blade diameter d is 1.4 m, and the blade twist angle θ in FIG. 4B is 90 °. It inserted in the position which becomes a center by planar view, and rotated at the rotation speed 90 rpm or more and 140 rpm or less.

CaO系脱硫剤として、CaO純度が約90質量%の焼石灰を用いた。また、アルミニウム含有副原料として、金属アルミニウムが17.0質量%、Alが60.0質量%、MgOが7.2質量%、CaOが0.9質量%、SiOが2.4質量%の組成を有する鉄鋼用アルミドロス(通称でアルミ灰と呼ぶ)を用いた。これらの石灰及びアルミ灰は、溶銑鍋の上方から溶銑の浴面に向けて投入した。 As the CaO-based desulfurization agent, calcined lime having a CaO purity of about 90% by mass was used. Further, as an aluminum-containing auxiliary material, metallic aluminum is 17.0% by mass, Al 2 O 3 is 60.0% by mass, MgO is 7.2% by mass, CaO is 0.9% by mass, and SiO 2 is 2.4% by mass. An aluminum dross for steel having a composition of mass% (commonly called aluminum ash) was used. These lime and aluminum ash were introduced from above the hot metal ladle toward the hot metal bath surface.

なお、ここで用いた溶銑は、炭素(C)の含有量が4.3質量%以上4.6質量%以下、硫黄(S)の含有量が0.013質量%以上0.025質量%以下、ケイ素(Si)の含有量が0.25質量%以上0.35質量%以下、リン(P)の含有量が0.09質量%以上0.13質量%以下であった。   The hot metal used here has a carbon (C) content of 4.3 mass% to 4.6 mass%, and a sulfur (S) content of 0.013 mass% to 0.025 mass%. The silicon (Si) content was 0.25 mass% to 0.35 mass%, and the phosphorus (P) content was 0.09 mass% to 0.13 mass%.

また、全石灰供給量は、目標とする処理後の溶銑中の硫黄濃度から算出した。具体的には、当業者常法の操業データを用い、処理前硫黄濃度と処理後硫黄濃度との差ΔS[質量%]を従属変数、処理時間t[分]及びCaO原単位u[kg/ton]を独立変数とする重回帰分析により導出した下記式(13)により決定した。なお、この重回帰分析は、石灰のCaO含有量を90質量%とし、溶銑量を255ton一定とし、石灰使用量計算値は10の位を四捨五入して行った。
ΔS[質量%]=0.00277+0.000186×t[分]+0.0041×u[kg/ton] ・・・(13)
Moreover, the total lime supply amount was computed from the sulfur concentration in the hot metal after the target process. Specifically, using the operation data of a person skilled in the art, the difference ΔS [mass%] between the sulfur concentration before treatment and the sulfur concentration after treatment is defined as a dependent variable, the treatment time t [min], and the CaO basic unit u [kg / kg]. ton] as an independent variable, and was determined by the following equation (13) derived by multiple regression analysis. The multiple regression analysis was performed by setting the CaO content of lime to 90% by mass, the amount of molten iron to be constant at 255 tons, and the calculated amount of lime used was rounded off to the nearest ten.
ΔS [mass%] = 0.00277 + 0.000186 × t [min] + 0.0041 × u [kg / ton] (13)

このような実機設備を用いて、表1〜表3に示す条件でNo.1〜No.127の各チャージにおける脱硫処理を行った。これらのうち、No.123〜No.127のチャージでは、全供給量の石灰を1回の投入で供給したため第2工程を行っていないので、表3中の第2工程の欄を「−」と記載している。   Using such actual equipment, No. 1 was used under the conditions shown in Tables 1 to 3. 1-No. The desulfurization process in each charge of 127 was performed. Of these, No. 123-No. In the charge of 127, since the second supply process is not performed because the entire supply amount of lime is supplied once, the column of the second process in Table 3 is described as “−”.

