JP2016179774A - Optical window structure, and optical device having optical window structure - Google Patents

Optical window structure, and optical device having optical window structure Download PDF

Info

Publication number
JP2016179774A
JP2016179774A JP2015061905A JP2015061905A JP2016179774A JP 2016179774 A JP2016179774 A JP 2016179774A JP 2015061905 A JP2015061905 A JP 2015061905A JP 2015061905 A JP2015061905 A JP 2015061905A JP 2016179774 A JP2016179774 A JP 2016179774A
Authority
JP
Japan
Prior art keywords
optical window
optical
thin plate
outer shell
window structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015061905A
Other languages
Japanese (ja)
Other versions
JP6350355B2 (en
Inventor
洋 有竹
Hiroshi Aritake
洋 有竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015061905A priority Critical patent/JP6350355B2/en
Publication of JP2016179774A publication Critical patent/JP2016179774A/en
Application granted granted Critical
Publication of JP6350355B2 publication Critical patent/JP6350355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical window structure with which a required field of vision is secured by joining a plurality of optical windows, and which is lightweight and reduces a shield degree of the field of vision at joint parts of the optical windows, even when elastic deformation arises in an outer shell structure due to severe inner and outer pressure differences, temperature, and aerodynamic load in an environment installed in an aircraft or the like.SOLUTION: The optical window structure is constituted from a plurality of optical windows 1a and 1b and an outer shell structure 2 for holding the optical windows. The optical windows are fixed to a thin plate 3 at end parts of the optical windows, and the thin plate is fixed onto the outer shell structure.SELECTED DRAWING: Figure 3

Description

この発明は光学窓構造に関するものである。特に、航空機等に搭載され、温度変動・内外圧差・振動等への耐性や広い視野が要求される光学窓構造に関するものである。   The present invention relates to an optical window structure. In particular, the present invention relates to an optical window structure that is mounted on an aircraft or the like and requires resistance to temperature fluctuation, internal / external pressure difference, vibration, and a wide field of view.

航空機の外殻をなす窓の保持構造など、厳しい温度・内外圧差・振動などの環境に晒される光学窓の保持構造は、光学窓にストレスが加わらないように保持される方式が一般的である。主な理由は、光学窓の材料は外殻構造をなす金属などの材料に比べて強度が低いためである。具体的には、光学窓による外殻構造の開口の縁に補強材などを付加することで開口の変形と開口の影響による機体の変形を抑制する。光学窓は外殻構造に対してゴムなどにより柔軟に保持され、外殻構造の剛性に寄与しない。   Optical window holding structures that are exposed to severe temperature, internal / external pressure difference, vibration, and other environments such as the window holding structure that forms the outer shell of an aircraft, are generally held so that no stress is applied to the optical window. . The main reason is that the material of the optical window is lower in strength than a material such as a metal having an outer shell structure. Specifically, by adding a reinforcing material or the like to the edge of the opening of the outer shell structure formed by the optical window, the deformation of the opening and the deformation of the airframe due to the influence of the opening are suppressed. The optical window is held flexibly by rubber or the like with respect to the outer shell structure, and does not contribute to the rigidity of the outer shell structure.

一方、航空機搭載用途など厳しい温度・内外圧差・振動などへの耐性を求められる光学窓をもつ光学装置において、所要の視野を確保するために四角など多角形の開口をもつ光学窓を軽量な外殻構造で保持することが求められる。
更に、広い視野の必要性から光学窓を1枚ではなく複数枚継ぎ合わせた構成を要する場合、光学窓による開口はより大きくなる。この場合、外殻構造の軽量化の面から、光学窓へのストレスを抑制しつつ光学窓が外殻構造の剛性を担う保持構造が望ましい。
On the other hand, in an optical device with an optical window that requires resistance to severe temperature, internal / external pressure difference, vibration, etc., such as in an aircraft application, an optical window with a polygonal aperture such as a square is required to be light outside to secure the required field of view. It is required to be held in a shell structure.
Furthermore, when a configuration is required in which a plurality of optical windows are joined instead of one because of the necessity of a wide field of view, the opening by the optical window becomes larger. In this case, from the viewpoint of weight reduction of the outer shell structure, a holding structure in which the optical window bears the rigidity of the outer shell structure while suppressing stress on the optical window is desirable.

従来、真空容器の覗き窓などにおいて、円形の光学窓材を保持構造に溶接する技術が開示されている(例えば、特許文献1、非特許文献1参照)。   Conventionally, a technique for welding a circular optical window material to a holding structure in a viewing window of a vacuum vessel or the like has been disclosed (see, for example, Patent Document 1 and Non-Patent Document 1).

特開2004−149827号公報(第8頁、第1図)Japanese Unexamined Patent Publication No. 2004-149827 (page 8, FIG. 1)

Paul R Yonder,Jr.著「Mounting optics in Optical Instruments」2002年、P143-144Paul R Yonder, Jr. “Mounting optics in Optical Instruments” 2002, P143-144

特許文献1には真空容器の覗き窓の製造に関する技術が示されている。サファイア窓の金属製保持構造との接合面にメタライズ層を設け、窓と保持構造の間をろう付けする構造において、ろう付けされる部位の保持構造の形状・寸法を適切なものとすることを特徴とする。しかしながら、この技術は光学部品の保持構造としては真空容器などに用いられる円形窓を対象としており、複雑な環境条件における多角形窓、かつ外殻構造の剛性を担う光学窓の保持には適用できない。   Patent Document 1 discloses a technique related to manufacturing a viewing window for a vacuum vessel. In the structure where a metallized layer is provided on the joint surface of the sapphire window with the metal holding structure and brazed between the window and the holding structure, the shape and dimensions of the holding structure of the part to be brazed should be appropriate. Features. However, this technology is intended to hold circular windows used in vacuum vessels or the like as the holding structure for optical components, and cannot be applied to holding polygonal windows under complex environmental conditions and optical windows that bear the rigidity of the outer shell structure. .

