JP2016171171A - Method for producing silicon carbide single crystal substrate - Google Patents

Method for producing silicon carbide single crystal substrate Download PDF

Info

Publication number
JP2016171171A
JP2016171171A JP2015049224A JP2015049224A JP2016171171A JP 2016171171 A JP2016171171 A JP 2016171171A JP 2015049224 A JP2015049224 A JP 2015049224A JP 2015049224 A JP2015049224 A JP 2015049224A JP 2016171171 A JP2016171171 A JP 2016171171A
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
silicon carbide
carbide single
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015049224A
Other languages
Japanese (ja)
Other versions
JP6415360B2 (en
Inventor
矢代 弘克
Hirokatsu Yashiro
弘克 矢代
藤本 辰雄
Tatsuo Fujimoto
辰雄 藤本
雄一郎 藤原
Yuichiro Fujiwara
雄一郎 藤原
裕二 隈
Yuji Kuma
裕二 隈
隆之 阿部
Takayuki Abe
隆之 阿部
勝野 正和
Masakazu Katsuno
正和 勝野
弘志 柘植
Hiroshi Tsuge
弘志 柘植
伊藤 渉
Wataru Ito
伊藤  渉
崇 藍郷
Takashi Aisato
崇 藍郷
孝幸 矢野
Takayuki Yano
孝幸 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015049224A priority Critical patent/JP6415360B2/en
Publication of JP2016171171A publication Critical patent/JP2016171171A/en
Application granted granted Critical
Publication of JP6415360B2 publication Critical patent/JP6415360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an SiC single crystal substrate having a surface excellent in cleanliness and flatness, using reactive plasma gas excited by a microwave.SOLUTION: In a method for producing a silicon carbide single crystal substrate, a work-affected portion existing on the surface of a silicon carbide single crystal substrate after polishing processing is removed, the silicon carbide single crystal substrate being obtained by being cutout from a silicon carbide single crystal ingot by slice processing and subjected to surface polishing processing. The work-affected portion on a silicon carbide single crystal substrate surface after the polishing processing is removed by HI plasma treatment in which HI gas brought into plasma by microwaves is used.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素(SiC)単結晶基板の表面に存在する加工変質部やイオン損傷部が除去され、かつその除去処理に伴う残渣や表面荒れが無く、清浄性及び平坦性に優れた表面を有する炭化珪素単結晶基板の製造方法に関するものである。   The present invention is a surface excellent in cleanliness and flatness, in which a work-affected part and an ion-damaged part existing on the surface of a silicon carbide (SiC) single crystal substrate are removed, and there is no residue or surface roughness associated with the removal process. The present invention relates to a method for manufacturing a silicon carbide single crystal substrate having the following.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates as substrates for high-frequency, high-voltage electronic devices has increased.

SiC単結晶のインゴットからSiC単結晶基板を加工する工程は、先ず前記インゴットをスライスしてウエハ状に切り出す工程と、所定の厚さまで荒削りする研削工程と、基板の両面を平坦かつ鏡面に仕上げる研磨工程と、上記各工程で基板に付着した汚れを除去する洗浄工程と、加工工程で導入された表面加工変質部を除去する工程とからなる。   The process of processing a SiC single crystal substrate from an SiC single crystal ingot is a process of first slicing the ingot into a wafer, a grinding process of roughing to a predetermined thickness, and polishing to finish both sides of the substrate to a flat and mirror surface. A process, a cleaning process for removing dirt adhered to the substrate in each of the above processes, and a process for removing the surface-processed altered portion introduced in the processing process.

このようなSiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的である。   When producing a power device, a high-frequency device, etc. using such a SiC single crystal substrate, a SiC thin film is epitaxially grown on a normal substrate using a method called a thermal CVD method (thermochemical vapor deposition method) In general, a dopant is directly implanted by an ion implantation method.

この際、SiC単結晶基板の表面に、上記加工変質部が残存していると、正常なエピタキシャル成長を阻害したり、打ち込まれたドーパントの活性化率が低下したりする等の問題が発生することが知られており、さらに、その変質部が電流のリークパスになり、デバイスの性能を落とすこと等も考えられる。   At this time, if the above-mentioned altered part remains on the surface of the SiC single crystal substrate, problems such as inhibiting normal epitaxial growth or reducing the activation rate of the implanted dopant may occur. Further, it is conceivable that the altered portion becomes a current leakage path, which degrades the performance of the device.

通常、SiC単結晶基板の表面は、ダイヤモンド砥粒等による研磨加工による仕上げがされているが、近年のデバイスの微細化に伴い、さらに表面の平坦化が求められているため、メカノケミカル研磨等も行われている。このような基板の表面には、研磨による加工変質部が数百nm存在し、これが十分に除去されていないと、上記のような問題を引き起こすことが想定される。   Usually, the surface of the SiC single crystal substrate is finished by polishing with diamond abrasive grains, etc., but with the recent miniaturization of devices, further planarization of the surface is required, so mechanochemical polishing, etc. Has also been done. On the surface of such a substrate, there are several hundred nanometers of damaged portions due to polishing, and if this is not sufficiently removed, it is assumed that the above-described problems are caused.

