JP2016169334A - Method for producing thermoelectric polymer composite - Google Patents

Method for producing thermoelectric polymer composite Download PDF

Info

Publication number
JP2016169334A
JP2016169334A JP2015051021A JP2015051021A JP2016169334A JP 2016169334 A JP2016169334 A JP 2016169334A JP 2015051021 A JP2015051021 A JP 2015051021A JP 2015051021 A JP2015051021 A JP 2015051021A JP 2016169334 A JP2016169334 A JP 2016169334A
Authority
JP
Japan
Prior art keywords
polymer
thermoelectric
particles
producing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015051021A
Other languages
Japanese (ja)
Other versions
JP6476375B2 (en
Inventor
雅夫 住田
Masao Sumita
雅夫 住田
和也 柳沢
Kazuya Yanagisawa
和也 柳沢
忠夫 徳島
Tadao Tokushima
忠夫 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brabus Japan Co Ltd
Original Assignee
Brabus Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brabus Japan Co Ltd filed Critical Brabus Japan Co Ltd
Priority to JP2015051021A priority Critical patent/JP6476375B2/en
Publication of JP2016169334A publication Critical patent/JP2016169334A/en
Application granted granted Critical
Publication of JP6476375B2 publication Critical patent/JP6476375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing a polymer composite having large thermoelectric power.SOLUTION: A method for producing a thermoelectric polymer composite includes: a first step of mixing nano semiconductor particles and polymer resin powder; a second step of melting and kneading a composite resin in which the nano semiconductor particles have been adsorbed on the surface in the first step; a third step of extrusion molding the substance melted and kneaded in the second step from a nozzle having a predetermined bore diameter; and a fourth step of heating the substance molded in the third step at a predetermined temperature, and crystallizing the heated substance with a predetermined time period.SELECTED DRAWING: Figure 1

Description

本発明は、熱電性高分子複合体の製造方法に関する。   The present invention relates to a method for producing a thermoelectric polymer composite.

近年、高齢化社会を迎え、健康維持のために半導体粒子からの赤外線放射を利用した繊維、磁石からの磁力線を皮膚に浸透させることによる血流促進、ZnOバルク半導体又は半導体粒子の生体加熱による励起電子の生体拡散に基づく血流促進等、幅広く健康維持機能を有する製品が要求され、市販されてきている。   In recent years, with the aging of society, fibers that use infrared radiation from semiconductor particles to maintain health, blood flow promotion by penetrating the skin with magnetic lines of force from magnets, excitation of ZnO bulk semiconductors or semiconductor particles by biological heating Products having a wide range of health maintenance functions, such as promoting blood flow based on the biological diffusion of electrons, are demanded and are commercially available.

ナノ粒子と高分子の複合体として、ナノダイヤ複合樹脂の製法が開示され、2軸押出混連機による製造条件が示されている(たとえば、特許文献2)。この製法は、樹脂中での均一分散が目的で、ダイヤ粒子のマトリクス樹脂中での作動条件が規定されている。目的は均一分散であるため、ダイヤ粒子が均一分散した場合は、赤外線しか放射しない。この場合、健康維持に最も必要な血流向上の効果は期待できない。   As a composite of nano particles and a polymer, a method for producing a nano diamond composite resin is disclosed, and production conditions by a twin screw extruder are shown (for example, Patent Document 2). This manufacturing method is intended for uniform dispersion in the resin, and the operating conditions of the diamond particles in the matrix resin are defined. Since the purpose is uniform dispersion, when the diamond particles are uniformly dispersed, only infrared rays are emitted. In this case, the effect of improving blood flow most necessary for maintaining health cannot be expected.

