JP2016171067A - Lithium ion conductive oxide ceramic material including garnet-type or similar crystal structure - Google Patents

Lithium ion conductive oxide ceramic material including garnet-type or similar crystal structure Download PDF

Info

Publication number
JP2016171067A
JP2016171067A JP2016018896A JP2016018896A JP2016171067A JP 2016171067 A JP2016171067 A JP 2016171067A JP 2016018896 A JP2016018896 A JP 2016018896A JP 2016018896 A JP2016018896 A JP 2016018896A JP 2016171067 A JP2016171067 A JP 2016171067A
Authority
JP
Japan
Prior art keywords
garnet
lithium ion
type
conductive oxide
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018896A
Other languages
Japanese (ja)
Other versions
JP6672848B2 (en
Inventor
岳夫 塚田
Gakuo Tsukada
岳夫 塚田
禎一 田中
Teiichi Tanaka
禎一 田中
宏郁 角田
Hiroiku Tsunoda
宏郁 角田
泰輔 益子
Taisuke Masuko
泰輔 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/063,989 priority Critical patent/US10218032B2/en
Priority to CN201610137537.1A priority patent/CN105977529B/en
Publication of JP2016171067A publication Critical patent/JP2016171067A/en
Application granted granted Critical
Publication of JP6672848B2 publication Critical patent/JP6672848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion conductive oxide ceramic material including a garnet-type or similar crystal structure, increased in ion conductivity contributed by a resistance component in grain.SOLUTION: A lithium ion conductive oxide ceramic material including a garnet-type or similar crystal structure of the present invention contains Li, La, Zr, and O, and further contains one or more elements selected from the group consisting of rare-earth elements.SELECTED DRAWING: Figure 2

Description

本発明は、ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に関する。   The present invention relates to a lithium ion conductive oxide ceramic material having a garnet-type or garnet-type-like crystal structure.

全固体型リチウムイオン二次電池は、非水電解液を用いるリチウム二次電池に比べて、電解質が焼結したセラミックス材料を用いるため熱的安定性が高い。しかし、高容量の全固体型リチウムイオン二次電池は世界的に見ても未だ実用化されていない。この原因の一つに固体電解質自体の問題がある。固体電解質に求められる主な特性として、イオン伝導度(導電率)が高いこと、化学的安定性に優れていること、電位窓が広いこと、の3つが挙げられる。ガーネット型酸化物セラミックス材料は、こうした特性のうち、化学的安定性に優れ、電位窓が広いという利点を持つため、固体電解質の有望な候補の一つである(例えば非特許文献1,2参照)。   The all solid-state lithium ion secondary battery has a higher thermal stability because it uses a ceramic material in which the electrolyte is sintered, compared to a lithium secondary battery using a non-aqueous electrolyte. However, high-capacity all solid-state lithium ion secondary batteries have not yet been put into practical use even in the world. One of the causes is a problem of the solid electrolyte itself. There are three main characteristics required for a solid electrolyte: high ionic conductivity (conductivity), excellent chemical stability, and a wide potential window. The garnet-type oxide ceramic material is one of the promising candidates for the solid electrolyte because of its excellent chemical stability and wide potential window among these properties (see, for example, Non-Patent Documents 1 and 2). ).

J. Am. Ceram. Soc., 2003年,86巻3号,437−440頁J. et al. Am. Ceram. Soc. , 2003, 86, 3, 437-440. Angew. Chem. Int. Ed., 2007年, 46巻, 7778−7781Angew. Chem. Int. Ed. , 2007, 46, 7778-7781

特許第5083336号公報Japanese Patent No. 5083336

このようなガーネット型酸化物セラミックス材料は、更なるイオン伝導特性を上げることが望まれている。一般的にイオン伝導性セラミックスのイオン伝導度は、粒内抵抗成分寄与の伝導度と粒界抵抗成分寄与の伝導度に分けて考えることが出来るが、十分厚い形状で用いる固体電解質セラミックスにおいては、セラミックス中に多くの粒界部が存在するため、電解質全体のイオン伝導度を評価するには粒内と粒界の双方からの抵抗成分寄与を考慮に入れたイオン伝導度が必要になる。しかしながら、固体電解質層の厚みを薄くし、さらに結晶粒子を大きくして用いるようなデバイスにおいては、相対的に粒界の数が減ることで粒界抵抗成分の寄与が小さくなり、粒内抵抗のみに起因するイオン伝導体そのものの伝導性が重要になる。   Such a garnet-type oxide ceramic material is desired to have further improved ion conduction characteristics. In general, the ionic conductivity of ionic conductive ceramics can be considered by dividing into the conductivity of the intragranular resistance component contribution and the conductivity of the grain boundary resistance component, but in the solid electrolyte ceramics used in a sufficiently thick shape, Since many grain boundary parts exist in ceramics, ionic conductivity taking into account the contribution of resistance components from both the grains and the grain boundaries is necessary to evaluate the ionic conductivity of the entire electrolyte. However, in devices where the thickness of the solid electrolyte layer is reduced and the crystal grains are enlarged, the contribution of the grain boundary resistance component is reduced by relatively reducing the number of grain boundaries. The conductivity of the ionic conductor itself due to this is important.

特許文献1等では、イオン伝導度を粒内抵抗と粒界抵抗とを合わせた抵抗から算出、評価しているが、粒内のみのイオン伝導度の評価について記載されていない。 In Patent Document 1 and the like, the ionic conductivity is calculated and evaluated from the resistance obtained by combining the intragranular resistance and the grain boundary resistance.

本発明は、従来のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に対し、粒内の抵抗成分を低下させ、粒内のイオン伝導度を高くすることにより、粒界数の少ないセラミックス材料における全イオン伝導度がより高くなるような、ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料を提供することを目的とする。
ここでガーネット型結晶構造は空間群としてIa−3dを有するもの、ガーネット型類似結晶構造は空間群としてI4/acdを有する結晶群と定義する。
The present invention relates to a lithium ion conductive oxide ceramic material having a conventional garnet-type or garnet-like crystal structure by reducing the resistance component in the grains and increasing the ionic conductivity in the grains. It is an object of the present invention to provide a lithium ion conductive oxide ceramic material having a garnet-type or garnet-type similar crystal structure such that the total ion conductivity in a ceramic material having a small number of fields is higher.
Here, the garnet-type crystal structure is defined as a crystal group having Ia-3d as a space group, and the garnet-type similar crystal structure is defined as a crystal group having I4 1 / acd as a space group.

上述した目的を達成するために、本発明者らは、鋭意研究を重ねた結果、ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミック材料に希土類元素を含有することにより、粒内抵抗成分寄与のイオン伝導度が向上することを見出し、本発明を完成するに至った。   In order to achieve the above-described object, the present inventors have conducted extensive research, and as a result, by containing a rare earth element in a lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure, It has been found that the ionic conductivity contributed by the intragranular resistance component is improved, and the present invention has been completed.

すなわち、本発明にかかるガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料は、LiとLaとZrとOとを含有し、希土類元素からなる群より選ばれた1種以上の元素をさらに含有する。   That is, the lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure according to the present invention contains Li, La, Zr, and O, and is selected from the group consisting of rare earth elements. It further contains the above elements.

本発明にかかるガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料は、
Li7+xLaZr2−x12…(1)
(式(1)中、Aは、希土類元素からなる群より選ばれた1種以上の元素 xは、0<x≦0.5を満たす数)で表されることを特徴とする。
The lithium ion conductive oxide ceramic material having a garnet-type or garnet-type similar crystal structure according to the present invention,
Li 7 + x La 3 Zr 2-x A x O 12 (1)
(In the formula (1), A is one or more elements selected from the group consisting of rare earth elements x is a number satisfying 0 <x ≦ 0.5).

Zrサイトへの希土類元素の置換は、格子定数を大きくしLiイオンの移動空間を広げるという作用があり、その結果、Liイオンが移動しやすくなるという効果が得られると考えられる。 Substitution of rare earth elements for the Zr site has the effect of increasing the lattice constant and expanding the movement space of Li ions, and as a result, it is considered that the effect of facilitating the movement of Li ions can be obtained.

本発明の望ましい態様は、前記式(1)中のAが、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群より選ばれた1種以上の元素であることが好ましい。 In a desirable aspect of the present invention, A in the formula (1) is preferably one or more elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

ZrサイトへのGd、Tb、Dy、Ho、Er、Tm、Yb、Luの置換は、Liイオンの移動に最適な空間を形成するという作用があり、その結果、この空間の形成は、高いイオン伝導度を示すという効果が得られると考えられる。 The substitution of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu to the Zr site has the effect of forming an optimal space for the movement of Li ions, and as a result, the formation of this space is a high ion. It is considered that the effect of showing conductivity can be obtained.

本発明の望ましい態様は、前記式(1)中のAが、Gd,Ho,Ybからなる群より選ばれた1種以上の元素である。さらに、xが0<x≦0.30を満たすことが好ましい。   In a desirable aspect of the present invention, A in the formula (1) is one or more elements selected from the group consisting of Gd, Ho, and Yb. Furthermore, it is preferable that x satisfies 0 <x ≦ 0.30.

これにより、Liイオンの協奏的移動に最適な空間を実現できる作用があり、その結果、より高いイオン伝導度が得られるという効果があると考えられる。   Thereby, there exists an effect | action which can implement | achieve the space optimal for concerted movement of Li ion, As a result, it is thought that there exists an effect that higher ionic conductivity is obtained.

本発明の望ましい態様は、Alを前記ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料の全重量に対して0.3wt%以上2.0wt%以下含有していることが好ましい。 A desirable aspect of the present invention is that Al is contained in an amount of 0.3 wt% or more and 2.0 wt% or less with respect to the total weight of the lithium ion conductive oxide ceramic material having a crystal structure similar to the garnet type or garnet type. Is preferred.

このAlを含有させることで、Li7+xLaZr2−x12を立方晶化し易くする作用があり、その結果、イオン伝導度をより高くするという効果が得られると考えられる。 By containing this Al, it is considered that Li 7 + x La 3 Zr 2−x A x O 12 has an effect of facilitating crystallization, and as a result, an effect of increasing the ionic conductivity can be obtained.

