JP2016175782A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP2016175782A
JP2016175782A JP2015054970A JP2015054970A JP2016175782A JP 2016175782 A JP2016175782 A JP 2016175782A JP 2015054970 A JP2015054970 A JP 2015054970A JP 2015054970 A JP2015054970 A JP 2015054970A JP 2016175782 A JP2016175782 A JP 2016175782A
Authority
JP
Japan
Prior art keywords
main composition
composition
particles
main
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054970A
Other languages
Japanese (ja)
Other versions
JP6413862B2 (en
Inventor
大輔 大津
daisuke Otsu
大輔 大津
松巳 渡辺
Matsumi Watanabe
松巳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015054970A priority Critical patent/JP6413862B2/en
Priority to KR1020160010302A priority patent/KR101751790B1/en
Priority to CN201610136570.2A priority patent/CN105985100B/en
Publication of JP2016175782A publication Critical patent/JP2016175782A/en
Application granted granted Critical
Publication of JP6413862B2 publication Critical patent/JP6413862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition which has high specific dielectric constant and AC breakdown voltage, low dielectric loss and good temperature characteristics and sinterability.SOLUTION: There is provided a dielectric ceramic composition which comprises first main composition particles represented by the composition formula: Ba,Ca,A1)(Ti,Zr,B1)O(x≠0,z≠0,x+y≠1,z+a≠1) and second main composition particles represented by the composition formula: (Ba,A2)(Ti,B2)O(α≠1,β≠1), wherein the first main composition particles have an average particle diameter of 3 to 10 μm, the second main composition particles have an average particle diameter of 0.1 to 3 μm and zinc oxide is segregated.SELECTED DRAWING: Figure 6

Description

本発明は、誘電体磁器組成物および電子部品に関する。   The present invention relates to a dielectric ceramic composition and an electronic component.

近年、急速に進む電気機器の高性能化に伴い、電気回路の小型化、複雑化もまた急速に進んでいる。そのため、電子部品にもより一層の小型化、高性能化が求められている。すなわち、良好な温度特性を維持しつつ、小型化しても静電容量を維持するために比誘電率が高く、さらに高電圧下で使用するために交流破壊電圧が高い誘電体磁器組成物および電子部品が求められている。   In recent years, along with rapid progress in performance of electrical equipment, miniaturization and complexity of electrical circuits are also progressing rapidly. For this reason, electronic components are required to be further reduced in size and performance. That is, a dielectric ceramic composition and an electron having a high relative dielectric constant in order to maintain capacitance even when miniaturized while maintaining good temperature characteristics, and also having a high AC breakdown voltage for use under a high voltage Parts are required.

従来、磁器コンデンサ、積層コンデンサ、高周波用コンデンサ、高電圧用コンデンサ等として広く利用されている高誘電率誘電体磁器組成物として、特許文献1〜3のようにBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物を主成分としたものが知られている。 Conventionally, as a high dielectric constant dielectric ceramic composition widely used as a ceramic capacitor, a multilayer capacitor, a high frequency capacitor, a high voltage capacitor, etc., BaTiO 3 —BaZrO 3 —CaTiO 3 — A material mainly composed of a SrTiO 3 -based dielectric ceramic composition is known.

従来のBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物は、強誘電性であるため、高い静電容量、低い誘電損失を維持したまま、高い交流破壊電圧を確保することが困難であった。また、従来のBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物には所望の特性を得るために様々な希土類元素が添加されるが、希土類元素はコストが高く使用量の低減が従来から求められている。 Since the conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based dielectric ceramic composition is ferroelectric, it must ensure high AC breakdown voltage while maintaining high capacitance and low dielectric loss. It was difficult. In addition, various rare earth elements are added to the conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based dielectric ceramic composition in order to obtain desired characteristics. Reduction is conventionally required.

特開1994−302219号公報JP-A-1994-302219 特開2003−104774号公報JP 2003-104774 A 特開2004−238251号公報JP 2004-238251 A

本発明は、このような実状に鑑みてなされ、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することを目的とする。また、本発明は、このような誘電体磁器組成物により構成される誘電体層を有する電子部品を提供することも目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, a low dielectric loss, and good temperature characteristics and sinterability. . Another object of the present invention is to provide an electronic component having a dielectric layer composed of such a dielectric ceramic composition.

本発明者等は、上記目的を達成するために、鋭意検討を行った結果、主成分として1種類の誘電体磁器組成物のみを用いるのではなく、主成分として2種類の誘電体磁器組成物で構成し、各誘電体磁器組成物の粒径を制御し、さらに酸化亜鉛を偏析させた誘電体磁器組成物を用いることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have not used only one type of dielectric ceramic composition as the main component, but two types of dielectric ceramic composition as the main component. It was found that the above-mentioned object can be achieved by controlling the particle size of each dielectric ceramic composition and further using the dielectric ceramic composition in which zinc oxide is segregated, thereby completing the present invention. .

すなわち、上記課題を解決する本発明に係る誘電体磁器組成物は、
組成式(Ba1−x−y ,Ca,A1(Ti1−z−d ,Zr,B1)O(x≠0、z≠0、x+y≠1、z+a≠1)で表される第1主組成物粒子と、
組成式(Ba1−α,A2α(Ti1−β,B2β)O(α≠1、β≠1)で表わされる第2主組成物と、
を有する誘電体磁器組成物であって、
前記第1主組成物粒子の平均粒径が3μm〜10μmであり、
前記第2主組成物粒子の平均粒径が0.1μm〜3μmであり、
さらに酸化亜鉛が偏析していることを特徴とする誘電体磁器組成物である。
That is, the dielectric ceramic composition according to the present invention for solving the above problems is
The composition formula (Ba 1-x-y, Ca x, A1 y) m (Ti 1-z-d, Zr z, B1 d) O 3 (x ≠ 0, z ≠ 0, x + y ≠ 1, z + a ≠ 1) First main composition particles represented by:
The composition formula (Ba 1-α, A2 α ) and n (Ti 1-β, B2 β) O 3 (α ≠ 1, β ≠ 1) a second main composition represented by,
A dielectric ceramic composition comprising:
The average particle diameter of the first main composition particles is 3 μm to 10 μm,
The average particle size of the second main composition particles is 0.1 μm to 3 μm,
Furthermore, the dielectric ceramic composition is characterized in that zinc oxide is segregated.

以後、組成式(Ba1−x−y ,Ca,A1(Ti1−z−d ,Zr,B1)O(x≠0、z≠0、x+y≠1、z+d≠1)で表される第1主組成物粒子をBCTZ系主組成物粒子と呼ぶことがあり、組成式(Ba1−α,A2α(Ti1−β,B2β)O(α≠1、β≠1)で表される第2主組成物粒子をBT系主組成物粒子と呼ぶことがある。 Thereafter, the composition formula (Ba 1-x-y, Ca x, A1 y) m (Ti 1-z-d, Zr z, B1 d) O 3 (x ≠ 0, z ≠ 0, x + y ≠ 1, z + d ≠ The first main composition particles represented by 1) may be referred to as BCTZ-based main composition particles, and the composition formula (Ba 1-α , A2 α ) n (Ti 1-β , B2 β ) O 3 (α The second main composition particles represented by ≠ 1, β ≠ 1) may be referred to as BT-based main composition particles.

BCTZ系主組成物粒子の平均粒径とBT系主組成物粒子の平均粒径とを所定の範囲内で制御し、さらに酸化亜鉛が偏析していることを特徴とする本発明によれば、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することができる。   According to the present invention, the average particle size of the BCTZ main composition particles and the average particle size of the BT main composition particles are controlled within a predetermined range, and zinc oxide is segregated. A dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, a low dielectric loss, and good temperature characteristics and sinterability can be provided.

本発明に係る誘電体磁器組成物は、前記第1主組成物粒子のうち90%以上の粒子の粒径が3μm〜10μmであることが好ましい。   In the dielectric ceramic composition according to the present invention, it is preferable that a particle diameter of 90% or more of the first main composition particles is 3 μm to 10 μm.

本発明に係る誘電体磁器組成物は、前記第2主組成物粒子のうち90%以上の粒子の粒径が0.1μm〜3μmであることが好ましい。   In the dielectric ceramic composition according to the present invention, it is preferable that 90% or more of the second main composition particles have a particle size of 0.1 μm to 3 μm.

本発明に係る誘電体磁器組成物では、前記第1主組成物粒子にBiが固溶していることが好ましい。   In the dielectric ceramic composition according to the present invention, Bi is preferably dissolved in the first main composition particles.

本発明に係る誘電体磁器組成物は、前記誘電体磁器組成物の断面において、前記第1主組成物の占める面積と前記第2主組成物が占める面積との和を100%とする場合に、前記第2主組成物粒子の占める面積が5〜40%であることが好ましい。   The dielectric ceramic composition according to the present invention, when the sum of the area occupied by the first main composition and the area occupied by the second main composition is 100% in the cross section of the dielectric ceramic composition. The area occupied by the second main composition particles is preferably 5 to 40%.

本発明に係る電子部品は、前記誘電体磁器組成物で構成される誘電体を有する。   The electronic component according to the present invention has a dielectric composed of the dielectric ceramic composition.

本発明に係る電子部品の種類に特に限定はない。例えば単板型セラミックコンデンサ、貫通型コンデンサ、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品、リングバリスタ、ESD保護デバイスなどが挙げられる。   There is no limitation in particular in the kind of electronic component which concerns on this invention. For example, single plate ceramic capacitors, feedthrough capacitors, multilayer ceramic capacitors, piezoelectric elements, chip inductors, chip varistors, chip thermistors, chip resistors, other surface mount (SMD) chip type electronic components, ring varistors, ESD protection devices, etc. Can be mentioned.

