JP2016170992A - Nonaqueous gel electrolyte, and nonaqueous gel electrolyte secondary battery arranged by use thereof - Google Patents

Nonaqueous gel electrolyte, and nonaqueous gel electrolyte secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2016170992A
JP2016170992A JP2015050200A JP2015050200A JP2016170992A JP 2016170992 A JP2016170992 A JP 2016170992A JP 2015050200 A JP2015050200 A JP 2015050200A JP 2015050200 A JP2015050200 A JP 2015050200A JP 2016170992 A JP2016170992 A JP 2016170992A
Authority
JP
Japan
Prior art keywords
gel electrolyte
alkylene group
group
polymer
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050200A
Other languages
Japanese (ja)
Other versions
JP6529290B2 (en
Inventor
青木 雅裕
Masahiro Aoki
雅裕 青木
英之 三村
Hideyuki Mimura
英之 三村
森田 昌行
Masayuki Morita
昌行 森田
信子 吉本
Nobuko Yoshimoto
信子 吉本
健太 藤井
Kenta Fujii
健太 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh F Tech Inc
Yamaguchi University NUC
Original Assignee
Tosoh F Tech Inc
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh F Tech Inc, Yamaguchi University NUC filed Critical Tosoh F Tech Inc
Priority to JP2015050200A priority Critical patent/JP6529290B2/en
Publication of JP2016170992A publication Critical patent/JP2016170992A/en
Application granted granted Critical
Publication of JP6529290B2 publication Critical patent/JP6529290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a nonaqueous gel electrolyte which enables the achievement of superior toughness even in the case of a small amount of addition thereof, and has a good ion conductivity; and a gel electrolyte secondary battery arranged by use thereof.SOLUTION: A nonaqueous gel electrolyte comprise: an electrolytic salt; a nonaqueous solvent; and a polymer having a polyethylene glycol skeleton. The polymer is a reactant of a polymer expressed by the formula (1), and has a network structure formed by causing a part or the whole of terminals of the polymer to bind to each other by an amide bond or the like. (X is a nucleophilic or electrophilic functional group; n11 to n14 independently represent an integer of 25-250; and R11 to R14 independently represent an alkylene group with C1-7.)SELECTED DRAWING: None

Description

本発明は、非水系ゲル電解質、及びそれを用いた非水系ゲル電解質二次電池に関する。   The present invention relates to a non-aqueous gel electrolyte and a non-aqueous gel electrolyte secondary battery using the same.

非水系二次電池は、高出力密度、高エネルギー密度を有し、携帯電話、ノートパソコン、タブレット型コンピューター等の電源として汎用されている。また、近年は、二酸化炭素排出量の少ないクリーンなエネルギーとして、電力貯蔵用電源、電気自動車用電源として、盛んに研究されている。   Non-aqueous secondary batteries have high output density and high energy density, and are widely used as power sources for mobile phones, notebook computers, tablet computers, and the like. In recent years, as a clean energy with low carbon dioxide emission, it has been actively researched as a power storage power source and a power source for electric vehicles.

非水系二次電池としては、リチウム二次電池、リチウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池等が知られている。例えば、リチウムイオン二次電池(LIB)には、六フッ化リン酸リチウム(LiPF)等の電解質が、エチレンカーボネートやジメチルカーボネート等の有機溶媒に溶解された非水電解液が用いられている。この非水電解液は、揮発性、引火性を有しており、漏液時に引火、燃焼するなど、安全性の面で課題があった。 Known non-aqueous secondary batteries include lithium secondary batteries, lithium ion secondary batteries, magnesium secondary batteries, and magnesium ion secondary batteries. For example, a lithium ion secondary battery (LIB) uses a non-aqueous electrolytic solution in which an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in an organic solvent such as ethylene carbonate or dimethyl carbonate. . This non-aqueous electrolyte has volatility and flammability, and there have been problems in terms of safety, such as ignition and combustion at the time of leakage.

この改善策の一つとして、電解質に固体ポリマーゲルを利用したゲル電解質電池が検討されている(非特許文献1、特許文献1、2)。ゲル電解質電池では、電池からの電解液の漏液が起こりにくいため、引火のリスクを軽減することができる。   As one of the improvement measures, a gel electrolyte battery using a solid polymer gel as an electrolyte has been studied (Non-patent Document 1, Patent Documents 1 and 2). In the gel electrolyte battery, the leakage of the electrolyte from the battery is unlikely to occur, so the risk of ignition can be reduced.

例えば、特許文献1には、十分な固体強度を有した電池用高分子固体電解質が提案されている。しかし、漏液のない堅牢な自立性のゲルを作製するには、ゲルマトリクスであるポリマー成分を多量に共存する必要があり、その場合のイオン伝導度、電流密度などの電池性能の点で満足できるものではなかった。   For example, Patent Document 1 proposes a polymer solid electrolyte for a battery having sufficient solid strength. However, in order to produce a robust, self-supporting gel that does not leak, it is necessary to coexist with a large amount of the polymer component that is a gel matrix, and in that case, the battery performance such as ion conductivity and current density is satisfactory. It wasn't possible.

また、特許文献2には、実用化に十分なイオン伝導性を示すゲル電解質が提案されている。特許文献2には、ポリマー含有量が2%と記載されており、高いイオン伝導性が得られることが示されている。しかし、ゲル電解質が十分な固体強度を有しているか否かについては全く検討されていない。   Patent Document 2 proposes a gel electrolyte that exhibits ion conductivity sufficient for practical use. Patent Document 2 describes that the polymer content is 2%, which indicates that high ion conductivity can be obtained. However, no investigation has been made as to whether or not the gel electrolyte has sufficient solid strength.

更にはイオン液体を含有するゲル状組成物として、ポリエチレングリコール骨格を有する高強度のゲル状組成物が提案されている(特許文献3)。この特許文献3には、イオン液体により膨潤することは示されているが、少量の添加で非水電解液と自立性のゲル電解質を形成することは示されておらず、イオン伝導性の面で課題を有している。   Furthermore, a high-strength gel composition having a polyethylene glycol skeleton has been proposed as a gel composition containing an ionic liquid (Patent Document 3). Although this patent document 3 shows that it swells with an ionic liquid, it does not show that it forms a self-supporting gel electrolyte with a non-aqueous electrolyte with the addition of a small amount. Has a problem.

特開平11−176427号公報Japanese Patent Laid-Open No. 11-176427 特開2003−238821号公報Japanese Patent Laid-Open No. 2003-238821 特開2013−60504号公報JP 2013-60504 A

「電子とイオンの機能化学シリーズ vol.3 次世代型リチウム二次電池」株式会社エヌ・ティー・エス(2003)p.211〜257“Functional Chemistry Series of Electrons and Ions” vol.3 Next-Generation Type Lithium Secondary Batteries ”NTS Corporation (2003) p. 211-257

本発明は上記課題に鑑みてなされたものである。即ち、本発明は少量の添加で堅牢性に優れ、良好なイオン伝導性を有する非水系ゲル電解質およびそれを用いた非水系ゲル電解質二次電池を提供することにある。   The present invention has been made in view of the above problems. That is, the present invention is to provide a non-aqueous gel electrolyte that is excellent in fastness with a small amount of addition and has good ion conductivity, and a non-aqueous gel electrolyte secondary battery using the same.

本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、特定のポリエチレングリコール骨格を有するポリマーに、非水電解液を含浸させることで、良好なイオン伝導性と堅牢性を両立した非水系ゲル電解質が得られることを見出し、本発明を完成させたものである。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have both good ionic conductivity and robustness by impregnating a polymer having a specific polyethylene glycol skeleton with a non-aqueous electrolyte. The present inventors have found that a nonaqueous gel electrolyte can be obtained and completed the present invention.

即ち、本発明は下記の要旨に係わるものである。   That is, the present invention relates to the following gist.

(1)電解質塩と非水溶媒およびポリエチレングリコール骨格を有するポリマーを含む非水系ゲル電解質であって、当該ポリマーが前記ポリエチレングリコール鎖の架橋により網目構造を有する非水系ゲル電解質。 (1) A non-aqueous gel electrolyte comprising an electrolyte salt, a non-aqueous solvent, and a polymer having a polyethylene glycol skeleton, wherein the polymer has a network structure by crosslinking of the polyethylene glycol chain.

(2)前記ポリマーが、下記一般式(1) (2) The polymer is represented by the following general formula (1)

(式中、Xは求核性の官能基であり、n11〜n14は、それぞれ同一又は異なり、25〜250の整数を表し、R11〜R14は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R15−、−CO−R15−、−R16−O−R17−、−R16−NH−R17−、−R16−CO−R17−、−R16−CO−NH−R17−、−R16−CO−R17−、又は−R16−CO−NH−R17−を表す。ここで、R15はC−Cのアルキレン基を表し、R16はC−Cのアルキレン基を表し、R17はC−Cのアルキレン基を表す。)
及び下記一般式(2)
(In the formula, X is a nucleophilic functional group, n 11 to n 14 are the same or different and each represents an integer of 25 to 250, R 11 to R 14 are the same or different, and C 1 alkylene group -C 7, alkenylene group of C 2 ~C 7, -NH-R 15 -, - CO-R 15 -, - R 16 -O-R 17 -, - R 16 -NH-R 17 -, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, or —R 16 —CO 2 —NH—R 17 — is represented. Here, R 15 represents a C 1 -C 7 alkylene group, R 16 represents a C 1 -C 3 alkylene group, and R 17 represents a C 1 -C 5 alkylene group.)
And the following general formula (2)

(式中、Yは求電子性の官能基であり、n21〜n24は、それぞれ同一又は異なり、25〜250の整数を表し、R21〜R24は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R25−、−CO−R25−、−R26−O−R27−、−R26−NH−R27−、−R26−CO−R27−、−R26−CO−NH−R27−、−R26−CO−R27−、又は−R26−CO−NH−R27−を表す。ここで、R25はC−Cのアルキレン基を表し、R26はC−Cのアルキレン基を表し、R27はC−Cのアルキレン基を表す。)で表されるポリマーの反応物であって、一般式(1)及び一般式(2)のポリマーの互いの末端のすべてまたは一部がアミド結合、エステル結合、エーテル結合及びチオエーテル結合から成る群から選ばれる1種以上で結合することにより網目構造を有する、1項に記載の非水系ゲル電解質。 (In the formula, Y is an electrophilic functional group, n 21 to n 24 are the same or different, and represent an integer of 25 to 250, and R 21 to R 24 are the same or different, and C 1 alkylene group -C 7, alkenylene group of C 2 ~C 7, -NH-R 25 -, - CO-R 25 -, - R 26 -O-R 27 -, - R 26 -NH-R 27 -, -R 26 -CO 2 -R 27 -, - R 26 -CO 2 -NH-R 27 -, - R 26 -CO-R 27 -, or -R 26 -CO 2 -NH-R 27 - represents a. Here, R 25 represents a C 1 -C 7 alkylene group, R 26 represents a C 1 -C 3 alkylene group, and R 27 represents a C 1 -C 5 alkylene group. A reaction product of a polymer, wherein the polymers of the general formula (1) and the general formula (2) 2. The non-aqueous gel electrolyte according to 1, wherein all or a part of the terminals have a network structure by bonding with one or more selected from the group consisting of an amide bond, an ester bond, an ether bond and a thioether bond.