非特許文献1には複数枚の平面光学窓材を継ぎ合わせることにより、広い視野を得る光学窓を構成する技術が示されている。光学窓は外殻構造に対してシール材で柔軟保持されている。また、光学窓の継ぎ合わせ部はシール材のみで継ぎ合わされている。この技術は、光学窓が外殻構造に対して柔軟保持されているために、光学窓が外殻構造の剛性に寄与していない。また光学窓の間をシール材のみで継ぎ合わせる構造は、内外圧差に晒されると光学窓が弾性変形しシール材が引張方向の荷重を受け損傷しやすいため、光学窓の弾性変形の量を十分に小さくするために厚い光学窓を必要とする。光学窓を厚くすると、透過率など光学性能の低下や、質量増加等が生じる。   Non-Patent Document 1 discloses a technique for constructing an optical window that obtains a wide field of view by joining together a plurality of planar optical window materials. The optical window is held flexibly by a sealing material with respect to the outer shell structure. Further, the joint portion of the optical window is joined only by the seal material. In this technique, since the optical window is held flexibly with respect to the outer shell structure, the optical window does not contribute to the rigidity of the outer shell structure. In addition, the structure in which the optical windows are joined only with the seal material, the optical window is elastically deformed when exposed to the internal / external pressure difference, and the seal material is easily damaged by the load in the tensile direction. Requires a thick optical window to make it smaller. When the optical window is thickened, the optical performance such as transmittance is reduced, and the mass is increased.

従来、航空機搭載用途の光学装置における光学窓は、背景技術に示すように光学窓を外殻構造が柔軟に保持することで、ストレスが加わりにくい構造が用いられてきたが、光学窓が外殻の剛性を担わないため、特に窓による開口が大きい場合、保持構造の剛性要求を満たし、軽量化を図る上で制約となっていた。   Conventionally, as shown in the background art, an optical window in an optical device for aircraft use has a structure in which the outer shell structure holds the optical window flexibly so that stress is not easily applied. In particular, when the opening by the window is large, the rigidity requirement of the holding structure is satisfied and the weight is reduced.

また、航空機搭載窓などEMC(Electro-Magnetic Compatibility)などの理由により電磁波を遮蔽する必要から、電磁波としては開口となる導電性のない光学窓を、微細な網状の導電体などで遮蔽する場合がある。この窓構造においては、保持構造と光学窓間は、光学窓へのストレスを緩和する目的から剛性の低いゴム系などの材料を介して固定されているため、光学窓と保持構造間の電気的な導通を確保する構造として、アース線を設けるか、または、ゴム系材料の一部を導電性材料にするなど、複雑な構造を必要とした。   In addition, since electromagnetic waves need to be shielded for reasons such as EMC (Electro-Magnetic Compatibility) such as aircraft-mounted windows, there are cases where non-conductive optical windows that serve as openings for electromagnetic waves are shielded with a fine mesh conductor or the like. is there. In this window structure, the holding structure and the optical window are fixed with a low-rigidity rubber-based material for the purpose of reducing stress on the optical window. As a structure for ensuring proper conduction, a complicated structure such as providing a ground wire or using a part of the rubber-based material as a conductive material is required.

また、光学窓の外面が、装置が搭載される航空機(以下、搭載母機と呼ぶ)の高高度の飛行などにより冷却されると、装置内部の空気が含む水分が結露し、光学窓に曇りが生じる。曇りを防止するために、内部空気を乾燥させ結露を防止する方法があるが、装置内部への水分の浸入などにより曇りが発生した場合、曇りを除去する手段が必要となる。光学窓近傍の外殻構造にヒータを設ける手段があるが、光学窓を間接的に加熱するため曇りを除去するための時間と熱量を多く必要とした。   In addition, when the outer surface of the optical window is cooled by high-altitude flight of an aircraft on which the device is mounted (hereinafter referred to as the mounted mother machine), moisture contained in the air inside the device is condensed and the optical window becomes cloudy. Arise. In order to prevent fogging, there is a method of drying the internal air to prevent dew condensation. However, when fogging occurs due to the ingress of moisture into the apparatus, a means for removing the fogging is required. There is a means for providing a heater in the outer shell structure near the optical window, but since the optical window is indirectly heated, a large amount of time and heat is required to remove fog.

この発明は係る課題を解決するためになされたものであり、複雑な構造を必要とせず、軽量で、窓の開口を大きくできる光学窓の保持構造を提供することを目的とする。   An object of the present invention is to provide an optical window holding structure that does not require a complicated structure, is lightweight, and can enlarge the window opening.

この発明に係る光学窓構造は、複数の光学窓と、前記光学窓を保持する外殻構造からなる光学窓構造であって、前記光学窓は、前記光学窓の端部において薄板と固定され、前記薄板は、前記外殻構造に固定される。   The optical window structure according to the present invention is an optical window structure comprising a plurality of optical windows and an outer shell structure for holding the optical window, and the optical window is fixed to a thin plate at an end of the optical window, The thin plate is fixed to the outer shell structure.

この発明に係る光学窓構造によれば、複雑な光学窓の保持構造を必要とせず、軽量であって、光学窓の視界を広く確保できる。   The optical window structure according to the present invention does not require a complicated optical window holding structure, is lightweight, and can ensure a wide field of view of the optical window.