本発明の一実施形態に係るセラミックコンデンサの概略図である。It is the schematic of the ceramic capacitor which concerns on one Embodiment of this invention. 図1に示す誘電体の断面の組成像の概略図である。It is the schematic of the composition image of the cross section of the dielectric material shown in FIG. 図2と同一の視野についてのBaマッピングの概略図である。FIG. 3 is a schematic diagram of Ba mapping for the same field of view as in FIG. 2. 図2と同一の視野についてのCaマッピングの概略図である。It is the schematic of Ca mapping about the same visual field as FIG. 図2と同一の視野についてのZnマッピングの概略図である。FIG. 3 is a schematic diagram of Zn mapping for the same field of view as in FIG. 2. 図1に示す誘電体の断面の概略図である。It is the schematic of the cross section of the dielectric material shown in FIG. 図2と同一の視野についてのBiマッピングの概略図である。FIG. 3 is a schematic diagram of Bi mapping for the same field of view as in FIG. 2. 試料1、試料2におけるTCカーブの概略図である。It is the schematic of the TC curve in the sample 1 and the sample 2. FIG.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

セラミックコンデンサ2
図1に示すように、本発明の実施形態に係るセラミックコンデンサ2は、誘電体4と、その対向表面に形成された一対の電極6、8とを有する構成となっている。セラミックコンデンサの形状は、目的や用途に応じて適宜決定すればよい。本実施形態では誘電体4が円板形状となっている円板型のコンデンサとして説明する。
Ceramic capacitor 2
As shown in FIG. 1, the ceramic capacitor 2 according to the embodiment of the present invention has a configuration including a dielectric 4 and a pair of electrodes 6 and 8 formed on the opposing surface thereof. The shape of the ceramic capacitor may be appropriately determined according to the purpose and application. In the present embodiment, a description will be given as a disk-type capacitor in which the dielectric 4 has a disk shape.

電極6、8
電極6、8は、導電材で構成される。端子電極6、8に用いられる導電材は、特に限定されず、用途等に応じて適宜決定すればよい。前記導電材としては、たとえば、Ag、Cu、Ni等が挙げられる。
Electrodes 6 and 8
The electrodes 6 and 8 are made of a conductive material. The conductive material used for the terminal electrodes 6 and 8 is not particularly limited, and may be determined as appropriate according to the application. Examples of the conductive material include Ag, Cu, Ni, and the like.

誘電体4
セラミックコンデンサ2の誘電体4は、本発明の実施形態に係る誘電体磁器組成物により構成される。誘電体4の厚みは、特に限定されず、用途等に応じて適宜決定すれば良い。
Dielectric 4
The dielectric 4 of the ceramic capacitor 2 is composed of a dielectric ceramic composition according to an embodiment of the present invention. The thickness of the dielectric 4 is not particularly limited, and may be appropriately determined according to the application.

本発明の実施形態に係る誘電体磁器組成物は、(Ba1−x−y,Ca,A1(Ti1−z−d,Zr,B1)O(x≠0、z≠0、x+y≠1、z+d≠1)の組成式で表わされる第1主組成物粒子と、(Ba1−α,A2α(Ti1−β,B2β)O(α≠1、β≠1) の組成式で表わされる第2主組成物粒子と、少なくとも酸化亜鉛を含む副成分とを有する誘電体磁器組成物である。 The dielectric ceramic composition according to an embodiment of the present invention, (Ba 1-x-y , Ca x, A1 y) m (Ti 1-z-d, Zr z, B1 d) O 3 (x ≠ 0, a first main composition particle represented by a composition formula of z ≠ 0, x + y ≠ 1, z + d ≠ 1, and (Ba 1−α , A2 α ) n (Ti 1−β , B2 β ) O 3 (α ≠ 1, β ≠ 1) A dielectric ceramic composition having second main composition particles represented by the composition formula: and a subcomponent containing at least zinc oxide.

さらに、本発明の実施形態に係る誘電体磁器組成物は、前記第1主組成物の平均粒径が3μm〜10μmであり、前記第2主組成物の平均粒径が0.1μm〜3μmである。前記第1主組成物の平均粒径を3μm〜10μmとすることにより、誘電率及び温度特性及び交流破壊電圧が向上する。前記第2主組成物の平均粒径を0.1μm〜3μmとすることにより、温度特性と誘電率が向上する。   Furthermore, in the dielectric ceramic composition according to the embodiment of the present invention, the average particle size of the first main composition is 3 μm to 10 μm, and the average particle size of the second main composition is 0.1 μm to 3 μm. is there. By setting the average particle size of the first main composition to 3 μm to 10 μm, the dielectric constant, temperature characteristics, and AC breakdown voltage are improved. By setting the average particle size of the second main composition to 0.1 μm to 3 μm, temperature characteristics and dielectric constant are improved.

さらに、本発明に係る誘電体磁器組成物は、前記第1主組成物粒子のうち90%以上の粒子の粒径が3μm〜10μmであることが好ましい。さらに、前記第2主組成物粒子のうち90%以上の粒子の粒径が0.1μm〜3μmであることが好ましい。前記第1主組成物粒子のうち90%以上の粒子の粒径が3μm〜10μmであることにより、誘電率及び温度特性及び交流破壊電圧が向上する。前記第2主組成物のうち90%以上の粒子の粒径が0.1μm〜3μmであることにより、温度特性と誘電率が向上する。   Furthermore, in the dielectric ceramic composition according to the present invention, it is preferable that a particle diameter of 90% or more of the first main composition particles is 3 μm to 10 μm. Furthermore, it is preferable that the particle size of 90% or more of the second main composition particles is 0.1 μm to 3 μm. When the particle size of 90% or more of the first main composition particles is 3 μm to 10 μm, the dielectric constant, temperature characteristics, and AC breakdown voltage are improved. When the particle size of 90% or more of the second main composition is 0.1 μm to 3 μm, temperature characteristics and dielectric constant are improved.

さらに、本発明に係る誘電体磁器組成物は、前記第1主組成物の占める面積と前記第2主組成物が占める面積との和を100%とする場合に、前記第2主組成物粒子の占める面積が5〜40%であることが好ましい。前記第2主組成物粒子の占める面積が5〜40%であることにより、容量温度特性および室温付近での比誘電率が共に良好となる。   Furthermore, the dielectric ceramic composition according to the present invention provides the second main composition particles when the sum of the area occupied by the first main composition and the area occupied by the second main composition is 100%. The area occupied by is preferably 5 to 40%. When the area occupied by the second main composition particles is 5 to 40%, both the capacity-temperature characteristics and the relative dielectric constant near room temperature are improved.

以下、第1主組成物粒子と第2主組成物粒子との識別方法、粒径(平均粒径)の測定方法、および各主組成物粒子の占める面積の測定方法について記載する。   Hereinafter, a method for identifying the first main composition particle and the second main composition particle, a method for measuring the particle diameter (average particle diameter), and a method for measuring the area occupied by each main composition particle will be described.

まず、焼結後の誘電体磁器組成物(焼結体)を切断した断面を鏡面研磨し、鏡面研磨を施した面に対して走査型電子顕微鏡(Scanning Electron Microscope:SEM)の組成像を撮影する。さらに、前記組成像と同一の視野でEPMA(Electron Probe Micro Analyzer)で観察し、各元素のマッピング分析を行った。   First, the section of the sintered dielectric ceramic composition (sintered body) is mirror-polished, and a scanning electron microscope (SEM) composition image is taken on the mirror-polished surface. To do. Further, observation with an EPMA (Electron Probe Micro Analyzer) was performed in the same field of view as the composition image, and mapping analysis of each element was performed.

SEMによる組成像の撮影およびEPMAマッピング分析は、倍率2500〜10000倍で(12.5〜50)μm×(10〜40)μmの視野で行う。   Taking a composition image by SEM and EPMA mapping analysis are performed in a field of view (12.5 to 50) μm × (10 to 40) μm at a magnification of 2500 to 10,000 times.

まず、SEMによる組成像で各粒子の輪郭を確定させる。さらに、各元素マッピングに前記各粒子の輪郭を重ねあわせる。   First, the outline of each particle is determined by a composition image obtained by SEM. Furthermore, the outline of each particle is superimposed on each element mapping.

BaマッピングでBaが観測され、CaマッピングでCaが観測された粒子は第1主組成物粒子である。これに対し、BaマッピングでBaが観測され、CaマッピングでCaが観測されない粒子は第2主組成物粒子である。さらに、Ba、CaマッピングでBa、Caが観測されず、ZnマッピングでZnが観測された部分はZn偏析相である。   The particles in which Ba is observed by Ba mapping and Ca is observed by Ca mapping are the first main composition particles. In contrast, particles in which Ba is observed in Ba mapping and Ca is not observed in Ca mapping are second main composition particles. Furthermore, a portion where Ba and Ca are not observed by Ba and Ca mapping and Zn is observed by Zn mapping is a Zn segregation phase.

さらに、Biマッピングに前記各粒子の輪郭を重ねあわせることで、各主組成物粒子にBiが固溶しているか否かが観察できる。   Furthermore, it is possible to observe whether or not Bi is dissolved in each main composition particle by superimposing the outline of each particle on Bi mapping.

ここで、前記組成像に完全に映っている全ての第1主組成物粒子、第2主組成物粒子について粒子径を算出し、平均粒径を算出した。   Here, the particle diameter was calculated for all the first main composition particles and second main composition particles that were completely reflected in the composition image, and the average particle diameter was calculated.

また、前記第1主組成物粒子のうち90%以上の粒子の粒径が3μm〜10μmであるか否かの確認および前記第2主組成物粒子のうち90%以上の粒子の粒径が0.1μm〜3μmであるか否かの確認も、前記組成像に完全に映っている全ての第1主組成物粒子、第2主組成物粒子について粒子径を算出することで行った。   In addition, whether or not the particle size of 90% or more of the first main composition particles is 3 μm to 10 μm and the particle size of 90% or more of the second main composition particles is 0 It was also confirmed by calculating the particle diameter of all the first main composition particles and second main composition particles that were completely reflected in the composition image.

さらに、前記組成像により、各主組成物粒子の占める面積も算出した。   Furthermore, the area occupied by each main composition particle was also calculated from the composition image.

なお、上記の平均粒径の算出、90%以上の粒子の粒径が所定範囲内であるか否かの確認、および各主組成物粒子の占める面積の測定は、同条件で作成した1個以上の誘電体磁器組成物について、前記誘電体磁器組成物1個あたり5個以上の視野につき実施することが、好ましい。また、粒径および面積を測定する主組成物粒子の粒子数は300個以上とすることが好ましい。   In addition, calculation of said average particle diameter, confirmation whether the particle diameter of 90% or more of the particle | grains is in the predetermined range, and the measurement of the area which each main composition particle occupies were produced on the same conditions. About the above dielectric ceramic composition, it is preferable to carry out per field of view of 5 or more per one dielectric ceramic composition. The number of main composition particles whose particle size and area are measured is preferably 300 or more.