このため、従来においては、Siとの反応性が高いフッ素系反応性ガスを用いたエッチングにより、この加工変質部を取り除いていた。このフッ素系反応性ガスは、酸化シリコンや窒化シリコン等の絶縁膜のエッチングにも用いられる、半導体プロセスにおいては、一般的なガスである。しかしながら、加工変質部の除去にこのようなフッ素系反応性ガスを用いると、SiC単結晶基板の表面にフロロカーボン系の反応生成物が残渣として残ることがあり(非特許文献1)、一度このような残渣が生じてしまうと、その後に酸素ガスプラズマ処理あるいはRCA洗浄等の表面清浄化処理を行っても除去することが難しい。   For this reason, conventionally, this work-affected zone has been removed by etching using a fluorine-based reactive gas that is highly reactive with Si. This fluorine-based reactive gas is a general gas in a semiconductor process that is also used for etching an insulating film such as silicon oxide or silicon nitride. However, when such a fluorine-based reactive gas is used to remove the work-affected part, a fluorocarbon-based reaction product may remain as a residue on the surface of the SiC single crystal substrate (Non-patent Document 1). If such a residue is generated, it is difficult to remove even if a surface cleaning treatment such as oxygen gas plasma treatment or RCA cleaning is performed thereafter.

そこで、このような問題を解決するために、フッ素系反応性ガスに替えて塩素系反応性ガスを用いる方法が発明されている(特許文献1)。この塩素系反応性ガスは、同じハロゲン系ガスではあるが、フッ素系反応性ガスよりも反応性が低く、加工変質部除去後にカーボン系の反応生成物が表面に残らないので、最終的に表面品質が高くなり、プロセスガスとして優れている。この塩素系反応性ガスを用いることで、表面粗さを表すマイクロラフネスRa値がRa=0.3nmと比較的良好な表面が得られるようになった。   In order to solve such problems, a method of using a chlorine-based reactive gas instead of a fluorine-based reactive gas has been invented (Patent Document 1). Although this chlorine-based reactive gas is the same halogen-based gas, the reactivity is lower than that of the fluorine-based reactive gas, and the carbon-based reaction product does not remain on the surface after removal of the work-affected part. High quality and excellent as process gas. By using this chlorine-based reactive gas, a relatively good surface can be obtained with a microroughness Ra value representing surface roughness of Ra = 0.3 nm.

しかしながら、並行平板型の電極を有する反応性イオンエッチング装置を用いる限り、高周波のマイクロ波を用いることが出来ず、また、イオンフラックスとイオンエネルギーとをそれぞれ独立に制御することができないことから、この塩素系反応性ガスを用いたエッチングの効果は限定的であった。   However, as long as a reactive ion etching apparatus having parallel plate type electrodes is used, high-frequency microwaves cannot be used, and ion flux and ion energy cannot be controlled independently. The effect of etching using a chlorine-based reactive gas was limited.

特許第4,427,472号Patent 4,427,472

大森正道編、菅野卓雄監修、培風館発行「超高速化合物半導体デバイス」、222頁(1986)Edited by Masamichi Omori, supervised by Takuo Kanno, published by Baifukan "Ultra-high-speed compound semiconductor device", page 222 (1986) 表面技術 Vol.53(2002) No.12 pp881Surface Technology Vol.53 (2002) No.12 pp881

そこで、本発明者らは、表面粗さRa値においてより優れた清浄性及び平坦性を達成するための方法について鋭意検討した結果、意外にも、反応性がよりマイルドなHIガスを用い、この低い反応性をプラズマ密度の高さで補うことにより、より優れた清浄性及び平坦性を有するSiC単結晶基板を製造することができることを見出し、本発明を完成した。   Therefore, as a result of earnestly examining the method for achieving better cleanliness and flatness in the surface roughness Ra value, the present inventors surprisingly used a HI gas with milder reactivity. The present inventors have found that a SiC single crystal substrate having better cleanliness and flatness can be produced by supplementing low reactivity with high plasma density, and completed the present invention.

従って、本発明の目的は、マイクロ波で励起した反応性プラズマガスを用いた、清浄性及び平坦性に優れた表面を有するSiC単結晶基板の製造方法を提供するものである。   Accordingly, an object of the present invention is to provide a method for producing a SiC single crystal substrate having a surface excellent in cleanliness and flatness using a reactive plasma gas excited by microwaves.