(3)前記ポリマーが、下記一般式(3) (3) The polymer is represented by the following general formula (3)

(式中、n31〜n34は、それぞれ同一又は異なり、25〜250の整数を表し、R31〜R34は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R35−、−CO−R35−、−R36−O−R37−、−R36−NH−R37−、−R36−CO−R37−、−R36−CO−NH−R37−、−R36−CO−R37−、又は−R36−CO−NH−R37−を表す。ここで、R35はC−Cのアルキレン基を表し、R36はC−Cのアルキレン基を表し、R37はC−Cのアルキレン基を表す。)
及び下記一般式(4)
(Wherein, n 31 ~n 34 are the same or respectively, an integer of 25 to 250, R 31 to R 34 are the same or different and each an alkylene group of C 1 ~C 7, C 2 ~C 7 alkenylene groups, —NH—R 35 —, —CO—R 35 —, —R 36 —O—R 37 —, —R 36 —NH—R 37 —, —R 36 —CO 2 —R 37 —, -R 36 -CO 2 -NH-R 37 -, - R 36 -CO-R 37 -, or -R 36 -CO 2 -NH-R 37 -. represents here, R 35 is C 1 -C 7 R 36 represents a C 1 -C 3 alkylene group, and R 37 represents a C 1 -C 5 alkylene group.)
And the following general formula (4)

(式中、n41〜n44は、それぞれ同一又は異なり、25〜250の整数を表し、R41〜R44は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R45−、−CO−R45−、−R46−O−R47−、−R46−NH−R47−、−R46−CO−R47−、−R46−CO−NH−R47−、−R46−CO−R47−、又は−R46−CO−NH−R47−を表す。ここで、R45はC−Cのアルキレン基を表し、R46はC−Cのアルキレン基を表し、R47はC−Cのアルキレン基を表す。)で表されるポリマーの反応物であって、一般式(3)及び一般式(4)のポリマーの互いの末端のすべてまたは一部がアミド結合で結合することにより網目構造を有する、(1)項に記載の非水系ゲル電解質。 (Wherein, n 41 ~n 44 are the same or respectively, an integer of 25 to 250, R 41 to R 44 are the same or different and each an alkylene group of C 1 ~C 7, C 2 ~C 7 alkenylene groups, —NH—R 45 —, —CO—R 45 —, —R 46 —O—R 47 —, —R 46 —NH—R 47 —, —R 46 —CO 2 —R 47 —, -R 46 -CO 2 -NH-R 47 -, - R 46 -CO-R 47 -, or -R 46 -CO 2 -NH-R 47 -. represents here, R 45 is C 1 -C 7 Wherein R 46 represents a C 1 -C 3 alkylene group, and R 47 represents a C 1 -C 5 alkylene group). 3) and all or part of each end of the polymer of the general formula (4) The non-aqueous gel electrolyte according to item (1), which has a network structure by bonding with an amide bond.

(4)非水系ゲル電解質中のポリエチレン骨格を有するポリマーの重量分率が0.1〜30%である1〜3項のいずれか1項に記載の非水系ゲル電解質。 (4) The nonaqueous gel electrolyte according to any one of items 1 to 3, wherein the weight fraction of the polymer having a polyethylene skeleton in the nonaqueous gel electrolyte is 0.1 to 30%.

(5)非水溶媒が、鎖状カーボネートおよび/または環状カーボネートである、1〜4項のいずれか1項に記載の非水系ゲル電解質。 (5) The nonaqueous gel electrolyte according to any one of items 1 to 4, wherein the nonaqueous solvent is a chain carbonate and / or a cyclic carbonate.

(6)非水溶媒が、下記一般式(5) (6) The non-aqueous solvent is represented by the following general formula (5)

(式中、mは0〜3の整数であり、Rは、炭素数1〜6の直鎖もしくは分岐のアルキル基を表し、Rfは、炭素数1〜6の直鎖または分岐の含フッ素アルキル基を表す。)で表されるリン酸エステルを含有する1項〜5項のいずれか1項に記載の非水系ゲル電解質。 (In the formula, m is an integer of 0 to 3, R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms, and Rf 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms. The non-aqueous gel electrolyte of any one of 1-5 containing the phosphate ester represented by fluorine alkyl group.

(7)1項〜6項のいずれか1項に記載の非水系ゲル電解質を含有する非水系ゲル電解質二次電池。 (7) A non-aqueous gel electrolyte secondary battery containing the non-aqueous gel electrolyte according to any one of items 1 to 6.

本発明によれば、特定のポリエチレングリコール骨格を有するポリマーを少量共存させることで、堅牢性に優れ、良好なイオン伝導性を有する非水系のゲル電解質を提供することができ、特に安全性に優れた非水系ゲル電解質二次電池を提供することができる。   According to the present invention, by coexisting a small amount of a polymer having a specific polyethylene glycol skeleton, a non-aqueous gel electrolyte having excellent fastness and good ionic conductivity can be provided, and particularly excellent in safety. In addition, a non-aqueous gel electrolyte secondary battery can be provided.

実施例5、6に用いた2極式コイン型セルの構造を示す模式断面図である。6 is a schematic cross-sectional view showing the structure of a bipolar coin cell used in Examples 5 and 6. FIG. 実施例5で得られた電池の充放電試験の結果である。4 is a result of a charge / discharge test of the battery obtained in Example 5. 実施例6で得られた電池の充放電試験の結果である。4 is a result of a charge / discharge test of the battery obtained in Example 6.

本発明の非水系ゲル電解質に用いられるポリマーは、ポリエチレングリコール骨格を有し、当該ポリエチレングリコール鎖の架橋により、非水電解液を保持するための網目構造を有するものである。ここで、「ゲル」とは、一般に高粘度で流動性を失った分散系を言う。   The polymer used for the non-aqueous gel electrolyte of the present invention has a polyethylene glycol skeleton, and has a network structure for holding a non-aqueous electrolyte by crosslinking of the polyethylene glycol chain. Here, “gel” generally refers to a dispersion having a high viscosity and a loss of fluidity.

この様な網目構造を有するポリマーのうち、同一炭素に4つのポリエチレングリコール鎖が結合した分岐ポリマー種が互いに架橋して均一な網目構造ネットワークを形成したポリマーは、非水系ゲル電解質の堅牢性の面で特に望ましい。   Among polymers having such a network structure, polymers in which branched polymer species in which four polyethylene glycol chains are bonded to the same carbon are cross-linked with each other to form a uniform network structure are used for the fastness of non-aqueous gel electrolytes. Is particularly desirable.

かかる網目構造ネットワークを形成するために、末端に求核性の官能基を有するポリマーと、末端に求電子性の官能基を有するポリマーの2種類のポリマー種を反応させてアミド結合、エステル結合、エーテル結合またはチオエーテル結合等を生成させて架橋させる手段が適している。   In order to form such a network structure network, an amide bond, an ester bond, and a polymer having a nucleophilic functional group at a terminal and a polymer having a terminal electrophilic functional group are reacted. Means for forming an ether bond, a thioether bond or the like to crosslink is suitable.

末端に求核性の官能基を有するポリマーにおける求核性の官能基を有するポリマーとしては、下記一般式(1)が挙げられる。   Examples of the polymer having a nucleophilic functional group in the polymer having a nucleophilic functional group at the terminal include the following general formula (1).

式中、Xは求核性の官能基である。求核性の官能基Xとしては、例えば、アミノ基、水酸基、チオール基などが挙げられ、当業者であれば公知の求核性官能基を適宜用いることができる。   In the formula, X is a nucleophilic functional group. Examples of the nucleophilic functional group X include an amino group, a hydroxyl group, and a thiol group, and those skilled in the art can appropriately use a known nucleophilic functional group.

式中、n11〜n14は、それぞれ同一でも異なっていてもよい。n11〜n14の値が近い程、均一な立体構造をとることができ、高強度となる。このため、高強度のゲルを得るためには、n11〜n14の値が同一である事が好ましい。n11〜n14の値が高すぎるとゲルの強度が弱くなり、n11〜n14の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n11〜n14は、25〜250の整数値が挙げられ、35〜180が好ましく、50〜115がさらに好ましく、50〜60が特に好ましい。そして、その分子量としては、5×10〜5×10Daがあげられ、7.5×10〜3×10Daが好ましく、1×10〜2×10Daがより好ましい。 In the formula, n 11 to n 14 may be the same as or different from each other. As the values of n 11 to n 14 are closer, a uniform three-dimensional structure can be taken and the strength becomes higher. Therefore, in order to obtain a high strength gel, it is preferred values of n 11 ~n 14 are identical. n 11 ~n 14 value is too the strength of the gel is weak high of, n 11 ~n value of 14 is difficult to gel formation due to steric hindrance of the compound is too low. Therefore, n 11 ~n 14 may include an integer value of 25 to 250, preferably from 35 to 180, more preferably from 50 to 115, particularly preferably from 50 to 60. Then, as the molecular weight, 5 × 10 3 ~5 × 10 4 Da and the like, preferably 7.5 × 10 3 ~3 × 10 4 Da, and more preferably 1 × 10 4 ~2 × 10 4 Da.