組成式中のxは、第1主組成物のAサイト原子に占めるCa原子の比率を表す。xの範囲は好ましくは0.01≦x≦0.30である。Caが上記の範囲で含有されることにより、交流破壊電圧および容量温度特性が良好になる傾向がある。   X in the composition formula represents a ratio of Ca atoms to A site atoms of the first main composition. The range of x is preferably 0.01 ≦ x ≦ 0.30. When Ca is contained in the above range, the AC breakdown voltage and the capacity-temperature characteristic tend to be improved.

前記組成式中のyは、第1主組成物のAサイト原子に占めるA1の比率を表したものである。A1の種類はBa、Ca以外の元素であり、前記第1主組成物のAサイトを置換する元素であれば特に限定はない。A1は1種類の元素で構成されていても2種類以上の元素で構成されていてもよい。A1の種類としては、たとえばSr、Mgが挙げられる。   Y in the composition formula represents the ratio of A1 to the A site atoms of the first main composition. The type of A1 is an element other than Ba and Ca, and is not particularly limited as long as it is an element that substitutes the A site of the first main composition. A1 may be composed of one element or may be composed of two or more elements. Examples of the type of A1 include Sr and Mg.

A1は任意成分であり、A1を含有しなくてもかまわない。A1としてSrを含有する場合には、yの範囲はy≦0.1であることが好ましい。   A1 is an optional component and does not need to contain A1. When Sr is contained as A1, the range of y is preferably y ≦ 0.1.

前記組成式中のzは、第1主組成物のBサイト原子に占めるZrの比率を表す。zの範囲は好ましくは0.04≦z≦0.2である。Zrが上記の範囲で含有されることにより、比誘電率および低温側の容量温度特性が良好になる傾向がある。   Z in the composition formula represents a ratio of Zr to B site atoms of the first main composition. The range of z is preferably 0.04 ≦ z ≦ 0.2. When Zr is contained in the above range, the relative dielectric constant and the capacitance-temperature characteristic on the low temperature side tend to be good.

前記組成式中のdは、第1主組成物のBサイト原子に占めるB1の比率を表したものである。B1の種類はTi、Zr以外の元素であり、前記第1主組成物のBサイトを置換する元素であれば特に限定はない。B1は1種類の元素で構成されていても2種類以上の元素で構成されていてもよい。B1の種類としては、たとえばSn、Hfが挙げられる。   D in the composition formula represents a ratio of B1 to B site atoms of the first main composition. The type of B1 is an element other than Ti and Zr, and is not particularly limited as long as it is an element that substitutes the B site of the first main composition. B1 may be composed of one kind of element or may be composed of two or more kinds of elements. Examples of B1 include Sn and Hf.

B1は任意成分であり、B1を含有しなくてもかまわない。B1としてSnを含有する場合には、dの範囲はd≦0.2であることが好ましい。   B1 is an optional component and does not need to contain B1. When Sn is contained as B1, the range of d is preferably d ≦ 0.2.

前記組成式中のmは第1主組成物のAサイト原子であるBa、Ca、A1と、第1主組成物のBサイト成分であるTi、Zr、B1とのモル比を表わす。mの数値範囲には特に限定はない。   M in the composition formula represents a molar ratio of Ba, Ca, A1 which are A site atoms of the first main composition and Ti, Zr, B1 which are B site components of the first main composition. There is no particular limitation on the numerical range of m.

組成式中のαは、第2主組成物のAサイト原子に占めるA2原子の比率を表す。A2の種類はBa、Ca以外の元素であり、前記第2主組成物のAサイトを置換する元素であれば特に限定はない。A2は1種類の元素で構成されていても2種類以上の元素で構成されていてもよい。A2の種類としては、たとえばSrが挙げられる。また、A1とA2とが同一の元素であっても構わない。   Α in the composition formula represents a ratio of A2 atoms to A site atoms of the second main composition. The type of A2 is an element other than Ba and Ca, and is not particularly limited as long as it is an element that substitutes the A site of the second main composition. A2 may be composed of one kind of element or may be composed of two or more kinds of elements. Examples of the type of A2 include Sr. A1 and A2 may be the same element.

A2は任意成分であり、A2を含有しない、すなわちα=0であってもかまわない。A2としてSrを含有する場合には、αの範囲はα≦0.1であることが好ましい。   A2 is an optional component and does not contain A2, that is, α = 0 may be used. When Sr is contained as A2, the range of α is preferably α ≦ 0.1.

組成式中のβは、第2主組成物のBサイト原子に占めるB2原子の比率を表す。B2の種類はTi、Zr以外の元素であり、前記第2主組成物のBサイトを置換する元素であれば特に限定はない。B2は1種類の元素で構成されていても2種類以上の元素で構成されていてもよい。B2の種類としては、たとえばSnが挙げられる。また、B1とB2とが同一の元素であっても構わない。   Β in the composition formula represents a ratio of B2 atoms to B site atoms of the second main composition. The type of B2 is an element other than Ti and Zr, and is not particularly limited as long as it is an element that substitutes the B site of the second main composition. B2 may be composed of one element or may be composed of two or more elements. Examples of the type of B2 include Sn. B1 and B2 may be the same element.

B2は任意成分であり、B2を含有しない、すなわちβ=0であってもかまわない。B2としてSnを含有する場合には、βの範囲はβ≦0.02であることが好ましい。   B2 is an optional component and does not contain B2, that is, β = 0 may be used. When Sn is contained as B2, the range of β is preferably β ≦ 0.02.

前記組成式中のnは第2主組成物のAサイト原子であるBa、A2と、第2主組成物のBサイト成分であるTi、B2とのモル比を表わす。nの数値範囲には特に限定はない。   N in the composition formula represents a molar ratio between Ba and A2 which are A site atoms of the second main composition and Ti and B2 which are B site components of the second main composition. There is no particular limitation on the numerical range of n.

第1主組成物と第2主組成物とを合わせて主成分とする。主成分の含有量を100重量部として、前記第2主組成物の含有量は、5〜40重量部であることが好ましい。前記第2主組成物の含有量を5〜40重量部とすることで容量温度特性および室温付近での比誘電率が共に良好となる。   The first main composition and the second main composition are combined as a main component. The content of the second main composition is preferably 5 to 40 parts by weight, with the content of the main component being 100 parts by weight. By setting the content of the second main composition to 5 to 40 parts by weight, both the capacity-temperature characteristics and the relative dielectric constant near room temperature are improved.

なお、主成分の含有量を100重量部とした場合の前記第2主組成物の含有量は、前記第1主組成物の占める面積と前記第2主組成物が占める面積との和を100%とする場合における前記第2主組成物粒子の占める面積の割合と概ね一致する。   The content of the second main composition when the content of the main component is 100 parts by weight is the sum of the area occupied by the first main composition and the area occupied by the second main composition being 100. % Substantially corresponds to the ratio of the area occupied by the second main composition particles.

さらに、第2主組成物の含有量をA重量部とした場合に、0.97≦{(100−A)×m+A×n}×0.01≦1.03を満たすことが好ましい。m、n、Aが上記の数式を満たす場合に、比誘電率、交流破壊電圧および焼結性が向上する。   Furthermore, when the content of the second main composition is A parts by weight, it is preferable that 0.97 ≦ {(100−A) × m + A × n} × 0.01 ≦ 1.03 is satisfied. When m, n, and A satisfy the above mathematical formula, the dielectric constant, AC breakdown voltage, and sinterability are improved.

本発明の実施形態に係る誘電体磁器組成物は、前記主成分の他に、少なくとも酸化亜鉛を含む副成分を含有する。   The dielectric ceramic composition according to the embodiment of the present invention contains at least a subcomponent containing zinc oxide in addition to the main component.

酸化亜鉛の含有量に特に制限はない。前記主成分100重量部に対して0.45〜10重量部含有することが好ましい。酸化亜鉛の含有量を上記の範囲内とすることで、交流破壊電圧、容量温度特性および焼結性が向上する。なお、酸化亜鉛を全く含有しない場合には、特に焼結性が悪化する。   There is no restriction | limiting in particular in content of a zinc oxide. It is preferable to contain 0.45-10 weight part with respect to 100 weight part of the said main components. By setting the content of zinc oxide within the above range, the AC breakdown voltage, the capacity-temperature characteristic, and the sinterability are improved. In addition, when zinc oxide is not contained at all, the sinterability is particularly deteriorated.

本発明の実施形態に係る誘電体磁器組成物は、副成分として酸化ビスマスを含有してもよい。酸化ビスマスを前記主成分100重量部に対して0.3〜3重量部含有することが好ましい。酸化ビスマスを0.3〜3重量部含有することにより、交流破壊電圧が良好となる。さらに、容量温度特性および室温付近での比誘電率が共に良好となる。   The dielectric ceramic composition according to the embodiment of the present invention may contain bismuth oxide as a subcomponent. It is preferable to contain 0.3 to 3 parts by weight of bismuth oxide with respect to 100 parts by weight of the main component. By containing 0.3 to 3 parts by weight of bismuth oxide, the AC breakdown voltage is improved. Furthermore, both the capacitance-temperature characteristics and the relative dielectric constant near room temperature are good.

さらに、前記酸化ビスマスが前記第1主組成物粒子に固溶していることが好ましい。前記酸化ビスマスを前記第1主組成物粒子に固溶させることで低温側の容量温度特性が向上する。また、全ての前記第1主組成物粒子に占める酸化ビスマスが固溶した前記第1主組成物粒子の割合は、90%以上が好ましく、95%以上がさらに好ましい。   Furthermore, it is preferable that the bismuth oxide is dissolved in the first main composition particles. By dissolving the bismuth oxide in the first main composition particles, the capacity-temperature characteristic on the low temperature side is improved. Further, the ratio of the first main composition particles in which bismuth oxide occupies all the first main composition particles is preferably 90% or more, and more preferably 95% or more.