本発明のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料によれば、従来のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に対し、粒内抵抗成分寄与のイオン伝導度を高くすることにより、粒界数の比較的少ないセラミックス材料において、全体のイオン伝導度が高いガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料を提供することができる。   According to the lithium ion conductive oxide ceramic material having a garnet-type or garnet-type-like crystal structure of the present invention, the lithium ion conductive oxide ceramic material having a conventional garnet-type or garnet-type similar crystal structure, Lithium ion conductive oxide with a garnet-type or garnet-type similar crystal structure with high overall ionic conductivity in ceramic materials with a relatively small number of grain boundaries by increasing the ionic conductivity contributed by the intragranular resistance component A ceramic material can be provided.

本発明のガーネット型リチウムイオン伝導性酸化物は、固体電解質層の厚みを薄くして用いるようなデバイスへ好適に適用でき、特に薄層多層を有する積層型二次電池への適用が期待される。 The garnet-type lithium ion conductive oxide of the present invention can be suitably applied to a device that is used with a thin solid electrolyte layer, and is particularly expected to be applied to a laminated secondary battery having thin multilayers. .

図1は、実験で得られたナイキストプロットを示す図である。FIG. 1 is a diagram showing a Nyquist plot obtained in an experiment. 図2は、リチウムイオン二次電池の概念的構造を示す断面図である。FIG. 2 is a cross-sectional view showing a conceptual structure of a lithium ion secondary battery.

本実施形態のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料は、LiとLaとZrとOから構成されるガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に対し、希土類元素からなる群より選ばれた1種以上の元素をさらに含有する。
例えば組成式(1)、つまりLi7+xLaZr2−x12 ・・・(1)で表され、式(1)中の、Aは、希土類元素からなる群より選ばれた1種以上の元素である。xは、0<x≦0.5を満たす数であるが、0<x≦0.3を満たすことがより好ましい。
The lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure according to this embodiment is a lithium ion conductive material having a garnet-type or garnet-like crystal structure composed of Li, La, Zr, and O. 1 type or more elements chosen from the group which consists of rare earth elements are further contained with respect to a conductive oxide ceramic material.
For example, it is represented by the composition formula (1), that is, Li 7 + x La 3 Zr 2-x A x O 12 (1), and A in the formula (1) is selected from the group consisting of rare earth elements. More than a seed element. x is a number that satisfies 0 <x ≦ 0.5, but more preferably satisfies 0 <x ≦ 0.3.

LiとLaとZrとOから構成されるガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に希土類元素が含有されていれば必ずしもZrを置換する必要はなく、他の金属イオンサイトに置換されても良いが、Zrを置換することが好ましい。   If a rare earth element is contained in a lithium ion conductive oxide ceramic material having a garnet-type or garnet-type crystal structure composed of Li, La, Zr and O, it is not always necessary to replace Zr. Although it may be substituted with a metal ion site, it is preferable to substitute Zr.

なお、本実施形態のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料を同定するには、粉末X線回折により行えばよい。また、言うまでもないが、LiLaZr12といういわゆるLLZが同定されればよいため、必ずしも化学量論組成のものでなくてもよい。つまり酸素欠損等の欠損が生じていてもよい。
このガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に添加される希土類元素は、その材料粉末を高周波誘導結合プラズマ発光分光分析(ICP)にて定量すればよい。
In addition, what is necessary is just to perform by powder X-ray diffraction in order to identify the lithium ion conductive oxide ceramic material which has a garnet type or crystal structure similar to a garnet type of this embodiment. Needless to say, the so-called LLZ of Li x La 3 Zr 2 O 12 only needs to be identified, and therefore does not necessarily have to have a stoichiometric composition. That is, defects such as oxygen vacancies may occur.
The rare earth element added to the lithium ion conductive oxide ceramic material having the garnet-type or garnet-like crystal structure may be quantified by high-frequency inductively coupled plasma emission spectroscopy (ICP).

本実施形態のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料は化学式Li7+xLaZr2−x12で表され、Zrの一部をZrより大きなイオン半径を備える3価の元素である希土類元素群から選択されるいずれか1種以上の元素で置換したものと考えられる。この場合、ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物のZrサイトは6配位をとることが知られており希土類元素も6配位をとる。この時希土類元素のイオン半径はZrのイオン半径よりも大きくなり、このイオン半径の大きい希土類元素がZrサイトを置換することで、格子定数が大きくなる。結果的にLiイオンが移動する空間が広がり、Liイオンが移動し易くなったものと考えられる。また、Zrサイトを置換する理由は、Zrサイト(4価サイト)を3価イオンで置換していることで、電荷補償のためLi7+xLaZr2−x12…(1)中のLiサイトを過剰にする必要がある。このため、可動できるLiイオン量が増加することとなる。本実施形態のリチウムイオン伝導性酸化物セラミックス材料は、上記に示すメカニズムのため、化学式Li7+xLaZr2−x12で表される前記酸化物の格子定数とLiイオン量を制御することが可能となるため、その結晶粒内のイオン伝導度を向上させることができると考えられる。 The lithium ion conductive oxide ceramic material having a garnet-type or a garnet-like crystal structure according to this embodiment is represented by the chemical formula Li 7 + x La 3 Zr 2−x A x O 12 , and a part of Zr is larger than Zr. This is considered to be substituted with one or more elements selected from the group of rare earth elements that are trivalent elements having a radius. In this case, it is known that the Zr site of the lithium ion conductive oxide having a garnet-type or garnet-like crystal structure has 6-coordination, and the rare earth element also has 6-coordination. At this time, the ion radius of the rare earth element is larger than the ion radius of Zr, and the rare earth element having a large ion radius replaces the Zr site, thereby increasing the lattice constant. As a result, it is considered that the space in which Li ions move is widened and Li ions are easy to move. Moreover, the reason for substituting the Zr site is that the Zr site (tetravalent site) is replaced with a trivalent ion, and Li 7 + x La 3 Zr 2−x A x O 12 (1) is included for charge compensation. It is necessary to make the Li site excessive. For this reason, the amount of Li ions that can be moved increases. The lithium ion conductive oxide ceramic material of this embodiment controls the lattice constant and the amount of Li ions of the oxide represented by the chemical formula Li 7 + x La 3 Zr 2−x A x O 12 because of the mechanism described above. Therefore, it is considered that the ionic conductivity in the crystal grains can be improved.

さらに、ZrサイトをGd,Tb,Dy,Ho,Er,Tm,Yb,Luのうちの希土類元素で置換することが好ましい。この理由については、発明者等は以下のように考えている。Zrサイトよりイオン半径の大きい希土類元素で置換することで、Liイオンが移動する空間を広げ、Liイオンを移動し易くする。ただし、Liイオンが移動する空間において、Liイオンが移動し易い最適な広さの空間が存在する。つまり、イオン半径の大きな希土類元素で置換することで移動空間を押し広げ過ぎても、Liイオンの協奏的移動がし難くなる。このため、Gd,Tb,Dy,Ho,Er,Tm,Yb,Luのうちの希土類元素で置換することで、Liイオンが移動し易い最適な広さの空間が形成され、より高いイオン伝導度が得られる効果があると考えている。   Furthermore, it is preferable to replace the Zr site with a rare earth element of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The inventors consider the reason as follows. By substituting with a rare earth element having an ionic radius larger than that of the Zr site, the space in which Li ions move is expanded, and Li ions can be moved easily. However, in a space where Li ions move, there is an optimal space where Li ions can easily move. That is, even if the movement space is excessively widened by replacing with a rare earth element having a large ion radius, it is difficult to perform Li ion concerted movement. For this reason, by substituting with a rare earth element among Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, a space having an optimal area in which Li ions easily move is formed, and higher ion conductivity is obtained. I think that there is an effect that can be obtained.

また、前記組成式(1)中のxは0<x≦0.30であることが好ましい。これにより、より高いイオン伝導度が得られる。   Further, x in the composition formula (1) preferably satisfies 0 <x ≦ 0.30. Thereby, higher ionic conductivity is obtained.

ZrサイトをGd,Ho,Ybのうちの希土類元素で置換することが好ましい。これにより、Liイオンの協奏的移動に最適な空間を実現でき、より高いイオン伝導度が得られる。   The Zr site is preferably substituted with a rare earth element of Gd, Ho, Yb. Thereby, a space optimal for concerted movement of Li ions can be realized, and higher ion conductivity can be obtained.

また、本実施形態のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料は、その全重量に対して0.3wt%以上2.0wt%以下のAlを含有することで、高いイオン伝導度が得られるため好ましい。かかる構成は、結晶構造が立方晶系のLi7+xLaZr2−x12を形成し易くするためと考えられる。Alの含有量が0.3wt%より少ない場合は、立方晶化し易くなる作用が弱まる。また、Alの含有量が2.0wt%を超える場合は、焼成を阻害する可能性がある。このため、焼結密度が低下し、その結果、イオン伝導度が低下する恐れがある。 In addition, the lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure according to the present embodiment contains 0.3 wt% or more and 2.0 wt% or less of Al with respect to the total weight. This is preferable because high ionic conductivity can be obtained. Such a configuration is considered to facilitate formation of cubic Li 7 + x La 3 Zr 2−x A x O 12 having a crystal structure. When the Al content is less than 0.3 wt%, the effect of facilitating cubic crystallization is weakened. Moreover, when content of Al exceeds 2.0 wt%, there exists a possibility of inhibiting baking. For this reason, a sintered density falls and as a result, there exists a possibility that ionic conductivity may fall.

(セラミックス材料の製造方法)
本実施形態のリチウムイオン伝導性酸化物セラミックス材料は、Li化合物と、La化合物と、Zr化合物と、希土類元素群から選択されるいずれか1種以上の希土類元素化合物とを、混合した混合原料を焼成することにより得ることができる。また、このとき、前記混合原料に、Al化合物からなる焼結助剤を添加して焼成することにより、焼結を促進し、緻密化されたリチウムイオン伝導性セラミックス材料を得ることができる。
(Manufacturing method of ceramic material)
The lithium ion conductive oxide ceramic material of the present embodiment is a mixed raw material obtained by mixing a Li compound, a La compound, a Zr compound, and one or more rare earth element compounds selected from a rare earth element group. It can be obtained by firing. At this time, sintering can be promoted and a densified lithium ion conductive ceramic material can be obtained by adding a sintering aid made of an Al compound to the mixed raw material and firing the mixture.

