JP2016179525A - Machine tool and thermal displacement correction method in machine tool - Google Patents

Machine tool and thermal displacement correction method in machine tool Download PDF

Info

Publication number
JP2016179525A
JP2016179525A JP2015060679A JP2015060679A JP2016179525A JP 2016179525 A JP2016179525 A JP 2016179525A JP 2015060679 A JP2015060679 A JP 2015060679A JP 2015060679 A JP2015060679 A JP 2015060679A JP 2016179525 A JP2016179525 A JP 2016179525A
Authority
JP
Japan
Prior art keywords
machine tool
thermal displacement
displacement
physical quantity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015060679A
Other languages
Japanese (ja)
Other versions
JP6553907B2 (en
Inventor
岳見 浅井
Takemi Asai
岳見 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2015060679A priority Critical patent/JP6553907B2/en
Publication of JP2016179525A publication Critical patent/JP2016179525A/en
Application granted granted Critical
Publication of JP6553907B2 publication Critical patent/JP6553907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of correcting thermal displacement of a machine tool with higher accuracy or at low cost.SOLUTION: A machine tool machines a workpiece by a tool which is mounted on a rotary shaft and is rotated by the rotary shaft. The machine tool includes: a first sensor which is installed at a prescribed position of at least the machine tool so as to measure first physical quantity; and a second sensor which is installed at the prescribed position so as to measure second physical quantity different from the first physical quantity. Derivative signals which are made by leaving each output of the first and second sensors by a primary delay element/a secondary delay element or higher-order delay elements are combined so as to use the correction of thermal displacement of the machine tool, and the products of the derivative signals are determined and the products are combined so as to use for the correction of thermal displacement of the machine tool.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械、及び工作機械における熱変位補正方法に関し、特に、工作機械において稼働中に発生する熱変位により、被工作物の加工寸法が変化することを防止する方法に関する。   The present invention relates to a machine tool and a thermal displacement correction method for a machine tool, and more particularly, to a method for preventing a machining dimension of a workpiece from changing due to a thermal displacement generated during operation of the machine tool.

工作機械において稼働中に発生する熱変位により、被工作物の加工寸法が変化するという問題があり、一般には機械の運転状態の変化から熱分布の変化が生じ安定状態に到達するまではかかる変化を続ける。特に、発熱状態の変化については、変化からの整定時間が数十分からときに数時間と長くなりがちである。そこで、従来、加工開始までの時間をとる、いわゆる暖気運転を行う、または、粗加工と仕上げ加工の回転数などを近いものにし、仕上げ加工には変位の影響が小さくなるような工夫をする等の対策が取られている。 There is a problem that the machining dimensions of the workpiece change due to the thermal displacement that occurs during operation in the machine tool. Generally, this change takes place until a stable state is reached due to a change in the heat distribution due to a change in the operating state of the machine. Continue. In particular, for changes in the heat generation state, the settling time from the change tends to be as long as several hours to several hours. Therefore, conventionally, it takes time to start machining, so-called warm-up operation, or close the rotational speed of roughing and finishing, etc., and devise to reduce the influence of displacement in finishing, etc. Measures have been taken.

一方、暖機運転などの時間を許容できない場合や、特に高い精度が要求される場合には、従来、工作機械の熱変位による工作物の加工寸法への影響を低減するため、熱変位に応じて工作機械の工具の送り量を補正するようにしている。(例えば、特許文献1及び2)。 On the other hand, when the warm-up operation time cannot be tolerated, or when particularly high accuracy is required, conventionally, in order to reduce the influence of the thermal displacement of the machine tool on the machining dimensions of the workpiece, The tool feed amount of the machine tool is corrected. (For example, Patent Documents 1 and 2).