なお、前記酸化ビスマスは、前記第2主組成物粒子には固溶していないことが高温側の容量温度特性を向上させる観点から好ましい。   The bismuth oxide is preferably not dissolved in the second main composition particles from the viewpoint of improving the capacity-temperature characteristics on the high temperature side.

ここで、容量温度特性および室温での比誘電率と第2主組成物(BT系主組成物粒子)の含有量および酸化ビスマスの含有量との関係について詳細に説明する。   Here, the relationship between the capacity-temperature characteristics, the relative dielectric constant at room temperature, the content of the second main composition (BT-based main composition particles) and the content of bismuth oxide will be described in detail.

本技術分野において望まれる誘電体磁器組成物は、容量温度特性と室温での比誘電率とを両立させた誘電体磁器組成物である。容量温度特性がE特性を満たしつつ、室温での比誘電率が高い誘電体磁器組成物が望まれる。なお、E特性を満たすとは、基準温度20℃における静電容量に対する−25℃での静電容量の変化率および85℃での静電容量の変化率が+20%〜−55%の範囲内にある場合を指し、本技術分野で一般的に用いられている容量温度特性の基準である。なお、静電容量が高いほど比誘電率も高くなる。   A dielectric ceramic composition desired in this technical field is a dielectric ceramic composition that achieves both a capacity-temperature characteristic and a relative dielectric constant at room temperature. A dielectric ceramic composition having a high dielectric constant at room temperature while satisfying the E-characteristic of the capacity-temperature characteristic is desired. Satisfying the E characteristic means that the capacitance change rate at −25 ° C. and the capacitance change rate at 85 ° C. within the range of + 20% to −55% with respect to the capacitance at the reference temperature of 20 ° C. This is a standard of capacity-temperature characteristics generally used in this technical field. Note that the higher the capacitance, the higher the dielectric constant.

横軸に温度を、縦軸に静電容量をとるグラフにおいて、BCTZ系主組成物粒子のみからなる誘電体磁器組成物を含むコンデンサの静電容量は室温付近で最大となり、−25℃前後の低温部および+85℃前後の高温部での静電容量は室温付近での静電容量と比べて大幅に低くなる傾向にある。   In the graph in which the horizontal axis represents temperature and the vertical axis represents capacitance, the capacitance of the capacitor including the dielectric ceramic composition consisting only of the BCTZ main composition particles is maximum near room temperature, and is around -25 ° C. The capacitance at the low temperature portion and the high temperature portion around + 85 ° C. tends to be significantly lower than the capacitance near room temperature.

ここで、前記の誘電体磁器組成物のBCTZ系主組成物粒子の一部をBT系主組成物粒子に置換すると、低温部および高温部(特に高温部)での静電容量が増加する傾向にある。そして、容量温度特性が向上する傾向にある。しかし、BT系主組成物粒子の含有量が多くなりすぎると室温付近での静電容量が低下する傾向にある。   Here, when a part of the BCTZ main composition particles of the dielectric ceramic composition is replaced with BT main composition particles, the electrostatic capacity tends to increase in the low temperature portion and the high temperature portion (particularly the high temperature portion). It is in. And capacity temperature characteristics tend to improve. However, if the content of the BT-based main composition particles is too large, the capacitance near room temperature tends to decrease.

また、前記酸化ビスマスがBCTZ系主組成物粒子に固溶すると、前記の曲線(TCカーブともいう)が低温側に移動する傾向がある。そして、低温部における容量温度特性が向上する傾向がある。   Further, when the bismuth oxide is dissolved in the BCTZ main composition particles, the curve (also referred to as TC curve) tends to move to a low temperature side. And there exists a tendency for the capacity-temperature characteristic in a low-temperature part to improve.

以上より、BT系主組成物粒子の含有量および酸化ビスマスの含有量を適切に調整することで室温付近での比誘電率を高くするとともに容量温度特性も優れた誘電体磁器組成物が得られる。   As described above, by appropriately adjusting the content of the BT-based main composition particles and the content of bismuth oxide, a dielectric ceramic composition having a high dielectric constant near room temperature and excellent capacity-temperature characteristics can be obtained. .

本実施形態に係る誘電体磁器組成物では、主成分の含有量を100重量部とした場合の前記第2主組成物の含有量が5〜40重量部であり、酸化ビスマスを主成分100重量部に対して0.3〜3重量部含有する場合が好ましい。この場合に室温での高い比誘電率とE特性を満たす容量温度特性とを両立させやすいためである。   In the dielectric ceramic composition according to the present embodiment, when the content of the main component is 100 parts by weight, the content of the second main composition is 5 to 40 parts by weight, and bismuth oxide is 100% by weight of the main component. The case where it contains 0.3-3 weight part with respect to a part is preferable. This is because in this case, it is easy to achieve both a high dielectric constant at room temperature and a capacity-temperature characteristic that satisfies the E characteristic.

本発明の実施形態に係る誘電体磁器組成物は、副成分として希土類元素の酸化物を含有してもよい。前記希土類元素の酸化物はLa、Ce、Pr、Pm、Nd、Sm、Eu、Gd、Yからなる群のうち少なくとも1種以上の酸化物であることが好ましく、より好ましくはY、Gd、La、Sm、Ndからなる群のうち少なくとも1種以上の酸化物である。前記希土類元素の酸化物を前記主成分100重量部に対して0.3重量部以下、含有することが好ましい。前記希土類元素の酸化物を0.3重量部以下、含有することにより、耐還元性、比誘電率、交流破壊電圧および容量温度特性が向上する。   The dielectric ceramic composition according to the embodiment of the present invention may contain a rare earth element oxide as a subcomponent. The rare earth element oxide is preferably at least one oxide selected from the group consisting of La, Ce, Pr, Pm, Nd, Sm, Eu, Gd, and Y, more preferably Y, Gd, and La. , Sm, Nd, at least one oxide. The rare earth element oxide is preferably contained in an amount of 0.3 part by weight or less based on 100 parts by weight of the main component. By containing 0.3 parts by weight or less of the rare earth element oxide, reduction resistance, relative dielectric constant, AC breakdown voltage, and capacity-temperature characteristics are improved.

本発明の実施形態に係る誘電体磁器組成物は、副成分としてAl、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物を含有してもよい。好ましくはAl、Ga、Mg、Siからなる群のうち少なくとも1種以上の酸化物である。前記Al、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物を前記主成分100重量部に対して0.02〜1.5重量部含有することが好ましい。前記Al、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物の含有量を上記の範囲内とすることにより、比誘電率および交流破壊電圧が向上する。   The dielectric ceramic composition according to the embodiment of the present invention may contain at least one oxide selected from the group consisting of Al, Ga, Si, Mg, In, and Ni as a subcomponent. Preferably, it is at least one oxide selected from the group consisting of Al, Ga, Mg, and Si. It is preferable to contain 0.02 to 1.5 parts by weight of at least one oxide selected from the group consisting of Al, Ga, Si, Mg, In and Ni with respect to 100 parts by weight of the main component. By setting the content of at least one oxide in the group consisting of Al, Ga, Si, Mg, In, and Ni within the above range, the relative permittivity and the AC breakdown voltage are improved.

本発明の実施形態に係る誘電体磁器組成物は、副成分としてMg、Crからなる群のうち少なくとも1種以上の酸化物を含有してもよい。前記Mg、Crからなる群のうち少なくとも1種以上の酸化物を前記主成分100重量部に対して0.01〜0.6重量部含有することが好ましい。前記Mg、Crからなる群のうち少なくとも1種以上の酸化物の含有量を上記の範囲内とすることにより、比誘電率、交流破壊電圧、容量温度特性および高温時の信頼性が向上する。   The dielectric ceramic composition according to the embodiment of the present invention may contain at least one oxide selected from the group consisting of Mg and Cr as subcomponents. It is preferable to contain 0.01 to 0.6 parts by weight of at least one oxide in the group consisting of Mg and Cr with respect to 100 parts by weight of the main component. By setting the content of at least one oxide in the group consisting of Mg and Cr within the above range, the relative permittivity, the AC breakdown voltage, the capacity-temperature characteristic, and the reliability at high temperatures are improved.

セラミックコンデンサ2の製造方法
次に、セラミックコンデンサ2の製造方法について説明する。まず、焼成後に図1に示す誘電体4を形成することとなる誘電体磁器組成物粉末を製造する。
Manufacturing method of ceramic capacitor 2
Next, a method for manufacturing the ceramic capacitor 2 will be described. First, a dielectric ceramic composition powder that forms the dielectric 4 shown in FIG. 1 after firing is manufactured.

主成分(第1主組成物および第2主組成物)の原料および各副成分の原料を準備する。主成分の原料としては、Ba、Ca、Ti、Zr等の各酸化物および/または焼成により酸化物となる原料や、これらの複合酸化物などが挙げられる。たとえば、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)などを用いることができるが上記の化合物に限られない。たとえば上記の金属元素の水酸化物など、焼成後に酸化物やチタン化合物となる種々の化合物を用いることも可能である。 The raw material of a main component (a 1st main composition and a 2nd main composition) and the raw material of each subcomponent are prepared. Examples of the main component raw material include oxides such as Ba, Ca, Ti, and Zr and / or raw materials that become oxides by firing, and composite oxides thereof. For example, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and the like can be used, but are not limited to the above compounds. For example, it is also possible to use various compounds that become oxides and titanium compounds after firing, such as hydroxides of the above metal elements.

また、主成分の原料の製造方法に特に制限はない。たとえば、固相法により製造してもよいし、水熱合成法や蓚酸塩法などの液相法により製造してもよい。なお、製造コストの面からは固相法により製造することが好ましい。   Moreover, there is no restriction | limiting in particular in the manufacturing method of the raw material of a main component. For example, it may be produced by a solid phase method or a liquid phase method such as a hydrothermal synthesis method or an oxalate method. From the viewpoint of manufacturing cost, it is preferable to manufacture by a solid phase method.

各副成分の原料には特に制限はない。焼成により酸化物となる各種化合物、たとえば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択して用いることができる。   There is no restriction | limiting in particular in the raw material of each subcomponent. Various compounds that become oxides upon firing, such as carbonates, nitrates, hydroxides, organometallic compounds, and the like, can be appropriately selected and used.