即ち、本発明は、以下の通りである。
(1) 炭化珪素単結晶インゴットからスライス加工により切り出し、表面研磨加工を行って得られた研磨加工後の炭化珪素単結晶基板について、その表面に存在する加工変質部を除去して炭化珪素単結晶基板を製造する方法において、前記研磨加工後の炭化珪素単結晶基板表面の加工変質部をマイクロ波でプラズマ化させたHIガスによるHIプラズマ処理により除去することを特徴とする炭化珪素単結晶基板の製造方法。
(2) 炭化珪素単結晶インゴットからスライス加工により切り出し、表面研磨加工を行って得られた研磨加工後の炭化珪素単結晶基板について、その表面に存在する加工変質部を除去して炭化珪素単結晶基板を製造する方法において、前記研磨加工後の炭化珪素単結晶基板表面の加工変質部を不活性ガスを用いたスパッタエッチングで除去した後、このスパッタエッチング処理後の炭化珪素単結晶基板表面のイオン損傷部をマイクロ波でプラズマ化させたHIガスによるHIプラズマ処理により除去することを特徴とする炭化珪素単結晶基板の製造方法。
(3) 前記HIプラズマ処理の後に、マイクロ波でプラズマ化させたO2ガスによる表面清浄化処理を行うことを特徴とする前記(1)又は(2)に記載の炭化珪素単結晶基板の製造方法。
That is, the present invention is as follows.
(1) For a silicon carbide single crystal substrate after polishing, obtained by slicing from a silicon carbide single crystal ingot and performing surface polishing, the work-affected portion existing on the surface is removed to remove the silicon carbide single crystal In the method for manufacturing a substrate, the altered portion of the surface of the silicon carbide single crystal substrate after the polishing is removed by HI plasma treatment using HI gas that has been made into plasma by microwaves. Production method.
(2) For a silicon carbide single crystal substrate after polishing, obtained by slicing from a silicon carbide single crystal ingot and performing surface polishing, the work-affected portion existing on the surface is removed to remove the silicon carbide single crystal In the method of manufacturing a substrate, after removing the altered portion of the polished silicon carbide single crystal substrate surface by sputter etching using an inert gas, the ions on the silicon carbide single crystal substrate surface after the sputter etching treatment are removed. A method for producing a silicon carbide single crystal substrate, wherein the damaged portion is removed by HI plasma treatment using HI gas that has been made plasma by microwaves.
(3) The silicon carbide single crystal substrate according to the above (1) or (2), wherein after the HI plasma treatment, a surface cleaning treatment with O 2 gas plasmified by microwaves is performed. Method.

この発明によれば、SiC単結晶基板の表面に存在する加工変質部あるいはイオン損傷部が除去され、かつ、その除去処理に伴う残渣や表面荒れが無く、清浄性及び平坦性に優れた表面を有するSiC単結晶基板を作成することが可能である。   According to the present invention, a work-affected portion or an ion-damaged portion existing on the surface of the SiC single crystal substrate is removed, and a surface excellent in cleanliness and flatness without residue and surface roughness accompanying the removal treatment is obtained. It is possible to produce a SiC single crystal substrate having the same.

図1は、プラズマ源としてHIガスとO2ガスが採用され、本発明のSiC単結晶基板の製造方法を実施する際に用いられる反応性イオンエッチング装置の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a reactive ion etching apparatus that employs HI gas and O 2 gas as a plasma source and is used in carrying out the method for producing a SiC single crystal substrate of the present invention.

先ず、SiC単結晶のインゴットからSiC単結晶基板を加工する工程についての概略を説明する。SiC単結晶のインゴットを作製後、それをスライスして、ウエハ状の基板に切り出し、所定の厚さまで荒削りを行う。その後、基板の両面を平坦かつ鏡面に仕上げるための研磨を行い、続いて、基板に付着した汚れを除去するための洗浄を行う。最後に、上記各工程で基板に導入された表面加工変質部を除去する工程となるが、この工程が、本発明が対象としている工程である。   First, the outline about the process of processing a SiC single crystal substrate from a SiC single crystal ingot is explained. After producing the SiC single crystal ingot, it is sliced, cut into a wafer-like substrate, and roughed to a predetermined thickness. Thereafter, polishing is performed to finish both surfaces of the substrate to a flat and mirror surface, followed by cleaning to remove dirt attached to the substrate. Finally, it becomes a step of removing the surface-processed deteriorated portion introduced into the substrate in each of the above steps, and this step is a step targeted by the present invention.

本発明では、反応性ガスを用いたエッチングによってSiC単結晶基板表面の加工変質部を除去する際に、使用するガス種とプラズマ密度とを考慮したものである。SiCに対してエッチング性を有するガスとしては、CF4、CHF3等のフッ素系反応性ガスやCl2、HCl、HBr、HI等のフッ素以外のハロゲン元素を含むハロゲン系反応性ガスがある。フッ素系反応性ガスでは、Fに起因するフロロカーボン系の反応生成物が表面に残り、それが残渣になるため、Fを含まないハロゲン系反応性ガスでのエッチングを試み検討した。 In the present invention, the type of gas to be used and the plasma density are taken into account when removing the work-affected portion on the surface of the SiC single crystal substrate by etching using a reactive gas. Examples of the gas having etching property with respect to SiC include a fluorine-based reactive gas such as CF 4 and CHF 3 and a halogen-based reactive gas containing a halogen element other than fluorine such as Cl 2 , HCl, HBr, and HI. In the case of a fluorine-based reactive gas, a fluorocarbon-based reaction product resulting from F remains on the surface and becomes a residue. Therefore, etching with a halogen-based reactive gas containing no F was studied.