特開平8−141883JP-A-8-141883 特開平9−70739JP-A-9-70739

2012年度精密工学会秋季大会学術講演会論文集 J34, 677Proceedings of 2012 JSPE Autumn Conference J34, 677

例えば、特許文献1記載の従来例(第1の従来例)では、機械に温度計を複数配置し、温度変化と加工寸法との関係を重回帰分析したデータを用いて工具の送り量を補正する。即ち、工作機械の複数部位の温度と工作物の加工寸法を測定し、測定した複数部位の温度の変化と工作物の加工寸法の変化の相関関係を重回帰分析により求め、この重回帰分析により得られた相関関係値が所定値より高い工作機械の部位を選択し、選択された工作機械の部位の温度の変化と工作物の加工寸法の変化の関係式を重回帰分析から求め、この関係式から工作物の加工寸法を予測し、予測された工作物の加工寸法に基づいて工作機械の送り量を補正するようにしている。 For example, in the conventional example described in Patent Document 1 (first conventional example), a plurality of thermometers are arranged in the machine, and the tool feed amount is corrected using data obtained by multiple regression analysis of the relationship between the temperature change and the machining dimension. To do. That is, the temperature of multiple parts of the machine tool and the machining dimensions of the workpiece are measured, and the correlation between the measured temperature changes of the multiple parts and the change of machining dimensions of the workpiece is obtained by multiple regression analysis. Select a machine tool part where the obtained correlation value is higher than the predetermined value, and obtain a relational expression between the change in temperature of the selected machine tool part and the change in the machining dimension of the workpiece by multiple regression analysis. The machining dimension of the workpiece is predicted from the equation, and the feed amount of the machine tool is corrected based on the predicted machining dimension of the workpiece.

また、特許文献2記載の従来例(第2の従来例)では、事前の変位測定に基づき補正を行う方法が提案されており、具体的には、予め対象の加工機械においてある回転数RPMにおける時間経過毎の加工部位における熱変位や回転停止後における時間経過毎の熱変位を測定しその熱変位補正テーブルを制御部に記録しておき、実際の加工において、回転数や経過時間および回転停止、回転数変化を求め、前記テーブルを基にしてリアルタイムの補正を行うようにしている。 Further, in the conventional example (second conventional example) described in Patent Document 2, a method of performing correction based on prior displacement measurement has been proposed, and specifically, at a certain rotation speed RPM in a target processing machine in advance. Measure the thermal displacement at the machining site for each passage of time and the thermal displacement for each passage of time after stopping rotation, and record the thermal displacement correction table in the control unit. In actual machining, the number of rotations, elapsed time, and rotation stop The rotation speed change is obtained, and real-time correction is performed based on the table.

一方、非特許文献1記載の従来例(第3の従来例)のように、複数個の温度計を組み込みつつ、刃先変位への影響を有限要素法など数値計算手法により逐次計算させる高度な補正を行っているものもある。 On the other hand, as in the conventional example described in Non-Patent Document 1 (third conventional example), a high degree of correction is performed in which a plurality of thermometers are incorporated and the influence on the blade edge displacement is sequentially calculated by a numerical calculation method such as a finite element method. There are some that do.

しかし、特許文献1記載の従来例(第1の従来例)では、多数の温度計が必要となるので、コストが高くなり、測定する温度計が少ない場合には、直前までの動作による熱が測定していない部分に残留して熱変位を生じせしめるという問題がある。また、特許文献2記載の従来例(第2の従来例)では、事前に測定調査した加工サイクルとは異なるサイクルの加工を実施する場合には、変位の推定の偏差が発生してしまうことは免れない。 However, since the conventional example (first conventional example) described in Patent Document 1 requires a large number of thermometers, the cost is high, and when the number of thermometers to be measured is small, the heat generated by the operation immediately before is increased. There is a problem that heat displacement is caused by remaining in an unmeasured portion. Further, in the conventional example (second conventional example) described in Patent Document 2, when machining is performed in a cycle different from the machining cycle that has been measured and investigated in advance, deviation in estimation of displacement may occur. I can't escape.

また、非特許文献1記載の従来例(第3の従来例)では、上述したように、複数個の温度計を組み込みつつ、刃先変位への影響を有限要素法など数値計算手法により逐次計算させるが、自由度の大きな計算はある程度の計算能力を要するため、簡略化のために工夫を要する。 Further, in the conventional example (third conventional example) described in Non-Patent Document 1, as described above, the influence on the blade edge displacement is sequentially calculated by a numerical calculation method such as a finite element method while incorporating a plurality of thermometers. However, since a calculation with a large degree of freedom requires a certain level of calculation capability, it is necessary to devise for simplification.