本発明の実施形態に係る誘電体磁器組成物の製造方法としては、まず第1主組成物仮焼粉および第2主組成物粉末を別々に製造する。   As a method for manufacturing a dielectric ceramic composition according to an embodiment of the present invention, first, the first main composition calcined powder and the second main composition powder are separately manufactured.

第1主組成物仮焼粉は、各主組成物の原料を配合し、混合する。混合方法に特に制限はない。例えば湿式混合により混合することができる。また、湿式混合に用いる器具にも特に制限はない。たとえばボールミルなどを用いることができる。湿式混合により混合を行う場合には、湿式混合後に脱水乾燥を行い、脱水乾燥の後に仮焼成を行う。仮焼成により各原料を化学反応させることで、前記各主組成物仮焼粉を得ることができる。なお、仮焼温度は1100〜1250℃、仮焼雰囲気は空気中とすることが好ましい。   The first main composition calcined powder is blended with the raw materials of each main composition. There is no particular limitation on the mixing method. For example, they can be mixed by wet mixing. Moreover, there is no restriction | limiting in particular also in the instrument used for wet mixing. For example, a ball mill can be used. In the case of mixing by wet mixing, dehydration drying is performed after wet mixing, and temporary baking is performed after dehydration drying. Each main composition calcined powder can be obtained by chemically reacting each raw material by calcining. The calcining temperature is preferably 1100 to 1250 ° C. and the calcining atmosphere is preferably in the air.

第2主組成物粉末の準備方法に特に限定はない。第1主組成物仮焼粉と同様の方法で第2主組成物仮焼粉を準備してもよい。また、第2主組成物がチタン酸バリウムである場合(α=0、β=0の場合)には、市販のチタン酸バリウム粉末をそのまま用いることも可能である。   There is no limitation in particular in the preparation method of 2nd main composition powder. You may prepare 2nd main composition calcined powder by the method similar to 1st main composition calcined powder. Further, when the second main composition is barium titanate (when α = 0 and β = 0), it is also possible to use commercially available barium titanate powder as it is.

第2主組成物がチタン酸バリウムである場合には、焼結反応度を高めたチタン酸バリウム粉末を準備することが好ましい。焼結反応度を高める方法に特に限定はない。例えば高仮焼温度化、原料の高純度化等の方法を用いることができる。焼結反応度を高めた後のチタン酸バリウム粉末は、X軸二軸回折装置を用いたリートベルト法により測定されるc/aが1.0095以上であることが好ましい。   When the second main composition is barium titanate, it is preferable to prepare a barium titanate powder having an increased sintering reactivity. There is no particular limitation on the method for increasing the sintering reactivity. For example, methods such as a high calcination temperature and a high purity raw material can be used. The barium titanate powder after increasing the sintering reactivity preferably has a c / a of 1.0095 or more as measured by the Rietveld method using an X-axis biaxial diffractometer.

得られた第1主組成物仮焼粉を粗粉砕した後に、第1主組成物仮焼粉、第2主組成物粉末、および各副成分の原料を混合する。前記混合後に微粉砕を行う。微粉砕の方法には特に制限はない。例えばポットミルなどを用いて微粉砕を行うことが可能である。微粉砕後の平均粒径にも特に制限はない。平均粒径が0.5〜2μm程度になるように微粉砕を行うことが好ましい。   After coarsely pulverizing the obtained first main composition calcined powder, the first main composition calcined powder, the second main composition powder, and the raw materials of each subcomponent are mixed. Fine grinding is performed after the mixing. There is no particular limitation on the method of pulverization. For example, fine pulverization can be performed using a pot mill or the like. There is no particular limitation on the average particle size after pulverization. It is preferable to pulverize so that the average particle size is about 0.5 to 2 μm.

第1主組成物仮焼粉と第2主組成物粉末とを混合する前に第2主組成物粉末のみを微粉砕して第2主組成物粉末の粒径を調整してもよい。また、第2主成分粉末を他の粉末とは別に微粉砕して、他の粉末と粒径を変化させてから、微粉砕した第2主成分粉末と微粉砕した他の粉末とを混合してもよい。   Prior to mixing the first main composition calcined powder and the second main composition powder, only the second main composition powder may be finely pulverized to adjust the particle size of the second main composition powder. Also, the second main component powder is finely pulverized separately from other powders, and after changing the particle size with the other powders, the finely pulverized second main component powder and the other finely pulverized powder are mixed. May be.

微粉砕後に脱水乾燥を行い、脱水乾燥後に有機結合剤を添加する。有機結合剤に特に制限はなく、本技術分野で通常用いることができる有機結合剤を用いることができる。一例としてポリビニルアルコール(PVA)が挙げられる。   After pulverization, dehydration and drying are performed, and after dehydration and drying, an organic binder is added. There is no restriction | limiting in particular in an organic binder, The organic binder normally used in this technical field can be used. An example is polyvinyl alcohol (PVA).

前記有機結合剤を添加後に造粒および整粒を行い、顆粒粉末を得る。得られた顆粒粉末を成形し、成形物を得る。   After adding the organic binder, granulation and sizing are performed to obtain a granular powder. The obtained granular powder is molded to obtain a molded product.

得られた成形物を本焼成し、誘電体磁器組成物の焼結体(誘電体4)を得る。焼成雰囲気に特に制限はないが、空気中で焼成することが好ましい。焼成温度、焼成時間に特に制限はないが、焼成温度は1150〜1300℃、焼成時間は1.5〜3時間で行うことが好ましい。   The obtained molded product is finally fired to obtain a sintered body (dielectric 4) of the dielectric ceramic composition. There is no particular limitation on the firing atmosphere, but firing in air is preferable. The firing temperature and firing time are not particularly limited, but the firing temperature is preferably 1150 to 1300 ° C. and the firing time is preferably 1.5 to 3 hours.

得られた誘電体磁器組成物の焼結体(誘電体4)の所定の表面に電極を印刷し、必要に応じて焼き付けすることにより、電極6、8を形成することにより、図1に示すようなセラミックコンデンサ2を得る。   An electrode is printed on a predetermined surface of the sintered body (dielectric 4) of the obtained dielectric ceramic composition, and is baked as necessary, thereby forming the electrodes 6 and 8, and as shown in FIG. Such a ceramic capacitor 2 is obtained.

このようにして製造された本発明のセラミックコンデンサ2は、リード端子を介してプリント基板上などに実装され、各種電子機器等に使用される。   The ceramic capacitor 2 of the present invention thus manufactured is mounted on a printed board or the like via a lead terminal and used for various electronic devices.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, it can implement in a various aspect within the range which does not deviate from the summary of this invention. .

以下、焼結後の焼結体におけるBCTZ系主組成物粒子の粒径(平均粒径)およびBT系主組成物粒子の粒径(平均粒径)の制御方法について記載する。   Hereinafter, a method for controlling the particle size (average particle size) of the BCTZ main composition particles and the particle size (average particle size) of the BT main composition particles in the sintered body after sintering will be described.

まず、一般的に、焼成温度が高く、焼成時間が長いほど主組成物粒子が粒成長して粒径が大きくなる傾向がある。   First, generally, as the firing temperature is higher and the firing time is longer, the main composition particles tend to grow and have a larger particle size.

ここで、BCTZ系主組成物粒子とBT系主組成物粒子とで粒成長のしやすさを比較すると、BCTZ系主組成物粒子の方が粒成長しやすい。さらに、焼成温度が高く、焼成時間が長いほど粒成長の程度も大きくなり、焼成温度が低く、焼成時間が短いほど粒成長の程度も小さい。   Here, when the ease of grain growth is compared between the BCTZ-based main composition particles and the BT-based main composition particles, the BCTZ-based main composition particles are more likely to grow. Furthermore, the higher the firing temperature and the longer the firing time, the greater the degree of grain growth, and the lower the firing temperature and the shorter the firing time, the smaller the degree of grain growth.

また、特にBCTZ系主組成物粒子においては、焼成前の主組成物粒子の粒径が小さいほど粒成長しやすく、焼成前の主組成物粒子の粒径が大きいほど粒成長しにくい。   In particular, in the BCTZ main composition particles, the smaller the particle size of the main composition particles before firing, the easier the particle growth, and the larger the particle size of the main composition particles before firing, the less likely the particle growth.

逆に、BT系主組成物粒子は、通常の焼成条件では粒成長の程度が小さい。そして、焼成温度の変化および焼成時間の変化が粒径に与える影響も小さい。   Conversely, BT-based main composition particles have a small degree of grain growth under normal firing conditions. And the influence which the change of baking temperature and the change of baking time has on a particle size is also small.

以上より、BT系主組成物粒子は、前記したように焼成前後での粒径の変化が小さい。したがって、焼成前のBT系主組成物粒子の粒径を変化させれば、焼成後のBT系主組成物粒子の粒径も変化する。   From the above, the BT main composition particles have a small change in particle size before and after firing as described above. Therefore, if the particle size of the BT main composition particles before firing is changed, the particle size of the BT main composition particles after firing also changes.

したがって、焼成後のBCTZ系主組成物粒子の粒径を制御するためには、焼成前のBCTZ系主組成物粒子の粒径と焼成条件との両方を制御することが重要であり、焼成条件を制御することが特に重要である。   Therefore, in order to control the particle size of the BCTZ main composition particles after firing, it is important to control both the particle size of the BCTZ main composition particles before firing and the firing conditions. It is particularly important to control.

これに対し、焼成後のBT系主組成物粒子の粒径を制御するためには、焼成前のBT系主組成物粒子の粒径と焼成条件との両方を制御することが重要であり、焼成前のBT系主組成物粒子の粒径を制御することが特に重要である。   On the other hand, in order to control the particle size of the BT main composition particles after firing, it is important to control both the particle size of the BT main composition particles before firing and the firing conditions. It is particularly important to control the particle size of the BT main composition particles before firing.