前記Li化合物としては、例えば、LiOH又はその水和物、LiCO、LiNO、CHCOOLi等を挙げることができる。前記La化合物としては、La、La(OH)、La(CO、La(NO、(CHCOO)La等を挙げることができる。前記Zr化合物としては、Zr、ZrO(NO、ZrO(CHCOO)、Zr(OH)CO、ZrO等を挙げることができる。 As the Li compound, for example, a LiOH or a hydrate thereof, Li 2 CO 3, LiNO 3 , CH 3 COOLi like. Examples of the La compound include La 2 O 3 , La (OH) 3 , La 2 (CO 3 ) 3 , La (NO 3 ) 3 , (CH 3 COO) 3 La, and the like. Examples of the Zr compound include Zr 2 O 2 , ZrO (NO 3 ) 2 , ZrO (CH 3 COO) 2 , Zr (OH) 2 CO 3 , ZrO 2 and the like.

また、前記希土類化合物としては、A、A(CO、A(NO、(CHCOO)A等(Aは、希土類元素)を挙げることができる。 Examples of the rare earth compound include A 2 O 3 , A 2 (CO 3 ) 3 , A (NO 3 ) 3 , (CH 3 COO) 3 A, and the like (A is a rare earth element).

さらに、前記Al化合物としては、Al、Al(OH)、Al(NO等を
挙げることができる。
Furthermore, examples of the Al compound include Al 2 O 3 , Al (OH) 3 , Al (NO 3 ) 3 and the like.

本発明のガーネット型リチウムイオン伝導性酸化物セラミックスの製造方法の一例について説明する。この酸化物の製造方法は、(a)原料混合工程を行い、次に(b)仮焼工程を行い、最後に(c)成形、本焼結工程を行う。以下に、これらの工程について順に説明する。 An example of a method for producing the garnet-type lithium ion conductive oxide ceramic of the present invention will be described. In this oxide manufacturing method, (a) a raw material mixing step is performed, then (b) a calcination step is performed, and finally (c) a forming and main sintering step is performed. Hereinafter, these steps will be described in order.

(a)原料混合工程
原料混合工程では、式(1)つまりLi7+xLaZr2−x12の各元素を含む出発原料を式(1)の化学量論比になるようにそれぞれ秤量し、混合する。出発原料としては、各元素の炭酸塩や硫酸塩、硝酸塩、シュウ酸塩、塩化物、水酸化物、酸化物などを用いることができる。このうち、熱分解して炭酸ガスを生じる炭酸塩及び熱分解して水蒸気を生じる水酸化物が、ガスの処理が比較的容易であり好ましい。例えば、Liの炭酸塩、La及びAの水酸化物、Zrの酸化物を用いることが好ましい。混合方法は、溶媒に入れずに乾式で混合粉砕してもよいし、溶媒に入れて湿式で混合粉砕するものとしてもよいが、溶媒に入れて湿式の混合粉砕を行うことが混合性の向上の面からは好ましい。この混合方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、Liが溶解しにくいものが好ましく、例えばエタノールなどの有機溶媒がより好ましい。混合時間は、混合量にもよるが、例えば1時間〜32時間とすることができる。
(A) Raw material mixing step In the raw material mixing step, the starting material containing each element of formula (1), that is, Li 7 + x La 3 Zr 2−x A x O 12 , is made to have a stoichiometric ratio of formula (1). Weigh and mix. As starting materials, carbonates, sulfates, nitrates, oxalates, chlorides, hydroxides, oxides and the like of each element can be used. Of these, carbonates that thermally decompose to generate carbon dioxide and hydroxides that thermally decompose to generate water vapor are preferable because they are relatively easy to process. For example, it is preferable to use a carbonate of Li, a hydroxide of La and A, and an oxide of Zr. The mixing method may be dry mixing and pulverization without adding a solvent, or may be mixed and pulverized wet in a solvent. From the standpoint of this, it is preferable. As this mixing method, for example, a planetary mill, an attritor, a ball mill, or the like can be used. As the solvent, those in which Li is difficult to dissolve are preferable, and for example, an organic solvent such as ethanol is more preferable. The mixing time depends on the amount of mixing, but can be, for example, 1 hour to 32 hours.

(b)仮焼工程
仮焼工程では、混合工程で得られた混合粉末を仮焼する。このときの仮焼温度は、出発原料の状態変化(例えばガスの発生とか相変化など)が起きる温度以上、本焼結時の温度未満とするのが好ましい。例えば、出発原料の一つとしてLiCOを用いた場合には、この炭酸塩が分解する温度以上、本焼結時の温度未満とするのが好ましい。こうすれば、のちの本焼結において、熱分解でのガス発生による密度の低下を抑制することができる。具体的には、仮焼温度は、800℃〜1000℃とすることが好ましい。
(B) Calcination process In the calcination process, the mixed powder obtained in the mixing process is calcined. The calcining temperature at this time is preferably not less than the temperature at which the state change (for example, gas generation or phase change) of the starting material occurs and less than the temperature during the main sintering. For example, when Li 2 CO 3 is used as one of the starting materials, it is preferable that the temperature be higher than the temperature at which this carbonate is decomposed and lower than the temperature at the time of main sintering. If it carries out like this, the fall of the density by the gas generation | occurrence | production by thermal decomposition can be suppressed in subsequent main sintering. Specifically, the calcination temperature is preferably 800 ° C to 1000 ° C.

(c)成形、本焼結工程
本焼結では、仮焼工程で得られた材料(本焼結前粉末という)を成形した後、仮焼温度以上の温度で焼結を行う。成形体を得るための成形方法としては、本焼結前粉末にバインダーを添加し金型成形を行う方法、冷間等方成形(CIP)や熱間等方成形(HIP)、ホットプレスなどにより任意の形状に行うことができる。さらに、焼結前粉末を有機系のバインダー、分散剤、可塑剤等と混合し、シート状に成形し、複数積層構造に成形しても良い。焼結雰囲気は大気雰囲気以外に、必要に応じ還元雰囲気で行っても良い。
(C) Molding and main sintering step In the main sintering, the material obtained in the calcining step (referred to as pre-sintering powder) is molded and then sintered at a temperature equal to or higher than the calcining temperature. As a molding method for obtaining a molded body, a method in which a binder is added to the pre-sintered powder and die molding is performed, cold isotropic molding (CIP), hot isotropic molding (HIP), hot press, etc. It can be done in any shape. Furthermore, the powder before sintering may be mixed with an organic binder, a dispersant, a plasticizer, and the like, formed into a sheet shape, and formed into a multi-layered structure. The sintering atmosphere may be performed in a reducing atmosphere as required in addition to the air atmosphere.

以上詳述した製法によれば、出発原料の混合粉末を仮焼したあと、比較的低温で仮焼し、その後本焼結を行うため、組成のずれを精度よく抑制することができる。なお、本発明のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料の製法は、これに限定されるものではなく、他の製法を採用しても構わない。   According to the manufacturing method described in detail above, since the mixed powder of the starting material is calcined, calcined at a relatively low temperature, and then main sintering is performed, the composition deviation can be suppressed with high accuracy. In addition, the manufacturing method of the lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure of the present invention is not limited to this, and other manufacturing methods may be adopted.

(全固体型リチウム二次電池)
本実施形態の全固体型リチウム二次電池は、図2に示すとおり正極1と、負極2と、固体電解質3から構成され、固体電解質3は、LiとLaとZrとOから構成されるガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料に対し、希土類元素からなる群より選ばれた1種以上の元素をさらに含有する。たとえば、組成式Li7+xLaZr2−x12・・・(1)(式(1)中、Aは、希土類元素からなる群より選ばれた1種以上の元素xは、0<x≦0.5を満たす数)で表されることを特徴とするガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料である。このような構成とすることで、従来に比して実用的な二次電池となっている。
(All-solid-state lithium secondary battery)
As shown in FIG. 2, the all solid-state lithium secondary battery of this embodiment is composed of a positive electrode 1, a negative electrode 2, and a solid electrolyte 3, and the solid electrolyte 3 is a garnet composed of Li, La, Zr, and O. One or more elements selected from the group consisting of rare earth elements are further contained in a lithium ion conductive oxide ceramic material having a type or garnet type-like crystal structure. For example, the composition formula Li 7 + x La 3 Zr 2−x A x O 12 (1) (in the formula (1), A is one or more elements x selected from the group consisting of rare earth elements is 0 <A number satisfying x ≦ 0.5) A lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure. By setting it as such a structure, it is a practical secondary battery compared with the past.

本実施形態の全固体型リチウムイオン二次電池の正極1及び負極2は、それぞれ正極活物質5と正極集電体4及び負極活物質7と負極活物質6からなる。
リチウム二次電池に使用されている従来公知の正極活物質5及び負極活物質7を含むことができ、常法により製造される。
The positive electrode 1 and the negative electrode 2 of the all solid-state lithium ion secondary battery of this embodiment are composed of a positive electrode active material 5, a positive electrode current collector 4, a negative electrode active material 7, and a negative electrode active material 6, respectively.
Conventionally known positive electrode active material 5 and negative electrode active material 7 used in lithium secondary batteries can be included, and are produced by a conventional method.