この発明の実施の形態1である光学窓構造の斜視図である。It is a perspective view of the optical window structure which is Embodiment 1 of this invention. この発明の実施の形態1である光学窓構造(図1)の断面図(断面A-A)である。It is sectional drawing (cross section AA) of the optical window structure (FIG. 1) which is Embodiment 1 of this invention. この発明の実施の形態1である光学窓構造の光学窓と窓枠の接合部分の拡大図である。It is an enlarged view of the junction part of the optical window and window frame of the optical window structure which is Embodiment 1 of this invention. この発明の実施の形態1である光学窓と薄板間の線膨張差により生じる応力を低減する構造の例である。It is an example of the structure which reduces the stress which arises by the linear expansion difference between the optical window which is Embodiment 1 of this invention, and a thin plate. この発明の実施の形態2である光学窓構造の断面図である。It is sectional drawing of the optical window structure which is Embodiment 2 of this invention. この発明の実施の形態2である光学窓に設けるメッシュの構成図である。It is a block diagram of the mesh provided in the optical window which is Embodiment 2 of this invention. この発明の実施の形態3である光学窓に設けるヒータの構成図である。It is a block diagram of the heater provided in the optical window which is Embodiment 3 of this invention. 従来の光学窓の保持構造の断面図の例である。It is an example of sectional drawing of the holding structure of the conventional optical window.

実施の形態1.
図1は、この発明の実施の形態1における光学窓構造の斜視図である。
図1において、本実施の形態に係る光学窓構造100は、平板である複数枚の光学窓1(光学窓1a、1b、1c、1d)と、複数枚の光学窓1(光学窓1a、1b、1c、1d)を保持する外殻構造2からなる。
光学窓1aと隣接する光学窓1bとは外殻構造2を介して接合される。光学窓1aの面に垂直となる方向と光学窓1bの面に垂直となる方向は異なる方向であって、各々の垂直方向の間には所定の角度の開きがある。
同様に、光学窓1bと隣接する光学窓1cの各々の面の垂直方向、光学窓1cと隣接する光学窓1dの各々の面の垂直方向も異なる方向であって、各々の垂直方向の間には所定の角度の開きがある。
Embodiment 1 FIG.
1 is a perspective view of an optical window structure according to Embodiment 1 of the present invention.
In FIG. 1, an optical window structure 100 according to the present embodiment includes a plurality of optical windows 1 (optical windows 1a, 1b, 1c, and 1d) that are flat plates and a plurality of optical windows 1 (optical windows 1a and 1b). 1c, 1d).
The optical window 1 a and the adjacent optical window 1 b are joined via the outer shell structure 2. The direction perpendicular to the surface of the optical window 1a and the direction perpendicular to the surface of the optical window 1b are different directions, and there is a predetermined angle gap between the vertical directions.
Similarly, the vertical direction of each surface of the optical window 1c adjacent to the optical window 1b and the vertical direction of each surface of the optical window 1d adjacent to the optical window 1c are different directions between the vertical directions. Has a predetermined angle of opening.

図2は、図1に示した光学窓構造100のA−Aの箇所における断面図(断面図A-A)である。また、図3は、図2に示した光学窓と窓枠部分の拡大図である。
図2において、外殻構造2は断面が五角形の五角柱の形状をなすものであり、五角柱の底面側にあたる一面には締結ねじ6を挿入するねじ穴が設けられている。底面につながる面で相対する2つの面には各々光学窓1aと、光学窓1bが接合される。
光学窓1により、光学窓構造100を備えたカメラ等の光学装置(図示せず)の内側と外側(外気側)が区分けされる。内側の光学装置は、各々向きの異なる平面の光学窓1a、1b、1c、1dの組み合わせからなる窓を通して、前方、左右方向の視界を確保している。
FIG. 2 is a cross-sectional view (cross-sectional view AA) of the optical window structure 100 shown in FIG. FIG. 3 is an enlarged view of the optical window and window frame portion shown in FIG.
In FIG. 2, the outer shell structure 2 has the shape of a pentagonal column with a pentagonal cross section, and a screw hole into which a fastening screw 6 is inserted is provided on one surface corresponding to the bottom surface side of the pentagonal column. An optical window 1a and an optical window 1b are joined to two opposing surfaces connected to the bottom surface.
The optical window 1 separates an inner side and an outer side (outside air side) of an optical device (not shown) such as a camera provided with the optical window structure 100. The inner optical device secures the field of view in the front and left and right directions through the windows formed by combining the optical windows 1a, 1b, 1c, and 1d having different planes.

図3は、図2中に四角枠で囲った外殻構造2と光学窓1aと光学窓1bの接合部分の拡大図である。五角柱の形状を成す外殻構造2の底面とその両脇の面に沿ったコの字型の形状に折り曲げられた薄板3が外殻構造2に嵌め込まれ、締結ねじ6によって接合される。外殻構造2と薄板3間に残る隙間は、光学窓構造100を備える光学装置の内部気密を確保するためにシール材5により埋められる。
光学窓1aの端部と薄板3は接合部4により接合される。具体的には光学窓1aの端面
と薄板3が接合部4により接合される。また、光学窓1bの端部と薄板3は接合部4により接合される。
FIG. 3 is an enlarged view of a joint portion of the outer shell structure 2, the optical window 1 a, and the optical window 1 b surrounded by a square frame in FIG. 2. A thin plate 3 bent into a U-shape along the bottom surface of the outer shell structure 2 having the shape of a pentagonal column and both sides of the outer shell structure 2 is fitted into the outer shell structure 2 and joined by a fastening screw 6. The gap remaining between the outer shell structure 2 and the thin plate 3 is filled with the sealing material 5 in order to ensure the internal airtightness of the optical device including the optical window structure 100.
The end of the optical window 1 a and the thin plate 3 are joined by the joint 4. Specifically, the end face of the optical window 1 a and the thin plate 3 are joined by the joining portion 4. Further, the end portion of the optical window 1 b and the thin plate 3 are joined by the joining portion 4.