上述した実施形態では、本発明に係る電子部品として誘電体層が単層である単板型セラミックコンデンサを例示したが、本発明に係る電子部品としては、単板型セラミックコンデンサに限定されず、上記した誘電体磁器組成物を含む誘電体ペーストおよび電極ペーストを用いた通常の印刷法やシート法により作製される積層型セラミックコンデンサであっても良いし、貫通型コンデンサの誘電体層を上記した誘電体磁器組成物を用いて作製してもよい。   In the embodiment described above, the single-plate ceramic capacitor whose dielectric layer is a single layer is exemplified as the electronic component according to the present invention, but the electronic component according to the present invention is not limited to the single-plate ceramic capacitor, A multilayer ceramic capacitor produced by a normal printing method or sheet method using a dielectric paste and an electrode paste containing the dielectric ceramic composition described above may be used, and the dielectric layer of the feedthrough capacitor is described above. You may produce using a dielectric ceramic composition.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1(試料No.1)
第1主組成物(BCTZ系誘電体粒子)
第1主組成物原料として、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、酸化チタン(TiO)、および酸化ジルコニウム(ZrO)を、それぞれ準備した。
Example 1 (Sample No. 1)
First main composition (BCTZ-based dielectric particles)
As the first main composition material, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), and zirconium oxide (ZrO 2 ) were prepared.

焼成後の組成が(Ba0.92Ca0.08)(Ti0.88Zr0.12)Oとなるように、前記主組成物原料を秤量した。秤量後に各原料を配合した。配合は、ボールミルで湿式混合撹拌を3時間行うことで実施した。湿式混合撹拌後の配合物を脱水乾燥した。脱水乾燥後に1170〜1210℃で仮焼成し、第1主組成物仮焼粉を得た。 The main composition raw material was weighed so that the composition after firing was (Ba 0.92 Ca 0.08 ) (Ti 0.88 Zr 0.12 ) O 3 . After weighing, each raw material was blended. The blending was performed by performing wet mixing and stirring for 3 hours in a ball mill. The mixture after the wet mixing and stirring was dehydrated and dried. After dehydration and drying, it was calcined at 1170-1210 ° C. to obtain a first main composition calcined powder.

第2主組成物(BT系誘電体粒子)
市販のチタン酸バリウムに対して再度仮焼を行い、チタン酸バリウムの焼結反応度を高めた。焼結反応度を高めた後のチタン酸バリウムにX線二軸回折装置を用いたリートベルト法による結晶解析を行い、c/aが1.0095以上であることを確認した。
Second main composition (BT-based dielectric particles)
The commercial barium titanate was calcined again to increase the sintering reactivity of barium titanate. The barium titanate after increasing the degree of sintering reactivity was subjected to crystal analysis by the Rietveld method using an X-ray biaxial diffractometer, and it was confirmed that c / a was 1.0095 or more.

副成分
副成分原料としてアルミン酸亜鉛、酸化ビスマス(Bi)、酸化ネオジム(Nd)を、それぞれ準備した。アルミン酸亜鉛とは、酸化亜鉛(ZnO)100重量部に対して酸化アルミニウム(Al)10重量部を加えたものである。
Zinc aluminate, bismuth oxide (Bi 2 O 3 ), and neodymium oxide (Nd 2 O 3 ) were prepared as subcomponents and subcomponents, respectively. Zinc aluminate is obtained by adding 10 parts by weight of aluminum oxide (Al 2 O 3 ) to 100 parts by weight of zinc oxide (ZnO).

混合および微粉砕
前記第1主組成物仮焼粉、前記第2主組成物および前記各副成分原料を、焼成後の組成が第1主組成物80重量部、第2主組成物20重量部、酸化亜鉛3.00重量部、酸化ビスマス0.60重量部、酸化ネオジム0.020重量部、酸化アルミニウム0.30重量部となるように秤量し、混合した後に、ポットミルで平均粒径0.5μm〜2μm程度に微粉砕した。微粉砕した原料粉末を脱水乾燥した。脱水乾燥後の原料粉末に有機結合剤としてポリビニルアルコール(PVA)を添加し、造粒および整粒を行い、顆粒粉末とした。
Mixing and finely pulverizing the first main composition calcined powder, the second main composition and the subcomponent materials, the composition after firing is 80 parts by weight of the first main composition, and 20 parts by weight of the second main composition After weighing and mixing, 3.00 parts by weight of zinc oxide, 0.60 parts by weight of bismuth oxide, 0.020 parts by weight of neodymium oxide, and 0.30 parts by weight of aluminum oxide, the average particle size of 0. Finely pulverized to about 5 μm to 2 μm. The finely pulverized raw material powder was dehydrated and dried. Polyvinyl alcohol (PVA) was added as an organic binder to the raw material powder after dehydration and drying, and granulation and sizing were performed to obtain a granular powder.

前記顆粒粉末を300MPaの圧力で成形し、直径16.5mm、厚さ1.15mmの円板状の成形物を得た。   The granule powder was molded at a pressure of 300 MPa to obtain a disk-shaped molded product having a diameter of 16.5 mm and a thickness of 1.15 mm.

前記円板状の成形物を空気中、1200℃〜1250℃、2時間で本焼成し焼結体を得た。   The disk-shaped molded product was fired in air at 1200 ° C. to 1250 ° C. for 2 hours to obtain a sintered body.

前記焼結体の両面に銀(Ag)ペーストを焼付けて電極を形成し、磁器コンデンサを得た。   A silver (Ag) paste was baked on both surfaces of the sintered body to form electrodes, and a ceramic capacitor was obtained.

比較例1(試料No.2)
前記第2主組成物を用いず、前記第1主組成物が100重量部となるように秤量する点、および、最終的に得られる誘電体の組成が実施例1と同一の組成となるように、前記第1主組成物仮焼粉の組成を(Ba0.94Ca0.06)(Ti0.90Zr0.10)Oと変化させている点以外は全て実施例1と同一の条件で磁器コンデンサを得た。
Comparative Example 1 (Sample No. 2)
The second main composition is not used, and the first main composition is weighed so as to be 100 parts by weight, and the final dielectric composition is the same as in Example 1. And the composition of the first main composition calcined powder is the same as that of Example 1 except that the composition is changed to (Ba 0.94 Ca 0.06 ) (Ti 0.90 Zr 0.10 ) O 3. A porcelain capacitor was obtained under the following conditions.

実施例2(試料No.11〜17)
アルミン酸亜鉛(酸化亜鉛)の量を実施例1から変化させ、さらに、各主組成物の平均粒径および以下に示すBT面積が以下に示す表1の値となるように、混合前の各原料粉末の平均粒径、微粉砕後の原料粉末の平均粒径および/または焼成条件を実施例1から変化させた点以外は全て実施例1と同一の条件で磁器コンデンサを得た。なお、各試料では最終的に得られる誘電体の組成が、アルミン酸亜鉛以外は実施例1と同一の組成となるように、第1主組成物仮焼粉の組成を変化させている。
Example 2 (Sample Nos. 11 to 17)
The amount of zinc aluminate (zinc oxide) was changed from that in Example 1, and further, the average particle diameter of each main composition and the BT area shown below were the values shown in Table 1 below. A ceramic capacitor was obtained under the same conditions as in Example 1 except that the average particle diameter of the raw material powder, the average particle diameter of the finely pulverized raw material powder, and / or the firing conditions were changed from those in Example 1. In each sample, the composition of the first main composition calcined powder is changed so that the composition of the dielectric finally obtained is the same as that of Example 1 except for zinc aluminate.

比較例2(試料No.18)
アルミン酸亜鉛(酸化亜鉛)を添加しなかった点以外は試料No.17と同一の条件で磁器コンデンサを得た。
Comparative Example 2 (Sample No. 18)
Except for the fact that zinc aluminate (zinc oxide) was not added, Sample No. A porcelain capacitor was obtained under the same conditions as in No.17.

比較例3(試料No.21〜28)
アルミン酸亜鉛(酸化亜鉛)の量を実施例1から変化させ、さらに、各主組成物の平均粒径が以下に示す表1の値となるように、混合前の各原料粉末(特に第2主組成物原料粉末)の平均粒径、微粉砕後の原料粉末の平均粒径および/または焼成条件を実施例1から変化させた点以外は全て実施例1と同一の条件で磁器コンデンサを得た。なお、各試料では最終的に得られる誘電体の組成が、アルミン酸亜鉛以外は実施例1と同一の組成となるように、第1主組成物仮焼粉の組成を変化させている。
Comparative Example 3 (Sample Nos. 21 to 28)
The amount of zinc aluminate (zinc oxide) was changed from Example 1, and each raw material powder before mixing (especially the second powder) so that the average particle size of each main composition became the value of Table 1 shown below. A ceramic capacitor was obtained under the same conditions as in Example 1 except that the average particle size of the main composition raw material powder), the average particle size of the finely pulverized raw material powder, and / or the firing conditions were changed from Example 1. It was. In each sample, the composition of the first main composition calcined powder is changed so that the composition of the dielectric finally obtained is the same as that of Example 1 except for zinc aluminate.

得られた磁器コンデンサ(試料No.1〜28)の特性を測定した。以下、各特性の測定方法および評価方法について説明する。また、測定結果を表1にまとめた。   The characteristics of the obtained ceramic capacitor (sample Nos. 1 to 28) were measured. Hereinafter, a method for measuring and evaluating each characteristic will be described. The measurement results are summarized in Table 1.

(焼結性(焼結体密度))
前記焼結体の寸法および重量から、焼結体密度を算出した。焼結体密度が5.5g/cm以上の場合を焼結性が良好であるとした。表1では、焼結体密度が5.5g/cm以上の場合を○、5.5g/cm未満の場合を×とした。基準を5.5g/cmとしたのは、焼結体密度が5.5g/cm未満の場合に焼結体素地の強度が著しく低下してしまうためである。なお、焼結体密度が5.5g/cm未満の試料については、比誘電率、誘電損失、交流破壊電圧および温度特性の測定は不要であるとして実施しなかった。
(Sinterability (sintered body density))
The density of the sintered body was calculated from the size and weight of the sintered body. When the sintered body density was 5.5 g / cm 3 or more, the sinterability was considered good. In Table 1, the case where the sintered body density was 5.5 g / cm 3 or more was evaluated as “◯” and the case where it was less than 5.5 g / cm 3 was evaluated as “X”. The reason why the standard is 5.5 g / cm 3 is that the strength of the sintered body is significantly lowered when the density of the sintered body is less than 5.5 g / cm 3 . In addition, about the sample whose sintered compact density is less than 5.5 g / cm < 3 >, it did not implement on the assumption that the measurement of a dielectric constant, a dielectric loss, an alternating current breakdown voltage, and a temperature characteristic is unnecessary.