上記一般式(1)中、R11〜R14は、官能基とコア部分をつなぐリンカー部位である。 In the general formula (1), R 11 to R 14 are linker sites that connect the functional group and the core portion.

11〜R14は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。R11〜R14は、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R15−、−CO−R15−、−R16−O−R17−、−R16−NH−R17−、−R16−CO−R17−、−R16−CO−NH−R17−、−R16−CO−R17−、又は−R16−CO−NH−R17−を表す。ここで、R15はC−Cのアルキレン基を表し、R16はC−Cのアルキレン基を表し、R17はC−Cのアルキレン基を表す。 R 11 to R 14 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure. R 11 to R 14 are each a C 1 to C 7 alkylene group, a C 2 to C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R 16 —O—R 17 —, — R 16 —NH—R 17 —, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, or —R 16 —CO 2 -NH-R < 17 >-is represented. Here, R 15 represents a C 1 -C 7 alkylene group, R 16 represents a C 1 -C 3 alkylene group, and R 17 represents a C 1 -C 5 alkylene group.

ここで、C〜Cアルキレン基とは、分岐を有してもよい炭素数が1以上7以下のアルキレン基を意味し、直鎖C〜Cのアルキレン基、又は1つ又は2つ以上の分岐を有するC〜Cのアルキレン基(分岐を含めた炭素数が2以上7以下)を意味する。C〜Cアルキレン基の例は、メチレン基、エチレン基、プロピレン基、ブチレン基である。C〜Cアルキレン基の例は、−CH−、−(CH)−、−(CH)−、−CH(CH)−、−(CH(CH))−、−(CH)−CH(CH)−、−(CH)−CH(CH)−、−(CH)−CH(C)−、−(CH)−、−(CH)−C(C)−、及び−(CH)C(CH)CH−などが挙げられる。 Here, the C 1 to C 7 alkylene group means an alkylene group having 1 to 7 carbon atoms which may have a branch, and a straight chain C 1 to C 7 alkylene group, or one or two. One or more alkylene groups C 2 -C 7 having a branched (number of carbon atoms including branching 2 to 7) means. Examples of C 1 -C 7 alkylene groups are a methylene group, an ethylene group, a propylene group, and a butylene group. Examples of C 1 -C 7 alkylene groups are —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH (CH 3 ) —, — (CH (CH 3 )) 2 —. , - (CH 2) 2 -CH (CH 3) -, - (CH 2) 3 -CH (CH 3) -, - (CH 2) 2 -CH (C 2 H 5) -, - (CH 2) 6- , — (CH 2 ) 2 —C (C 2 H 5 ) 2 —, — (CH 2 ) 3 C (CH 3 ) 2 CH 2 — and the like can be mentioned.

「C〜Cアルケニレン基」とは、鎖中に1個若しくは2個以上の二重結合を有する直鎖状又は分枝鎖状の炭素原子数2〜7個のアルケニレン基であり、例えば、前記アルキレン基から隣り合った炭素原子の水素原子の2〜5個を除いてできる二重結合を有する2価基が挙げられる。 The “C 2 -C 7 alkenylene group” is a linear or branched alkenylene group having 2 to 7 carbon atoms having one or more double bonds in the chain, for example, And a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms of adjacent carbon atoms from the alkylene group.

その中でも、特に、末端にアミノ基を有する下記一般式(3)で表される化合物を好適に用いることができるポリマー種として挙げることができる。   Among them, in particular, a compound represented by the following general formula (3) having an amino group at the terminal can be cited as a polymer species that can be suitably used.

式中、n31〜n34は、それぞれ同一でも異なっていてもよい。n31〜n34の値が近い程、均一な立体構造をとることができ、高強度となる。このため、高強度のゲルを得るためには、n31〜n34の値が同一である事が好ましい。n31〜n34の値が高すぎるとゲルの強度が弱くなり、n31〜n34の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n31〜n34は、25〜250の整数値が挙げられ、35〜180が好ましく、50〜115がさらに好ましく、50〜60が特に好ましい。そして、その分子量としては、5×10〜5×10Daがあげられ、7.5×10〜3×10Daが好ましく、1×10〜2×10Daがより好ましい。 In the formula, n 31 to n 34 may be the same as or different from each other. As the values of n 31 to n 34 are closer, a uniform three-dimensional structure can be taken and the strength becomes higher. Therefore, in order to obtain a high strength gel, it is preferred values of n 31 ~n 34 are identical. If the value of n 31 to n 34 is too high, the gel strength becomes weak, and if the value of n 31 to n 34 is too low, the gel is hardly formed due to steric hindrance of the compound. Therefore, n 31 ~n 34 may include an integer value of 25 to 250, preferably from 35 to 180, more preferably from 50 to 115, particularly preferably from 50 to 60. Then, as the molecular weight, 5 × 10 3 ~5 × 10 4 Da and the like, preferably 7.5 × 10 3 ~3 × 10 4 Da, and more preferably 1 × 10 4 ~2 × 10 4 Da.

上記一般式(3)中、R31〜R34は、官能基とコア部分をつなぐリンカー部位である。 In the general formula (3), R 31 to R 34 are linker sites that connect the functional group and the core portion.

31〜R34は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。R31〜R34は、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R35−、−CO−R35−、−R36−O−R37−、−R36−NH−R37−、−R36−CO−R37−、−R36−CO−NH−R37−、−R36−CO−R37−、又は−R36−CO−NH−R37−を表す。ここで、R35はC−Cのアルキレン基を表し、R36はC−Cのアルキレン基を表し、R37はC−Cのアルキレン基を表す。 R 31 to R 34 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure. R 31 to R 34 are a C 1 to C 7 alkylene group, a C 2 to C 7 alkenylene group, —NH—R 35 —, —CO—R 35 —, —R 36 —O—R 37 —, — R 36 —NH—R 37 —, —R 36 —CO 2 —R 37 —, —R 36 —CO 2 —NH—R 37 —, —R 36 —CO—R 37 —, or —R 36 —CO 2 —NH—R 37 — is represented. Here, R 35 represents a C 1 -C 7 alkylene group, R 36 represents a C 1 -C 3 alkylene group, and R 37 represents a C 1 -C 5 alkylene group.

ここで、C〜Cアルキレン基とは、分岐を有してもよい炭素数が1以上7以下のアルキレン基を意味し、直鎖C〜Cのアルキレン基、又は1つ又は2つ以上の分岐を有するC〜Cのアルキレン基(分岐を含めた炭素数が2以上7以下)を意味する。C〜Cアルキレン基の例は、メチレン基、エチレン基、プロピレン基、ブチレン基である。C〜Cアルキレン基の例は、−CH−、−(CH)−、−(CH)−、−CH(CH)−、−(CH(CH))−、−(CH)−CH(CH)−、−(CH)−CH(CH)−、−(CH)−CH(C)−、−(CH)−、−(CH)−C(C)−、及び−(CH)C(CH)CH−などが挙げられる。 Here, the C 1 to C 7 alkylene group means an alkylene group having 1 to 7 carbon atoms which may have a branch, and a straight chain C 1 to C 7 alkylene group, or one or two. One or more alkylene groups C 2 -C 7 having a branched (number of carbon atoms including branching 2 to 7) means. Examples of C 1 -C 7 alkylene groups are a methylene group, an ethylene group, a propylene group, and a butylene group. Examples of C 1 -C 7 alkylene groups are —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH (CH 3 ) —, — (CH (CH 3 )) 2 —. , - (CH 2) 2 -CH (CH 3) -, - (CH 2) 3 -CH (CH 3) -, - (CH 2) 2 -CH (C 2 H 5) -, - (CH 2) 6- , — (CH 2 ) 2 —C (C 2 H 5 ) 2 —, — (CH 2 ) 3 C (CH 3 ) 2 CH 2 — and the like can be mentioned.

「C〜Cアルケニレン基」とは、鎖中に1個若しくは2個以上の二重結合を有する直鎖状又は分枝鎖状の炭素原子数2〜7個のアルケニレン基であり、例えば、前記アルキレン基から隣り合った炭素原子の水素原子の2〜5個を除いてできる二重結合を有する2価基が挙げられる。 The “C 2 -C 7 alkenylene group” is a linear or branched alkenylene group having 2 to 7 carbon atoms having one or more double bonds in the chain, for example, And a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms of adjacent carbon atoms from the alkylene group.

次に、末端に求電子性の官能基を有するポリマーとしては、下記一般式(2)が挙げられる。   Next, examples of the polymer having an electrophilic functional group at the terminal include the following general formula (2).

式中、Yは求電子性の官能基である。求電子性の官能基Yとしては、例えば、カルボン酸無水物基、ハロゲン化アシル基及びハロゲン化メチル基等を例示することができる。 式中、n21〜n24は、それぞれ同一でも異なっていてもよい。n21〜n24の値が近い程、均一な立体構造をとることができ、高強度となる。このため、高強度のゲルを得るためには、n21〜n24の値が同一である事が好ましい。n21〜n24の値が高すぎるとゲルの強度が弱くなり、n21〜n24の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n21〜n24は、25〜250の整数値が挙げられ、35〜180が好ましく、50〜115がさらに好ましく、50〜60が特に好ましい。そして、その分子量としては、5×10〜5×10Daがあげられ、7.5×10〜3×10Daが好ましく、1×10〜2×10Daがより好ましい。 In the formula, Y is an electrophilic functional group. Examples of the electrophilic functional group Y include a carboxylic anhydride group, an acyl halide group, and a methyl halide group. In the formula, n 21 to n 24 may be the same as or different from each other. As the values of n 21 to n 24 are closer, a uniform three-dimensional structure can be taken and the strength becomes higher. Therefore, in order to obtain a high strength gel, it is preferred values of n 21 ~n 24 are identical. If the value of n 21 to n 24 is too high, the gel strength becomes weak, and if the value of n 21 to n 24 is too low, the gel is hardly formed due to steric hindrance of the compound. Therefore, n 21 ~n 24 may include an integer value of 25 to 250, preferably from 35 to 180, more preferably from 50 to 115, particularly preferably from 50 to 60. Then, as the molecular weight, 5 × 10 3 ~5 × 10 4 Da and the like, preferably 7.5 × 10 3 ~3 × 10 4 Da, and more preferably 1 × 10 4 ~2 × 10 4 Da.