このような構成の光学窓構造100および光学窓構造100を備える光学装置を搭載する搭載母機が飛行を開始すると、光学装置の外側の大気圧が飛行高度に応じて低下するため、光学窓1(光学窓1a、1b、1c、1d)および外殻構造2は内外圧差に晒され、光学装置の外側の方向に膨らむ。
ここで、薄板3は高剛性に光学窓1に接合されているため、薄板3の引張方向の剛性により光学窓1間および光学窓1と外殻構造2間の並進方向の相対変位が抑制されることから、光学窓1が外殻構造2の剛性を担う。
その一方で、薄板3は板厚の薄さに応じて曲げ方向の剛性を低くできることから、上記の膨らみ挙動により光学窓1間、光学窓1と外殻構造2間に生じる回転方向の相対変位が、特に強度的に弱い光学窓1に加わりにくくなり、光学窓1の強度確保が容易となる。
When the optical window structure 100 having such a configuration and the mounted mother machine equipped with the optical device including the optical window structure 100 start to fly, the atmospheric pressure outside the optical apparatus decreases according to the flight altitude, so that the optical window 1 ( The optical windows 1a, 1b, 1c, 1d) and the outer shell structure 2 are exposed to the internal / external pressure difference and swell in the direction of the outside of the optical device.
Here, since the thin plate 3 is joined to the optical window 1 with high rigidity, the relative displacement in the translational direction between the optical windows 1 and between the optical window 1 and the outer shell structure 2 is suppressed by the rigidity in the tensile direction of the thin plate 3. Therefore, the optical window 1 bears the rigidity of the outer shell structure 2.
On the other hand, since the thin plate 3 can reduce the rigidity in the bending direction according to the thin plate thickness, the relative displacement in the rotational direction generated between the optical windows 1 and between the optical window 1 and the outer shell structure 2 due to the swelling behavior described above. However, it becomes difficult to add to the optical window 1 that is particularly weak in strength, and it is easy to ensure the strength of the optical window 1.

また、視野を複数枚の光学窓を継ぎ合わせにより確保する場合、光学窓の継ぎ合わせ部に生じる視野の遮蔽の度合が小さいことが光学装置としての性能面において望ましい。視野が遮断される遮断幅を図3に示す。   In addition, when securing a field of view by joining a plurality of optical windows, it is desirable in terms of performance as an optical device that the degree of shielding of the field of view generated at the joint portion of the optical window is small. FIG. 3 shows the blocking width at which the visual field is blocked.

従来技術による光学窓構造101の断面図の例を図8に示す。
従来の光学窓構造101は、光学窓10と外殻構造11とリテーナ12と締結ねじ14とシール材13からなる。図8において、光学窓10は、ゴムなど低剛性のシール材13を介して、外殻構造11とリテーナ12により保持される。リテーナ12は外殻構造11に対して締結ねじ14を用いて締結される。
このように、従来の光学窓構造101は外殻構造11の幅が広くなるため視野が遮蔽される遮蔽幅が広く、視野性能で劣るという問題があった。
An example of a cross-sectional view of an optical window structure 101 according to the prior art is shown in FIG.
The conventional optical window structure 101 includes an optical window 10, an outer shell structure 11, a retainer 12, a fastening screw 14, and a seal material 13. In FIG. 8, the optical window 10 is held by the outer shell structure 11 and the retainer 12 via a low-rigidity sealing material 13 such as rubber. The retainer 12 is fastened to the outer shell structure 11 using a fastening screw 14.
As described above, the conventional optical window structure 101 has a problem that the field of view is shielded wide because the width of the outer shell structure 11 is wide, and the field of view performance is inferior.

一方、本実施の形態に係る光学窓構造100では、図3に示すように、光学窓1aの端部と薄板3は接合部4により接合される。また、光学窓1bの端部と薄板3は接合部4により接合される。
このため、視野の遮蔽幅で比較すると、外殻構造2による視野の遮蔽幅は本実施の形態に係る光学窓構造の方が小さくすることが可能となる。
On the other hand, in the optical window structure 100 according to the present embodiment, as shown in FIG. 3, the end of the optical window 1 a and the thin plate 3 are joined by the joining portion 4. Further, the end portion of the optical window 1 b and the thin plate 3 are joined by the joining portion 4.
For this reason, when compared with the shielding width of the visual field, the shielding width of the visual field by the outer shell structure 2 can be made smaller in the optical window structure according to the present embodiment.

光学窓1の端部と薄板3を接合する接合方法としては、高剛性の接着剤を用いる方法、あるいは、光学窓1の端部をメタライズし薄板3をろう付けする構造などがある。
高剛性の接着剤を用いる場合、ろう付けに伴う高温による初期応力の発生がなく、ろう付け可能な材料の制約を受けない長所がある。
一方ろう付けは、接合強度において接着を上回り、経年劣化の影響が小さいという長所がある。
使用条件に応じて、高剛性の接着剤を用いる場合と、ろう付けを行う場合とを使い分けることにより、幅広い用途に対応可能である。
As a joining method for joining the end portion of the optical window 1 and the thin plate 3, there are a method using a highly rigid adhesive or a structure in which the end portion of the optical window 1 is metallized and the thin plate 3 is brazed.
When a high-rigidity adhesive is used, there is an advantage that there is no generation of initial stress due to high temperature due to brazing, and there is no restriction on materials that can be brazed.
On the other hand, brazing has an advantage in that the bonding strength exceeds adhesion and the influence of aging is small.
Depending on the conditions of use, a wide range of applications can be accommodated by properly using the case of using a highly rigid adhesive and the case of brazing.