なお、表1〜表3中の「Al/CaO比」は、各工程において投入する石灰に含まれるCaOの質量に対する投入するアルミ灰に含まれる金属アルミニウムの質量の割合を示す。また、「Al投入位置」及び「石灰投入位置」は、それぞれアルミ灰及び石灰を投入した位置であり、撹拌羽根の回転軸中心からの距離を示しており、ここで用いた溶銑鍋及び撹拌羽根においてr+L/3の距離は1.13mである。また、「Al後石灰投入間隔」は、アルミ灰投入から石灰投入までの時間を示し、この間隔が0とは、石灰をアルミ灰と同時に投入したことを意味する。また、「石灰投入間隔」は、第1工程での石灰投入から第2工程での石灰投入までの時間を示す。また、「待機時間p」は、上記式(1)から算出されるpの値である。   In addition, "Al / CaO ratio" in Tables 1 to 3 indicates the ratio of the mass of metallic aluminum contained in the aluminum ash to be introduced to the mass of CaO contained in the lime to be introduced in each step. In addition, “Al charging position” and “lime charging position” are positions where aluminum ash and lime are charged, respectively, and indicate the distance from the rotation shaft center of the stirring blade. The hot metal ladle and stirring blade used here In this case, the distance of r + L / 3 is 1.13 m. The “post-Al lime input interval” indicates the time from the input of aluminum ash to the input of lime, and this interval of 0 means that lime was input simultaneously with the aluminum ash. The “lime input interval” indicates the time from the input of lime in the first step to the input of lime in the second step. The “standby time p” is a value of p calculated from the above equation (1).

<脱硫評価>
上記No.1〜No.127の各チャージにおける脱硫処理前後の溶銑中の硫黄濃度を計測し、脱硫効果を評価した。具体的には、まず、脱硫処理前の溶銑の硫黄濃度から脱硫処理後の目標とする硫黄濃度を設定し、これらの硫黄濃度の差分を目標ΔS[質量%]とした。ここで、脱硫処理後の目標とする硫黄濃度は、0.003質量%以上0.012質量%以下の範囲とした。また、脱硫処理後の実測した硫黄濃度と脱硫処理前の硫黄濃度との差分を実績ΔS[質量%]とし、E値=実績ΔS−目標ΔSとし、このE値を脱硫反応効率の指標として用いた。このE値が正の場合、目標よりも効率よく脱硫できたといえ、E値が負の場合、硫黄濃度が目標に未達であり脱硫の効率が低かったといえる。ここでは、このE値が0.0010以上の場合に特に脱硫効率が高いものとして評価「A」とし、E値が0.0010未満のものを評価「B」とした。No.1〜No.127の評価結果を表1〜表3に示す。
<Desulfurization evaluation>
No. above. 1-No. The sulfur concentration in the hot metal before and after the desulfurization treatment in each charge of 127 was measured, and the desulfurization effect was evaluated. Specifically, first, the target sulfur concentration after the desulfurization treatment was set from the sulfur concentration of the hot metal before the desulfurization treatment, and the difference between these sulfur concentrations was set as the target ΔS [mass%]. Here, the target sulfur concentration after the desulfurization treatment was set to a range of 0.003% by mass or more and 0.012% by mass or less. Also, the difference between the measured sulfur concentration after the desulfurization treatment and the sulfur concentration before the desulfurization treatment is the actual ΔS [mass%], and E value = actual ΔS−target ΔS, and this E value is used as an index of the desulfurization reaction efficiency. It was. When this E value is positive, it can be said that desulfurization could be carried out more efficiently than the target. When the E value is negative, it can be said that the sulfur concentration did not reach the target and the desulfurization efficiency was low. Here, when the E value is 0.0010 or more, the evaluation is “A” because the desulfurization efficiency is particularly high, and the evaluation is “B” when the E value is less than 0.0010. No. 1-No. The evaluation results of 127 are shown in Tables 1 to 3.