(正極活物質)
正極活物質としては特に制限はなく、従来公知の全固体電池に用いられる正極活物質を
用いることができる。こうした正極活物質の具体例としては、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えば、LiMn又はLiMnO)、リチウムニッケル複合酸化物(例えば、LiNiO)、リチウムコバルト複合酸化物(例えば、LiCoO)、リチウムニッケルコバルト複合酸化物(例えば、LiNi1−yCo)、リチウムマンガンコバルト複合酸化物(例えば、LiMnCo1−y)、スピネル型リチウムマンガンニッケル複合酸化物(例えば、LiMn2−yNi)、オリビン構造を有するリチウムリン酸化合物(例えば、LiFePO、LiFe1−yMnPO、LiCoPO、LiVOPO)、ナシコン構造を有するリチウムリン酸化合物(例えば、Li(PO、LiVOP、LiVP、Li(VO)(PO、及びLi(P(PO)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えば、V)などを挙げることができる。これらは1種単独で使用してもよいし、2種以上を併用して用いてもよい。なお、これらの化学式中、x,yは1<x<5,0<y<1の範囲であることが好ましい。これらのなかでは、LiCoO、LiNiO、Li(PO、LiFePOが好ましい。
(Positive electrode active material)
There is no restriction | limiting in particular as a positive electrode active material, The positive electrode active material used for a conventionally well-known all-solid-state battery can be used. Specific examples of such a positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), and lithium nickel composite. Oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (for example, Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g., LiMn y Co 1-y O 2), spinel type lithium-manganese-nickel composite oxide (e.g., Li x Mn 2-y Ni y O 4), lithium phosphate compounds having an olivine structure (e.g., Li x FePO 4 , Li x Fe 1-y Mn y PO 4 , Li x CoPO 4 , LiVOP O 4 ), a lithium phosphate compound having a NASICON structure (for example, Li x V 2 (PO 4 ) 3 , Li 2 VOP 2 O 7 , Li 2 VP 2 O 7 , Li 4 (VO) (PO 4 ) 2 , And Li 9 V 3 (P 2 O 7 ) 3 (PO 4 ) 2 ), iron sulfate (Fe 2 (SO 4 ) 3 ), vanadium oxide (for example, V 2 O 5 ), and the like. These may be used alone or in combination of two or more. In these chemical formulas, x and y are preferably in the range of 1 <x <5, 0 <y <1. Among these, LiCoO 2 , LiNiO 2 , Li x V 2 (PO 4 ) 3 , and LiFePO 4 are preferable.

(負極活物質)
負極活物質としては特に制限はなく、従来公知の全固体電池に用いられる負極活物質を用いることができる。例えば、カーボン、金属リチウム(Li)、金属化合物、金属酸化物、Li金属化合物、Li金属酸化物(リチウム−遷移金属複合酸化物を含む)、ホウ素添加炭素、グラファイト、ナシコン構造を有する化合物などを挙げることができる。これらは1種単独で使用してもよいし、2種以上を併用して用いてもよい。例えば、上記金属リチウム(Li)を用いた場合には、全固体電池の容量を拡大させることができる。上記カーボンとしては、例えば、グラファイトカーボン、ハードカーボン、ソフトカーボンなど、従来公知のカーボン材料を挙げることができる。上記金属化合物としては、LiAl、LiZn、LiBi、LiSd、LiSi、Li4.4Sn、Li0.17C(LiC)等を挙げることができる。上記金属酸化物としては、SnO、SnO、GeO、GeO、InO、In、AgO、AgO、Ag、Sb、Sb、Sb、SiO、ZnO、CoO、NiO、TiO2、FeO等を挙げることができる。Li金属化合物としては、LiFeN、Li2.6Co0.4N、Li2.6Cu0.4N等を挙げることができる。Li金属酸化物(リチウム−遷移金属複合酸化物)としては、LiTi12で表されるリチウム−チタン複合酸化物等を挙げることができる。上記ホウ素添加炭素としては、ホウ素添加カーボン、ホウ素添加グラファイト等を挙げることができる。
(Negative electrode active material)
There is no restriction | limiting in particular as a negative electrode active material, The negative electrode active material used for a conventionally well-known all-solid-state battery can be used. For example, carbon, metal lithium (Li), metal compound, metal oxide, Li metal compound, Li metal oxide (including lithium-transition metal composite oxide), boron-added carbon, graphite, compound having NASICON structure, etc. Can be mentioned. These may be used alone or in combination of two or more. For example, when the metal lithium (Li) is used, the capacity of the all solid state battery can be increased. Examples of the carbon include conventionally known carbon materials such as graphite carbon, hard carbon, and soft carbon. Examples of the metal compound include LiAl, LiZn, Li 3 Bi, Li 3 Sd, Li 4 Si, Li 4.4 Sn, Li 0.17 C (LiC 6 ), and the like. The metal oxides, SnO, SnO 2, GeO, GeO 2, In 2 O, In 2 O 3, Ag 2 O, AgO, Ag 2 O 3, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5 , SiO, ZnO, CoO, NiO, TiO2, FeO and the like. Examples of the Li metal compound include Li 3 FeN 2 , Li 2.6 Co 0.4 N, Li 2.6 Cu 0.4 N, and the like. Examples of the Li metal oxide (lithium-transition metal composite oxide) include a lithium-titanium composite oxide represented by Li 4 Ti 5 O 12 . Examples of the boron-added carbon include boron-added carbon and boron-added graphite.

(集電体)
本実施形態の全固体型リチウムイオン二次電池の集電体を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらにリチウムイオン二次電池の内部抵抗の低減に効果があるため好ましい。集電体を構成する材料は、正極と負極で同じであってもよいし、異なっていてもよい。
(Current collector)
The material constituting the current collector of the all-solid-state lithium ion secondary battery of this embodiment is preferably a material having a high electrical conductivity, such as silver, palladium, gold, platinum, aluminum, copper, nickel, etc. It is preferable to use it. In particular, copper is preferable because it hardly reacts with lithium aluminum aluminum phosphate and is effective in reducing the internal resistance of the lithium ion secondary battery. The material constituting the current collector may be the same for the positive electrode and the negative electrode, or may be different.

また、本実施形態におけるリチウムイオン二次電池の正極集電体層及び負極集電体層は、それぞれ正極活物質及び負極活物質を含むことが好ましい。 Moreover, it is preferable that the positive electrode current collector layer and the negative electrode current collector layer of the lithium ion secondary battery in this embodiment include a positive electrode active material and a negative electrode active material, respectively.

正極集電体層及び負極集電体層がそれぞれ正極活物質及び負極活物質を含むことにより、正極集電体層と正極活物質層及び負極集電体層と負極活物質層との密着性が向上するため望ましい。 Since the positive electrode current collector layer and the negative electrode current collector layer contain a positive electrode active material and a negative electrode active material, respectively, adhesion between the positive electrode current collector layer and the positive electrode active material layer, and the negative electrode current collector layer and the negative electrode active material layer Is desirable because it improves.

(リチウムイオン二次電池の製造方法)
本実施形態のリチウムイオン二次電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び、負極集電体層の各材料をペースト化し、塗布乾燥してグリーンシートを作製し、係るグリーンシートを積層し、作製した積層体を同時に焼成することにより製造する。
(Method for producing lithium ion secondary battery)
The lithium ion secondary battery of the present embodiment is a green material obtained by pasting each of the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer, coating and drying the material. A sheet is produced, the green sheets are laminated, and the produced laminate is fired at the same time.

ペースト化の方法は、特に限定されないが、例えば、ビヒクルに上記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。係る方法により、正極集電体層用のペースト、正極活物質層用のペースト、固体電解質層用のペースト、負極活物質層用のペースト、及び、負極集電体層用のペーストを作製する。   The method for forming the paste is not particularly limited, and for example, a paste can be obtained by mixing the powder of each of the above materials in a vehicle. Here, the vehicle is a general term for the medium in the liquid phase. The vehicle includes a solvent and a binder. By this method, a paste for the positive electrode current collector layer, a paste for the positive electrode active material layer, a paste for the solid electrolyte layer, a paste for the negative electrode active material layer, and a paste for the negative electrode current collector layer are prepared.

作製したペーストをPETなどの基材上に所望の順序で塗布し、必要に応じ乾燥させた後、基材を剥離し、グリーンシートを作製する。ペーストの塗布方法は、特に限定されず、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。   The prepared paste is applied in a desired order on a substrate such as PET and dried as necessary, and then the substrate is peeled off to produce a green sheet. The paste application method is not particularly limited, and a known method such as screen printing, application, transfer, doctor blade, or the like can be employed.

作製したグリーンシートを所望の順序、積層数で積み重ね、必要に応じアライメント、切断等を行い、積層ブロックを作製する。並列型又は直並列型の電池を作製する場合は、正極層の端面と負極層の端面が一致しないようにアライメントを行い積み重ねるのが好ましい。   The produced green sheets are stacked in a desired order and the number of laminated layers, and alignment, cutting, etc. are performed as necessary to produce laminated blocks. In the case of manufacturing a parallel type or series-parallel type battery, it is preferable to align and stack the end surfaces of the positive electrode layer and the negative electrode layer so that they do not coincide with each other.

積層ブロックを作製するに際し、以下に説明する活物質ユニットを準備し、積層ブロックを作製してもよい。 When producing a laminated block, the active material unit demonstrated below may be prepared and a laminated block may be produced.

その方法は、まずPETフィルム上に固体電解質ペーストをドクターブレード法でシート状に形成し、固体電解質シートを得た後、その固体電解質シート上に、スクリーン印刷により正極活物質層ペーストを印刷し乾燥する。次に、その上に、スクリーン印刷により正極集電体層ペーストを印刷し乾燥する。更にその上に、スクリーン印刷により正極活物質ペーストを再度印刷し、乾燥し、次いでPETフィルムを剥離することで正極活物質層ユニットを得る。このようにして、固体電解質シート上に、正極活物質層ペースト、正極集電体層ペースト、正極活物質ペーストがこの順に形成された正極活物質層ユニットを得る。同様の手順にて負極活物質層ユニットも作製し、固体電解質シート上に、負極活物質層ペースト、負極集電体層ペースト、負極活物質ペーストがこの順に形成された負極活物質層ユニットを得る。   First, a solid electrolyte paste is formed on a PET film in the form of a sheet by a doctor blade method to obtain a solid electrolyte sheet, and then a positive electrode active material layer paste is printed on the solid electrolyte sheet by screen printing and dried. To do. Next, a positive electrode current collector layer paste is printed thereon by screen printing and dried. Further thereon, the positive electrode active material paste is printed again by screen printing, dried, and then the PET film is peeled off to obtain a positive electrode active material layer unit. In this way, a positive electrode active material layer unit in which a positive electrode active material layer paste, a positive electrode current collector layer paste, and a positive electrode active material paste are formed in this order on a solid electrolyte sheet is obtained. A negative electrode active material layer unit is also produced by the same procedure, and a negative electrode active material layer unit in which a negative electrode active material layer paste, a negative electrode current collector layer paste, and a negative electrode active material paste are formed in this order on a solid electrolyte sheet is obtained. .