薄板3を光学窓1に対してろう付けする場合、ろう付け時の高温から常温に変化する際に両者の線膨張差により、初期応力が発生する。
初期応力を緩和する方法として、線膨張係数が略同一で線膨張係数の差が小さい材料を用いるほかに、薄板3の形状変更によっても応力を緩和できる。
図4は、実施の形態1である光学窓1と薄板間3の線膨張差により生じる応力を低減する構造の例である。
図3に示すように、薄板4にスリットなどを設ける方法がある。このスリットにより図3中のB方向の剛性を低くすることができるため、線膨張差による応力を緩和することができる。
When the thin plate 3 is brazed to the optical window 1, an initial stress is generated due to the difference in linear expansion between the two when changing from a high temperature during brazing to a normal temperature.
As a method of relieving the initial stress, the stress can be relieved by changing the shape of the thin plate 3 in addition to using a material having substantially the same linear expansion coefficient and a small difference in linear expansion coefficient.
FIG. 4 is an example of a structure that reduces the stress caused by the linear expansion difference between the optical window 1 and the thin plate 3 according to the first embodiment.
As shown in FIG. 3, there is a method of providing a slit or the like in the thin plate 4. Since the slit can reduce the rigidity in the B direction in FIG. 3, the stress due to the difference in linear expansion can be relieved.

以上のように、本実施の形態に係る光学窓構造によれば、光学窓と外殻構造間を、面内の引張方向の剛性が高く、面外方向の剛性が低い薄板を介して接合することにより、航空機の飛行に伴う外殻構造の内外圧差により生じる、光学窓による開口部の開きを光学窓と薄板がもつ引張方向の剛性で抑制することができる一方で、剛に保持した場合に生じる曲げ方向のストレスを緩和できる。
光学窓は薄板の介在により曲げを受けにくく、主に引張方向の荷重で外殻構造の特に内外圧差によるフープ方向のストレスを低減するため外殻構造の剛性に寄与する。
これにより、外殻構造を軽量化でき、光学装置を軽量化することが可能となる。
As described above, according to the optical window structure according to the present embodiment, the optical window and the outer shell structure are joined via a thin plate having high in-plane tensile rigidity and low out-of-plane rigidity. This makes it possible to suppress the opening of the opening by the optical window caused by the difference in internal and external pressure of the outer shell structure that accompanies the flight of the aircraft with the rigidity in the tensile direction of the optical window and the thin plate, while holding it rigidly. The stress in the bending direction that occurs can be alleviated.
The optical window is less susceptible to bending due to the presence of the thin plate, and contributes to the rigidity of the outer shell structure mainly to reduce the stress in the hoop direction due to the inner / outer pressure difference of the outer shell structure mainly by the load in the tensile direction.
Thereby, the outer shell structure can be reduced in weight, and the optical device can be reduced in weight.

また、本実施の形態に係る光学窓構造によれば、平面窓を複数枚貼り合わせて所要の視界を確保する場合に生じる貼り合わせ部による視界の遮蔽量を、従来構造に比べて低減することが可能となる。   In addition, according to the optical window structure according to the present embodiment, the amount of visual field shielding by the bonding portion that occurs when a plurality of flat windows are bonded together to ensure the required visual field is reduced compared to the conventional structure. Is possible.

薄板を光学窓に接合する手段として、高剛性な構造用接着剤を用いる方法と、光学窓にメタライズし、薄板をろう付けする方法があるが、本実施の形態に係る光学窓構造では、両者の得失を考慮して選択することが可能である。
前者(高剛性な構造用接着剤を用いる方法)は後者(光学窓にメタライズし、薄板をろう付けする方法)に対して、強度面で劣る一方で施工性に優れ、ろう付け温度と常温との温度差と接合部品間の線膨張差による初期歪みを低減できる。
後者は前者に対して、接着による経年劣化など信頼性の懸念が小さいという長所を有する。
As a means for joining the thin plate to the optical window, there are a method using a highly rigid structural adhesive and a method of metalizing the optical window and brazing the thin plate, but in the optical window structure according to the present embodiment, both It is possible to select in consideration of the advantages and disadvantages.
The former (a method using a highly rigid structural adhesive) is inferior in strength to the latter (a method of metalizing an optical window and brazing a thin plate), but has excellent workability, brazing temperature and normal temperature. The initial strain due to the difference in temperature and the difference in linear expansion between the joined parts can be reduced.
The latter has the advantage that reliability concerns such as aging deterioration due to adhesion are small compared to the former.

なお、薄板をろう付けする構造の場合、靱性があり、光学窓材と線膨張係数を近い薄板の材料とすることにより、ろう付け時に晒される高温環境から常温への変化に伴う光学窓材に生じる応力、あるいは、光学装置の運用中に晒される環境温度の変化に伴う光学窓材に生じる応力を低減できる、結果として、高強度な接合部を得ることができる。
例えば光学窓が線膨張係数7.7×10-6[/℃]のサファイア材の場合、薄板の材料として線膨張係数5×10-6[/℃]とサファイアに近い、鉄-ニッケル-コバルト合金などを用いることが望ましい。
In addition, in the case of a structure that brazes a thin plate, it has toughness, and by using a thin plate material that has a linear expansion coefficient close to that of the optical window material, it can be used for an optical window material accompanying a change from a high temperature environment exposed to brazing to room temperature. The stress generated or the stress generated in the optical window material due to the change in environmental temperature exposed during operation of the optical device can be reduced. As a result, a high-strength joint can be obtained.
For example, when the optical window is a sapphire material with a linear expansion coefficient of 7.7 × 10 -6 [/ ° C], the thin plate material has a linear expansion coefficient of 5 × 10 -6 [/ ° C] and is close to sapphire, such as an iron-nickel-cobalt alloy. It is desirable to use

また、薄板のろう付け部を櫛状などのスリット形状、もしくは波板形状などとすることにより、さらに線膨張差による応力の低減を図ることができる。   Further, by reducing the brazing portion of the thin plate into a slit shape such as a comb shape or a corrugated plate shape, it is possible to further reduce the stress due to the difference in linear expansion.