表1〜表3において、No.1〜No.70は、本発明に規定する範囲内で石灰及びアルミ灰を投入したものである。また、No.71〜No.122は、石灰及びアルミ灰を2回に分けて投入したものであるが、第1工程又は第2工程において本発明のいずれかの規定を満たしていないものである。また、No.123〜No.127は、石灰及びアルミ灰の全供給量を1回で投入したものである。   In Tables 1 to 3, no. 1-No. No. 70 is obtained by adding lime and aluminum ash within the range defined in the present invention. No. 71-No. 122 is one in which lime and aluminum ash are added in two portions, but does not satisfy any of the provisions of the present invention in the first step or the second step. No. 123-No. 127 is one in which the entire supply amount of lime and aluminum ash is added at one time.

本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70を「実施例」、本発明のいずれかの規定を満たさないNo.71〜No.127を「比較例」とした場合のそれぞれのE値の相対度数を図5に示す。なお、「実施例」のE値の平均値は0.0018質量%であり、「比較例」のE値の平均値は−0.0010質量%であった。   No. satisfying all the provisions of the first step and the second step of the present invention. 1-No. No. 70 is an “Example”, which does not satisfy any of the provisions of the present invention. 71-No. FIG. 5 shows the relative frequency of each E value when 127 is “comparative example”. In addition, the average value of the E value of “Example” was 0.0018% by mass, and the average value of the E value of “Comparative Example” was −0.0010% by mass.

また、石灰の全供給量に対する第1工程での石灰供給量(S/S)とE値との関係を図6に示す。図6において、「○」のプロットは本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70のうち上記S/Sが異なるチャージを示し、「×」のプロットは第1工程におけるS/Sの範囲のみが本発明に規定する範囲外であるNo.71〜No.74を示す。 FIG. 6 shows the relationship between the lime supply amount (S 1 / S t ) and the E value in the first step with respect to the total supply amount of lime. In FIG. 6, a plot of “◯” indicates a No. that satisfies all the regulations of the first step and the second step of the present invention. 1-No. 70, the above S 1 / S t shows different charges, and the “x” plot shows the No. 1 in which only the range of S 1 / S t in the first step is outside the range defined in the present invention. 71-No. 74 is shown.

また、上記「Al/CaO比」とE値との関係を図7A及び図7Bに示す。図7Bは、図7AのAl/CaO比が0.003以上0.006以下の範囲を拡大したグラフである。図7A及び図7Bにおいて「○」のプロットは本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70を示し、「×」のプロットは第1工程におけるAl/CaO比の範囲のみが本発明に規定する範囲外であるNo.75〜No.78を示し、「*」のプロットは第2工程におけるAl/CaO比の範囲のみが本発明に規定する範囲外であるNo.79〜No.82を示す。   The relationship between the “Al / CaO ratio” and the E value is shown in FIGS. 7A and 7B. FIG. 7B is a graph obtained by enlarging the range in which the Al / CaO ratio in FIG. 7A is 0.003 or more and 0.006 or less. In FIG. 7A and FIG. 7B, the plot of “◯” indicates a No. that satisfies all the regulations of the first step and the second step of the present invention. 1-No. 70, and the plot of “x” indicates a No. in which only the range of the Al / CaO ratio in the first step is outside the range defined in the present invention. 75-No. 78, and the plot of “*” is No. in which only the range of the Al / CaO ratio in the second step is outside the range defined in the present invention. 79-No. 82 is shown.

また、上記「Al後石灰投入間隔」とE値との関係を図8に示す。図8において、「○」のプロットは本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70を示し、「×」のプロットは第1工程におけるAl後石灰投入間隔の範囲のみが本発明に規定する範囲外であるNo.85〜No.88を示し、「*」のプロットは第2工程におけるAl後石灰投入間隔の範囲のみが本発明に規定する範囲外であるNo.108〜No.111を示す。   Further, FIG. 8 shows the relationship between the “post-Al lime charging interval” and the E value. In FIG. 8, the plot of “◯” indicates a No. satisfying all the rules of the first step and the second step of the present invention. 1-No. No. 70, and the “x” plot shows a No. 1 in which only the range of the post-Al input lime in the first step is outside the range defined in the present invention. 85-No. 88, and the plot of “*” is No. in which only the range of the post-Al lime input interval in the second step is outside the range defined in the present invention. 108-No. 111 is shown.