このため、工作機械の熱変位を、より高精度にもしくは低コストに補正することができる装置又は方法の開発が切望されており、また、事前に測定調査した加工サイクルとは異なるサイクルの加工を実施する場合でも、センサ出力によるフィードバック機能等により補正性能の向上が図れる技術が開発されれば大変有益である。 For this reason, development of an apparatus or method capable of correcting the thermal displacement of a machine tool with higher accuracy or lower cost is eagerly desired, and machining with a cycle different from the machining cycle measured and investigated in advance is desired. Even in the case of implementation, it would be very beneficial if a technology that can improve the correction performance by a feedback function based on sensor output or the like is developed.

本発明は、以上のような事情から為されたものであり、その目的は、工作機械の熱変位を、より高精度にもしくは低コストに補正することができる技術を提供することにある。また、事前に測定調査した加工サイクルとは異なるサイクルの加工を実施する場合でも、センサ出力によるフィードバック機能等により補正性能の向上が図れる工作機械及び熱変位補正方法を提供することにある。 The present invention has been made under the circumstances as described above, and an object thereof is to provide a technique capable of correcting a thermal displacement of a machine tool with higher accuracy or at lower cost. It is another object of the present invention to provide a machine tool and a thermal displacement correction method capable of improving the correction performance by a feedback function or the like using a sensor output even when a machining cycle different from the machining cycle measured and investigated in advance is performed.

本発明者は、上述したように、工作機械の熱変位を、より高精度にもしくは低コストに補正する機能を奏する技術の可能性について様々な観点から鋭意研究した結果、直前までの計測器の出力を1次遅れ要素・2次遅れ要素ないしより高次の遅れ要素により残留させてできる派生信号を組み合わせ補正に利用することにより、高性能な熱変位補正が可能となることを見出した。   As described above, the inventor has intensively studied from various viewpoints about the possibility of a technique for correcting the thermal displacement of a machine tool with higher accuracy or lower cost. It has been found that high-performance thermal displacement correction can be performed by using, for combination correction, a derivative signal that is generated by causing the output to remain by a first-order delay element, a second-order delay element, or a higher-order delay element.

即ち、本発明では、回転軸に取り付けられ該回転軸により回転される工具により被工作物を加工する工作機械において、少なくとも該工作機械の所定の位置に設置され第1の物理量を計測する第1のセンサと、前記所定の位置に設置され前記第1の物理量とは異なる第2の物理量を計測する第2のセンサを備え、前記第1、第2のセンサの出力をそれぞれ1次遅れ要素・2次遅れ要素ないしより高次の遅れ要素により残留させてできる派生信号を組み合わせ工作機械の熱変位分の補正に利用することを特徴としている。   That is, in the present invention, in a machine tool that processes a workpiece with a tool that is attached to a rotating shaft and rotated by the rotating shaft, the first physical quantity that is installed at least at a predetermined position of the machine tool is measured. And a second sensor that is installed at the predetermined position and measures a second physical quantity different from the first physical quantity, and outputs the outputs of the first and second sensors, respectively, as first-order lag elements A derivative signal generated by the second-order delay element or the higher-order delay element is used for correcting the thermal displacement of the machine tool in combination.

また、本発明では、回転軸に取り付けられ該回転軸により回転される工具により被工作物を加工する工作機械において、少なくとも該工作機械の第1の所定位置に設置され第1の物理量を計測する第1のセンサと、前記第1の所定位置とは離間した第2の所定位置に設置され前記第1の物理量を計測する第2のセンサを備え、前記第1のセンサ出力と第2のセンサ出力の派生信号も含めそれらの積も利用して、工作機械の熱変位分の補正に利用することを特徴としている。この、「積も利用する」ということで、「任意の滑らかな関数は任意の点近傍でテイラー展開可能」となる原理から、高次の項を無視し近似式を生成することができ、積を利用しない補正式よりもより高性能の補正式を得ることが可能となる。なお、「近傍」とは要求する近似精度との関係で決定される概念であり一定の範囲をさしているわけではない。尚、本発明は、必ずしも変位の補償をする必要はなく、変位の安定を推定する用途に利用しても良い。 In the present invention, in a machine tool that processes a workpiece with a tool that is attached to a rotating shaft and rotated by the rotating shaft, the first physical quantity is measured at least at a first predetermined position of the machine tool. A first sensor and a second sensor that measures the first physical quantity are installed at a second predetermined position that is separated from the first predetermined position. The first sensor output and the second sensor It is also characterized in that the product including the derivative signal of the output is also used to correct the thermal displacement of the machine tool. From this principle that “any productive function can also be used to develop an arbitrary smooth function near any point”, it is possible to generate an approximate expression ignoring higher-order terms. It is possible to obtain a higher-performance correction formula than a correction formula that does not use the. “Neighborhood” is a concept determined in relation to the required approximation accuracy, and does not mean a certain range. It should be noted that the present invention does not necessarily require displacement compensation, and may be used for purposes of estimating displacement stability.