正極活物質層ユニット一枚と負極活物質層ユニット一枚を、固体電解質シートを介するようにして積み重ねる。このとき、一枚目の正極活物質層ユニットの正極集電体層ペーストが一の端面にのみ延出し、二枚目の負極活物質層ユニットの負極集電体層ペーストが他の面にのみ延出するように、各ユニットをずらして積み重ねる。この積み重ねられたユニットの両面に所定厚みの固体電解質シートをさらに積み重ね積層ブロックを作製する。 One positive electrode active material layer unit and one negative electrode active material layer unit are stacked with a solid electrolyte sheet interposed therebetween. At this time, the positive electrode current collector layer paste of the first positive electrode active material layer unit extends only on one end surface, and the negative electrode current collector layer paste of the second negative electrode active material layer unit only on the other surface Stagger each unit so that it extends. A solid electrolyte sheet having a predetermined thickness is further stacked on both surfaces of the stacked unit to form a stacked block.

作製した積層ブロックを一括して圧着する。圧着は加熱しながら行うが、加熱温度は、例えば、40〜95℃とする。   The produced laminated block is pressure-bonded together. The pressure bonding is performed while heating, and the heating temperature is, for example, 40 to 95 ° C.

圧着した積層ブロックを、例えば、窒素雰囲気下で600℃〜1200℃に加熱し焼成を行う。焼成時間は、例えば、0.1〜3時間とする。この焼成により積層体が完成する。   The laminated block thus pressure-bonded is heated and fired at 600 ° C. to 1200 ° C., for example, in a nitrogen atmosphere. The firing time is, for example, 0.1 to 3 hours. This firing completes the laminate.

本発明の内容を実施例及び比較例を参照してより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1〜実施例10]
本実施形態の効果を実証するために、ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料の例として、Li7.10La3.00(Zr1.900.10)O12(A=Y、Nd、Gd、Ho、Yb)のそれぞれを置換した組成(実施例1−実施例5)、さらにそれぞれの組成に対しAlの1.0wt%添加した組成(実施例6−実施例10)を取り上げた。出発原料にはLiCO、La(OH)、ZrO、Y、Nd、Gd、Ho、Yb及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1100℃から1150℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
The contents of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[Example 1 to Example 10]
In order to demonstrate the effect of the present embodiment, Li 7.10 La 3.00 (Zr 1.90 A 0 .0) is given as an example of a lithium ion conductive oxide ceramic material having a garnet-type or garnet-type similar crystal structure . 10 ) Compositions in which O 12 (A = Y, Nd, Gd, Ho, Yb) were substituted (Example 1 to Example 5), and 1.0 wt% of Al 2 O 3 was further added to each composition. The composition (Example 6-Example 10) was taken up. Li 2 CO 3 , La (OH) 3 , ZrO 2 , Y 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , Ho 2 O 3 , Yb 2 O 3 and Al 2 O 3 were used as starting materials. . First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1100 ° C. to 1150 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[実施例11〜実施例26]
さらに、Li7.35La3.00(Zr1.650.35)O12、(A=Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)のそれぞれを置換した組成(実施例11−18)と、さらにそれぞれの組成に対しAlの1.0wt%添加した組成(実施例19−実施例26)を取り上げた。出発原料にはLiCO、La(OH)、ZrO、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1075℃から1125℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Example 11 to Example 26]
Furthermore, a composition in which each of Li 7.35 La 3.00 (Zr 1.65 A 0.35 ) O 12 , (A = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) was substituted (implementation) Examples 11-18) and compositions in which 1.0 wt% of Al 2 O 3 was added to the respective compositions (Example 19 to Example 26) were taken up. Starting materials include Li 2 CO 3 , La (OH) 3 , ZrO 2 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 and Al 2 O 3 were used. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1075 ° C. to 1125 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[実施例27〜実施例29]
さらにLi7.05La3.00(Zr1.95Gd0.05)O12、Li7.25La3.00(Zr1.75Gd0.25)O12、Li7.50La3.00(Zr1.50Gd0.50)O12のそれぞれにAlを1.0wt%添加した。出発原料にはLiCO、La(OH)、ZrO、Gd及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1100℃から1125℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Examples 27 to 29]
Furthermore, Li 7.05 La 3.00 (Zr 1.95 Gd 0.05 ) O 12 , Li 7.25 La 3.00 (Zr 1.75 Gd 0.25 ) O 12 , Li 7.50 La 3. 100 wt% of Al 2 O 3 was added to each of 00 (Zr 1.50 Gd 0.50 ) O 12 . Li 2 CO 3 , La (OH) 3 , ZrO 2 , Gd 2 O 3 and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the air for 2 hours at a sintering temperature of 1100 ° C. to 1125 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[実施例30〜実施例32]
さらにLi7.05La3.00(Zr1.95Ho0.05)O12、Li7.25La3.00(Zr1.75Ho0.25)O12、Li7.50La3.00(Zr1.50Ho0.50)O12のそれぞれにAlを1.0wt%添加した。出発原料にはLiCO、La(OH)、ZrO、Ho及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1050℃から1125℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Example 30 to Example 32]
Furthermore, Li 7.05 La 3.00 (Zr 1.95 Ho 0.05 ) O 12 , Li 7.25 La 3.00 (Zr 1.75 Ho 0.25 ) O 12 , Li 7.50 La 3. 100 wt% of Al 2 O 3 was added to each of 00 (Zr 1.50 Ho 0.50 ) O 12 . Li 2 CO 3 , La (OH) 3 , ZrO 2 , Ho 2 O 3 and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1050 ° C. to 1125 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[実施例33〜実施例35]
さらにLi7.05La3.00(Zr1.95Yb0.05)O12、Li7.25La3.00(Zr1.75Yb0.25)O12、Li7.50La3.00(Zr1.50Yb0.50)O12のそれぞれにAlを1.0wt%添加した。出発原料にはLiCO、La(OH)、ZrO、Yb及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1050℃から1100℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Examples 33 to 35]
Furthermore, Li 7.05 La 3.00 (Zr 1.95 Yb 0.05 ) O 12 , Li 7.25 La 3.00 (Zr 1.75 Yb 0.25 ) O 12 , Li 7.50 La 3. Each of 00 (Zr 1.50 Yb 0.50 ) O 12 was added with 1.0 wt% of Al 2 O 3 . Li 2 CO 3 , La (OH) 3 , ZrO 2 , Yb 2 O 3 and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1050 ° C. to 1100 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[実施例36〜実施例41]
さらにLi7.35La3.00(Zr1.65Yb0.35)O12に対してAl含有量(ywt%)を0.2wt%、0.3wt%、0.7wt%、1.5wt%、2.0wt%、2.1wt%となるようにを添加した。出発原料にはLiCO、La(OH)、Yb及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1100℃から1150℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Examples 36 to 41]
Furthermore, the Al 2 O 3 content (ywt%) is 0.2 wt%, 0.3 wt%, 0.7 wt% with respect to Li 7.35 La 3.00 (Zr 1.65 Yb 0.35 ) O 12 . It added so that it might become 1.5 wt%, 2.0 wt%, and 2.1 wt%. Li 2 CO 3 , La (OH) 3 , Yb 2 O 3 and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The compact was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1100 ° C. to 1150 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[比較例1]
Li7.00La3.00Zr2.0012組成を用いた。出発原料にはLiCO、La(OH)、ZrOを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1150℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Comparative Example 1]
A Li 7.00 La 3.00 Zr 2.00 O 12 composition was used. Li 2 CO 3 , La (OH) 3 , and ZrO 2 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The molded body was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1150 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[比較例2]
また、Li7.00La3.00Zr2.0012、にAlの1.0wt%添加した組成を取り上げた。出発原料にはLiCO、La(OH)、ZrO、及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1100℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Comparative Example 2]
Further, a composition obtained by adding 1.0 wt% of Al 2 O 3 to Li 7.00 La 3.00 Zr 2.00 O 12 was taken up. Li 2 CO 3 , La (OH) 3 , ZrO 2 , and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The molded body was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1100 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[比較例3]
さらに、Li7.53La3.00(Zr1.67Gd0.53)O12にAlを1.0wt%添加した組成を用いた。出発原料にはLiCO、La(OH)、ZrO 、Gd、及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1050℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Comparative Example 3]
Further, a composition in which 1.0 wt% of Al 2 O 3 was added to Li 7.53 La 3.00 (Zr 1.67 Gd 0.53 ) O 12 was used. Li 2 CO 3 , La (OH) 3 , ZrO 2 , Gd 2 O 3 , and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The molded body was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1050 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[比較例4]
さらに、Li7.52La3.00(Zr1.68Ho0.52)O12にAlを1.0wt%添加した組成を用いた。出発原料にはLiCO、La(OH)、ZrO 、Ho、及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1050℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Comparative Example 4]
Further, a composition in which 1.0 wt% of Al 2 O 3 was added to Li 7.52 La 3.00 (Zr 1.68 Ho 0.52 ) O 12 was used. Li 2 CO 3 , La (OH) 3 , ZrO 2 , Ho 2 O 3 , and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The molded body was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1050 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[比較例5]
さらに、Li7.52La3.00(Zr1.68Yb0.52)O12にAlを1.0wt%添加した組成を用いた。出発原料にはLiCO、La(OH)、ZrO 、Yb、及びAlを用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本焼結前粉末を得た。次にそれらの本焼結前粉末に対して有機系バインダーを添加し顆粒を作製した。その顆粒をφ10mmの金型を用い、7kNにて円盤状に成型した。成形体は白金板上で1050℃の焼結温度で2時間大気中本焼結を行い、円盤状の焼結試料を得た。
[Comparative Example 5]
Furthermore, a composition in which 1.0 wt% of Al 2 O 3 was added to Li 7.52 La 3.00 (Zr 1.68 Yb 0.52 ) O 12 was used. Li 2 CO 3 , La (OH) 3 , ZrO 2 , Yb 2 O 3 , and Al 2 O 3 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain a pre-sintered powder. Next, an organic binder was added to these pre-sintered powders to produce granules. The granules were molded into a disc shape at 7 kN using a φ10 mm mold. The molded body was subjected to main sintering in the atmosphere for 2 hours at a sintering temperature of 1050 ° C. on a platinum plate to obtain a disk-shaped sintered sample.