そして、フッ素以外のハロゲン元素を含むハロゲン系反応性ガスとして塩素系反応性ガスを用いた場合には、前述の通り、表面粗さRa値において比較的良好な結果が得られたことと、そのエッチング効果が限定的であったことを考慮し、特に、ハロゲン系反応性ガスとして更に反応性の低いヨウ素系反応性ガスのHIガスを用い、このHIガスの反応性の低さをプラズマ密度で補うことに着眼して検討を行った結果、マイクロ波でプラズマ化させたHIガスを用いるHIプラズマ処理であれば、加工変質部やイオン損傷部を除去した後の表面に殆ど残渣が残らず、表面粗さRa値により優れたSiC単結晶基板を製造できることを見出した。これは、HIガスが他のハロゲン水素化物に比べて反応性がよりマイルドであって表面がより平坦に仕上がり、また、この反応性の低さをプラズマ密度の高さで補って所定のエッチングが達成されたものと考えられる。因みに、並行平板型の電極でプラズマを発生させる際によく使われる周波数が13.56MHzであるのに比べて、2.45GHzのマイクロ波ではプラズマ密度を約20,000倍上げられるためであり、マイクロ波の方がより高いプラズマ密度でSiC単結晶基板表面の加工変質部やイオン損傷部を効率良くエッチングできたものと考えられる。   And, when using a chlorine-based reactive gas as a halogen-based reactive gas containing a halogen element other than fluorine, as described above, relatively good results were obtained in the surface roughness Ra value, Considering that the etching effect was limited, in particular, HI gas of iodine-based reactive gas having lower reactivity was used as the halogen-based reactive gas, and the low reactivity of this HI gas was expressed by the plasma density. As a result of investigating to supplement, as a result of HI plasma treatment using HI gas that has been plasmatized by microwaves, almost no residue remains on the surface after removal of the work-affected part and ion-damaged part, It has been found that a SiC single crystal substrate having an excellent surface roughness Ra value can be produced. This is because the HI gas has a milder reactivity than other halogen hydrides and the surface finishes more flat, and this low reactivity is compensated for by the high plasma density to achieve a predetermined etching. It is thought that it was achieved. By the way, compared to the frequency of 13.56 MHz that is often used when generating plasma with parallel plate electrodes, the plasma density can be increased by about 20,000 times in the microwave of 2.45 GHz. It is considered that the microwave was able to efficiently etch the work-affected part and the ion-damaged part on the surface of the SiC single crystal substrate with a higher plasma density.

また、上記SiC単結晶基板表面の加工変質部をAr、He、Ne等の不活性ガスによるスパッタエッチング処理で除去した後、このスパッタエッチング処理後のイオン損傷部をマイクロ波でプラズマ化させたHIガスによるHIプラズマ処理で除去すれば、更に表面品質(マイクロラフネス)Ra値が良くなることも確認した。   Moreover, after removing the altered portion of the SiC single crystal substrate surface by a sputter etching process using an inert gas such as Ar, He, Ne, etc., the ion-damaged part after the sputter etching process is turned into plasma by microwaves. It was also confirmed that the surface quality (microroughness) Ra value was further improved if the gas was removed by HI plasma treatment with gas.

更に、以上のようにしてSiC単結晶基板表面の加工変質部をHIプラズマ処理で除去した後に、あるいは、スパッタエッチング処理で加工変質部を除去した後のイオン損傷部をHIプラズマ処理で除去した後に、マイクロ波でプラズマ化させたO2ガスを用いるO2プラズマ処理による表面清浄化処理を行うと、残渣をほぼ完全に除去することができることも確認した。なお、SiC単結晶基板の表面は化学的に安定であり、O2プラズマ処理後の表面に酸化膜による干渉色が観察されなかったことからも、O2プラズマ処理後の表面が酸化膜で覆われていることは認められなかった。 Further, after removing the damaged portion of the SiC single crystal substrate surface by HI plasma processing as described above, or after removing the damaged portion of the SiC single crystal substrate surface by HI plasma treatment after removing the damaged portion by sputter etching processing. It has also been confirmed that the residue can be removed almost completely when surface cleaning is performed by O 2 plasma treatment using O 2 gas that has been plasmatized by microwaves. The surface of the SiC single crystal substrate is chemically stable, O 2 from the interference color due to oxide film on the surface after the plasma treatment was observed, covering the surface oxide film after O 2 plasma treatment It was not recognized that

本発明において使用する反応性イオンエッチング装置としては、反応性ガスのHIガスをマイクロ波でプラズマ化してエッチングする装置であり、例えば、プラズマ源として磁場コイルを利用した電子サイクロトロン共鳴プラズマ(ECP; Electron Cyclotron resonance Plasma)、磁場コイルを利用したヘリコン波励起プラズマ(HWP; Helicon Wave Plasma)、アンテナ内挿型等の誘導結合型プラズマ(ICP; Inductively Coupled Plasma)、スロットアンテナ等を利用したマイクロ波励起表面波プラズマ(SWP; Surface Wave Plasma)等を備えた装置を例示することができ、これらの反応性イオンエッチング装置によれば1011〜1013/cm-3という高いプラズマ密度を達成することができる。 The reactive ion etching apparatus used in the present invention is an apparatus that performs etching by converting a reactive gas HI gas into plasma with microwaves. For example, an electron cyclotron resonance plasma (ECP) using a magnetic coil as a plasma source is used. Cyclotron resonance plasma), Helicon Wave Plasma (HWP) using magnetic coil, Inductively Coupled Plasma (ICP) such as antenna insertion type, Microwave excitation surface using slot antenna, etc. An apparatus equipped with a wave plasma (SWP; Surface Wave Plasma) can be exemplified, and according to these reactive ion etching apparatuses, a high plasma density of 10 11 to 10 13 / cm −3 can be achieved. .