また、上記Al投入位置とE値との関係を図9に示し、上記石灰投入位置とE値との関係を図10に示す。図9において、「○」のプロットは本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70を示し、「×」のプロットは第1工程におけるアルミ灰投入位置のみが本発明に規定する範囲外であるNo.83及びNo.84を示し、「*」のプロットは第2工程におけるアルミ灰投入位置のみが本発明に規定する範囲外であるNo.105〜No.107を示す。また、図10において、「○」のプロットは本発明の第1工程及び第2工程の全ての規定を満たすNo.1〜No.70を示し、「×」のプロットは第1工程における石灰投入位置のみが本発明に規定する範囲外であるNo.89及びNo.90を示し、「*」のプロットは第2工程における石灰投入位置のみが本発明に規定する範囲外であるNo.112及びNo.113を示す。   FIG. 9 shows the relationship between the Al charging position and the E value, and FIG. 10 shows the relationship between the lime charging position and the E value. In FIG. 9, the plot of “◯” indicates a No. that satisfies all the regulations of the first step and the second step of the present invention. 1-No. No. 70, and the “x” plot indicates a No. in which only the aluminum ash charging position in the first step is outside the range defined in the present invention. 83 and no. 84, and the plot of “*” is No. in which only the aluminum ash charging position in the second step is outside the range defined in the present invention. 105-No. 107 is shown. In FIG. 10, the plot of “◯” indicates a No. that satisfies all the regulations of the first step and the second step of the present invention. 1-No. 70, and the “x” plot shows a No. 1 in which only the lime charging position in the first step is outside the range defined in the present invention. 89 and No. 90, and the plot of “*” is No. in which only the lime charging position in the second step is outside the range defined in the present invention. 112 and no. 113 is shown.

Figure 2016180133
Figure 2016180133

Figure 2016180133
Figure 2016180133

Figure 2016180133
Figure 2016180133

[評価結果]
表1〜表3の結果及び図5より、本発明に規定する範囲内で石灰及びアルミ灰を投入したNo.1〜No.70ではE値が0.0013以上となり、高い脱硫効率が得られることがわかった。
[Evaluation results]
From the results of Tables 1 to 3 and FIG. 5, No. 1 in which lime and aluminum ash were added within the range specified in the present invention. 1-No. In 70, E value became 0.0013 or more, and it turned out that high desulfurization efficiency is obtained.

また、No.71〜No.74は、図6に示すように石灰の全供給量に対する第1工程での石灰供給量が本発明で規定される範囲外であったため、高い脱硫効率が得られなかったと考えられる。つまり、図6に示すように、石灰の全供給量に対する第1工程での石灰供給量を本発明の範囲内とすることで、高い脱硫効率が得られる。   No. 71-No. 74, it is considered that the high desulfurization efficiency was not obtained because the lime supply amount in the first step with respect to the total supply amount of lime was outside the range defined in the present invention as shown in FIG. That is, as shown in FIG. 6, high desulfurization efficiency is obtained by making the lime supply amount in the first step with respect to the total supply amount of lime within the scope of the present invention.