[相対密度の算出]
前記円盤状焼結体を形成するリチウムイオン伝導性酸化物セラミックスの焼結密度は、該円盤状焼結体の体積をマイクロメータにより計測した後、該円盤状焼結体の乾燥重量を該体積で除することにより焼結密度を算出した。そして、その焼結密度を理論密度で除し百分率を算出したものが相対密度(単位:%)である。各実施例、比較例の相対密度は、後述する表1〜8中に示した。
[Calculation of relative density]
The sintered density of the lithium ion conductive oxide ceramics forming the disk-shaped sintered body is determined by measuring the volume of the disk-shaped sintered body with a micrometer and then measuring the dry weight of the disk-shaped sintered body by the volume. The sintered density was calculated by dividing by. Then, the relative density (unit:%) is obtained by dividing the sintered density by the theoretical density and calculating the percentage. The relative densities of the examples and comparative examples are shown in Tables 1 to 8 described later.

[導電率の測定とイオン伝導度の見積もり]
恒温槽中にてACインピーダンスアナライザー(ソーラトロン社製1260)を用い、測定温度を25℃、測定周波数を0.05Hz〜30MHz、振幅電圧:50mVとしてインピーダンスと位相角を測定した。これらの測定値をもとにナイキストプロットを描きその円弧より抵抗値を求め、この抵抗値から導電率を算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は、φ3mm円状でスパッタ法によって形成した。
上記測定から図1に示すようなナイキストプロットを得た。このナイキストプロットから得られた抵抗値は、その円弧の種類により結晶内部の抵抗と粒界抵抗を含めた抵抗とに分けることで出来る。本特許では結晶内部の抵抗をもとに算出したイオン伝導度を表1〜表6に示した。
[Measurement of conductivity and estimation of ionic conductivity]
Using an AC impedance analyzer (1260 manufactured by Solartron) in a thermostatic chamber, the impedance and phase angle were measured at a measurement temperature of 25 ° C., a measurement frequency of 0.05 Hz to 30 MHz, and an amplitude voltage of 50 mV. Based on these measured values, a Nyquist plot was drawn to determine a resistance value from the arc, and the conductivity was calculated from the resistance value. An Au electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Au electrode was formed in a circular shape of φ3 mm by sputtering.
A Nyquist plot as shown in FIG. 1 was obtained from the above measurement. The resistance value obtained from this Nyquist plot can be divided into the resistance inside the crystal and the resistance including the grain boundary resistance depending on the type of the arc. In this patent, the ion conductivity calculated based on the resistance inside the crystal is shown in Tables 1 to 6.

(表1)

Figure 2016171067
(Table 1)
Figure 2016171067

実施例1〜実施例5で得られた試料は、Zrサイトへよりイオン半径の大きな希土類元素を置換することでLiイオン移動空間が広がり、Liイオン濃度も高くなったため1.00×10―3S/cm以上の高いイオン伝導度を示すことを確認できた。それに対して、希土類元素を置換していない比較例1で得られた試料は、7.90×10―4S/cmという低いイオン伝導度を示すことが確認できる。 In the samples obtained in Examples 1 to 5, the rare earth element having a larger ion radius was substituted into the Zr site, so that the Li ion migration space was expanded and the Li ion concentration was increased, so that 1.00 × 10 −3 It was confirmed that the ionic conductivity was higher than S / cm. On the other hand, it can be confirmed that the sample obtained in Comparative Example 1 in which the rare earth element is not substituted exhibits a low ionic conductivity of 7.90 × 10 −4 S / cm.

(表2)(Al含有)

Figure 2016171067
(Table 2) (Al content)
Figure 2016171067

実施例6〜実施例10では、希土類元素を置換し、さらにAlを含有する事で立方晶を形成し易くなり、さらに高いイオン伝導度が得られることが確認できた。すなわち、1.18×10―3S/cm以上の高いイオン伝導度を示した。それに対して、Alは含有しているが、希土類元素が置換されていない比較例2では、8.23×10―4S/cmという低いイオン伝導度を示すことが確認できる。 In Examples 6 to 10, it was confirmed that by replacing the rare earth element and further containing Al, it becomes easier to form cubic crystals, and higher ionic conductivity can be obtained. That is, high ionic conductivity of 1.18 × 10 −3 S / cm or more was exhibited. On the other hand, it can be confirmed that Comparative Example 2 containing Al but not substituted with a rare earth element shows a low ion conductivity of 8.23 × 10 −4 S / cm.

(表3)

Figure 2016171067
(Table 3)
Figure 2016171067

特に希土類元素中のGd、Tb、Dy、Ho、Er、Tm、Yb、Luに限定し、さらに、その置換量を増やした実施例11〜実施例18では、Liイオン移動空間がさらに最適化されたため、2.81×10―3S/cm以上の高いイオン伝導度を示すことが確認できた。 In particular, the Li ion migration space is further optimized in Examples 11 to 18 which are limited to Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu in the rare earth elements, and further, the substitution amount is increased. Therefore, it was confirmed that high ion conductivity of 2.81 × 10 −3 S / cm or higher was exhibited.

(表4)(Al含有)

Figure 2016171067
(Table 4) (Al content)
Figure 2016171067

実施例19〜26では、さらにAlを含有する事で立方晶を形成し易くなり、高いイオン伝導度が得られることが確認できる。すなわち2.93×10―3S/cm以上の高いイオン伝導度を示した。 In Examples 19 to 26, it can be confirmed that inclusion of Al further facilitates the formation of cubic crystals and high ionic conductivity is obtained. That is, high ionic conductivity of 2.93 × 10 −3 S / cm or more was exhibited.

(表5)(Gd,Al含有)

Figure 2016171067
(Table 5) (containing Gd and Al)
Figure 2016171067

(表6)(Ho,Al含有)

Figure 2016171067
(Table 6) (Ho, Al content)
Figure 2016171067

(表7)(Yb,Al含有)

Figure 2016171067
(Table 7) (Yb, Al content)
Figure 2016171067

Zrサイト置換元素の中でGd、Ho、Ybを代表例として、その置換量を変化させ粒内のイオン伝導度への効果を確認した。実施例8、9、10及び実施例27〜実施例35で示したように置換量xが0.05から0.50までは、9.50×10―4S/cm以上の高いイオン伝導度を示すことを確認した。特に実施例8、9、10、28、29、31、32、34、35(置換量xが0.10〜0.50)で得られた試料は、1.45×10―3S/cm以上の高いイオン伝導度を示した。それに対して、比較例2(x=0)では、8.23×10―4S/cmという低いイオン伝導度を示した。さらに置換量xを0.52、0.53とした比較例3、4、5でもイオン伝導度が低下し、3.48×10―4S/cm、3.63×10―4S/cm、3.64×10―4S/cmという低いイオン伝導度を示すことが確認できた。 Among the Zr site substitution elements, Gd, Ho and Yb were taken as representative examples, and the substitution amount was changed to confirm the effect on the ionic conductivity in the grains. As shown in Examples 8, 9, and 10 and Examples 27 to 35, high ion conductivity of 9.50 × 10 −4 S / cm or more when the substitution amount x is 0.05 to 0.50. It was confirmed that In particular, the samples obtained in Examples 8, 9, 10, 28, 29, 31, 32, 34, and 35 (substitution amount x is 0.10 to 0.50) are 1.45 × 10 −3 S / cm. The above high ionic conductivity was exhibited. In contrast, Comparative Example 2 (x = 0) showed a low ionic conductivity of 8.23 × 10 −4 S / cm. Furthermore, the ionic conductivity was lowered even in Comparative Examples 3, 4 and 5 where the substitution amount x was 0.52 and 0.53, and 3.48 × 10 −4 S / cm, 3.63 × 10 −4 S / cm. It was confirmed that the ion conductivity was as low as 3.64 × 10 −4 S / cm.

(表8)(Yb,Al含有)

Figure 2016171067
(Table 8) (Yb, Al content)
Figure 2016171067

焼結性を向上させ、立方晶形成を安定化させるためのAlを含有させた効果を確認した。実施例37〜実施例40で示したAlの含有量が0.3wt%から2.0wt%までは、9.90×10−4S/cm以上の高いイオン伝導度を示した。特に実施例32〜34(置換量で0.3wt%〜1.5wt%)で得られた試料は、3.33×10−3S/cm以上の高いイオン伝導度を示した。それに対して、Alの含有量が0.2wt%と少ない実施例36や、2.1wt%と多量に含有させた実施例41では、それぞれ9.97×10−4S/cm、9.65×10−4S/cmと0.3wt%〜2.0wt%Alを含有した実施例よりも低いイオン伝導度を示すことが確認できた。 The effect of containing Al for improving the sinterability and stabilizing the cubic formation was confirmed. When the Al content shown in Examples 37 to 40 was 0.3 wt% to 2.0 wt%, high ion conductivity of 9.90 × 10 −4 S / cm or more was exhibited. In particular, the samples obtained in Examples 32 to 34 (0.3 wt% to 1.5 wt% in terms of substitution amount) exhibited high ionic conductivity of 3.33 × 10 −3 S / cm or more. On the other hand, in Example 36 in which the Al content is as low as 0.2 wt% and Example 41 in which the Al content is as large as 2.1 wt%, 9.97 × 10 −4 S / cm and 9.65, respectively. It was confirmed that the ion conductivity was lower than that of Examples containing × 10 −4 S / cm and 0.3 wt% to 2.0 wt% Al.

[生成相の確認]
各試料について、XRD測定結果から相同定を行い、ほぼ単相であることを確認しており、置換のために用いた希土類元素はZrサイトに置換されていると判断した。XRD測定器はPANalytical社製X‘Pert PROを用い、試料粉末をCuKα、2θ:10〜90°、0.01°step/1sec.の条件で測定した。
[Confirmation of generation phase]
About each sample, the phase identification was performed from the XRD measurement result, and it confirmed that it was a substantially single phase, and judged that the rare earth element used for substitution was substituted by the Zr site. The XRD measuring instrument uses X'Pert PRO manufactured by PANalytical, and the sample powder is CuKα, 2θ: 10 to 90 °, 0.01 ° step / 1 sec. It measured on condition of this.