本発明によれば、工作機械の熱変位を、より高精度にもしくは低コストに補正することができる。また、事前に測定調査した加工サイクルとは異なるサイクルの加工を実施する場合でも、センサ出力によるフィードバック機能等により補正性能の向上が図れる。 According to the present invention, the thermal displacement of the machine tool can be corrected with higher accuracy or at lower cost. In addition, even when machining with a cycle different from the machining cycle measured in advance is performed, the correction performance can be improved by a feedback function or the like based on sensor output.

変位信号に施す信号処理を表すブロック線図である。It is a block diagram showing the signal processing performed to a displacement signal. 温度計設置の例である。It is an example of thermometer installation. 本発明の実施形態を説明するための図である。It is a figure for demonstrating embodiment of this invention. 本発明の実施形態のうち係数を動的に変更する部分のフローチャートである。It is a flowchart of the part which changes a coefficient dynamically among embodiment of this invention.

まず、図1を参照して、本発明の概要を説明する。本発明は、直前までの計測器の出力を1次遅れ要素・2次遅れ要素ないしより高次の遅れ要素により残留させてできる派生信号を組み合わせ補正に利用するものであり、例えば、ある温度・変位・ひずみいずれかのタイプのセンサ(計測器)の出力をそれぞれ一次遅れ要素を通過させて得られた出力の派生信号に対し、直前までの計測器の出力を1次遅れ要素により残留させてできる派生信号を組み合わせて補正係数として利用する。図1にこの出力算出のブロック線図を示す。 First, the outline of the present invention will be described with reference to FIG. The present invention uses a derivative signal that is generated by leaving the output of the measuring instrument until immediately before by a first-order lag element, a second-order lag element, or a higher-order lag element for combination correction. Displacement / strain type sensor (measuring instrument) output is derived from the output signal obtained by passing the primary delay element, respectively. A combination of derived signals that can be used as correction coefficients. FIG. 1 shows a block diagram of this output calculation.

図1中のS10、S20、S30はある温度・変位・ひずみいずれかのタイプのセンサ1、2、3の出力である。S11、S21、S31はセンサ1、2、3の出力を一次遅れ要素を通過させて得られた出力の派生信号である。例として1次遅れ要素を適用しているが、2次遅れ要素または高次遅れ要素を使用してもよい。また、変位センサ(変位計)のひとつとしてフィードバック制御用のリニアスケールやロータリスケールが使用されていてもよいことは言うまでもない。センサの総数に制限もないことも言うまでもない。 S10, S20, and S30 in FIG. 1 are outputs of sensors 1, 2, and 3 of any type of temperature, displacement, and strain. S11, S21, and S31 are derived signals of outputs obtained by passing the outputs of the sensors 1, 2, and 3 through the first-order lag element. Although the first-order lag element is applied as an example, a second-order lag element or a higher-order lag element may be used. Needless to say, a linear scale or a rotary scale for feedback control may be used as one of the displacement sensors (displacement meters). Needless to say, there is no limit to the total number of sensors.

図2に、工作機械のコラム201の構造を示す。この図2では二次元に描いているが、奥行き方向に大きさがあることは言うまでもない。工具を回すための主軸頭202を搭載しており、先端につけた工具203を使用してテーブル205にのった工作物204に切り込みを与える。このようなコラムに温度計211および212を図に示すように配置した場合、211の出力θ1が上昇方向に変化し212の出力θ2が低下方向に変化する場合、211のみ出力が上昇した場合に比べ刃先の204に遠ざかる方向の変位が大きくなる。このような効果を表現するために、次に示す式(1)のような項も考える。 FIG. 2 shows the structure of the column 201 of the machine tool. In FIG. 2, it is drawn in two dimensions, but it goes without saying that there is a size in the depth direction. A spindle head 202 for turning the tool is mounted, and a work 203 on the table 205 is cut using a tool 203 attached to the tip. When the thermometers 211 and 212 are arranged in such a column as shown in the figure, when the output θ 1 of the 211 changes in the increasing direction and the output θ 2 of the 212 changes in the decreasing direction, only the output of the 211 increases. Compared to the case, the displacement in the direction away from the blade edge 204 becomes larger. In order to express such an effect, a term like the following formula (1) is also considered.