実施の形態2.
図5は、この発明の実施の形態2である光学窓構造100の断面図である。図6は、図5において光学窓構造を矢印Cの方向からみた図であり、光学窓構造を示した図である。
実施の形態2に係る光学窓構造は、EMC(電磁両立性、electromagnetic compatibility)を目的として光学窓1にメッシュを設ける点で実施の形態1と異なる。なお、実施の形態1の構成と同等の構成には同一番号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 5 is a sectional view of an optical window structure 100 according to the second embodiment of the present invention. FIG. 6 is a view of the optical window structure in FIG. 5 as seen from the direction of arrow C, and shows the optical window structure.
The optical window structure according to the second embodiment is different from the first embodiment in that a mesh is provided on the optical window 1 for the purpose of EMC (electromagnetic compatibility). In addition, the same number is attached | subjected to the structure equivalent to the structure of Embodiment 1, and the description is abbreviate | omitted.

図5、図6において、光学窓1の外周に薄板3を固定する。固定は、光学窓1の端部をメタライズし薄板3をろう付けすることにより行う。
ここで、図6に示すように光学窓1の外周に導電部21を設け、薄板3と導通させる。光学窓1の導電部21の内側に、EMC等において遮断すべき周波数帯に応じた間隔のメッシュ22を構成し、メッシュ22を導電部21と導通する。
5 and 6, the thin plate 3 is fixed to the outer periphery of the optical window 1. Fixing is performed by metallizing the end of the optical window 1 and brazing the thin plate 3.
Here, as shown in FIG. 6, a conductive portion 21 is provided on the outer periphery of the optical window 1 to conduct with the thin plate 3. A mesh 22 having an interval corresponding to a frequency band to be cut off in EMC or the like is formed inside the conductive portion 21 of the optical window 1, and the mesh 22 is electrically connected to the conductive portion 21.

このように、実施の形態2に係る光学窓構造によれば、外殻構造2とメッシュ22は等電位となるため、メッシュ22が構成されていない光学窓に対して、EMC等の性能を向上することが可能となる   As described above, according to the optical window structure according to the second embodiment, the outer shell structure 2 and the mesh 22 are equipotential, so that the performance such as EMC is improved with respect to the optical window in which the mesh 22 is not configured. Will be able to

なお、導電部21とメッシュ22は、光学窓1の装置内面側に蒸着するか、あるいは、金属製の素線を編んだ金網などにより構成することができる。   In addition, the electroconductive part 21 and the mesh 22 can be vapor-deposited on the apparatus inner surface side of the optical window 1, or can be comprised by the metal net etc. which knitted the metal strand.

薄板をろう付けする構造の場合、メタライズ層、ろう付け材料とも導電性があるため、光学窓に例えば蒸着によりメッシュ状の導電路を形成することにより、筐体構造と光学窓間を等電位とすることができる。
このように、メッシュ間隔等の諸元を調整することにより遮蔽を要する周波数帯の電磁波の透過を、配線や導電性接着剤などの施工を要すことなく、抑制することが可能となり、光学窓構造の構造を簡易化することが可能となる。
In the case of a structure in which a thin plate is brazed, both the metallized layer and the brazing material are conductive. Therefore, by forming a mesh-shaped conductive path in the optical window, for example, by vapor deposition, the equipotential between the housing structure and the optical window can do.
In this way, by adjusting the specifications such as the mesh interval, it is possible to suppress the transmission of electromagnetic waves in the frequency band that needs to be shielded without the need for construction such as wiring or conductive adhesive. It becomes possible to simplify the structure of the structure.

実施の形態3.
図7は、実施の形態3に係る光学窓構造100において、光学窓1に曇り防止等の目的により設けるヒータの構成を示す図である。なお、実施の形態1、2の構成と同等の構成には同一番号を付してその説明を省略する。
図7において、光学窓1の両端に導電部A33および導電部B34を構成し、光学窓1の装置内側の面で、導電部A33と導電部B34の両者間に電熱線メッシュ35を設ける。
導電部A33は薄板A30にメタライズとろう付けなどにより接合する。また、導電部B34は薄板B31に同じくメタライズとろう付けなどにより接合し、電気的に導通させる。一方、電熱線メッシュ35と薄板C32間は絶縁する。
Embodiment 3 FIG.
FIG. 7 is a diagram illustrating a configuration of a heater provided in the optical window 1 for the purpose of preventing fogging or the like in the optical window structure 100 according to the third embodiment. In addition, the same number is attached | subjected to the structure equivalent to the structure of Embodiment 1, 2, and the description is abbreviate | omitted.
In FIG. 7, a conductive portion A33 and a conductive portion B34 are formed at both ends of the optical window 1, and a heating wire mesh 35 is provided between the conductive portion A33 and the conductive portion B34 on the inner surface of the optical window 1.
The conductive portion A33 is joined to the thin plate A30 by metallization or brazing. Further, the conductive portion B34 is joined to the thin plate B31 by metallization and brazing, and is electrically connected. On the other hand, the heating wire mesh 35 and the thin plate C32 are insulated.