ここで、HIガスをプラズマ源とする反応性イオンエッチング装置を用いた場合の本発明のHIプラズマ処理について、その原理を説明すると、図1において、SiC単結晶基板1が反応チャンバー2内にセットされており、発振器3で発信されたマイクロ波はインピーダンス整合器4でインピーダンスがマッチングされて反応チャンバー2内に導入され、また、反応性ガスのガスボンベ5からはHIガスが反応チャンバー2内に導入され、前記反応チャンバー2内でHIガスにマイクロ波が照射されて発生したプラズマによりSiC単結晶基板1の表面がエッチングされる。なお、符号6は、反応チャンバー2内のガスを排気させる排気ポンプである。   Here, the principle of the HI plasma processing of the present invention using a reactive ion etching apparatus using HI gas as a plasma source will be described. In FIG. 1, the SiC single crystal substrate 1 is set in the reaction chamber 2. The microwave transmitted from the oscillator 3 is impedance-matched by the impedance matching unit 4 and introduced into the reaction chamber 2, and HI gas is introduced into the reaction chamber 2 from the gas cylinder 5 of the reactive gas. Then, the surface of the SiC single crystal substrate 1 is etched by the plasma generated by irradiating the HI gas with microwaves in the reaction chamber 2. Reference numeral 6 denotes an exhaust pump that exhausts the gas in the reaction chamber 2.

本発明において、HIガスを用いるHIプラズマ処理の際のエッチング条件としては、HIガスをプラズマ化させるマイクロ波の周波数領域が好ましくは433.05〜434.79MHz、902〜928MHz、2.4〜2.5GHz、5.725〜5.875GHz、24〜24.25GHz、61〜61.5GHz、又は、122〜123GHzであり、エッチング時の圧力が通常10Pa以上50Pa以下、好ましくは10Pa以上30Pa以下であり、ガス流量が通常10cm3/分以上50cm3/分以下、好ましくは20cm3/分以上30cm3/分以下であり、前記マイクロ波の入力パワーが通常0.5W/cm2以上1.0W/cm2以下、好ましくは1.0W/cm2である。この条件は、エッチング後の残渣の発生を極力避けるために、エッチングのスパッタ性を高め、かつ生産性を落とさない程度にSiCに対して適度なエッチング速度を持たせるという観点から設定されたものであり、この際のSiCに対するエッチング速度は毎分80〜90nmである。 In the present invention, as the etching conditions for the HI plasma treatment using HI gas, the microwave frequency region for converting the HI gas into plasma is preferably 433.05 to 434.79 MHz, 902 to 928 MHz, 2.4 to 2 5 GHz, 5.725 to 5.875 GHz, 24 to 24.25 GHz, 61 to 61.5 GHz, or 122 to 123 GHz, and the pressure during etching is usually 10 Pa to 50 Pa, preferably 10 Pa to 30 Pa. The gas flow rate is usually 10 cm 3 / min to 50 cm 3 / min, preferably 20 cm 3 / min to 30 cm 3 / min, and the microwave input power is usually 0.5 W / cm 2 to 1.0 W / min. cm 2 or less, preferably 1.0 W / cm 2 . This condition was set from the viewpoint of increasing the sputterability of etching in order to avoid generation of residues after etching as much as possible, and giving an appropriate etching rate to SiC to the extent that productivity is not reduced. In this case, the etching rate for SiC is 80 to 90 nm per minute.

また、不活性ガスによるスパッタエッチング処理時のエッチング条件としては、エッチング時の圧力が通常10Pa以上50Pa以下であり、ガス流量が通常10cm3/分以上50cm3/分以下であり、スパッタの入力パワーが通常0.2W/cm2以上1.0W/cm2以下である。特に、不活性ガスとしてArガスを用いた場合のエッチング条件としては、エッチング時の圧力が10Pa以上20Pa以下、Ar流量が20cm3/分以上30cm3/分以下、スパッタの入力パワーが0.25W/cm2以上1.0W/cm2以下であるのがよい。 Etching conditions for sputter etching with an inert gas are that the pressure during etching is usually 10 Pa or more and 50 Pa or less, the gas flow rate is usually 10 cm 3 / min or more and 50 cm 3 / min or less, and the sputtering input power There is usually 0.2W / cm 2 more than 1.0W / cm 2 or less. In particular, the etching conditions when using Ar gas as the inert gas are as follows: the etching pressure is 10 Pa or more and 20 Pa or less, the Ar flow rate is 20 cm 3 / min or more and 30 cm 3 / min or less, and the sputtering input power is 0.25 W. It is good that it is not less than / cm 2 and not more than 1.0 W / cm 2 .