Figure 2016179525
Figure 2016179525

ただし、出力はある時点の出力を基準とした基準からの変化分のみを計算に使用する。 However, as for the output, only the change from the reference based on the output at a certain time is used for the calculation.

センサ出力と変位の関係を事前のサイクルで測定する。 The relationship between sensor output and displacement is measured in a prior cycle.

係数や時定数を変数として、多重回帰分析によりこれら変数の組み合わせを推定し、このようなセンサ出力の変化とそれらを遅れ要素を通過させたもののそれぞれについて累乗ないし交互に積を取ったものの係数および時定数などを決定する。 Coefficients and time constants are used as variables, the combination of these variables is estimated by multiple regression analysis, and the coefficient of the product of these changes in sensor output and those that have passed through the delay element are raised to power or alternately. Determine the time constant.

実加工サイクルにおいては事前に用意された係数の組を利用して各出力およびその派生信号から推定関数を使用し工具送りを補正する。この方法は、直動3自由度 回転3自由度すべてに使用できることは言うまでもない。 In the actual machining cycle, a set of coefficients prepared in advance is used to correct the tool feed using an estimation function from each output and its derived signal. Needless to say, this method can be used for all three degrees of freedom of linear motion and three degrees of freedom of rotation.

例として、温度センサ1つと機械の送り軸のフィードバック制御に使用しているスケールの出力1つとひずみ計1つを使用する場合を考える。各センサの出力をs10,s20,s30とし一次遅れ信号s11,s21,s31まで派生させることを考える。また、各出力・派生出力の2次の項まで考える場合、その変位δ推定関数は以下のようになる。   As an example, consider the case of using one output of a scale and one strain gauge used for feedback control of a temperature sensor and a feed axis of a machine. Consider that the outputs of the sensors are s10, s20, and s30 and that the signals are derived up to the first order lag signals s11, s21, and s31. Further, when considering up to the quadratic terms of each output / derived output, the displacement δ estimation function is as follows.

Figure 2016179525
Figure 2016179525

ただし、aijは係数である。当然出力を派生させる際に一次遅れなので、次遅れ時定数を定義する必要がありそれぞれ1つずつT1,T2,T3とする。2次遅れなら係数はそれぞれ2つである。 Here, a ij is a coefficient. Of course, since the first-order lag is used when the output is derived, it is necessary to define the next-delay time constants, which are T 1 , T 2 , and T 3 , respectively. If it is a second order lag, there are two coefficients.

試しのサイクルにおいては例えば、X−Y−Zの3方向の非接触変位計を使用し、工具の送り軸を停止させた状態で、工具のX−Y−Zの変位と各センサ出力と派生出力を同時に収録する。図3に実施例を示す。401は非接触の変位計であり。311はフィードバック用のスケールを211は温度計を表している。 In the trial cycle, for example, a non-contact displacement meter in three directions of XYZ is used, and the tool XYZ displacement and each sensor output are derived with the tool feed axis stopped. Record output simultaneously. FIG. 3 shows an embodiment. 401 is a non-contact displacement meter. Reference numeral 311 represents a feedback scale, and 211 represents a thermometer.

多重回帰分析により式(2)による推定と実変位の偏差の時間についての微分係数が最小になるように、例えば偏差の時間についての微分係数の二乗和を用いた数値最適化の計算を行い、aijとT1,T2,T3を決め、CNCもしくはその付属装置のプログラマブルコントローラなどに保存する。ここで、あえて微分係数を計算し使用しなくとも良いことは言うまでもない。しかし、通常マシニングセンタの工具ホルダは回転数により変形が0でないため、微分係数を計算して使用するほうが良好な補正が期待できる。 In order to minimize the differential coefficient with respect to the time of deviation and estimation of the actual displacement by the multiple regression analysis, for example, numerical optimization calculation using the sum of squares of the differential coefficient with respect to the time of deviation is performed. a ij and T 1 , T 2 , T 3 are determined and stored in the programmable controller of the CNC or its attached device. Here, it goes without saying that the differential coefficient need not be calculated and used. However, since the deformation of the tool holder of the machining center is usually not zero depending on the number of rotations, better correction can be expected by calculating and using the differential coefficient.