(比誘電率(ε))
比誘電率εは、前記コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1.0Vrmsの条件下で測定された静電容量から算出した(単位なし)。比誘電率は高いほうが好ましく、本実施例では、8000以上を良好とした。
(Relative permittivity (ε))
The relative dielectric constant ε was calculated from the capacitance measured with the digital LCR meter under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms with respect to the capacitor sample at a reference temperature of 20 ° C. (No unit). It is preferable that the relative dielectric constant is high. In this example, 8000 or more was considered good.

(誘電損失(tanδ))
誘電損失(tanδ)は、前記コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1.0Vrmsの条件下で測定した。誘電損失は低いほうが好ましく、本実施例では1.5%以下を良好とした。
(Dielectric loss (tan δ))
The dielectric loss (tan δ) was measured with respect to the capacitor sample at a reference temperature of 20 ° C. with a digital LCR meter under conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. The dielectric loss is preferably as low as possible. In this example, 1.5% or less was considered good.

(交流破壊電圧(AC−Eb))
交流破壊電圧(AC−Eb)は、前記コンデンサの試料の両端に交流電界を100V/sで徐々に印加し、100mAのもれ電流が流れた時点での電圧を測定し、単位厚み当たりの交流破壊電圧を求めた。交流破壊電圧は高いほうが好ましく、本実施例では、4.0kV/mm以上を良好とした。
(AC breakdown voltage (AC-Eb))
For AC breakdown voltage (AC-Eb), an AC electric field is gradually applied to both ends of the capacitor sample at 100 V / s, and the voltage at the time when a leakage current of 100 mA flows is measured. The breakdown voltage was determined. It is preferable that the AC breakdown voltage is high. In this example, 4.0 kV / mm or more was considered good.

(温度特性(E特性))
前記コンデンサ試料に対し、−25℃〜+85℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの条件で静電容量を測定し、基準温度20℃における静電容量に対する−25℃での静電容量の変化率および85℃での静電容量の変化率を算出した。本実施例ではE特性を満たす+20%〜−55%を好ましい範囲とした。
(Temperature characteristics (E characteristics))
The capacitance of the capacitor sample was measured at −25 ° C. to + 85 ° C. with a digital LCR meter under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms. The rate of change in capacitance at −25 ° C. and the rate of change in capacitance at 85 ° C. were calculated. In this example, + 20% to -55% satisfying the E characteristic was set as a preferable range.

(SEM、EPMA)
試料1について焼結後の焼結体を切断した断面を鏡面研磨し、鏡面研磨を施した面に対して走査型電子顕微鏡(Scanning Electron Microscope:SEM)の組成像を撮影した。さらに、前記組成像と同一の視野でEPMA(Electron Probe Micro Analyzer)で観察し、各元素のマッピング分析を行った。
(SEM, EPMA)
A cross-section of sample 1 after cutting the sintered body was mirror-polished, and a composition image of a scanning electron microscope (SEM) was photographed on the mirror-polished surface. Further, observation with an EPMA (Electron Probe Micro Analyzer) was performed in the same field of view as the composition image, and mapping analysis of each element was performed.

SEMによる組成像の撮影およびEPMAマッピングは、1つの試料あたり1個の焼結体の断面について、いずれも倍率5000倍で25μm×20μmの視野を10視野設定し、300〜1000個の粒子の粒径、面積等が測定できるようにして行った。   Taking a composition image by SEM and EPMA mapping were performed by setting 10 fields of view of 25 μm × 20 μm at a magnification of 5000 times for each cross section of one sintered body per sample, and particles of 300 to 1000 particles. The measurement was performed such that the diameter, area, etc. could be measured.

組成像にて各粒子の輪郭を確定させた。各粒子の輪郭の概略図が図2である。   The contour of each particle was determined from the composition image. A schematic diagram of the outline of each particle is shown in FIG.

さらに、Baマッピングの概略図に前記各粒子の輪郭を重ねあわせた概略図を図3に示す。Caマッピングの概略図に前記各粒子の輪郭を重ねあわせた概略図を図4に示す。Znマッピングの概略図に前記各粒子の輪郭を重ねあわせた概略図を図5に示す。なお、各図面において模様がついている部分は、元素マッピングにおいて当該元素が観測された部分である。模様がついていない部分は、元素マッピングにおいて当該元素が観測されなかった部分である。   Further, FIG. 3 shows a schematic diagram in which the outline of each particle is superimposed on the schematic diagram of Ba mapping. FIG. 4 shows a schematic diagram in which the outline of each particle is superimposed on the schematic diagram of Ca mapping. FIG. 5 shows a schematic diagram in which the outline of each particle is superimposed on the schematic diagram of Zn mapping. In addition, the part which has a pattern in each drawing is a part by which the said element was observed in element mapping. The part without the pattern is a part where the element was not observed in the element mapping.

BaマッピングでBaが観測され、CaマッピングでCaが観測された粒子はBCTZ系主組成物粒子12である。これに対し、BaマッピングでBaが観測され、CaマッピングでCaが観測されなかった粒子はBT系主組成物粒子14である。さらに、Ba、CaマッピングでBa、Caが観測されず、ZnマッピングでZnが観測された部分はZn偏析相16である。そして、Caマッピング、Baマッピング、Znマッピングの結果を1枚にまとめた結果の概略図が図6である。   The particles in which Ba is observed by Ba mapping and Ca is observed by Ca mapping are BCTZ main composition particles 12. On the other hand, particles in which Ba is observed by Ba mapping and Ca is not observed by Ca mapping are BT-based main composition particles 14. Further, the portion where Ba and Ca are not observed in the Ba and Ca mapping and Zn is observed in the Zn mapping is the Zn segregation phase 16. And the schematic of the result which put together the result of Ca mapping, Ba mapping, and Zn mapping into one sheet is FIG.

さらに、Biマッピングの概略図に前記各粒子の輪郭を重ねあわせた概略図が図7である。図6および図7より、Biのほぼ全量がBCTZ系主組成物粒子12に固溶し、BiがBT系主組成物粒子14には固溶していないことが確認できる。   Furthermore, FIG. 7 is a schematic diagram in which the outline of each particle is superimposed on the schematic diagram of Bi mapping. From FIG. 6 and FIG. 7, it can be confirmed that almost the entire amount of Bi is dissolved in the BCTZ main composition particles 12 and Bi is not dissolved in the BT main composition particles 14.

(各主組成物粒子の粒径、平均粒径)
各試料について焼結品切断した断面を鏡面研磨し、鏡面研磨を施した面に対してSEMによる組成像の撮影、EPMAによる元素マッピングを試料1と同様の条件で行った。前記組成像に完全に映っている全てのBCTZ系主組成物粒子、BT系主組成物粒子について粒子径を算出し、平均粒径を算出した。
(Particle size of each main composition particle, average particle size)
For each sample, a cross section of the sintered product cut was mirror-polished, and a composition image was taken by SEM and elemental mapping by EPMA was performed on the mirror-polished surface under the same conditions as in Sample 1. The particle diameter was calculated for all BCTZ main composition particles and BT main composition particles that were completely reflected in the composition image, and the average particle diameter was calculated.

試料1〜18は全てBCTZ系主組成物粒子の平均粒径が3.00μm〜10.00μmであり、BT系主組成物粒子の平均粒径が0.10μm〜3.00μmであった。これに対し、試料21〜28は、BCTZ系主組成物粒子またはBT系主組成物粒子の平均粒径が前記範囲外であった。   Samples 1 to 18 all had an average particle size of BCTZ-based main composition particles of 3.00 μm to 10.00 μm, and an average particle size of BT-based main composition particles of 0.10 μm to 3.00 μm. On the other hand, in Samples 21 to 28, the average particle size of the BCTZ main composition particles or the BT main composition particles was out of the above range.

また、試料1〜18のうち、試料1、15〜18は全BCTZ系主組成物粒子のうち、90%以上の粒子が粒径3μm〜10μmの範囲内であり、全BT系主組成物粒子のうち、90%以上の粒子が粒径0.1μm〜3μmの範囲内であった。   Of Samples 1-18, Samples 1, 15-18 are 90% or more of all BCTZ main composition particles in the range of 3 μm to 10 μm in size, and all BT main composition particles. Among them, 90% or more of the particles were in the range of 0.1 μm to 3 μm in particle size.

なお、以下に示す表1では、全BCTZ系主組成物粒子のうち、90%以上の粒子が粒径3μm〜10μmの範囲内である試料を、BCTZ粒径ばらつきが○であると評価し、90%未満の粒子が粒径3μm〜10μmの範囲内である試料を、BCTZ粒径ばらつきが×であると評価した。さらに、全BT系主組成物粒子のうち、90%以上の粒子が粒径0.1μm〜3μmの範囲内である試料を、BT粒径ばらつきが○であると評価し、90%未満の粒子が粒径0.1μm〜3μmの範囲内である試料を、BT粒径ばらつきが×であると評価した。   In Table 1 shown below, a sample in which 90% or more of all BCTZ main composition particles are in the range of 3 μm to 10 μm in particle size is evaluated as having a BCTZ particle size variation of ○, Samples in which less than 90% of the particles were in the range of 3 μm to 10 μm in particle size were evaluated as x in BCTZ particle size variation. Furthermore, a sample in which 90% or more of all BT-based main composition particles are in the range of 0.1 μm to 3 μm in particle size is evaluated as having a BT particle size variation of less than 90%. Samples having a particle size in the range of 0.1 μm to 3 μm were evaluated as x for BT particle size variation.

(各主組成物粒子の占める面積)
各主組成物粒子(BCTZ系主組成物粒子およびBT系主組成物粒子)の占める面積は、平均粒径測定時のSEM画像、EPMA元素マッピングより算出した。
(The area occupied by each main composition particle)
The area occupied by each main composition particle (BCTZ main composition particle and BT main composition particle) was calculated from the SEM image and EPMA element mapping at the time of measuring the average particle diameter.