そして、マイクロ波でプラズマ化させたO2ガスを用いるO2プラズマ処理によって表面清浄化処理を行う際の処理条件としては、O2ガスをプラズマ化させるマイクロ波の周波数領域が好ましくは433.05〜434.79MHz、902〜928MHz、2.4〜2.5GHz、5.725〜5.875GHz、24〜24.25GHz、61〜61.5GHz、又は、122〜123GHzであり、処理時の圧力が通常10Pa以上100Pa以下、好ましくは40Pa以上50Pa以下であり、O2流量が通常10cm3/分以上50cm3/分以下、好ましくは30cm3/分以上40cm3/分以下であり、また、前記マイクロ波の入力パワーが通常0.5W/cm2以上1.0W/cm2以下、好ましくは1.0W/cm2である。 Then, as the frequency region of microwaves to plasma of O 2 gas is preferably processing conditions when performing the surface cleaning treatment by O 2 plasma treatment using O 2 gas were plasma in microwave 433.05 ˜434.79 MHz, 902 to 928 MHz, 2.4 to 2.5 GHz, 5.725 to 5.875 GHz, 24 to 24.25 GHz, 61 to 61.5 GHz, or 122 to 123 GHz, and the pressure during processing is It is usually 10 Pa or more and 100 Pa or less, preferably 40 Pa or more and 50 Pa or less, and the O 2 flow rate is usually 10 cm 3 / min or more and 50 cm 3 / min or less, preferably 30 cm 3 / min or more and 40 cm 3 / min or less. input power of the wave normal 0.5 W / cm 2 or more 1.0 W / cm 2 or less, preferably 1.0 W / cm 2.

以下、実施例及び比較例に基づいて、本発明の内容を具体的に説明する。
〔実施例1〕
SiC単結晶インゴットからウエハ状にスライスし、粒径の大きいダイヤモンド研磨剤から順次粒径を小さくして研磨していき、最終的に平均粒径1μmのダイヤモンド研磨剤で研磨した後のSiC単結晶基板を調製した。
得られたSiC単結晶基板を、プラズマ源としてHIガスを備えた反応性イオンエッチング装置の反応チャンバー内にセットし、この反応チャンバー内にHIガスを導入すると共に2.45GHzのマイクロ波を照射し、プラズマ化させたHIガスによるマイクロ波プラズマエッチングであるHIプラズマ処理を実施した。エッチング条件は、ガス流量が30cm3/分で、エッチング時の真空度が13Paで、また、2.45GHzのマイクロ波の入力パワーが1.0W/cm2であった。この場合は、表面に残渣は殆ど見られず、Ra値はRa=0.1nmと良好であり、この実施例1のHIプラズマ処理により清浄性及び平坦性に優れた表面を有するSiC単結晶基板が得られた。
Hereinafter, based on an Example and a comparative example, the content of this invention is demonstrated concretely.
[Example 1]
The SiC single crystal is sliced into wafers from a SiC single crystal ingot, polished with a diamond particle having a large particle size, and then polished with a diamond particle having an average particle size of 1 μm. A substrate was prepared.
The obtained SiC single crystal substrate was set in a reaction chamber of a reactive ion etching apparatus equipped with HI gas as a plasma source, and HI gas was introduced into the reaction chamber and a 2.45 GHz microwave was irradiated. Then, HI plasma processing, which is microwave plasma etching using plasmaized HI gas, was performed. The etching conditions were such that the gas flow rate was 30 cm 3 / min, the degree of vacuum during etching was 13 Pa, and the microwave input power of 2.45 GHz was 1.0 W / cm 2 . In this case, almost no residue is observed on the surface, the Ra value is as good as Ra = 0.1 nm, and the SiC single crystal substrate has a surface excellent in cleanliness and flatness by the HI plasma treatment of Example 1. was gotten.

〔実施例2〕
実施例1で用いたのと同様の表面状態を有するSiC単結晶基板に、不活性ガスとしてArガスを用いたスパッタエッチング処理を行い、SiC単結晶基板表面の加工変質部の除去を行った。この際の具体的なエッチング条件は、Arガスのガス流量が20cm3/分で、エッチング時の真空度が15Paで、スパッタの入力パワーが0.25W/cm2であった。
その後、実施例1の場合と同じ条件でHIプラズマ処理によるマイクロ波プラズマエッチングを行った。
上記のスパッタエッチング処理及びHIプラズマ処理によりSiC単結晶基板の表面の荒れあるいは残渣が除去されており、Ra値もRa=0.09nmと極めて良好であった。
[Example 2]
The SiC single crystal substrate having the same surface state as that used in Example 1 was subjected to sputter etching using Ar gas as an inert gas to remove the work-affected portions on the surface of the SiC single crystal substrate. Specific etching conditions at this time were an Ar gas gas flow rate of 20 cm 3 / min, a degree of vacuum during etching of 15 Pa, and a sputtering input power of 0.25 W / cm 2 .
Thereafter, microwave plasma etching by HI plasma treatment was performed under the same conditions as in Example 1.
The surface roughness or residue of the SiC single crystal substrate was removed by the above-described sputter etching treatment and HI plasma treatment, and the Ra value was also very good at Ra = 0.09 nm.