上記一般式(2)中、R21〜R24は、官能基とコア部分をつなぐリンカー部位である。 In the general formula (2), R 21 ~R 24 is a linker moiety linking the functional groups and the core portion.

21〜R24は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。R21〜R24は、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R25−、−CO−R25−、−R26−O−R27−、−R26−NH−R27−、−R26−CO−R27−、−R26−CO−NH−R27−、−R26−CO−R27−、又は−R26−CO−NH−R27−を表す。ここで、R25はC−Cのアルキレン基を表し、R26はC−Cのアルキレン基を表し、R27はC−Cのアルキレン基を表す。 R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure. R 21 to R 24 are a C 1 to C 7 alkylene group, a C 2 to C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R 26 —O—R 27 —, — R 26 —NH—R 27 —, —R 26 —CO 2 —R 27 —, —R 26 —CO 2 —NH—R 27 —, —R 26 —CO—R 27 —, or —R 26 —CO 2 —NH—R 27 — is represented. Here, R 25 represents a C 1 -C 7 alkylene group, R 26 represents a C 1 -C 3 alkylene group, and R 27 represents a C 1 -C 5 alkylene group.

ここで、C〜Cアルキレン基とは、分岐を有してもよい炭素数が1以上7以下のアルキレン基を意味し、直鎖C〜Cのアルキレン基、又は1つ又は2つ以上の分岐を有するC〜Cのアルキレン基(分岐を含めた炭素数が2以上7以下)を意味する。C〜Cアルキレン基の例は、メチレン基、エチレン基、プロピレン基、ブチレン基である。C〜Cアルキレン基の例は、−CH−、−(CH)−、−(CH)−、−CH(CH)−、−(CH(CH))−、−(CH)−CH(CH)−、−(CH)−CH(CH)−、−(CH)−CH(C)−、−(CH)−、−(CH)−C(C)−、及び−(CH)C(CH)CH−などが挙げられる。 Here, the C 1 to C 7 alkylene group means an alkylene group having 1 to 7 carbon atoms which may have a branch, and a straight chain C 1 to C 7 alkylene group, or one or two. One or more alkylene groups C 2 -C 7 having a branched (number of carbon atoms including branching 2 to 7) means. Examples of C 1 -C 7 alkylene groups are a methylene group, an ethylene group, a propylene group, and a butylene group. Examples of C 1 -C 7 alkylene groups are —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH (CH 3 ) —, — (CH (CH 3 )) 2 —. , - (CH 2) 2 -CH (CH 3) -, - (CH 2) 3 -CH (CH 3) -, - (CH 2) 2 -CH (C 2 H 5) -, - (CH 2) 6- , — (CH 2 ) 2 —C (C 2 H 5 ) 2 —, — (CH 2 ) 3 C (CH 3 ) 2 CH 2 — and the like can be mentioned.

「C〜Cアルケニレン基」とは、鎖中に1個若しくは2個以上の二重結合を有する直鎖状又は分枝鎖状の炭素原子数2〜7個のアルケニレン基であり、例えば、前記アルキレン基から隣り合った炭素原子の水素原子の2〜5個を除いてできる二重結合を有する2価基が挙げられる。 The “C 2 -C 7 alkenylene group” is a linear or branched alkenylene group having 2 to 7 carbon atoms having one or more double bonds in the chain, for example, And a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms of adjacent carbon atoms from the alkylene group.

また、求電子性を有する官能基には活性エステル基を用いてもよい。このような活性エステル基としては、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、又はニトロフェニル基などがあげられ、当業者であれば公知の活性エステル基を適宜用いることができる。末端に求電子性の官能基を有するポリマー種として好ましい非限定的な具体例には、例えば、末端にN−ヒドロキシ−スクシンイミジル(NHS)基を有する下記一般式(4)で表される化合物が挙げられる。   Moreover, you may use an active ester group for the functional group which has electrophilicity. Examples of such an active ester group include a sulfosuccinimidyl group, a maleimidyl group, a phthalimidyl group, an imidazolyl group, and a nitrophenyl group, and those skilled in the art can appropriately use known active ester groups. . Non-limiting specific examples preferable as the polymer species having an electrophilic functional group at the terminal include, for example, compounds represented by the following general formula (4) having an N-hydroxy-succinimidyl (NHS) group at the terminal. Can be mentioned.

上記一般式(4)中、n41〜n44はそれぞれ同一でも又は異なってもよい。n41〜n44の値は近いほど、ゲルは均一な立体構造をとることができ、高強度となるので好ましく、同一である方が好ましい。n41〜n44の値が高すぎるとゲルの強度が弱くなり、n41〜n44の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n41〜n44は、5〜300の整数値があげられ、20〜250が好ましく、30〜180がより好ましく、45〜115がさらに好ましく、45〜55であればさらに好ましい。本発明の第2の四分岐化合物の分子量としては、5×10〜5×10Daがあげられ、7.5×10〜3×10Daが好ましく、1×10〜2×10Daがより好ましい。 In the general formula (4), n 41 to n 44 may be the same or different. As the values of n 41 to n 44 are closer, the gel can have a uniform three-dimensional structure and is high in strength, and is preferably the same. If the value of n 41 to n 44 is too high, the gel strength becomes weak, and if the value of n 41 to n 44 is too low, the gel is hardly formed due to steric hindrance of the compound. For this reason, n 41 to n 44 have an integer value of 5 to 300, preferably 20 to 250, more preferably 30 to 180, still more preferably 45 to 115, and even more preferably 45 to 55. The molecular weight of the second four-branched compound of the present invention is 5 × 10 3 to 5 × 10 4 Da, preferably 7.5 × 10 3 to 3 × 10 4 Da, and 1 × 10 4 to 2 ×. 10 4 Da is more preferable.

上記一般式(4)中、R41〜R44は、官能基とコア部分をつなぐリンカー部位である。R21〜R24は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。一般式(4)中、R41〜R44は、それぞれ同一又は異なり、C〜Cアルキレン基、C〜Cアルケニレン基、−NH−R45−、−CO−R45−、−R46−O−R47−、−R46−NH−R47−、−R46−CO−R47−、−R26−CO−NH−R47−、−R46−CO−R47−、又は−R46−CO−NH−R47−を表す。ここで、R45はC−Cのアルキレン基を表し、R46はC−Cのアルキレン基を表し、R47はC−Cのアルキレン基を表す。 In the general formula (4), R 41 ~R 44 is a linker moiety linking the functional groups and the core portion. R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure. In the general formula (4), R 41 to R 44 are the same or different and each represents a C 1 to C 7 alkylene group, a C 2 to C 7 alkenylene group, —NH—R 45 —, —CO—R 45 —, — R 46 —O—R 47 —, —R 46 —NH—R 47 —, —R 46 —CO 2 —R 47 —, —R 26 —CO 2 —NH—R 47 —, —R 46 —CO—R 47 -, or -R 46 -CO 2 -NH-R 47 - represents a. Here, R 45 represents a C 1 -C 7 alkylene group, R 46 represents a C 1 -C 3 alkylene group, and R 47 represents a C 1 -C 5 alkylene group.

なお、上記一般式(4)で示したように、末端の官能基はN−ヒドロキシ−スクシンイミジル(NHS)基が好ましい。当該官能基は、それぞれ同一であっても、異なってもよいが、同一である方が好ましい。官能基が同一であることによって、式(3)の官能基との反応性が均一になり、均一な立体構造を有する高強度のゲルを得やすくなる。   In addition, as shown in the general formula (4), the terminal functional group is preferably an N-hydroxy-succinimidyl (NHS) group. The functional groups may be the same or different, but are preferably the same. When the functional groups are the same, the reactivity with the functional group of formula (3) becomes uniform, and a high-strength gel having a uniform three-dimensional structure can be easily obtained.

上記一般式(3)及び一般式(4)のポリマー種を用いた場合には、アミド結合によって架橋して、均一な網目構造ネットワークを特に容易に形成させることができる。この際の反応は、通常、水またはアルコール及びエーテル等の有機溶媒中で実施することができる。反応温度を例示すると、0℃〜100℃の範囲で反応することができ、好ましくは5℃〜50℃、さらに好ましくは10℃〜30℃の範囲で反応することができる。反応後に、乾燥等により、網目構造ネットワークを有するポリマーを精製単離してもよいが、ろ過や遠心分離、デカンテーション等の方法を用いると、高いイオン伝導性を保持することができる。この機構は明らかではないが、乾燥操作を経ることで高分子の網目構造が変化し、可逆性を失うためではないかと考えられる。即ち、ろ過や遠心分離、デカンテーション等の操作の方が、高分子の網目構造が変化することなく、電解液の保液性が高まると思われる。   When the polymer species of the general formula (3) and the general formula (4) are used, a uniform network structure network can be formed particularly easily by crosslinking with an amide bond. The reaction at this time can usually be carried out in water or an organic solvent such as alcohol and ether. When the reaction temperature is exemplified, the reaction can be carried out in the range of 0 ° C to 100 ° C, preferably 5 ° C to 50 ° C, more preferably 10 ° C to 30 ° C. After the reaction, the polymer having a network structure may be purified and isolated by drying or the like, but high ionic conductivity can be maintained by using a method such as filtration, centrifugation, or decantation. Although this mechanism is not clear, it is thought that the network structure of the polymer changes through the drying operation and loses reversibility. That is, operations such as filtration, centrifugation, and decantation are thought to improve the liquid retention of the electrolyte without changing the polymer network structure.