[組成分析]
各試料について、ICP発光分析法(測定装置:島津製作所製、商品名:ICP−7500)により、化学組成を分析したところ、評価試料組成と仕込み組成では変化の無いことを確認した。
[Composition analysis]
About each sample, when the chemical composition was analyzed by the ICP emission analysis method (measuring device: Shimadzu Corporation make, brand name: ICP-7500), it was confirmed that there was no change in the evaluation sample composition and the charged composition.

[実施例42]
以下に、全固体リチウム二次電池の実施例を示すが、本発明はこれらの実施例に限定されない。なお、部表示は、断りのない限り、質量部である。
[Example 42]
Examples of the all solid lithium secondary battery are shown below, but the present invention is not limited to these examples. In addition, unless otherwise indicated, a part display is a mass part.

(正極活物質及び負極活物質の作製)
正極活物質及び負極活物質として、以下の方法で作製したLi(POを用いた。その作製方法としては、LiCOとVとNHPOとを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して粉末を得た。この作製した粉体の構造がLi(POであることは、X線回折装置を使用して確認した。
(Preparation of positive electrode active material and negative electrode active material)
Li 3 V 2 (PO 4 ) 3 produced by the following method was used as the positive electrode active material and the negative electrode active material. As a production method thereof, Li 2 CO 3 , V 2 O 5 and NH 4 H 2 PO 4 are used as starting materials, wet mixed in a ball mill for 16 hours, dehydrated and dried, and the powder obtained is 850 ° C. Calcination was performed in a nitrogen-hydrogen mixed gas for 2 hours. The calcined product was wet pulverized with a ball mill and then dehydrated and dried to obtain a powder. It was confirmed using an X-ray diffractometer that the structure of the produced powder was Li 3 V 2 (PO 4 ) 3 .

(正極活物質ペースト及び負極活物質ペーストの作製)
正極活物質ペースト及び負極活物質ペーストは、ともにLi(POの粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して活物質ペーストを作製した。
(Preparation of positive electrode active material paste and negative electrode active material paste)
Both the positive electrode active material paste and the negative electrode active material paste were mixed and dispersed by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of Li 3 V 2 (PO 4 ) 3 powder. An active material paste was prepared.

(固体電解質の作製)
固体電解質として、以下の方法で作製したLi7.35La3.00(Zr1.65Yb0.35)O12に対しAlの1.0wt%添加した組成を用いた。その作製方法とは、LiCO、La(OH)、ZrO、Yb及びAlを出発材料として、ボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、900℃、5時間大気雰囲気で仮焼を行った。その後仮焼粉末を、混合のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、本固体電解質の粉末を得た。作製した粉体の構造がLi7.35La3.00(Zr1.65Yb0.35)O12であることは、X線回折装置を使用して確認した。
(Production of solid electrolyte)
As the solid electrolyte, a composition in which 1.0 wt% of Al 2 O 3 was added to Li 7.35 La 3.00 (Zr 1.65 Yb 0.35 ) O 12 produced by the following method was used. The production method is to mix and pulverize with a ball mill (120 rpm / zirconia ball) for 16 hours using Li 2 CO 3 , La (OH) 3 , ZrO 2 , Yb 2 O 3 and Al 2 O 3 as starting materials. It was. The mixed powder of the starting material was separated from the balls and ethanol, and then calcined in an air atmosphere at 900 ° C. for 5 hours in an alumina crucible. Thereafter, the calcined powder was treated with a ball mill (120 rpm / zirconia balls) for 16 hours in ethanol for mixing. The pulverized powder was separated from the balls and ethanol and dried to obtain the solid electrolyte powder. It was confirmed using an X-ray diffractometer that the structure of the produced powder was Li 7.35 La 3.00 (Zr 1.65 Yb 0.35 ) O 12 .

次いで、この粉末に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質ペーストを調製した。 Next, 100 parts of ethanol and 200 parts of toluene were added to this powder as a solvent by a ball mill and wet mixed. Thereafter, 16 parts of polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were further added and mixed to prepare a solid electrolyte paste.

(固体電解質シートの作製)
この固体電解質ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質シートを得た。
(Preparation of solid electrolyte sheet)
This solid electrolyte paste was formed into a sheet by a doctor blade method using a PET film as a base material to obtain a solid electrolyte sheet having a thickness of 15 μm.

(集電体ペーストの作製)
集電体として用いたNiとLi(POとを体積比率で80/20となるように混合した後、バインダーとしてエチルセルロースと、溶媒としてジヒドロターピネオールを加えて混合・分散して集電体ペーストを作製した。Niの平均粒径は0.9μmであった。
(Preparation of current collector paste)
Ni and Li 3 V 2 (PO 4 ) 3 used as a current collector were mixed so that the volume ratio was 80/20, and then mixed and dispersed by adding ethyl cellulose as a binder and dihydroterpineol as a solvent. A current collector paste was prepared. The average particle diameter of Ni was 0.9 μm.

(端子電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを混合・分散し、熱硬化型の端子電極ペーストを作製した。
(Preparation of terminal electrode paste)
Silver powder, an epoxy resin, and a solvent were mixed and dispersed to prepare a thermosetting terminal electrode paste.

これらのペーストを用いて、以下のようにしてリチウムイオン二次電池を作製した。   Using these pastes, lithium ion secondary batteries were produced as follows.

(正極活物質層ユニットの作製)
上記の固体電解質シート上に、スクリーン印刷により厚さ5μmで正極活物質層ペーストを印刷し、80℃で10分間乾燥した。次に、その上に、スクリーン印刷により厚さ5μmで正極集電体層ペーストを印刷し、80℃で10分間乾燥した。更にその上に、スクリーン印刷により厚さ5μmで正極活物質ペーストを再度印刷し、80℃で10分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質シート上に、正極活物質層ペースト、正極集電体層ペースト、正極活物質ペーストがこの順に印刷・乾燥された正極活物質層ユニットのシートを得た。
(Preparation of positive electrode active material layer unit)
On the solid electrolyte sheet, a positive electrode active material layer paste was printed at a thickness of 5 μm by screen printing and dried at 80 ° C. for 10 minutes. Next, a positive electrode current collector layer paste was printed thereon with a thickness of 5 μm by screen printing, and dried at 80 ° C. for 10 minutes. Further thereon, a positive electrode active material paste was printed again at a thickness of 5 μm by screen printing, dried at 80 ° C. for 10 minutes, and then the PET film was peeled off. In this manner, a positive electrode active material layer unit sheet in which the positive electrode active material layer paste, the positive electrode current collector layer paste, and the positive electrode active material paste were printed and dried in this order on the solid electrolyte sheet was obtained.

(負極活物質層ユニットの作製)
上記の固体電解質シート上に、スクリーン印刷により厚さ5μmで負極活物質ペーストを印刷し、80℃で10分間乾燥した。次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層ペーストを印刷し、80℃で10分間乾燥した。更にその上に、スクリーン印刷により厚さ5μmで負極活物質ペーストを再度印刷し、80℃で10分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質シート上に、負極活物質ペースト、負極集電体層ペースト、負極活物質ペーストがこの順に印刷・乾燥された負極活物質層ユニットのシートを得た。
(Preparation of negative electrode active material layer unit)
On the solid electrolyte sheet, a negative electrode active material paste was printed at a thickness of 5 μm by screen printing and dried at 80 ° C. for 10 minutes. Next, a negative electrode current collector layer paste was printed thereon with a thickness of 5 μm by screen printing, and dried at 80 ° C. for 10 minutes. Further thereon, the negative electrode active material paste was printed again at a thickness of 5 μm by screen printing, dried at 80 ° C. for 10 minutes, and then the PET film was peeled off. In this manner, a negative electrode active material layer unit sheet in which the negative electrode active material paste, the negative electrode current collector layer paste, and the negative electrode active material paste were printed and dried in this order on the solid electrolyte sheet was obtained.

(積層体の作製)
正極活物質層ユニット一枚と負極活物質層ユニット一枚を、固体電解質シートを介するようにして積み重ねた。このとき、一枚目の正極活物質層ユニットの正極集電体層ペーストが一の端面にのみ延出し、二枚目の負極活物質層ユニットの負極集電体層ペーストが他の面にのみ延出するように、各ユニットをずらして積み重ねた。この積み重ねられたユニットの両面に厚さ500μmとなるように固体電解質シートを積み重ね、その後、これを熱圧着により成形した後、切断して積層ブロックを作製した。その後、積層ブロックを同時焼成して積層体を得た。同時焼成は、窒素中で昇温速度200℃/時間で焼成温度1075℃まで昇温して、その温度に2時間保持し、焼成後は自然冷却した。
(Production of laminate)
One positive electrode active material layer unit and one negative electrode active material layer unit were stacked with a solid electrolyte sheet interposed therebetween. At this time, the positive electrode current collector layer paste of the first positive electrode active material layer unit extends only on one end surface, and the negative electrode current collector layer paste of the second negative electrode active material layer unit only on the other surface Each unit was staggered and stacked to extend. Solid electrolyte sheets were stacked on both surfaces of the stacked units so as to have a thickness of 500 μm, and then formed by thermocompression bonding, and then cut to prepare a stacked block. Thereafter, the laminated block was simultaneously fired to obtain a laminated body. In the simultaneous firing, the temperature was raised to a firing temperature of 1075 ° C. at a heating rate of 200 ° C./hour in nitrogen, maintained at that temperature for 2 hours, and naturally cooled after firing.

(端子電極形成工程)
積層ブロックの端面に端子電極ペーストを塗布し、150℃、30分の熱硬化を行い、一対の端子電極を形成してリチウムイオン二次電池を得た。
(Terminal electrode formation process)
A terminal electrode paste was applied to the end face of the laminated block, and thermosetting was performed at 150 ° C. for 30 minutes to form a pair of terminal electrodes to obtain a lithium ion secondary battery.