〔実施例3〕
実施例1によって得られたSiC単結晶基板の表面に、更に、2.45GHzのマイクロ波でプラズマ化させたO2ガスを用いたO2プラズマ処理による表面清浄化処理を実施した。処理条件としては、O2のガス流量が40cm3/分で、処理時の真空度が50Paで、2.45GHzのマイクロ波の入力パワーが1.0W/cm2であり、Ra値も実施例1の場合に比べてRa=0.08nmと更に改善された。
Example 3
The surface of the SiC single crystal substrate obtained in Example 1 was further subjected to surface cleaning treatment by O 2 plasma treatment using O 2 gas that was plasmatized with a microwave of 2.45 GHz. The processing conditions are as follows: O 2 gas flow rate is 40 cm 3 / min, vacuum degree during processing is 50 Pa, microwave input power of 2.45 GHz is 1.0 W / cm 2 , and Ra value is also an example. Compared to the case of 1, Ra = 0.08 nm was further improved.

〔比較例1〕
比較例1として、2.45GHzのマイクロ波でプラズマ化させたフッ素系反応性ガス(CF4とO2の混合ガス)を用いてマイクロ波プラズマエッチングを行った。この際のエッチング条件は、CF4ガスのガス流量が20cm3/分で、O2ガスのガス流量が40cm3/分で、エッチング時の真空度が50Paで、2.45GHzのマイクロ波の入力パワーが0.25W/cm2であった。この比較例1で得られたSiC単結晶基板の表面の表面粗さRa値はRa=1.48nmであり、実施例1で得られたSiC単結晶基板の表面状態に比べ、明らかに劣るものであった。
[Comparative Example 1]
As Comparative Example 1, microwave plasma etching was performed using a fluorine-based reactive gas (mixed gas of CF 4 and O 2 ) that was plasmatized with a microwave of 2.45 GHz. The etching conditions are as follows: CF 4 gas flow rate is 20 cm 3 / min, O 2 gas flow rate is 40 cm 3 / min, the degree of vacuum during etching is 50 Pa, and 2.45 GHz microwave input. The power was 0.25 W / cm 2 . The surface roughness Ra value of the surface of the SiC single crystal substrate obtained in Comparative Example 1 is Ra = 1.48 nm, which is clearly inferior to the surface state of the SiC single crystal substrate obtained in Example 1. Met.

本発明によれば、SiC単結晶基板の表面に存在する加工変質部やイオン損傷部が反応性穏やかにかつ効率良く除去され、その除去処理に伴う残渣や表面荒れが無く、清浄性及び平坦性に優れた表面を有するSiC単結晶基板を作成することができる。そのため、このようなSiC単結晶基板上に電子デバイスを形成すれば、デバイスの特性が向上することが期待される。   According to the present invention, process-affected parts and ion-damaged parts existing on the surface of a SiC single crystal substrate are reactively and efficiently removed, and there are no residues and surface roughness associated with the removal process, and cleanliness and flatness. A SiC single crystal substrate having an excellent surface can be produced. Therefore, if an electronic device is formed on such a SiC single crystal substrate, it is expected that the characteristics of the device will be improved.

1…炭化珪素単結晶基板、2…反応チャンバー、3…発振器、4…インピーダンス整合器、5…反応ガスボンベ、6…排気ポンプ。 DESCRIPTION OF SYMBOLS 1 ... Silicon carbide single crystal substrate, 2 ... Reaction chamber, 3 ... Oscillator, 4 ... Impedance matching device, 5 ... Reaction gas cylinder, 6 ... Exhaust pump.

Claims (3)