本発明の非水系ゲル電解質は、前記の網目構造を有するポリマーに、非水電解液を含浸させることにより形成されるものである。非水系ゲル電解質中のポリマーの重量分率は、0.1〜30%であり、好ましくは0.5〜20%である。ポリマーの重量分率が0.1%未満の場合は、非水系ゲル電解質の自立性が十分でなく、電池の破損時等に液が漏出するおそれがある。なお、本文中の自立性とは、ゲルをピンセットなどの器具で持ち上げた場合でも形状を維持できる程度の機械的な強度を表す。ポリマーの重量分率が30%以上の場合は、イオン伝導性が十分でない場合がある。   The non-aqueous gel electrolyte of the present invention is formed by impregnating the polymer having the network structure with a non-aqueous electrolyte. The weight fraction of the polymer in the non-aqueous gel electrolyte is 0.1 to 30%, preferably 0.5 to 20%. When the polymer weight fraction is less than 0.1%, the non-aqueous gel electrolyte is not sufficiently self-supporting, and the liquid may leak when the battery is damaged. In addition, the self-supporting property in the text represents a mechanical strength that can maintain the shape even when the gel is lifted with an instrument such as tweezers. When the polymer weight fraction is 30% or more, the ionic conductivity may not be sufficient.

非水電解液は、溶媒に電解質塩を溶解させた溶液であり、溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル、酢酸メチル、酪酸メチル、トリフルオロ酢酸エチル等の鎖状エステル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキソラン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類及びアセトニトリル、ベンゾニトリル等のニトリル類等の単独又はそれら2種以上の混合物を挙げることができる。これらのうち、特に環状カーボネートと鎖状カーボネートのいずれか一方、あるいは環状カーボネートと鎖状カーボネートの混合物を含有する溶媒を使用することがイオン伝導度、電池のサイクル性能の点で好ましい。   The non-aqueous electrolyte is a solution in which an electrolyte salt is dissolved in a solvent. Examples of the solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and fluoroethylene carbonate, dimethyl carbonate, and diethyl carbonate. Chain carbonates such as ethyl methyl carbonate, diphenyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone, methyl acetate, methyl butyrate, Chain esters such as ethyl trifluoroacetate, ethers such as diisopropyl ether, tetrahydrofuran, dioxolane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, and acetonite Examples thereof include nitriles such as ril and benzonitrile alone or a mixture of two or more thereof. Among these, it is particularly preferable to use a solvent containing either one of cyclic carbonate and chain carbonate or a mixture of cyclic carbonate and chain carbonate in terms of ion conductivity and battery cycle performance.

また、本発明の非水系ゲル電解質に用いられる非水電解液の溶媒としてリン酸エステルを共存させることができる。リン酸エステルを含有させることにより、電解液が漏出しにくい非水系ゲル電解質の特長に加え、電解液自体に難燃性が付与されるため、更に安全性の向上した電池を構成することができる。この様なリン酸エステルの好ましい具体例には、例えば、下記一般式(5)で表される化合物が挙げられる。   Moreover, a phosphate ester can coexist as a solvent of the non-aqueous electrolyte used for the non-aqueous gel electrolyte of the present invention. By including a phosphate ester, in addition to the features of the non-aqueous gel electrolyte in which the electrolyte solution is difficult to leak out, the electrolyte solution itself is provided with flame retardancy, so that a battery with further improved safety can be configured. . Preferable specific examples of such phosphate esters include, for example, compounds represented by the following general formula (5).

一般式(5)で表されるリン酸エステルにおいて、mは0〜3の整数であり、Rは、炭素数1〜6の直鎖もしくは分岐のアルキル基を表し、Rfは、炭素数1〜6の直鎖または分岐の含フッ素アルキル基を表す。一般式(5)のリン酸エステルの例として、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリ−n−プロピル、リン酸トリ−iso−プロピル、リン酸トリ−n−ブチル、リン酸トリ−iso−ブチル、リン酸トリ−tert−ブチル、リン酸トリフェニル、リン酸トリス(2−フルオロエチル)、リン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、リン酸トリス(ヘキサフルオロイソプロピル)、リン酸トリス(2,2,3,3,4,4,5,5−オクタフルオロペンチル)、リン酸トリス(2,2,3,3,4,4,5,5,5−ノナフルオロペンチル)、リン酸ビス(2,2,2−トリフルオロエチル)メチル、リン酸ビス(2,2,2−トリフルオロエチル)エチル、リン酸ビス(2,2,2−トリフルオロエチル)n−プロピル、リン酸ビス(2,2,2−トリフルオロエチル)イソプロピル、リン酸ビス(2,2,2−トリフルオロエチル)n−ブチル、リン酸ビス(2,2,2−トリフルオロエチル)tert−ブチル、リン酸ビス(2,2,2−トリフルオロエチル)(2,2−ジフルオロエチル)、リン酸ビス(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)、リン酸ビス(2,2,3,3−テトラフルオロプロピル)(2,2,2−トリフルオロエチル)及びリン酸(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチル等またはこれらの混合物を挙げることができる。なお、非水電解液の十分な難燃性と良好なイオン導電性を得るために、リン酸エステルの溶媒への混合比は、重量比で5〜50%とすることが望ましい。 In the phosphate ester represented by the general formula (5), m is an integer of 0 to 3, R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms, and Rf 2 represents the number of carbon atoms. 1 to 6 linear or branched fluorine-containing alkyl groups are represented. Examples of the phosphate ester of the general formula (5) include, for example, trimethyl phosphate, triethyl phosphate, tri-n-propyl phosphate, tri-iso-propyl phosphate, tri-n-butyl phosphate, triphosphate -Iso-butyl, tri-tert-butyl phosphate, triphenyl phosphate, tris phosphate (2-fluoroethyl), tris phosphate (2,2-difluoroethyl), tris phosphate (2,2,2- Trifluoroethyl), tris phosphate (2,2,3,3-tetrafluoropropyl), tris phosphate (2,2,3,3,3-pentafluoropropyl), tris phosphate (hexafluoroisopropyl), Tris phosphate (2,2,3,3,4,4,5,5-octafluoropentyl), Tris phosphate (2,2,3,3,4,4,5,5,5-nonafluoropen ), Bis (2,2,2-trifluoroethyl) methyl phosphate, bis (2,2,2-trifluoroethyl) ethyl phosphate, bis (2,2,2-trifluoroethyl) n phosphate -Propyl, bis (2,2,2-trifluoroethyl) isopropyl phosphate, bis (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl phosphate) ) Tert-butyl, bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl), bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3) -Tetrafluoropropyl), bis (2,2,3,3-tetrafluoropropyl) phosphate (2,2,2-trifluoroethyl) and phosphoric acid (2,2,2-trifluoroethyl) (2, 2,3,3-tetrafur Ropuropiru) methyl and the like or mixtures thereof. In order to obtain sufficient flame retardancy and good ionic conductivity of the non-aqueous electrolyte, the mixing ratio of the phosphate ester to the solvent is desirably 5 to 50% by weight.

非水電解液の電解質塩としては、広電位領域で安定なリチウム塩が用いられる。このような電解質塩として、例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiC(CFSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、電池特性を良好なものとするため、非水電解液における電解質塩の濃度は0.2〜2.5mol/Lの範囲とすることが望ましい。 A lithium salt that is stable in a wide potential region is used as the electrolyte salt of the non-aqueous electrolyte. Examples of such electrolyte salts include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2) 3 and the like. These may be used alone or in combination of two or more. In order to improve battery characteristics, it is desirable that the concentration of the electrolyte salt in the non-aqueous electrolyte is in the range of 0.2 to 2.5 mol / L.

本発明の非水系ゲル電解質二次電池は、正極、負極及び非水系ゲル電解質から成り、シャットダウン機能を持たせる場合等、必要に応じてセパレータも用いることができる。   The non-aqueous gel electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode, and a non-aqueous gel electrolyte, and a separator can also be used as necessary when a shutdown function is provided.

正極材料としては、LiCoO2、LiMnO2、LiMn24、LiNiO2、LiFeO、LiFePO等のリチウムと遷移金属からなる複合酸化物を用いることができる。 As the positive electrode material, a composite oxide composed of lithium and a transition metal such as LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiFeO 2 , LiFePO 4 can be used.

負極材料としては、金属リチウム、または、LiTi12等のリチウムと遷移金属の複合酸化物もしくはグラファイト等の炭素材料の様なリチウムイオンをドープ・脱ドープ可能な材料等をそれぞれ用いることができる。 As the negative electrode material, metal lithium, lithium and transition metal composite oxides such as Li 4 Ti 5 O 12 or carbon materials such as graphite and other materials capable of doping and dedoping lithium ions, respectively, should be used. Can do.

セパレータを使用する場合、セパレータとしては、微多孔性膜等が用いられ、材料として、ポリエチレン等のポリオレフィン系樹脂あるいはポリフッ化ビニリデン等のフッ素系樹脂等が用いられる。   When a separator is used, a microporous membrane or the like is used as the separator, and a polyolefin resin such as polyethylene or a fluorine resin such as polyvinylidene fluoride is used as the material.

非水電解液二次電池の形状、形態としては、通常、円筒型、角型、コイン型、カード型およびラミネート型等が選択される。   As the shape and form of the nonaqueous electrolyte secondary battery, a cylindrical type, a square type, a coin type, a card type, a laminate type, and the like are usually selected.

以下、本発明を実施例にて説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.