(電池の評価)
得られたリチウムイオン二次電池の端子電極にリード線を取り付け、充放電試験を行った。測定条件は、充電及び放電時の電流はいずれも2.0μA、充電時及び放電時の打ち切り電圧をそれぞれ4.0V及び0Vとした。本電池は、良好に充放電し、また、電池特性としても、比較例1の固体電解質を使用した場合には放電容量0.4μAだったものが、2.4μAと非常に良好な電池特性を有することがわかった。
(Battery evaluation)
Lead wires were attached to the terminal electrodes of the obtained lithium ion secondary battery, and a charge / discharge test was performed. The measurement conditions were such that the current during charging and discharging was 2.0 μA, and the truncation voltages during charging and discharging were 4.0 V and 0 V, respectively. The battery was charged and discharged satisfactorily. In addition, when the solid electrolyte of Comparative Example 1 was used, the battery had a discharge capacity of 0.4 μA, which was 2.4 μA. I found it.

本発明は、全固体型リチウムイオン二次電池、特に伝導体層厚みが薄いデバイスに利用可能である。   The present invention is applicable to an all solid-state lithium ion secondary battery, particularly a device having a thin conductor layer.

1 正極
2 負極
3 固体電解質
4 正極集電体
5 正極活物質
6 負極集電体
7 負極活物質
8 リチウムイオン二次電池



DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Solid electrolyte 4 Positive electrode collector 5 Positive electrode active material 6 Negative electrode collector 7 Negative electrode active material 8 Lithium ion secondary battery



Claims (6)

LiとLaとZrとOとを含有し、希土類元素からなる群より選ばれた1種以上の元素をさらに含有するガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料。   A lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure containing Li, La, Zr, and O, and further containing one or more elements selected from the group consisting of rare earth elements. 下記組成式(1)で表されることを特徴とするガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料。
Li7+xLaZr2−x12 ・・・(1)
(式(1)中、Aは、希土類元素からなる群より選ばれた1種以上の元素。xは、0<x≦0.5を満たす数。)
A lithium ion conductive oxide ceramic material having a garnet-type or garnet-type similar crystal structure, which is represented by the following composition formula (1):
Li 7 + x La 3 Zr 2-x A x O 12 (1)
(In the formula (1), A is one or more elements selected from the group consisting of rare earth elements. X is a number satisfying 0 <x ≦ 0.5.)
前記組成式(1)中のAが、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群より選ばれた1種以上の元素であることを特徴とする請求項2記載のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料。   The A in the composition formula (1) is one or more elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A lithium ion conductive oxide ceramic material having a garnet-type or garnet-type similar crystal structure. 前記組成式(1)中のAが、Gd,Ho,Ybからなる群より選ばれた1種以上の元素であり、xが0<x≦0.30を満たすことを特徴とする請求項2又は3のいずれか一項に記載のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料。   3. A in the composition formula (1) is one or more elements selected from the group consisting of Gd, Ho, and Yb, and x satisfies 0 <x ≦ 0.30. Or a lithium ion conductive oxide ceramic material having a garnet-type or a garnet-like crystal structure according to any one of 3 to 4 above. Alを前記リチウムイオン伝導性酸化物セラミックス材料の全重量に対して0.3wt%以上2.0wt%以下、さらに含有していることを特徴とする請求項1から請求項4のいずれか一項に記載のガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料。   The aluminum is further contained in an amount of 0.3 wt% to 2.0 wt% with respect to the total weight of the lithium ion conductive oxide ceramic material. A lithium ion conductive oxide ceramic material having a garnet-type or garnet-like crystal structure as described in 1. 請求項1から請求項5のうち、いずれか一項に記載の前記リチウムイオン伝導性酸化物セラミックス材料を用いた全固体型リチウムイオン二次電池。



An all solid-state lithium ion secondary battery using the lithium ion conductive oxide ceramic material according to any one of claims 1 to 5.



JP2016018896A 2015-03-10 2016-02-03 Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure Active JP6672848B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/063,989 US10218032B2 (en) 2015-03-10 2016-03-08 Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
CN201610137537.1A CN105977529B (en) 2015-03-10 2016-03-10 Lithium ion conducting oxide ceramic material having garnet-type or garnet-like crystal structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015047174 2015-03-10
JP2015047174 2015-03-10

Publications (2)

Publication Number Publication Date
JP2016171067A true JP2016171067A (en) 2016-09-23
JP6672848B2 JP6672848B2 (en) 2020-03-25

Family

ID=56984081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018896A Active JP6672848B2 (en) 2015-03-10 2016-02-03 Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure

Country Status (2)

Country Link
JP (1) JP6672848B2 (en)
CN (1) CN105977529B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135328A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery
JP2020500411A (en) * 2016-11-08 2020-01-09 フィスカー インコーポレーテッドFisker Inc. All-solid-state Li-ion battery including mechanically flexible ceramic electrolyte and method for manufacturing the same
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2024004587A1 (en) * 2022-06-29 2024-01-04 キヤノン株式会社 Solid electrolyte, positive electrode, electrolyte layer and secondary battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301590B1 (en) * 2017-04-26 2021-09-13 니뽄 도쿠슈 도교 가부시키가이샤 Lithium ion conductive ceramic material, lithium ion conductive ceramic body, and lithium battery
JP6962094B2 (en) * 2017-09-21 2021-11-05 トヨタ自動車株式会社 Method for producing garnet-type ionic conductive oxide and oxide electrolyte sintered body
CN107732298A (en) * 2017-11-08 2018-02-23 天津工业大学 A kind of Gd for all-solid lithium-ion battery adulterates Li7La3Zr2O12Garnet-type solid electrolyte
CN110386818A (en) * 2018-04-23 2019-10-29 中国科学院上海光学精密机械研究所 Mix zirconium terbium aluminium garnet magnetic rotation crystalline ceramics and preparation method thereof
EP3789346A4 (en) * 2018-05-01 2022-11-09 NGK Spark Plug Co., Ltd. Ion conductive powder, ion conductive molded article, and electricity storage device
CN110444805A (en) * 2019-07-08 2019-11-12 电子科技大学 A kind of the cubic phase Garnet-type solid electrolyte material and its synthetic method of Er ions
CN115676796B (en) * 2022-11-08 2024-04-16 西北大学 Monoclinic-phase sodium vanadyl pyrophosphate, preparation method thereof and application thereof in sodium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088423A (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid electrolyte precursor, method for producing the same, method for producing solid electrolyte, and method for producing solid electrolyte-electrode active material composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769147B (en) * 2012-07-18 2015-07-15 宁波大学 Mg<2+>, Al<3+>, Zr<4+> and S<2-> ion co-doped garnet type solid electrolyte
CN102780031B (en) * 2012-07-18 2016-03-30 宁波大学 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte
CN102925977B (en) * 2012-11-07 2015-12-16 深圳华粤宝电池有限公司 A kind of monoclinic phase lithium zirconate crystal and its preparation method and application
CN102916221B (en) * 2012-11-07 2015-04-29 深圳华粤宝电池有限公司 Solid electrolyte and preparation method thereof
CN103594726B (en) * 2013-10-15 2016-01-20 中南大学 Garnet structure tantalic acid lanthanum lithium based solid electrolyte material and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088423A (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid electrolyte precursor, method for producing the same, method for producing solid electrolyte, and method for producing solid electrolyte-electrode active material composite

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet", ELECTROCHEMISTRY COMMUNICATIONS, vol. 13, JPN6019026976, 2011, pages 1373 - 1375, ISSN: 0004075010 *
"Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lith", RSC ADVANCES, vol. 4, JPN7019002219, 2014, pages 51228 - 51238, ISSN: 0004075012 *
"Li Ion Dynamics in Al-Doped Garnet-Type Li7La3Zr2O12 Crystallizing with Cubic Symmetry", Z. PHYS. CHEM., vol. 226, JPN7019002220, 2012, pages 525 - 537, ISSN: 0004075013 *
"Synthesis of garnet structured Li7+xLa3YxZr2-xO12(x=0-0.4) by modified sol-gel method", J SOL-GEL SCI TECHNOL, vol. 64, JPN7019002218, 2012, pages 510 - 514, ISSN: 0004075011 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500411A (en) * 2016-11-08 2020-01-09 フィスカー インコーポレーテッドFisker Inc. All-solid-state Li-ion battery including mechanically flexible ceramic electrolyte and method for manufacturing the same
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
JPWO2019135328A1 (en) * 2018-01-05 2020-12-24 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
JP7182114B2 (en) 2018-01-05 2022-12-02 パナソニックIpマネジメント株式会社 solid electrolyte material and battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2019135328A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
WO2024004587A1 (en) * 2022-06-29 2024-01-04 キヤノン株式会社 Solid electrolyte, positive electrode, electrolyte layer and secondary battery

Also Published As

Publication number Publication date
JP6672848B2 (en) 2020-03-25
CN105977529A (en) 2016-09-28
CN105977529B (en) 2020-08-07

Similar Documents

Publication Publication Date Title
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
US10218032B2 (en) Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
JP6565724B2 (en) Garnet type lithium ion conductive oxide and all solid state lithium ion secondary battery
CN105977527B (en) Carbuncle type lithium-ion-conducting oxide
CN111033859B (en) Solid electrolyte and all-solid battery
TWI527289B (en) Lithium ion secondary battery and manufacturing method thereof
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
CN111213276A (en) All-solid-state battery
JP6242620B2 (en) All solid battery
US20200381775A1 (en) All-solid-state battery
CN109792081B (en) Lithium ion conductive solid electrolyte and all-solid-state lithium ion secondary battery
US11011778B2 (en) Solid-state electrolyte and all-solid-state battery
JP2016001597A (en) Lithium ion secondary battery
JP6801778B2 (en) All solid state battery
JP6897760B2 (en) All solid state battery
CN111052480B (en) Solid electrolyte material, solid electrolyte layer, and all-solid battery
JP2020095776A (en) Solid electrolyte and all-solid type secondary battery
JP2018106799A (en) Lithium ion conductive ceramic material, and lithium battery
KR20230013089A (en) Solid electrolyte materials, solid electrolytes, methods for producing them, and all-solid-state batteries
CN115699211A (en) Solid electrolyte material, solid electrolyte, method for producing solid electrolyte, and all-solid-state battery
KR102656984B1 (en) All-solid-state secondary battery
WO2021124851A1 (en) Solid electrolyte and all-solid battery
WO2020129975A1 (en) Active material and all-solid-state battery
CN115954537A (en) Solid electrolyte sheet, method for producing same, and all-solid-state secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6672848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150