炭化珪素単結晶インゴットからスライス加工により切り出し、表面研磨加工を行って得られた研磨加工後の炭化珪素単結晶基板について、その表面に存在する加工変質部を除去して炭化珪素単結晶基板を製造する方法において、
前記研磨加工後の炭化珪素単結晶基板表面の加工変質部をマイクロ波でプラズマ化させたHIガスによるHIプラズマ処理により除去することを特徴とする炭化珪素単結晶基板の製造方法。
A silicon carbide single crystal substrate is manufactured by removing a damaged portion on the surface of a polished silicon carbide single crystal substrate obtained by slicing from a silicon carbide single crystal ingot and performing surface polishing. In the way to
A method for producing a silicon carbide single crystal substrate, comprising removing a process-affected portion on the surface of the silicon carbide single crystal substrate after the polishing by HI plasma treatment using HI gas that has been made into plasma by microwaves.
炭化珪素単結晶インゴットからスライス加工により切り出し、表面研磨加工を行って得られた研磨加工後の炭化珪素単結晶基板について、その表面に存在する加工変質部を除去して炭化珪素単結晶基板を製造する方法において、
前記研磨加工後の炭化珪素単結晶基板表面の加工変質部を不活性ガスを用いたスパッタエッチングで除去した後、このスパッタエッチング処理後の炭化珪素単結晶基板表面のイオン損傷部をマイクロ波でプラズマ化させたHIガスによるHIプラズマ処理により除去することを特徴とする炭化珪素単結晶基板の製造方法。
A silicon carbide single crystal substrate is manufactured by removing a damaged portion on the surface of a polished silicon carbide single crystal substrate obtained by slicing from a silicon carbide single crystal ingot and performing surface polishing. In the way to
After the polishing alteration of the silicon carbide single crystal substrate surface after the polishing process is removed by sputter etching using an inert gas, ion-damaged portions of the silicon carbide single crystal substrate surface after the sputter etching treatment are plasma-generated by microwaves. A method for producing a silicon carbide single crystal substrate, wherein the removal is performed by HI plasma treatment with a fluorinated HI gas.
前記HIプラズマ処理の後に、マイクロ波でプラズマ化させたO2ガスによる表面清浄化処理を行うことを特徴とする請求項1又は2に記載の炭化珪素単結晶基板の製造方法。 The method for manufacturing a silicon carbide single crystal substrate according to claim 1 or 2, wherein after the HI plasma treatment, a surface cleaning treatment is performed with O 2 gas that has been made into plasma by microwaves.
JP2015049224A 2015-03-12 2015-03-12 Method for manufacturing silicon carbide single crystal substrate Active JP6415360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049224A JP6415360B2 (en) 2015-03-12 2015-03-12 Method for manufacturing silicon carbide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049224A JP6415360B2 (en) 2015-03-12 2015-03-12 Method for manufacturing silicon carbide single crystal substrate

Publications (2)

Publication Number Publication Date
JP2016171171A true JP2016171171A (en) 2016-09-23
JP6415360B2 JP6415360B2 (en) 2018-10-31

Family

ID=56984115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049224A Active JP6415360B2 (en) 2015-03-12 2015-03-12 Method for manufacturing silicon carbide single crystal substrate

Country Status (1)

Country Link
JP (1) JP6415360B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213326A (en) * 1993-12-22 1996-08-20 Sumitomo Chem Co Ltd Manufacture of iii-v compound semiconductor crystal
JP2001168046A (en) * 1999-09-17 2001-06-22 Applied Materials Inc Apparatus and method for finishing surface of silicon film
JP2006261563A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL SUBSTRATE
JP2007103876A (en) * 2005-10-07 2007-04-19 Hitachi High-Technologies Corp Etching method and etching apparatus
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
JP2012004272A (en) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd Method for cleaning silicon carbide semiconductor and device for cleaning silicon carbide semiconductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213326A (en) * 1993-12-22 1996-08-20 Sumitomo Chem Co Ltd Manufacture of iii-v compound semiconductor crystal
JP2001168046A (en) * 1999-09-17 2001-06-22 Applied Materials Inc Apparatus and method for finishing surface of silicon film
JP2006261563A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL SUBSTRATE
JP2007103876A (en) * 2005-10-07 2007-04-19 Hitachi High-Technologies Corp Etching method and etching apparatus
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
JP2012004272A (en) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd Method for cleaning silicon carbide semiconductor and device for cleaning silicon carbide semiconductor

Also Published As

Publication number Publication date
JP6415360B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP4427472B2 (en) Method for manufacturing SiC single crystal substrate
JP4678039B2 (en) SiC substrate
JP5377212B2 (en) Method for producing single crystal diamond substrate
EP1827871B1 (en) Methods for removing black silicon and black silicon carbide from surfaces of silicon and silicon carbide electrodes for plasma processing apparatuses
US9076653B2 (en) Substrate for growing single crystal diamond layer and method for producing single crystal diamond substrate
WO2014196394A1 (en) Method for manufacturing sic single-crystal substrate for epitaxial sic wafer, and sic single-crystal substrate for epitaxial sic wafer
JP4148105B2 (en) Method for manufacturing SiC substrate
JP2011079683A (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
KR20170018817A (en) Substrate processing system and substrate processing method
WO2018052494A1 (en) Strip process for high aspect ratio structure
TW202111806A (en) Method for dry etching compound materials
EP3309819B1 (en) Bonded soi wafer manufacturing method
CN107615445B (en) Method for manufacturing silicon wafer on insulator
CN117334574A (en) Post-treatment of indium-containing compound semiconductors
US9412607B2 (en) Plasma etching method
JPH06188163A (en) Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JP6415360B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP4037154B2 (en) Plasma processing method
WO2011158558A1 (en) Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
JP2015162630A (en) Silicon carbide semiconductor element manufacturing method
JP6570045B2 (en) Compound semiconductor wafer processing method
JP4480012B2 (en) Etching method and etching apparatus
Aida et al. Surface treatment for GaN substrate comparison of chemical mechanical polishing and inductively coupled plasma dry etching
JP2012178377A (en) METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR SUBSTRATE
CN114512541B (en) Method and device for etching trench gate of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350