また、No.75〜No.78は、第1工程において、石灰に含まれるCaOに対するアルミ灰に含まれるアルミニウムの質量比が本発明の範囲外であったため、高い脱硫効率が得られなかったと考えられる。また、No.79〜No.82は、第2工程において、石灰に含まれるCaOに対するアルミ灰に含まれるアルミニウムの質量比が本発明の範囲外であったため、高い脱硫効率が得られなかったと考えられる。また、No.114〜No.117は、第1工程及び第2工程において、石灰に含まれるCaOに対するアルミ灰に含まれるアルミニウムの質量比が本発明の範囲外であったため、高い脱硫効率が得られなかったと考えられる。つまり、図7A及び図7Bに示すように、各工程での石灰に含まれるCaOの質量に対するアルミ灰に含まれる金属アルミニウムの質量の割合を本発明の範囲内とすることで顕著に脱硫効率が向上する。   No. 75-No. In No. 78, since the mass ratio of aluminum contained in aluminum ash to CaO contained in lime was outside the scope of the present invention in the first step, it is considered that high desulfurization efficiency was not obtained. No. 79-No. No. 82, in the second step, the mass ratio of aluminum contained in aluminum ash to CaO contained in lime was outside the scope of the present invention, so it is considered that high desulfurization efficiency was not obtained. No. 114-No. 117 is considered that high desulfurization efficiency was not obtained because the mass ratio of aluminum contained in aluminum ash to CaO contained in lime was outside the scope of the present invention in the first step and the second step. That is, as shown in FIGS. 7A and 7B, the desulfurization efficiency is remarkably achieved by setting the ratio of the mass of metal aluminum contained in aluminum ash to the mass of CaO contained in lime in each step within the scope of the present invention. improves.

また、No.83、No.84、No.118及びNo.119は、第1工程において、アルミ灰の投入位置が本発明で規定する領域よりも溶銑鍋の中心に近かったため、高い脱硫効率が得られなかったと考えられる。つまり、図9に示すように、本発明で規定するr+L/3の位置を閾値として、アルミ灰を上記位置又はそれよりも外側に投入することで顕著に脱硫効率が向上する。   No. 83, no. 84, no. 118 and no. In No. 119, it is considered that high desulfurization efficiency could not be obtained in the first step because the aluminum ash charging position was closer to the center of the hot metal ladle than the region defined in the present invention. In other words, as shown in FIG. 9, the desulfurization efficiency is remarkably improved by introducing aluminum ash to the above position or to the outside with the position of r + L / 3 defined in the present invention as a threshold value.

また、No.85及びNo.86は、第1工程において、アルミ灰投入から30secを超えたタイミングで石灰が投入されたため、高い脱硫効率が得られなかったと考えられる。また、No.87及びNo.88は、第1工程において、石灰がアルミ灰と同時に投入されたため、高い脱硫効率が得られなかったと考えられる。つまり、図8に示すように、アルミ灰投入から石灰投入までの時間を本発明の範囲内とすることで顕著に脱硫効率が向上する。   No. 85 and no. In No. 86, it was considered that high desulfurization efficiency could not be obtained because lime was introduced at a timing exceeding 30 sec from the introduction of aluminum ash in the first step. No. 87 and no. No. 88 is considered that high desulphurization efficiency was not obtained because lime was charged at the same time as aluminum ash in the first step. That is, as shown in FIG. 8, the desulfurization efficiency is remarkably improved by setting the time from aluminum ash charging to lime charging within the range of the present invention.

また、No.89及びNo.90は、第1工程において、石灰の投入位置が本発明で規定する領域よりも溶銑鍋の外周に近かったため、高い脱硫効率が得られなかったと考えられる。つまり、図10に示すように、本発明で規定するr+L/3の位置を閾値として、石灰を上記位置よりも内側に投入することで顕著に脱硫効率が向上する。   No. 89 and No. In No. 90, since the lime charging position was closer to the outer periphery of the hot metal ladle than the region defined in the present invention in the first step, it is considered that high desulfurization efficiency was not obtained. That is, as shown in FIG. 10, desulfurization efficiency is significantly improved by introducing lime inward of the above position using the position of r + L / 3 defined in the present invention as a threshold value.

また、No.91〜No.104は、第1工程での石灰投入から第2工程での石灰投入までの時間が、上記式(1)を満たす待機時間pの範囲内でなかったため、高い脱硫効率が得られなかったと考えられる。   No. 91-No. No. 104 was considered to have failed to obtain high desulfurization efficiency because the time from lime input in the first step to lime input in the second step was not within the range of the standby time p satisfying the above formula (1). .