測定例1[イオン伝導度測定]
作製したゲル電解質について、イオン伝導度の測定を行った。測定には交流インピーダンス法を用いた。装置にはエレクトロケミカルインターフェイス(東洋テクニカ; Solartron SI 1287)、周波数応答アナライザー(東洋テクニカ; Solartron SI 1260)を用いて、周波数100kHz〜0.1Hzまで、10mVの交流振幅、恒温槽を用いて5℃〜65℃の温度範囲で行った。測定セルには、対向したステンレス製円盤電極の間に内径10mm、厚さ1mmのポリテトラフルオロエチレン製スペーサーを挟んだ構造の2極式セルを使用し、スペーサーの大きさに合わせて整形したゲルをセル内に封入した。また、セルはグローブボックス中で構築した。セル定数はセル寸法から求めた理論値を用いた。
Measurement example 1 [Ion conductivity measurement]
The ionic conductivity of the produced gel electrolyte was measured. The AC impedance method was used for the measurement. The apparatus uses an electrochemical interface (Toyo Technica; Solartron SI 1287) and a frequency response analyzer (Toyo Technica; Solartron SI 1260), using a 10 mV AC amplitude, constant temperature bath from a frequency of 100 kHz to 0.1 Hz. It was performed in a temperature range of ˜65 ° C. The measurement cell uses a bipolar cell with a structure in which a spacer made of polytetrafluoroethylene having an inner diameter of 10 mm and a thickness of 1 mm is sandwiched between opposed stainless steel disk electrodes, and is shaped according to the size of the spacer. Was enclosed in a cell. The cell was built in a glove box. As the cell constant, a theoretical value obtained from the cell dimensions was used.

[実施例1]
分子量20,000のTetraPEG−NHとTetraPEG−NHSを50mg/mlの濃度で100mMのリン酸緩衝溶液(pH7.4)、クエン酸・リン酸緩衝溶液(pH5.8)を1/4に薄めた低濃度緩衝溶液にそれぞれ溶解した。なお、TetraPEG−NH、TetraPEG−NHSのnの値は、モノマーの分子量換算で、n=114と算出することができる。また、TetraPEG−NHSが100mg/ml以上の場合は薄めずに使用した。得られた溶液を混合し、シリコンセパレーター(厚さ1mm)を貼ったガラスプレート平面上に展開し1日静地することでハイドロゲルを作製した。
[Example 1]
Diluted TetraPEG-NH 2 and TetraPEG-NHS to 50 mg / ml at a concentration of 100mM phosphate buffer solution having a molecular weight of 20,000 (pH 7.4), citrate-phosphate buffer solution (pH 5.8) 1/4 Each was dissolved in a low concentration buffer solution. The value of n of TetraPEG-NH 2 and TetraPEG-NHS can be calculated as n = 114 in terms of monomer molecular weight. When TetraPEG-NHS was 100 mg / ml or more, it was used without being diluted. The obtained solution was mixed, developed on a glass plate plane on which a silicon separator (thickness 1 mm) was pasted, and left for 1 day to prepare a hydrogel.

作製したハイドロゲルを直径10mmの円盤状(φ10mm)に切り抜き、100℃で12時間真空乾燥した。次に、この乾燥ゲルをテトラヒドロフラン(THF)に12時間浸し再膨潤させた後、さらに100℃で3時間真空乾燥させることにより水分を完全に除去した。   The produced hydrogel was cut into a disk shape (φ10 mm) having a diameter of 10 mm and vacuum-dried at 100 ° C. for 12 hours. Next, the dried gel was immersed in tetrahydrofuran (THF) for 12 hours to re-swell, and then further dried in vacuo at 100 ° C. for 3 hours to completely remove moisture.

この乾燥ゲルをアルゴンで満たしたグローブボックス中で、1mol/Lの六フッ化リン酸リチウム(以下、LiPF)を溶解した、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=2:1(vol/vol)に浸漬し、常温で2日間膨潤させた。得られたゲル電解質の高分子含量(wt%)は電解液種に依存し、5.5wt%であった。 1 g / L lithium hexafluorophosphate (hereinafter referred to as LiPF 6 ) was dissolved in a glove box filled with argon with the dried gel, and ethylene carbonate (EC): diethyl carbonate (DEC) = 2: 1 (vol. / Vol) and swelled at room temperature for 2 days. The polymer content (wt%) of the obtained gel electrolyte was 5.5 wt% depending on the type of the electrolyte.

得られたゲル電解質のイオン伝導度の測定結果を表1に記す。   The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

また、得られたゲル電解質をガスバーナーの炎に近づけたところ、炎がゲル電解質に引火し、電解液がなくなるまで燃焼が継続した。   Moreover, when the obtained gel electrolyte was brought close to the flame of a gas burner, the flame ignited the gel electrolyte and combustion continued until the electrolyte was exhausted.

[実施例2]
電解液に1mol/LのLiPFを溶解した、EC:DEC:トリス(2,2,2-トリフルオロエチル)フォスフェート(以下、TFEP)=53:27:20(v/v/v)を用いた以外は、実施例1と同様の方法でゲル電解質を作製した。得られたゲル電解質の高分子含量(wt%)は6.2wt%であった。
[Example 2]
EC: DEC: Tris (2,2,2-trifluoroethyl) phosphate (hereinafter referred to as TFEP) = 53: 27: 20 (v / v / v) in which 1 mol / L LiPF 6 was dissolved in the electrolytic solution A gel electrolyte was produced in the same manner as in Example 1 except that it was used. The obtained gel electrolyte had a polymer content (wt%) of 6.2 wt%.

得られたゲル電解質のイオン伝導度の測定結果を表1に記す。   The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

また、得られたゲル電解質をガスバーナーの炎に近づけたところ、ガスバーナーの炎が接触してもゲル電解質には引火せず、このゲル電解質は不燃性を示した。   Further, when the obtained gel electrolyte was brought close to the flame of the gas burner, the gel electrolyte did not ignite even when the flame of the gas burner contacted, and this gel electrolyte showed nonflammability.

[実施例3]
分子量20,000のTetraPEG−NHとTetraPEG−NHSを50mg/mlの濃度で100mMのリン酸緩衝溶液(pH7.4)、クエン酸・リン酸緩衝溶液(pH5.8)を1/4に薄めた低濃度緩衝溶液にそれぞれ溶解した。なお、TetraPEG−NHSが100mg/ml以上の場合は薄めずに使用した。得られた溶液を混合し、シリコンセパレーター(厚さ1mm)を貼ったガラスプレート平面上に展開し1日静地することでハイドロゲルを作製した。
[Example 3]
Diluted TetraPEG-NH 2 and TetraPEG-NHS to 50 mg / ml at a concentration of 100mM phosphate buffer solution having a molecular weight of 20,000 (pH 7.4), citrate-phosphate buffer solution (pH 5.8) 1/4 Each was dissolved in a low concentration buffer solution. In addition, when TetraPEG-NHS was 100 mg / ml or more, it was used without being diluted. The obtained solution was mixed, developed on a glass plate plane on which a silicon separator (thickness 1 mm) was pasted, and left for 1 day to prepare a hydrogel.

ハイドロゲルを所定の大きさ(φ10mm)に切り抜き、大気中でEC:DEC=2:1の溶液10mlに浸し、1日撹拌した。その後、混合溶液を入れ替えさらに1日撹拌する操作を水分量が100ppm以下になるまで繰り返した。得られたゲルをグローブボックス中で1mol/LのLiPF EC:DEC=2:1(v/v)の電解液50mLに浸し12時間撹拌した。この操作を2回繰り返し溶媒置換することで、ゲル電解質を作製した。得られたゲル電解質の高分子含量(wt%)は1.6wt%であった。 The hydrogel was cut out to a predetermined size (φ10 mm), immersed in 10 ml of a solution of EC: DEC = 2: 1 in the atmosphere, and stirred for 1 day. Then, the operation of exchanging the mixed solution and further stirring for one day was repeated until the water content became 100 ppm or less. The obtained gel was immersed in 50 mL of 1 mol / L LiPF 6 EC: DEC = 2: 1 (v / v) electrolyte in a glove box and stirred for 12 hours. The gel electrolyte was produced by repeating this operation twice for solvent replacement. The obtained gel electrolyte had a polymer content (wt%) of 1.6 wt%.

得られたゲル電解質のイオン伝導度の測定結果を表1に記す。   The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

[実施例4]
電解液に1mol/LのLiPFを溶解した、EC:DEC:TFEP=53:27:20(v:v:v)を用いた以外は、実施例3と同様の方法でゲル電解質を作製した。得られたゲル電解質の高分子含量(wt%)は1.9wt%であった。
得られたゲル電解質のイオン伝導度の測定結果を表1に記す。
[Example 4]
A gel electrolyte was prepared in the same manner as in Example 3 except that EC: DEC: TFEP = 53: 27: 20 (v: v: v) in which 1 mol / L LiPF 6 was dissolved in the electrolytic solution was used. . The obtained gel electrolyte had a polymer content (wt%) of 1.9 wt%.
The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

[比較例1]
ポリフッ化ビニリデン−ヘキサフルオロプロピル共重合体(PVdF−HFP)パウダー5gに、1mol/LのLiPF EC:DEC=2:1(v:v)を溶解させて調製した電解液20gを50mlのビーカーに入れ、1時間攪拌した後、溶液をシャーレに移して400mmHgの減圧下、70℃で4 時間加熱することにより、厚さ1mmのゲル電解質を得た。
[Comparative Example 1]
A 50 ml beaker was prepared by dissolving 20 g of an electrolyte prepared by dissolving 1 mol / L LiPF 6 EC: DEC = 2: 1 (v: v) in 5 g of polyvinylidene fluoride-hexafluoropropyl copolymer (PVdF-HFP) powder. After stirring for 1 hour, the solution was transferred to a petri dish and heated at 70 ° C. under reduced pressure of 400 mmHg for 4 hours to obtain a gel electrolyte having a thickness of 1 mm.

得られたゲル電解質の高分子含量は35wt%であった。   The obtained gel electrolyte had a polymer content of 35 wt%.

得られたゲル電解質のイオン伝導度の測定結果を表1に記す。   The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

[比較例2]
1mol/LのLiPFを溶解したEC:DEC=2:1の電解液20gを65℃に加熱し、ポリアクリロニトリル(PAN)5gを添加した後、溶液をシャーレに移して10℃まで冷却し、厚さ1mmのゲル電解質を得た。
[Comparative Example 2]
20 g of EC: DEC = 2: 1 electrolyte solution in which 1 mol / L LiPF 6 was dissolved was heated to 65 ° C., 5 g of polyacrylonitrile (PAN) was added, and the solution was transferred to a petri dish and cooled to 10 ° C. A gel electrolyte having a thickness of 1 mm was obtained.