特許文献2の製法により製造された繊維中でのナノダイヤの分散状態を図8に示す。図8中、Tは繊維、DPは繊維Tに練り込まれたナノダイヤ粒子である。この場合は、ナノダイヤ粒子は球状に分散していて、ナノダイヤ粒子からの励起電子がショートされるため、赤外線放射効果しか期待できない。赤外線放射能は、配合量にほぼ比例するので、生体効果を得るにはダイヤ粒子の配合量を増やすか、プラチナ等の補助材料を必要とする(特許文献3)。   FIG. 8 shows a dispersion state of the nanodiamond in the fiber manufactured by the manufacturing method of Patent Document 2. In FIG. 8, T is a fiber, and DP is a nano diamond particle kneaded into the fiber T. In this case, since the nanodiamond particles are dispersed in a spherical shape and the excited electrons from the nanodiamond particles are short-circuited, only an infrared radiation effect can be expected. Infrared radioactivity is almost proportional to the blending amount. Therefore, in order to obtain a biological effect, the blending amount of diamond particles is increased or an auxiliary material such as platinum is required (Patent Document 3).

特開2012−219026JP2012-219026 特開2012−161965JP2012-161965 特開2010−106378JP 2010-106378 A 特開2010−24589JP 2010-24589

半導体ナノダイヤモンドを添加した高分子複合材料の電気特性と体温上昇効果 日本材料科学会誌 Vol 48 No 5Electrical properties and body temperature increase effect of polymer composites with semiconductor nanodiamond added Journal of Japan Society for Materials Science Vol 48 No 5 半導体ナノダイヤモンドを配合した高分子複合繊維の電気特性と衛生効果 日本材料科学会誌 Vol 50 No 3Electrical properties and hygienic effects of polymer composite fibers blended with semiconductor nanodiamonds Japan Society for Materials Science Vol 50 No 3 Polymer Bulletin 25 p265-271 1991 Masao SumitaPolymer Bulletin 25 p265-271 1991 Masao Sumita ヨッフェ著 坂田訳のサーモエレメント P3Byoffe Sakata Translation Thermo Element P3

ZnO酸化亜鉛からなる健康器具は、バイオセルの商品名で普及している。バルク半導体素子は、非特許文献4に記載されているように、熱電能ゼーペック係数が最大でも700μVであり、内部抵抗が小さい。皮膚への異常電流を防ぐため、保護抵抗を入れているが、過剰な生体電流が流れ、皮膚に水泡ができる場合もあった。これは、人体の皮膚抵抗が年齢及び湿度条件により数Ωから数十kΩと3〜4桁変化するので、起電力が小さくても、局所的に生体電流といわれる2〜20μA以上の電流が流れるためである。   Health appliances made of ZnO zinc oxide are popular under the trade name of Biocell. As described in Non-Patent Document 4, the bulk semiconductor element has a thermoelectric Zepeck coefficient of 700 μV at the maximum and a low internal resistance. In order to prevent abnormal current to the skin, protective resistance is put in, but excessive bioelectric current may flow and water bubbles may form on the skin. This is because the skin resistance of the human body changes from several Ω to several tens of kΩ depending on the age and humidity conditions, 3 to 4 digits, so that even if the electromotive force is small, a current of 2 to 20 μA or more, which is locally referred to as a biocurrent, flows. Because.

このため、ナノダイヤ粒子を染色法又は溶融紡糸法により繊維結晶粒界に付着させ、略1次元に配列させ、数十Vから300V程度の巨大熱電能をもつ内部インピーダンスの大きい機能性繊維及びペレットが、特許文献4に開示され、非特許文献4にも記載されている。   For this reason, functional fibers and pellets having a large internal impedance having a huge thermoelectric power of about several tens of V to 300 V are obtained by attaching nanodiamond particles to fiber crystal grain boundaries by a dyeing method or a melt spinning method and arranging them in a substantially one-dimensional manner. , And disclosed in Non-Patent Document 4.

染色法によるダイヤ粒子の繊維表面への沈着は、ダイヤ粒子が繊維結晶界面または非晶質部分に沈着し、略1次元配列するので、熱電性能を得るには適している。しかし、洗濯等により剥がれ易い。10回程度の洗濯で90%程度(木綿)、130度高圧キャリアー染色法によるPET(ポリエチレンテレフタレート)繊維でも50%程度劣化した。天然繊維は、結晶化度が良いため、人工高分子繊維よりも染色が難しい。   The deposition of the diamond particles on the fiber surface by the dyeing method is suitable for obtaining thermoelectric performance because the diamond particles are deposited at the fiber crystal interface or the amorphous part and are arranged approximately one-dimensionally. However, it is easily peeled off by washing or the like. About 10% of washing was performed for about 90% (cotton), and PET (polyethylene terephthalate) fiber by 130 degree high-pressure carrier dyeing was also deteriorated by about 50%. Natural fibers are more difficult to dye than artificial polymer fibers because of their good crystallinity.