また、No.105〜No.107は、第2工程において、アルミ灰の投入位置が本発明で規定する領域よりも溶銑鍋の中心に近かったため、高い脱硫効率が得られなかったと考えられる。   No. 105-No. No. 107, in the second step, it was considered that high desulfurization efficiency could not be obtained because the position where the aluminum ash was charged was closer to the center of the hot metal ladle than the region defined by the present invention.

また、No.108及びNo.109は、第2工程において、アルミ灰投入から30secを超えたタイミングで石灰が投入されたため、高い脱硫効率が得られなかったと考えられる。また、No.110及びNo.111は、第2工程において、石灰がアルミ灰と同時に投入されたため、高い脱硫効率が得られなかったと考えられる。   No. 108 and no. In No. 109, it is considered that high desulfurization efficiency was not obtained because lime was charged at a timing exceeding 30 sec after the aluminum ash was charged in the second step. No. 110 and No. No. 111 is considered that high desulphurization efficiency was not obtained because lime was charged at the same time as the aluminum ash in the second step.

また、No.112、No.113、No.120及びNo.121は、第2工程において、石灰の投入位置が本発明で規定する領域よりも溶銑鍋の外周に近かったため、高い脱硫効率が得られなかったと考えられる。   No. 112, no. 113, no. 120 and no. In No. 121, it is considered that in the second step, high desulfurization efficiency was not obtained because the lime charging position was closer to the outer periphery of the hot metal ladle than the region defined in the present invention.

また、No.122は、石灰の全供給量に対する第1工程での石灰供給量、第1工程及び第2工程における石灰に含まれるCaOに対するアルミ灰に含まれるアルミニウムの質量比、第1工程及び第2工程におけるアルミ灰の投入位置、第1工程及び第2工程における石灰の投入位置、第1工程及び第2工程における石灰投入に対するアルミ灰の投入タイミング、及び第1工程での石灰投入から第2工程での石灰投入までの時間のいずれも本発明で規定する範囲外であったため、高い脱硫効率が得られなかったと考えられる。   No. 122 is the lime supply amount in the first step relative to the total supply amount of lime, the mass ratio of aluminum contained in the aluminum ash to CaO contained in the lime in the first step and the second step, and in the first step and the second step. Aluminum ash charging position, lime charging position in the first step and the second step, timing of aluminum ash charging relative to the lime charging in the first step and the second step, and from the lime charging in the first step to the second step It is considered that high desulfurization efficiency could not be obtained because any time until lime was added was outside the range defined in the present invention.

また、No.123〜No.127は、石灰及びアルミ灰の全量を1回で投入しているために、未反応のまま凝集するCaOを十分に抑制できず、脱硫効率が十分に向上しなかったと考えられる。   No. 123-No. It is considered that No. 127 was not able to sufficiently suppress CaO that aggregated while remaining unreacted because the entire amount of lime and aluminum ash was added at one time, and the desulfurization efficiency was not sufficiently improved.

これらの評価結果より、本発明に規定する範囲内で脱硫処理を行うことで、高い脱硫効率が得られることが確認できた。   From these evaluation results, it was confirmed that high desulfurization efficiency was obtained by performing desulfurization treatment within the range specified in the present invention.

以上説明したように、当該溶銑の脱硫方法は、従来の設備を用いて脱硫効率を向上できるので、高品質が要求される鋼材の製造に有用である。   As described above, since the hot metal desulfurization method can improve the desulfurization efficiency using conventional equipment, it is useful for the manufacture of steel materials that require high quality.