得られたゲル電解質の高分子含量は20wt%であった。   The obtained gel electrolyte had a polymer content of 20 wt%.

得られたゲル電解質のイオン伝導度の測定結果を表1に記す。   The measurement results of the ionic conductivity of the obtained gel electrolyte are shown in Table 1.

[比較例3]
PVdF−HFPパウダー1gに、1mol/LのLiPF EC:DEC=2:1(v:v)を溶解させて調製した電解液20gを50mlのビーカーに入れ、比較例1と同様の方法で、ゲル電解質の作製を試みたが、自立性ゲルを調製することはできなかった。
[Comparative Example 3]
20 g of an electrolyte prepared by dissolving 1 mol / L LiPF 6 EC: DEC = 2: 1 (v: v) in 1 g of PVdF-HFP powder was put in a 50 ml beaker, and the same method as in Comparative Example 1 An attempt was made to make a gel electrolyte, but a self-supporting gel could not be prepared.

[比較例4]
1mol/LのLiPFを溶解したEC:DEC=2:1の電解液20gを65℃に加熱し、ポリアクリロニトリル(PAN)1gを添加した後、溶液をシャーレに移して10℃まで冷却することでゲル電解質の作製を試みたが、自立性ゲルを調製することはできなかった。
[Comparative Example 4]
Heat 20 g of an EC: DEC = 2: 1 electrolyte dissolved in 1 mol / L LiPF 6 to 65 ° C., add 1 g of polyacrylonitrile (PAN), transfer the solution to a petri dish, and cool to 10 ° C. Attempts were made to prepare a gel electrolyte, but a self-supporting gel could not be prepared.

[実施例1〜4、比較例1〜4の考察]
実施例1、2に対して、比較例1〜4では公知の固体ポリマーゲルを用いて比較を行った例である。公知の固体ポリマーゲルの場合、少ないゲル濃度では自立性のゲルを作製することは難しいが、本発明の固体ポリマーゲルを用いると、少ないゲル濃度でも自立性のゲルを作製することができる。この効果はこれまでのポリマーゲルでは予想できない効果であり、当業者が容易に類推できるものではないと考えられる。
[Consideration of Examples 1-4 and Comparative Examples 1-4]
In contrast to Examples 1 and 2, Comparative Examples 1 to 4 are examples in which a known solid polymer gel was used for comparison. In the case of a known solid polymer gel, it is difficult to produce a self-supporting gel with a low gel concentration. However, when the solid polymer gel of the present invention is used, a self-supporting gel can be prepared with a low gel concentration. This effect is an effect that cannot be predicted by conventional polymer gels, and is not considered to be easily guessed by those skilled in the art.

また、実施例1と実施例2では、難燃成分として、トリス(2,2,2−トリフルオロエチル)フォスフェート(TFEP)が含まれたゲル電解質は不燃性を示したことから、安全性については、TFEPを含むゲル電解質の方が明らかに向上している。   Moreover, in Example 1 and Example 2, the gel electrolyte containing tris (2,2,2-trifluoroethyl) phosphate (TFEP) as a flame retardant component showed nonflammability. The gel electrolyte containing TFEP is clearly improved.

[実施例1と実施例3の考察]
実施例1と実施例3では、異なる方法(乾燥法とデカンテーション法)で電解液を含浸させた例である。実施例3の方が実施例1に比べ明らかにゲル濃度が低下した。これは、乾燥工程を経ることで、高分子の網目構造が変性し、可逆性を失った結果、網目構造に含まれる電解液量が減少し、ゲル濃度が増加したものと考えている。
[Consideration of Example 1 and Example 3]
Examples 1 and 3 are examples in which the electrolytic solution was impregnated by different methods (drying method and decantation method). The gel concentration in Example 3 was clearly lower than that in Example 1. This is thought to be because the polymer network structure was modified and lost reversibility through the drying process, resulting in a decrease in the amount of electrolyte contained in the network structure and an increase in gel concentration.

[実施例5]
実施例1で作製したゲル電解質における黒鉛(KS6)負極の電池特性を、定電流充放電試験により評価した。測定には、セル別充放電電池試験システム(ナガノ(株)、BTS−2003W)を使用した。セルには2極式コイン型セル(2032型)を使用した。試験極には黒鉛電極(φ10mm)、対極にステンレスメッシュに張り付けたリチウム金属(φ15mm)を使用した。試験条件は、1/10Cレートに相当する電流密度を適用し、カットオフ電位は0V〜1.5Vで試験した。結果を図2に示す。
[Example 5]
The battery characteristics of the graphite (KS6) negative electrode in the gel electrolyte prepared in Example 1 were evaluated by a constant current charge / discharge test. For the measurement, a cell-by-cell charge / discharge battery test system (Nagano Co., Ltd., BTS-2003W) was used. As the cell, a bipolar coin type cell (2032 type) was used. A graphite electrode (φ10 mm) was used as the test electrode, and a lithium metal (φ15 mm) attached to a stainless mesh was used as the counter electrode. As test conditions, a current density corresponding to a 1/10 C rate was applied, and a cut-off potential was tested at 0 V to 1.5 V. The results are shown in FIG.

図2の結果より、1mol/L−LiPF EC:DEC=2:1(v:v)の電解液を含むゲル電解質は、250 mAh/g以上の容量を示し、安定なサイクル特性を示すことが分かった。 From the result of FIG. 2, the gel electrolyte containing the electrolyte solution of 1 mol / L-LiPF 6 EC: DEC = 2: 1 (v: v) shows a capacity of 250 mAh / g or more and shows a stable cycle characteristic. I understood.

[実施例6]
電解液に実施例2で作製したゲル電解質(1mol/LのLiPFを溶解した、EC:DEC:TFEP=53:27:20(v:v:v))を用いた以外は、実施例5と同様の方法で充放電試験を行った。その結果を図3に示す。
[Example 6]
Example 5 except that the gel electrolyte prepared in Example 2 (EC: DEC: TFEP = 53: 27: 20 (v: v: v) in which 1 mol / L LiPF 6 was dissolved) was used in the electrolytic solution A charge / discharge test was conducted in the same manner as described above. The result is shown in FIG.

図3の結果より、1mol/L−LiPF EC:DEC:TFEP=53:27:20(v:v:v)の電解液を含むゲル電解質は、250 mAh/g以上の容量を示し、安定なサイクル特性を示すことが分かった。 From the result of FIG. 3, the gel electrolyte containing the electrolytic solution of 1 mol / L-LiPF 6 EC: DEC: TFEP = 53: 27: 20 (v: v: v) shows a capacity of 250 mAh / g or more and is stable. It was found that it showed a good cycle characteristic.

本発明の非水系ゲル電解質を用いることにより、堅牢性に優れ、良好なイオン伝導性を有する非水系ゲル電解質を提供することができ、安全性と性能の両立した非水系ゲル電解質二次電池を提供することができるため、極めて有用である。   By using the non-aqueous gel electrolyte of the present invention, it is possible to provide a non-aqueous gel electrolyte having excellent fastness and good ion conductivity, and a non-aqueous gel electrolyte secondary battery having both safety and performance can be provided. It is extremely useful because it can be provided.

1 黒鉛(KS6)電極
2 銅箔製集電体
3 黒鉛電極ステンレス製キャップ
4 金属リチウム極ステンレス製キャップ
5 金属リチウム
6 ステンレスメッシュ製集電体
7 ステンレス製板バネ
8 ゲル電解質
9 ガスケット
DESCRIPTION OF SYMBOLS 1 Graphite (KS6) electrode 2 Copper foil collector 3 Graphite electrode stainless steel cap 4 Metal lithium pole stainless steel cap 5 Metal lithium 6 Stainless steel mesh current collector 7 Stainless steel leaf spring 8 Gel electrolyte 9 Gasket

Claims (7)