ペレットについては、樹脂としてPP(ポリプロピレン)を、ダイヤとして粒径20−200nmのナノダイヤ配合高分子熱電素子を用いることが、非特許文献2に開示されている。   Regarding pellets, Non-Patent Document 2 discloses that PP (polypropylene) is used as a resin and a nano-diameter blended polymer thermoelectric element having a particle diameter of 20 to 200 nm is used as a diamond.

しかし、製法は所定の配合後混合し、ポッテイング法で成型している。ポッテイング法では、高分子樹脂がゆっくり固化するので、ダイヤ粒子が押出され、針状に偏析するが、方向が一様でないので、生産性が悪い。また、ダイヤの高分子中での配列が悪く、10〜12wt%のダイヤが必要であるため、コスト的に問題がある。   However, the manufacturing method mixes after predetermined | prescribed mixing | blending and shape | molds by the potting method. In the potting method, since the polymer resin is slowly solidified, the diamond particles are extruded and segregate in a needle shape, but the direction is not uniform, so the productivity is poor. Moreover, since the arrangement | sequence in the polymer | macromolecule of a diamond is bad and 10-12 wt% diamond is required, there exists a problem in cost.

また、非特許文献2には、射出成型法によるペレットの実験結果も記載されている。しかし、ナノダイア樹脂の湯流れが一様でなく、成型品の性能のバラツキが多いという問題点がある。   Non-Patent Document 2 also describes experimental results of pellets by injection molding. However, the hot water flow of the nanodia resin is not uniform, and there is a problem that the performance of the molded product varies greatly.

本発明は、上記の事情に鑑みなされたものであり、大きな熱電能を有する高分子複合体を安定的に作る製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a production method for stably producing a polymer composite having a large thermoelectric power.

本発明者の一人は、非特許文献3に発表した、粒子と高分子樹脂の表面エネルギーの差によって配合粒子が高分子結晶界面又は樹脂中にて特異な配列をするパーコレーション効果及び熱処理による粒子のダイナミックパーコレーション再配列理論と、特定の方向に溶融押出しされた樹脂が結晶化に際して押出し方向に配列する性質とを利用して、高分子樹脂マトリクス内に半導体粒子を針状に略1次元配列させることにより、巨大ゼーペック係数を有する機能性熱電繊維及び熱電機能性ペレットの効率的な生産が可能であることを示唆した。しかし、具体的な製造方法は開示していない。   One of the inventors of the present invention, as disclosed in Non-Patent Document 3, has a percolation effect in which the compounded particles have a unique arrangement at the polymer crystal interface or in the resin due to the difference in surface energy between the particles and the polymer resin. Using the dynamic percolation rearrangement theory and the property that the resin melt-extruded in a specific direction is aligned in the extrusion direction during crystallization, semiconductor particles are arranged approximately one-dimensionally in a needle shape in a polymer resin matrix. Thus, it was suggested that efficient production of functional thermoelectric fibers and thermoelectric functional pellets having a huge Zepek coefficient is possible. However, a specific manufacturing method is not disclosed.

上記目的を達成するため、本発明に係る熱電性高分子複合体の製造方法は、一側面において、ナノ半導体粒子と高分子樹脂粉末とを混合する第1工程と、第1工程においてナノ半導体粒子を表面に吸着した複合樹脂を溶融混練する第2工程と、第2工程において溶融混練された物を所定の口径を有するノズルから押出し成型する第3工程と、第3工程において成型された物を所定の温度で加熱し、所定の時間をかけて結晶化する第4工程とからなることを特徴とする。   In order to achieve the above object, a method for producing a thermoelectric polymer composite according to the present invention includes, in one aspect, a first step of mixing nanosemiconductor particles and a polymer resin powder, and nanosemiconductor particles in the first step. A second step of melting and kneading the composite resin adsorbed on the surface, a third step of extruding the melt-kneaded product in the second step from a nozzle having a predetermined diameter, and a product molded in the third step. It comprises a fourth step of heating at a predetermined temperature and crystallizing over a predetermined time.