実加工時においては、出力を収録し、それをプログラマブルコントローラなどが受け取れるようにし、計算を持って熱変位を推定する。場合によっては、その推定値を用いて変位を補正するように送りを調整する。 During actual machining, the output is recorded so that it can be received by a programmable controller or the like, and thermal displacement is estimated with calculation. In some cases, the estimated value is used to adjust the feed to correct the displacement.

2次までの近似の場合には、リニアスケールの出力ように1メートルや2メートルの変化を示すセンサの場合には、十分な近似精度が得られない可能性がある。その場合、3次までの近似とするか、表1のようにリニアスケールの出力範囲と係数の対応表を作成し、図4のフローチャートに示すような操作を逐次実行し係数を逐次調整することも考えられる。この方法について述べる。表1は、本発明の実施形態のうち係数を動的に変更する場合の係数表の一例である。 In the case of approximation up to the second order, there is a possibility that sufficient approximation accuracy may not be obtained in the case of a sensor showing a change of 1 meter or 2 meters such as an output of a linear scale. In that case, it is approximated to the third order, or a correspondence table of linear scale output ranges and coefficients is created as shown in Table 1, and the operations shown in the flowchart of FIG. 4 are sequentially executed to sequentially adjust the coefficients. Is also possible. This method will be described. Table 1 is an example of a coefficient table when the coefficients are dynamically changed in the embodiment of the present invention.

Figure 2016179525
図4は、本実施形態のうち係数を動的に変更する部分のフローチャートである。即ち、図4に示すように、まず、係数の確認を開始し(S401)、出力S30(図1参照)を確認する(S402)。そして、この出力S30の範囲番の境界を越えたか否かを判断し(S403)、越えていなければ(S403でNO)、係数の確認を完了する(S407)。越えている場合には(S403でYES)、係数表(上記表1参照)を読み出し(S404)、この係数表に従って係数を変更する(S405)。即ち、出力S30の新しい範囲番号を記録し(S406)、係数の確認を完了する(S407)。
Figure 2016179525
FIG. 4 is a flowchart of the part of the present embodiment that dynamically changes the coefficient. That is, as shown in FIG. 4, first, the confirmation of the coefficient is started (S401), and the output S30 (see FIG. 1) is confirmed (S402). Then, it is determined whether or not the boundary of the range number of the output S30 has been exceeded (S403). If not exceeded (NO in S403), the coefficient confirmation is completed (S407). If it exceeds (YES in S403), the coefficient table (see Table 1 above) is read (S404), and the coefficient is changed according to this coefficient table (S405). That is, the new range number of the output S30 is recorded (S406), and the coefficient confirmation is completed (S407).

本発明によれば、工作機械の熱変位を、より高精度にもしくは低コストに補正することができる。また特許文献2の例のように事前に調査したサイクルと違うものを実施するとしてもセンサ出力によるフィードバックがあり若干補正性能の向上が図れる。   According to the present invention, the thermal displacement of the machine tool can be corrected with higher accuracy or at lower cost. Further, even if a cycle different from the cycle investigated in advance is implemented as in the example of Patent Document 2, there is feedback by the sensor output, and the correction performance can be slightly improved.

Claims (2)

回転軸に取り付けられ該回転軸により回転される工具により被工作物を加工する工作機械において、少なくとも該工作機械の所定の位置に設置され第1の物理量を計測する第1のセンサと、前記所定の位置に設置され前記第1の物理量とは異なる第2の物理量を計測する第2のセンサを備え、前記第1、第2のセンサの出力をそれぞれ1次遅れ要素・2次遅れ要素ないしより高次の遅れ要素により残留させてできる派生信号を組み合わせ工作機械の熱変位分の補正に利用し、かつそれら同士の積を求め、該積も組み合わせて工作機械の熱変位分の補正に利用することを特徴とする工作機械。 In a machine tool that processes a workpiece with a tool that is attached to a rotary shaft and rotated by the rotary shaft, a first sensor that is installed at least at a predetermined position of the machine tool and measures a first physical quantity; And a second sensor that measures a second physical quantity different from the first physical quantity, and outputs the first and second sensors respectively as a first-order lag element and a second-order lag element or more Derived signals generated by remaining higher-order delay elements are used to correct the thermal displacement of the combined machine tool, and the product of them is obtained, and the product is also used to correct the thermal displacement of the machine tool. A machine tool characterized by that. 前項に述べる工作機械で、前項のセンサの出力またはその派生信号の一部もしくは全部が、ある範囲を超えて変化したとき関数もしくは表を利用して補正係数の一部もしくは全部を動的に切り替えることが出来る機械。 In the machine tool described in the previous section, when some or all of the sensor output or its derived signal changes beyond a certain range, some or all of the correction factors are dynamically switched using a function or table. A machine that can.
JP2015060679A 2015-03-24 2015-03-24 Machine Tools Active JP6553907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060679A JP6553907B2 (en) 2015-03-24 2015-03-24 Machine Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060679A JP6553907B2 (en) 2015-03-24 2015-03-24 Machine Tools