電解質塩、非水溶媒及びポリエチレングリコール骨格を有するポリマーを含む非水系ゲル電解質であって、当該ポリマーが、ポリエチレングリコール鎖の架橋により網目構造を有する非水系ゲル電解質。 A non-aqueous gel electrolyte comprising an electrolyte salt, a non-aqueous solvent and a polymer having a polyethylene glycol skeleton, wherein the polymer has a network structure by crosslinking of polyethylene glycol chains. 前記ポリマーが、下記一般式(1)
(式中、Xは求核性の官能基であり、n11〜n14は、それぞれ同一又は異なり、25〜250の整数を表し、R11〜R14は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R15−、−CO−R15−、−R16−O−R17−、−R16−NH−R17−、−R16−CO−R17−、−R16−CO−NH−R17−、−R16−CO−R17−、又は−R16−CO−NH−R17−を表す。ここで、R15はC−Cのアルキレン基を表し、R16はC−Cのアルキレン基を表し、R17はC−Cのアルキレン基を表す。)
及び下記一般式(2)
(式中、Yは求電子性の官能基であり、n21〜n24は、それぞれ同一又は異なり、25〜250の整数を表し、R21〜R24は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R25−、−CO−R25−、−R26−O−R27−、−R26−NH−R27−、−R26−CO−R27−、−R26−CO−NH−R27−、−R26−CO−R27−、又は−R26−CO−NH−R27−を表す。ここで、R25はC−Cのアルキレン基を表し、R26はC−Cのアルキレン基を表し、R27はC−Cのアルキレン基を表す。)で表されるポリマーの反応物であって、一般式(1)及び一般式(2)のポリマーの互いの末端のすべてまたは一部がアミド結合、エステル結合、エーテル結合及びチオエーテル結合から成る群から選ばれる1種以上の結合で結合することにより網目構造を有する、請求項1に記載の非水系ゲル電解質。
The polymer is represented by the following general formula (1)
(In the formula, X is a nucleophilic functional group, n 11 to n 14 are the same or different and each represents an integer of 25 to 250, R 11 to R 14 are the same or different, and C 1 alkylene group -C 7, alkenylene group of C 2 ~C 7, -NH-R 15 -, - CO-R 15 -, - R 16 -O-R 17 -, - R 16 -NH-R 17 -, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, or —R 16 —CO 2 —NH—R 17 — is represented. Here, R 15 represents a C 1 -C 7 alkylene group, R 16 represents a C 1 -C 3 alkylene group, and R 17 represents a C 1 -C 5 alkylene group.)
And the following general formula (2)
(In the formula, Y is an electrophilic functional group, n 21 to n 24 are the same or different, and represent an integer of 25 to 250, and R 21 to R 24 are the same or different, and C 1 alkylene group -C 7, alkenylene group of C 2 ~C 7, -NH-R 25 -, - CO-R 25 -, - R 26 -O-R 27 -, - R 26 -NH-R 27 -, -R 26 -CO 2 -R 27 -, - R 26 -CO 2 -NH-R 27 -, - R 26 -CO-R 27 -, or -R 26 -CO 2 -NH-R 27 - represents a. Here, R 25 represents a C 1 -C 7 alkylene group, R 26 represents a C 1 -C 3 alkylene group, and R 27 represents a C 1 -C 5 alkylene group. A reaction product of a polymer, wherein the polymers of the general formula (1) and the general formula (2) 2. The non-aqueous gel according to claim 1, wherein all or part of the terminals have a network structure by bonding with one or more bonds selected from the group consisting of an amide bond, an ester bond, an ether bond and a thioether bond. Electrolytes.
前記ポリマーが、下記一般式(3)
(式中、n31〜n34は、それぞれ同一又は異なり、25〜250の整数を表し、R31〜R34は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R35−、−CO−R35−、−R36−O−R37−、−R36−NH−R37−、−R36−CO−R37−、−R36−CO−NH−R37−、−R36−CO−R37−、又は−R36−CO−NH−R37−を表す。ここで、R35はC−Cのアルキレン基を表し、R36はC−Cのアルキレン基を表し、R37はC−Cのアルキレン基を表す。)
及び下記一般式(4)
(式中、n41〜n44は、それぞれ同一又は異なり、25〜250の整数を表し、R41〜R44は、それぞれ同一又は異なって、C〜Cのアルキレン基、C〜Cのアルケニレン基、−NH−R45−、−CO−R45−、−R46−O−R47−、−R46−NH−R47−、−R46−CO−R47−、−R46−CO−NH−R47−、−R46−CO−R47−、又は−R46−CO−NH−R47−を表す。ここで、R45はC−Cのアルキレン基を表し、R46はC−Cのアルキレン基を表し、R47はC−Cのアルキレン基を表す。)で表されるポリマーの反応物であって、当該ポリマーの互いの末端のすべてまたは一部がアミド結合で結合することにより網目構造を有する、請求項1又は請求項2に記載の非水系ゲル電解質。
The polymer is represented by the following general formula (3)
(Wherein, n 31 ~n 34 are the same or respectively, an integer of 25 to 250, R 31 to R 34 are the same or different and each an alkylene group of C 1 ~C 7, C 2 ~C 7 alkenylene groups, —NH—R 35 —, —CO—R 35 —, —R 36 —O—R 37 —, —R 36 —NH—R 37 —, —R 36 —CO 2 —R 37 —, -R 36 -CO 2 -NH-R 37 -, - R 36 -CO-R 37 -, or -R 36 -CO 2 -NH-R 37 -. represents here, R 35 is C 1 -C 7 R 36 represents a C 1 -C 3 alkylene group, and R 37 represents a C 1 -C 5 alkylene group.)
And the following general formula (4)
(Wherein, n 41 ~n 44 are the same or respectively, an integer of 25 to 250, R 41 to R 44 are the same or different and each an alkylene group of C 1 ~C 7, C 2 ~C 7 alkenylene groups, —NH—R 45 —, —CO—R 45 —, —R 46 —O—R 47 —, —R 46 —NH—R 47 —, —R 46 —CO 2 —R 47 —, -R 46 -CO 2 -NH-R 47 -, - R 46 -CO-R 47 -, or -R 46 -CO 2 -NH-R 47 -. represents here, R 45 is C 1 -C 7 Wherein R 46 represents a C 1 -C 3 alkylene group, and R 47 represents a C 1 -C 5 alkylene group). That all or part of the ends of each other are bonded by an amide bond The non-aqueous gel electrolyte according to claim 1 or 2, further having a network structure.
非水系ゲル電解質中のポリエチレン骨格を有するポリマーの重量分率が0.1〜30%である請求項1〜3の何れか1項に記載の非水系ゲル電解質。   The nonaqueous gel electrolyte according to any one of claims 1 to 3, wherein the weight fraction of the polymer having a polyethylene skeleton in the nonaqueous gel electrolyte is 0.1 to 30%. 非水溶媒が、鎖状カーボネートおよび/または環状カーボネートである請求項1〜4のいずれか1項に記載の非水系ゲル電解質。 The nonaqueous gel electrolyte according to any one of claims 1 to 4, wherein the nonaqueous solvent is a chain carbonate and / or a cyclic carbonate. 非水溶媒が、下記一般式(5)
(式中、mは0〜3の整数であり、Rは、炭素数1〜6の直鎖もしくは分岐のアルキル基を表し、Rfは、炭素数1〜6の直鎖または分岐の含フッ素アルキル基を表す。)で表されるリン酸エステルを含有する請求項1〜5のいずれか1項に記載の非水系ゲル電解質。
The non-aqueous solvent is represented by the following general formula (5)
(In the formula, m is an integer of 0 to 3, R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms, and Rf 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms. The non-aqueous gel electrolyte according to any one of claims 1 to 5, which comprises a phosphate ester represented by a fluorine alkyl group.
請求項1〜6のいずれか1項に記載の非水系ゲル電解質を含有する非水系ゲル電解質二次電池。 The non-aqueous gel electrolyte secondary battery containing the non-aqueous gel electrolyte of any one of Claims 1-6.
JP2015050200A 2015-03-13 2015-03-13 Non-aqueous gel electrolyte and non-aqueous gel electrolyte secondary battery using the same Active JP6529290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050200A JP6529290B2 (en) 2015-03-13 2015-03-13 Non-aqueous gel electrolyte and non-aqueous gel electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050200A JP6529290B2 (en) 2015-03-13 2015-03-13 Non-aqueous gel electrolyte and non-aqueous gel electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2016170992A true JP2016170992A (en) 2016-09-23
JP6529290B2 JP6529290B2 (en) 2019-06-12

Family

ID=56984030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050200A Active JP6529290B2 (en) 2015-03-13 2015-03-13 Non-aqueous gel electrolyte and non-aqueous gel electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6529290B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468710B2 (en) 2017-03-06 2019-11-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous secondary battery
US10511056B2 (en) 2017-03-09 2019-12-17 Lg Chem, Ltd. Solid polymer electrolyte and lithium secondary battery comprising same
WO2020022777A1 (en) * 2018-07-25 2020-01-30 주식회사 엘지화학 Polymer electrolyte and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164033A (en) * 1998-11-24 2000-06-16 Sony Corp Electrolyte and battery with the same
JP2003238821A (en) * 2002-02-21 2003-08-27 Sunstar Eng Inc Flame retardant composition for polymer solid electrolyte
JP2004349159A (en) * 2003-05-23 2004-12-09 Toyota Motor Corp Manufacturing method of gel electrolyte film and manufacturing method of gel electrolyte secondary battery
WO2011099580A1 (en) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164033A (en) * 1998-11-24 2000-06-16 Sony Corp Electrolyte and battery with the same
JP2003238821A (en) * 2002-02-21 2003-08-27 Sunstar Eng Inc Flame retardant composition for polymer solid electrolyte
JP2004349159A (en) * 2003-05-23 2004-12-09 Toyota Motor Corp Manufacturing method of gel electrolyte film and manufacturing method of gel electrolyte secondary battery
WO2011099580A1 (en) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468710B2 (en) 2017-03-06 2019-11-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous secondary battery
US10511056B2 (en) 2017-03-09 2019-12-17 Lg Chem, Ltd. Solid polymer electrolyte and lithium secondary battery comprising same
WO2020022777A1 (en) * 2018-07-25 2020-01-30 주식회사 엘지화학 Polymer electrolyte and method for producing same
US11881554B2 (en) 2018-07-25 2024-01-23 Lg Energy Solution, Ltd. Polymer electrolyte and method for producing same

Also Published As

Publication number Publication date
JP6529290B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
WO2011037263A1 (en) Solvent for electrolytic solution, electrolytic solution, and gel-like electrolyte
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
KR20120027277A (en) Electrolytic solution and lithium ion secondary battery utilizing same
KR102371100B1 (en) Flame retardant for electrolytes for batteries
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
JPWO2019093411A1 (en) Fire extinguishing electrolyte and secondary battery containing the electrolyte
WO2021166771A1 (en) Electrolytic solution for secondary cell containing cyclic phosphoric acid ester
KR102645232B1 (en) Lithium salt mixture and its use as battery electrolyte
JP5819653B2 (en) Non-flammable electrolyte
JP6549420B2 (en) Nonaqueous electrolyte and nonaqueous secondary battery using the same
JP6529290B2 (en) Non-aqueous gel electrolyte and non-aqueous gel electrolyte secondary battery using the same
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
CN113113668B (en) Electrolyte additive, non-aqueous electrolyte containing electrolyte additive and lithium ion battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20160050870A (en) Organic-Inorganic Complexed Polymer Gel Electrolyte and Lithium Secondary Battery Having the Same
US20220302503A1 (en) An electrolyte solution comprising an alkali metal bis (oxalato)borate salt
KR20150079078A (en) Non-aqueous electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same
JP2012248519A (en) Electrolytic solution, gel electrolyte and lithium ion secondary battery
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5259996B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP6955876B2 (en) Electrolyte for non-water secondary battery and non-water secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250