このように、本実施の形態に係る光学窓構造によれば、薄板B31をフレーム・グランドをなす外殻構造2に接地し、薄板A30と薄板B31間に電圧を印加することにより、電熱線メッシュ35が発熱する。この発熱により、光学窓1の結露による曇りを除去することができ、もしくは、結露による曇りを防止できる。   As described above, according to the optical window structure according to the present embodiment, the thin plate B31 is grounded to the outer shell structure 2 forming the frame ground, and a voltage is applied between the thin plate A30 and the thin plate B31, thereby heating mesh. 35 generates heat. Due to this heat generation, fogging due to condensation on the optical window 1 can be removed, or fogging due to condensation can be prevented.

また、本実施の形態によれば、電熱線メッシュ35は導電性があるため、実施の形態2において説明したEMC等の性能向上を図ることも可能である。   In addition, according to the present embodiment, since the heating wire mesh 35 is conductive, it is possible to improve the performance of the EMC described in the second embodiment.

1 光学窓、2 外殻構造、3 薄板、4 接合部、5 シール材、6 締結ねじ、10 光学窓、11 外殻構造、12 リテーナ 、13 シール材、14 締結ねじ、16 スリットつき薄板、20 メタライズとろう付け部、21 導電部、22 メッシュ、30 薄板A、31 薄板B、32 薄板C、33 導電部A、34 導電部B、35 電熱線メッシュ、100 光学窓構造、101 従来の光学窓構造。 DESCRIPTION OF SYMBOLS 1 Optical window, 2 Outer shell structure, 3 Thin plate, 4 Joint part, 5 Sealing material, 6 Fastening screw, 10 Optical window, 11 Outer shell structure, 12 Retainer, 13 Sealing material, 14 Fastening screw, 16 Thin plate with slit, 20 Metalized and brazed part, 21 conductive part, 22 mesh, 30 thin plate A, 31 thin plate B, 32 thin plate C, 33 conductive part A, 34 conductive part B, 35 heating wire mesh, 100 optical window structure, 101 conventional optical window Construction.

Claims (9)

複数の光学窓と、前記光学窓を保持する外殻構造からなる光学窓構造であって、
前記光学窓は、前記光学窓の端部において薄板と固定され、
前記薄板は、前記外殻構造に固定されることを特徴とする光学窓構造。
An optical window structure comprising a plurality of optical windows and an outer shell structure holding the optical window,
The optical window is fixed to a thin plate at an end of the optical window;
The optical window structure, wherein the thin plate is fixed to the outer shell structure.
前記光学窓は、メタライズされた前記光学窓の端部において、前記薄板とろう付け接合されることを特徴とする請求項1記載の光学窓構造。   2. The optical window structure according to claim 1, wherein the optical window is brazed to the thin plate at an end portion of the opticalized metal window. 前記光学窓は、前記光学窓の端部において前記薄板と接着剤で接着されることを特徴とする請求項1記載の光学窓構造。   The optical window structure according to claim 1, wherein the optical window is bonded to the thin plate with an adhesive at an end of the optical window. 前記薄板は金属であって、前記薄板の線膨張係数は前記光学窓の線膨張係数と略同一であることを特徴とする請求項1記載の光学窓構造。   2. The optical window structure according to claim 1, wherein the thin plate is a metal, and the linear expansion coefficient of the thin plate is substantially the same as the linear expansion coefficient of the optical window. 前記外殻構造は五角柱の形状を備え、
前記五角柱の底面とつながり相対する面と前記光学窓の端面とはろう付け接合されることを特徴とする請求項2記載の光学窓構造。
The outer shell structure has a pentagonal prism shape,
The optical window structure according to claim 2, wherein a surface connected to the bottom surface of the pentagonal prism and an end surface of the optical window are brazed and joined.
前記薄板はスリットを備えることを特徴とする請求項5記載の光学窓構造。   The optical window structure according to claim 5, wherein the thin plate includes a slit. 前記光学窓はメッシュ状の導通路を備え、前記導通路は、前記光学窓の端部のメタライズ部分と導通があることを特徴とする請求項2記載の光学窓構造。   The optical window structure according to claim 2, wherein the optical window includes a mesh-shaped conduction path, and the conduction path is electrically connected to a metallized portion at an end of the optical window. 前記光学窓は、前記光学窓の両端に導電部と、前記導電部と電気的に接続するメッシュ状の導通路を備え、前記導通路には前記導電部に電圧を印加することにより電流が流れることを特徴とする請求項2記載の光学窓構造。   The optical window includes a conductive portion at both ends of the optical window and a mesh-like conduction path electrically connected to the conductive portion, and a current flows through the conduction path by applying a voltage to the conductive portion. The optical window structure according to claim 2, wherein: 請求項1〜8いずれか記載の光学窓構造を備え、
内部に設けた光学装置が前記光学窓構造の光学窓を通して撮像することを特徴とする光学窓構造を備えた光学装置。
The optical window structure according to claim 1,
An optical device provided with an optical window structure, wherein an optical device provided inside takes an image through an optical window of the optical window structure.
JP2015061905A 2015-03-25 2015-03-25 Optical window structure and optical device having optical window structure Active JP6350355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061905A JP6350355B2 (en) 2015-03-25 2015-03-25 Optical window structure and optical device having optical window structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061905A JP6350355B2 (en) 2015-03-25 2015-03-25 Optical window structure and optical device having optical window structure

Publications (2)