BCTZ系主組成物粒子およびBT系主組成物粒子の合計重量を100重量部とした場合の各主組成物粒子の重量割合と、BCTZ系主組成物粒子およびBT系主組成物粒子の合計面積を100%とした場合の各主組成物粒子の面積割合(%)とは概ね一致した。なお、表1では、BT系主組成物粒子の面積割合をBT面積(%)として記載している。   Weight ratio of each main composition particle when the total weight of the BCTZ main composition particles and BT main composition particles is 100 parts by weight, and the total area of the BCTZ main composition particles and the BT main composition particles The area ratio (%) of each main composition particle in the case of 100% was almost the same. In Table 1, the area ratio of the BT main composition particles is shown as BT area (%).

Figure 2016175782
Figure 2016175782

(TCカーブ測定)
試料1(実施例)と試料2(比較例)について−40℃〜+140℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの条件で静電容量を測定しグラフ化した。図8に前記グラフの概略図を示す。
(TC curve measurement)
Sample 1 (Example) and Sample 2 (Comparative Example) are graphed by measuring the capacitance at −40 ° C. to + 140 ° C. with a digital LCR meter under conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms. did. FIG. 8 shows a schematic diagram of the graph.

図8より、試料1(実施例)は試料2(比較例)と比較して、+25℃での静電容量を基準とした場合に、−25℃以下、+85℃以上での静電容量の変化が小さい。   From FIG. 8, Sample 1 (Example) has a capacitance of −25 ° C. or lower and + 85 ° C. or higher when compared with Sample 2 (Comparative Example) based on the capacitance at + 25 ° C. Small change.

2… セラミックコンデンサ
4… 誘電体
6、8… 電極
12… BCTZ系主組成物粒子
14… BT系主組成物粒子
16… Zn偏析相
2 ... Ceramic capacitor 4 ... Dielectric 6, 8 ... Electrode 12 ... BCTZ main composition particles 14 ... BT main composition particles 16 ... Zn segregation phase

Claims (6)

組成式(Ba1−x−y ,Ca,A1(Ti1−z−a ,Zr,B1)O(x≠0、z≠0、x+y≠1、z+a≠1)で表される第1主組成物粒子と、
組成式(Ba1−α,A2α(Ti1−β,B2β)O(α≠1、β≠1)で表わされる第2主組成物粒子と、
を有する誘電体磁器組成物であって、
前記第1主組成物粒子の平均粒径が3μm〜10μmであり、
前記第2主組成物粒子の平均粒径が0.1μm〜3μmであり、
さらに酸化亜鉛が偏析していることを特徴とする誘電体磁器組成物。
The composition formula (Ba 1-x-y, Ca x, A1 y) m (Ti 1-z-a, Zr z, B1 a) O 3 (x ≠ 0, z ≠ 0, x + y ≠ 1, z + a ≠ 1) First main composition particles represented by:
A second main composition particle represented by a composition formula (Ba 1−α , A2 α ) n (Ti 1−β , B2 β ) O 3 (α ≠ 1, β ≠ 1);
A dielectric ceramic composition comprising:
The average particle diameter of the first main composition particles is 3 μm to 10 μm,
The average particle size of the second main composition particles is 0.1 μm to 3 μm,
Furthermore, the dielectric ceramic composition, wherein zinc oxide is segregated.
前記第1主組成物粒子のうち90%以上の粒子の粒径が3μm〜10μmである請求項1に記載の誘電体磁器組成物。   2. The dielectric ceramic composition according to claim 1, wherein a particle size of 90% or more of the first main composition particles is 3 μm to 10 μm. 前記第2主組成物粒子のうち90%以上の粒子の粒径が0.1μm〜3μmである請求項1または2に記載の誘電体磁器組成物。   3. The dielectric ceramic composition according to claim 1, wherein a particle size of 90% or more of the second main composition particles is 0.1 μm to 3 μm. 前記第1主組成物粒子にBiが固溶している請求項1〜3のいずれかに記載の誘電体磁器組成物。   The dielectric ceramic composition according to any one of claims 1 to 3, wherein Bi is dissolved in the first main composition particles. 前記誘電体磁器組成物の断面において、前記第1主組成物の占める面積と前記第2主組成物が占める面積との和を100%とする場合に、前記第2主組成物粒子の占める面積が5〜40%である請求項1〜4のいずれかに記載の誘電体磁器組成物。   In the cross section of the dielectric ceramic composition, the area occupied by the second main composition particles when the sum of the area occupied by the first main composition and the area occupied by the second main composition is 100%. The dielectric ceramic composition according to any one of claims 1 to 4, wherein the content is 5 to 40%. 請求項1〜5のいずれかに記載の誘電体磁器組成物を含む電子部品。   An electronic component comprising the dielectric ceramic composition according to claim 1.
JP2015054970A 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component Active JP6413862B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015054970A JP6413862B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component
KR1020160010302A KR101751790B1 (en) 2015-03-18 2016-01-27 Dielectric ceramic composition and electronic component
CN201610136570.2A CN105985100B (en) 2015-03-18 2016-03-10 Dielectric ceramic compositions and electronic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054970A JP6413862B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2016175782A true JP2016175782A (en) 2016-10-06
JP6413862B2 JP6413862B2 (en) 2018-10-31

Family

ID=57044265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054970A Active JP6413862B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component

Country Status (3)

Country Link
JP (1) JP6413862B2 (en)
KR (1) KR101751790B1 (en)
CN (1) CN105985100B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175969A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Dielectric film and dielectric device
US11462339B2 (en) 2018-03-28 2022-10-04 Tdk Corporation Dielectric film, dielectric element, and electronic circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223352A (en) * 1999-01-29 2000-08-11 Kyocera Corp Multilayer ceramic capacitor
JP2005033070A (en) * 2003-07-09 2005-02-03 Tdk Corp Multilayer ceramic condenser and its manufacturing method
JP2008285373A (en) * 2007-05-18 2008-11-27 Tdk Corp Dielectric ceramic composition and electronic component
US20090149312A1 (en) * 2007-12-11 2009-06-11 Tdk Corporation Dielectric ceramic composition and electric device
US20100220427A1 (en) * 2007-11-06 2010-09-02 Ferro Corporation Lead And Cadmium Free, Low Temperature Fired X7R Dielectric Ceramic Composition And Method Of Making
US20120075770A1 (en) * 2010-09-28 2012-03-29 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302219A (en) 1993-04-15 1994-10-28 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
JP4582973B2 (en) * 2001-08-29 2010-11-17 京セラ株式会社 Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP2003104774A (en) 2001-09-27 2003-04-09 Murata Mfg Co Ltd Dielectric porcelain composition and capacitor using the same
JP2004238251A (en) 2003-02-06 2004-08-26 Murata Mfg Co Ltd Dielectric ceramic composition and ceramic electronic component
US7433173B2 (en) * 2004-11-25 2008-10-07 Kyocera Corporation Multilayer ceramic capacitor and method for manufacturing the same
KR101021513B1 (en) * 2005-03-25 2011-03-16 쿄세라 코포레이션 Laminated ceramic capacitor and process for producing the same
WO2008105240A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Dielectric ceramic and layer-built ceramic capacitor
JPWO2012023406A1 (en) * 2010-08-18 2013-10-28 株式会社村田製作所 Multilayer ceramic electronic components
JP5664228B2 (en) * 2010-12-28 2015-02-04 Tdk株式会社 Dielectric porcelain composition and electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223352A (en) * 1999-01-29 2000-08-11 Kyocera Corp Multilayer ceramic capacitor
JP2005033070A (en) * 2003-07-09 2005-02-03 Tdk Corp Multilayer ceramic condenser and its manufacturing method
JP2008285373A (en) * 2007-05-18 2008-11-27 Tdk Corp Dielectric ceramic composition and electronic component
US20100220427A1 (en) * 2007-11-06 2010-09-02 Ferro Corporation Lead And Cadmium Free, Low Temperature Fired X7R Dielectric Ceramic Composition And Method Of Making
US20090149312A1 (en) * 2007-12-11 2009-06-11 Tdk Corporation Dielectric ceramic composition and electric device
JP2009143735A (en) * 2007-12-11 2009-07-02 Tdk Corp Dielectric porcelain composition and electronic component
US20120075770A1 (en) * 2010-09-28 2012-03-29 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
JP2012072001A (en) * 2010-09-28 2012-04-12 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175969A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Dielectric film and dielectric device
US11462339B2 (en) 2018-03-28 2022-10-04 Tdk Corporation Dielectric film, dielectric element, and electronic circuit board
JP7147219B2 (en) 2018-03-28 2022-10-05 Tdk株式会社 Dielectric film and dielectric element

Also Published As

Publication number Publication date
CN105985100A (en) 2016-10-05
KR101751790B1 (en) 2017-06-28
KR20160112932A (en) 2016-09-28
JP6413862B2 (en) 2018-10-31
CN105985100B (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5664228B2 (en) Dielectric porcelain composition and electronic component
EP1767507A1 (en) Dielectric ceramic composition and laminated ceramic capacitor
TWI803471B (en) Dielectric ceramic composition and ceramic electronic component
KR20070085205A (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP6413861B2 (en) Dielectric porcelain composition and electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
KR101178952B1 (en) Dielectric ceramic composition and electronic component
TW201943675A (en) Dielectric ceramic composition and ceramic electronic part
JP6413862B2 (en) Dielectric porcelain composition and electronic component
US9129753B2 (en) Dielectric ceramic composition and multi-layer ceramic capacitor comprising the same
JP7327065B2 (en) Dielectric compositions and electronic components
KR20180030154A (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2009126742A (en) Dielectric porcelain composition and electronic component
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP5471093B2 (en) Method for producing dielectric ceramic composition
TW201945315A (en) Dielectric ceramic composition and ceramic electronic part
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2007201277A (en) Laminated ceramic capacitor
JP2023117901A (en) Dielectric ceramic composition and single layer capacitor
JP2022111644A (en) Dielectric composition and electronic component
JP2023176583A (en) Dielectric composition and electronic part
JP2023069307A (en) Dielectric composition and electronic component
JP2001342059A (en) Dielectric porcelain
JPH0912365A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150