1 溶銑鍋
2 撹拌羽根
M 溶銑
F 溶銑の動き
1 Hot metal pot 2 Stir blade M Hot metal F Movement of hot metal

Claims (1)

溶銑鍋内で撹拌羽根を回転させつつ、CaO系脱硫剤及びアルミニウム含有副原料を上記溶銑鍋内に供給する溶銑の脱硫方法であって、
全脱硫処理時間t[sec]及び脱硫処理後の溶銑中の目標硫黄濃度から、溶銑へのCaOの全供給量が2.4kg/ton以上10.0kg/ton以下となるCaO系脱硫剤の全供給量S[kg]を決定する工程と、
上記副原料及び第1供給量S[kg]のCaO系脱硫剤を溶銑鍋へ供給する第1工程と、
上記第1工程後に、上記副原料及び上記全供給量Sから第1供給量Sを減じた第2供給量のCaO系脱硫剤を溶銑鍋へ供給する第2工程と
を備え、
上記撹拌羽根の回転数が90rpm以上140rpm以下であり、
上記第1工程が、
上記第1供給量Sを上記全供給量Sの40質量%以上70質量%以下とし、
回転軸を中心とする撹拌羽根の半径をr[m]、撹拌羽根の先端と溶銑鍋の側壁との距離をL[m]とした場合、上記回転軸中心からr+L/3[m]以上の領域に、第1供給量Sに含まれるCaOに対する質量比が0.005以上0.3以下のアルミニウムを含む上記副原料を投入する第1副原料投入工程と、
上記第1副原料投入工程での副原料投入後30sec以内に、上記回転軸中心からr+L/3[m]未満の領域に、第1供給量SのCaO系脱硫剤を投入する第1脱硫剤投入工程とを有し、
上記第2工程が、
上記第1脱硫剤投入工程でのCaO系脱硫剤投入後、上記回転軸中心からr+L/3[m]以上の領域に、上記第2供給量に含まれるCaOに対する質量比が0.005以上0.3以下のアルミニウムを含む上記副原料を投入する第2副原料投入工程と、
上記第2副原料投入工程での副原料投入後30sec以内、かつ上記第1脱硫剤投入工程でのCaO系脱硫剤投入から下記式(1)を満たす待機時間p[sec]経過後、上記回転軸中心からr+L/3[m]未満の領域に、上記第2供給量のCaO系脱硫剤を投入する第2脱硫剤投入工程とを有することを特徴とする溶銑の脱硫方法。
t×(S/S2.3≦p≦t×(S/S0.4 ・・・(1)
A hot metal desulfurization method for supplying a CaO-based desulfurizing agent and an aluminum-containing auxiliary material into the hot metal ladle while rotating a stirring blade in the hot metal pan,
Based on the total desulfurization treatment time t [sec] and the target sulfur concentration in the hot metal after the desulfurization treatment, the total supply amount of CaO to the hot metal is 2.4 kg / ton or more and 10.0 kg / ton or less. Determining a supply amount S t [kg];
A first step of supplying the auxiliary raw material and the first supply amount S 1 [kg] of the CaO-based desulfurization agent to the hot metal ladle;
After the first step, a second step for supplying the auxiliary raw material and the second supply amount of CaO-based desulfurizing agent obtained by subtracting the first supply amount S 1 from the total feed amount S t to the molten iron pan,
The rotation speed of the stirring blade is 90 rpm or more and 140 rpm or less,
The first step is
The first supply amount S 1 and less than 70 wt% 40 wt% or more of the total feed amount S t,
When the radius of the stirring blade centering on the rotation axis is r [m] and the distance between the tip of the stirring blade and the side wall of the hot metal pan is L [m], it is at least r + L / 3 [m] from the rotation shaft center. A first auxiliary raw material charging step of charging the region with the auxiliary raw material containing aluminum having a mass ratio of 0.005 to 0.3 with respect to CaO contained in the first supply amount S 1 ;
First desulfurization in which a CaO-based desulfurization agent having a first supply amount S 1 is introduced into a region less than r + L / 3 [m] from the rotation shaft center within 30 seconds after the addition of the auxiliary material in the first auxiliary material charging step. An agent charging step,
The second step is
After the CaO-based desulfurizing agent is charged in the first desulfurizing agent charging step, the mass ratio with respect to CaO contained in the second supply amount is 0.005 or more in the region of r + L / 3 [m] or more from the rotation axis center. A second auxiliary material charging step of charging the auxiliary material containing 3 or less of aluminum;
Within 30 seconds after charging the secondary raw material in the second secondary raw material charging step, and after waiting time p [sec] satisfying the following formula (1) from the CaO-based desulfurizing agent charging in the first desulfurizing agent charging step, the rotation A hot metal desulfurization method comprising: a second desulfurization agent charging step of charging the second supply amount of the CaO-based desulfurization agent into a region less than r + L / 3 [m] from the shaft center.
t × (S 1 / S t ) 2.3 ≦ p ≦ t × (S 1 / S t ) 0.4 (1)
JP2015060080A 2015-03-23 2015-03-23 Method for desulfurization of molten pig iron Ceased JP2016180133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060080A JP2016180133A (en) 2015-03-23 2015-03-23 Method for desulfurization of molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060080A JP2016180133A (en) 2015-03-23 2015-03-23 Method for desulfurization of molten pig iron