Publication Number Publication Date
JP2016179774A true JP2016179774A (en) 2016-10-13
JP6350355B2 JP6350355B2 (en) 2018-07-04

Family

ID=57131248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061905A Active JP6350355B2 (en) 2015-03-25 2015-03-25 Optical window structure and optical device having optical window structure

Country Status (1)

Country Link
JP (1) JP6350355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873153A (en) * 2017-01-26 2017-06-20 西安应用光学研究所 Frameless spliced optical window method for designing
CN115438603A (en) * 2022-10-11 2022-12-06 中国航空工业集团公司西安飞机设计研究所 Method for determining wind field dynamic response of elastic aircraft in mobile wind field environment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2203174A (en) * 1936-12-28 1940-06-04 Messerschmitt Boelkow Blohm Vehicle window
US2823612A (en) * 1953-08-20 1958-02-18 Cox Arthur Target seeker head for guided missiles
JPS6153300U (en) * 1984-09-14 1986-04-10
JPS63128798U (en) * 1987-02-13 1988-08-23
JPH06177578A (en) * 1992-12-09 1994-06-24 Fujita Corp Electromagnetic shield window
JPH07196096A (en) * 1993-11-12 1995-08-01 Puritan Bennett Corp Television device for exclusive use on multifunc- tional camera for aircraft
JPH0921700A (en) * 1995-07-04 1997-01-21 Sumitomo Electric Ind Ltd Optical window member and manufacture thereof
JP2000092357A (en) * 1998-09-08 2000-03-31 Mitsubishi Electric Corp Image pickup device
JP2004149827A (en) * 2002-10-29 2004-05-27 Kyocera Corp Peephole of vacuum vessel, and vacuum vessel
JP2008201206A (en) * 2007-02-19 2008-09-04 Mitsubishi Heavy Ind Ltd Window material for aircraft and its manufacturing method
WO2014161999A1 (en) * 2013-04-04 2014-10-09 Astrium Glass panel for a space aircraft
JP2015047925A (en) * 2013-08-30 2015-03-16 三菱航空機株式会社 Window of aircraft, and closing member of opening part

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2203174A (en) * 1936-12-28 1940-06-04 Messerschmitt Boelkow Blohm Vehicle window
US2823612A (en) * 1953-08-20 1958-02-18 Cox Arthur Target seeker head for guided missiles
JPS6153300U (en) * 1984-09-14 1986-04-10
JPS63128798U (en) * 1987-02-13 1988-08-23
JPH06177578A (en) * 1992-12-09 1994-06-24 Fujita Corp Electromagnetic shield window
JPH07196096A (en) * 1993-11-12 1995-08-01 Puritan Bennett Corp Television device for exclusive use on multifunc- tional camera for aircraft
JPH0921700A (en) * 1995-07-04 1997-01-21 Sumitomo Electric Ind Ltd Optical window member and manufacture thereof
JP2000092357A (en) * 1998-09-08 2000-03-31 Mitsubishi Electric Corp Image pickup device
JP2004149827A (en) * 2002-10-29 2004-05-27 Kyocera Corp Peephole of vacuum vessel, and vacuum vessel
JP2008201206A (en) * 2007-02-19 2008-09-04 Mitsubishi Heavy Ind Ltd Window material for aircraft and its manufacturing method
WO2014161999A1 (en) * 2013-04-04 2014-10-09 Astrium Glass panel for a space aircraft
JP2016533934A (en) * 2013-04-04 2016-11-04 エアバス ディフェンス アンド スペース エスアーエス Glass panels for spacecraft
JP2015047925A (en) * 2013-08-30 2015-03-16 三菱航空機株式会社 Window of aircraft, and closing member of opening part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873153A (en) * 2017-01-26 2017-06-20 西安应用光学研究所 Frameless spliced optical window method for designing
CN115438603A (en) * 2022-10-11 2022-12-06 中国航空工业集团公司西安飞机设计研究所 Method for determining wind field dynamic response of elastic aircraft in mobile wind field environment
CN115438603B (en) * 2022-10-11 2023-08-04 中国航空工业集团公司西安飞机设计研究所 Method for determining wind field dynamic response of elastic aircraft in mobile wind field environment

Also Published As

Publication number Publication date
JP6350355B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
CN107070428B (en) Electronic component
JP5698736B2 (en) Avionics chassis
JP5381697B2 (en) Imaging device
JP6350355B2 (en) Optical window structure and optical device having optical window structure
JP5875935B2 (en) Curved array antenna
US10630302B2 (en) Optically pumped atomic clock and associated manufacturing process
TWI526151B (en) Electromagnetic interference shielding arrangement
JPWO2018155162A1 (en) Electronic component with shield plate and shield plate for electronic component
EP2940864A1 (en) Piezoelectric component
JP2015115533A (en) Electronic device
US20120243570A1 (en) Integrated POD Optical Bench Design
JP2008263014A (en) Electronic device
WO2016199918A1 (en) Crystal piece and crystal oscillator
US10148247B2 (en) Elastic wave device
JP2014165210A5 (en)
KR102142704B1 (en) Camera module
JP2019050516A (en) Camera device
EP3220548A1 (en) Antenna housing with tension element
US11101534B2 (en) Guiding set of radio-electric waves and antenna comprising such a set
JPH0545626A (en) Display module
US9337630B2 (en) Medium voltage switchgear construction using symmetric sheet metal parts and panels to build compartment assemblies and subassemblies
EP2899802A1 (en) Anti-lightning combined-stripline-circuit system
US20180295757A1 (en) Housing for enclosing at least one electrical component of a motor vehicle, and method of mounting a housing
US2746635A (en) Sealed instrument case
US10250221B2 (en) Elastic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6350355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250