Publications (2)

Publication Number Publication Date
JP2016179525A true JP2016179525A (en) 2016-10-13
JP6553907B2 JP6553907B2 (en) 2019-07-31

Family

ID=57132394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060679A Active JP6553907B2 (en) 2015-03-24 2015-03-24 Machine Tools

Country Status (1)

Country Link
JP (1) JP6553907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062705A (en) * 2018-10-16 2020-04-23 株式会社ツガミ Machine tool, program and correction amount calculation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571979A (en) * 1991-09-11 1993-03-23 Murata Mach Ltd Removal of noise of measured data in machine tool
JPH0847842A (en) * 1994-08-04 1996-02-20 Canon Inc Machine tool and method of work
JP2012240137A (en) * 2011-05-17 2012-12-10 Jtekt Corp Method and device for correcting thermal displacement of machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571979A (en) * 1991-09-11 1993-03-23 Murata Mach Ltd Removal of noise of measured data in machine tool
JPH0847842A (en) * 1994-08-04 1996-02-20 Canon Inc Machine tool and method of work
JP2012240137A (en) * 2011-05-17 2012-12-10 Jtekt Corp Method and device for correcting thermal displacement of machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062705A (en) * 2018-10-16 2020-04-23 株式会社ツガミ Machine tool, program and correction amount calculation method
JP7123732B2 (en) 2018-10-16 2022-08-23 株式会社ツガミ Machine tool, program and correction amount calculation method

Also Published As

Publication number Publication date
JP6553907B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
Ratchev et al. An advanced FEA based force induced error compensation strategy in milling
JP5811102B2 (en) Thermal displacement correction apparatus and thermal displacement correction method
JP2010105073A (en) Method and device for suppressing vibration of machine tool
WO2017171352A3 (en) Apparatus and method for automatically converting thermal displacement compensation parameters of machine tool
CN105397560B (en) One kind is dry to cut chain digital control gear hobbing machine bed and workpiece method for thermal deformation error compensation
Kreheľ et al. Diagnostics of production systems operation based on thermal processes evaluation
US20200333764A1 (en) Numerical control system and motor drive controller
CN104209808A (en) Machine tool and control method therefor
Yao et al. A chatter free calibration method for determining cutter runout and cutting force coefficients in ball-end milling
CN107580535A (en) Method for running gear cutting machine
Guiassa et al. Closed door machining error compensation of complex surfaces using the cutting compliance coefficient and on-machine measurement for a milling process
Xu et al. Energy based cutting force model calibration for milling
CN108356603B (en) Method and system for compensating thermal deformation error of spindle of five-axis numerical control machine tool
JP6155946B2 (en) Method for determining linear expansion coefficient of each member of machine tool and thermal displacement correction device for machine tool
JP4505385B2 (en) Thermal displacement estimation method for machine tools
JP6648500B2 (en) Thermal displacement compensator for machine tools
JP6553907B2 (en) Machine Tools
WO2017113055A1 (en) Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device
JP2009061557A (en) Thermal displacement compensation method for ball screw and nc machine tool performing the method
JP6561003B2 (en) Machine tool thermal displacement correction method, machine tool
Fan et al. Error prediction and clustering compensation on shaft machining
CA2857819A1 (en) Machine tool certification for part specific working volume
JP2009248209A (en) Method of estimating thermal displacement of machine tool
KR20140092078A (en) Thermal deformation correction method for ball screw of machining centers
CN109597352A (en) Numerically-controlled machine tool and its control system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R150 Certificate of patent or registration of utility model

Ref document number: 6553907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250