Publications (1)

Publication Number Publication Date
JP2016180133A true JP2016180133A (en) 2016-10-13

Family

ID=57132402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060080A Ceased JP2016180133A (en) 2015-03-23 2015-03-23 Method for desulfurization of molten pig iron

Country Status (1)

Country Link
JP (1) JP2016180133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106183A (en) * 2021-04-17 2021-07-13 乌海市包钢万腾钢铁有限责任公司 Molten iron desulfurizer adding method for steelmaking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041311A (en) * 2001-07-31 2003-02-13 Nkk Corp Method for desulfurizing molten pig iron
JP2006083421A (en) * 2004-09-15 2006-03-30 Sumitomo Metal Ind Ltd Method for producing steel
JP2011117015A (en) * 2009-12-01 2011-06-16 Jfe Steel Corp Method for desulfurizing molten pig iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041311A (en) * 2001-07-31 2003-02-13 Nkk Corp Method for desulfurizing molten pig iron
JP2006083421A (en) * 2004-09-15 2006-03-30 Sumitomo Metal Ind Ltd Method for producing steel
JP2011117015A (en) * 2009-12-01 2011-06-16 Jfe Steel Corp Method for desulfurizing molten pig iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106183A (en) * 2021-04-17 2021-07-13 乌海市包钢万腾钢铁有限责任公司 Molten iron desulfurizer adding method for steelmaking

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
EP2434025B1 (en) Method of desulfurization of molten iron
JPWO2018135344A1 (en) Method for desulfurizing molten steel and desulfurizing agent
JP2006274349A (en) Method for refining steel
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP5895887B2 (en) Desulfurization treatment method for molten steel
JP5408379B2 (en) Hot metal pretreatment method
JP2011144431A (en) Dephosphorizing method for preparing extra-low phosphorus steel by melting
JP4894325B2 (en) Hot metal dephosphorization method
JP2006009146A (en) Method for refining molten iron
JP2016180133A (en) Method for desulfurization of molten pig iron
JP5233383B2 (en) Method for refining molten steel
JP5061545B2 (en) Hot metal dephosphorization method
JP5910069B2 (en) Desulfurization agent, hot metal desulfurization treatment method using the desulfurization agent, and hot metal desulfurization treatment method using refractory
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP6038012B2 (en) Hot metal dephosphorization method with excellent dephosphorization efficiency and iron yield
JP5493911B2 (en) Hot metal dephosphorization method
JP2016186124A (en) Desulfurization method of molten iron
JP4984928B2 (en) Hot metal desulfurization method
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
JP2017133058A (en) Desulfurization method of molten iron
JP2017133069A (en) Desulfurization method of molten pig iron
JP2019189893A (en) Method for desulfurizing molten iron
JP3733819B2 (en) How to remove hot metal
JP5668641B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190423