上記目的を達成するため、本発明に係る熱電性高分子複合体の製造方法は、他側面において、前記第3工程において成型された物を切断してペレットを成形し、そのペレットを第4工程において結晶化した後、第5工程において、そのペレットをマスターバッチとして、半導体粒子を含まない高分子ペレットまたは高分子粉末を所定量配合し、溶融紡糸法により繊維中に半導体粒子がほゞ1次元配列をされた繊維を製造することを特徴とする。   In order to achieve the above object, in another aspect of the method for producing a thermoelectric polymer composite according to the present invention, the product formed in the third step is cut to form a pellet, and the pellet is formed in the fourth step. In the fifth step, the pellets are used as a master batch, and a predetermined amount of polymer pellets or polymer powder not containing semiconductor particles is blended in the fifth step, and the semiconductor particles are approximately one-dimensional in the fiber by melt spinning. It is characterized by producing aligned fibers.

結晶化されたペレットを溶融紡糸法繊維のマスターバッチとして使用するので、繊維長手方向に半導体凝集粒子がより一層配列するため、半導体粒子の使用量を減らすことができる。   Since the crystallized pellet is used as a master batch of melt-spun fiber, semiconductor aggregated particles are further arranged in the fiber longitudinal direction, so that the amount of semiconductor particles used can be reduced.

半導体粒子には、活性化エネルギーレベルが0.2〜1eV、粒径が3〜300nmのものを使用すれば、樹脂の変型温度範囲で加熱励起電子が得られる。粒径が300nmを超すと、成型品結晶化処理温度での加熱で、高分子樹脂結晶界面への粒子偏析が起こりにくくなる。活性化エネルギーレベルが0.2eV以下では、室温での励起電子が多くなり、体温加熱励起電子が減るので好ましくない。粒径が3nm以下の粒子では、半導体特性が劣化し、粒子成型コストが上がる。   If a semiconductor particle having an activation energy level of 0.2 to 1 eV and a particle size of 3 to 300 nm is used, heat-excited electrons can be obtained in the modification temperature range of the resin. When the particle diameter exceeds 300 nm, particle segregation at the polymer resin crystal interface becomes difficult to occur by heating at the crystallization treatment temperature of the molded product. When the activation energy level is 0.2 eV or less, the number of excited electrons at room temperature increases and the number of body temperature heating excited electrons decreases, which is not preferable. When the particle size is 3 nm or less, the semiconductor characteristics are deteriorated and the particle molding cost is increased.

高分子マトリクス内の半導体粒子含有量は、0.0001〜10wt%が好適である。0.0001%以下では、繊維製品でも励起電子が少なく、熱電能が下がる。10wt%以上では、ペレットでも半導体粒子の配列が乱れ、電気抵抗も下がるので、熱起電力が少なくなり、生体効果が減少する。   The semiconductor particle content in the polymer matrix is preferably 0.0001 to 10 wt%. If it is 0.0001% or less, the fiber product has few excited electrons and the thermoelectric power is lowered. If it is 10 wt% or more, the arrangement of the semiconductor particles is disturbed even in the pellet, and the electric resistance is lowered, so that the thermoelectromotive force is reduced and the biological effect is reduced.

人体に接触させたときの熱電効果を利用する従来の熱電複合樹脂は、所定の寸法に切断されて使用されるが、本発明の熱電機能性繊維の場合は、マスターバッチとしてペレットを使用する。溶融紡糸法による繊維化の場合は、溶融混練過程で針状の半導体粒子は配列方向が乱されるが、繊維の延伸工程で針状半導体粒子列はより一層略1次元配列をするため、半導体粒子の配合量を減らすことができる。   A conventional thermoelectric composite resin that uses the thermoelectric effect when it is brought into contact with the human body is cut into a predetermined size and used. In the case of the thermoelectric functional fiber of the present invention, pellets are used as a master batch. In the case of fiber formation by the melt spinning method, the alignment direction of the needle-like semiconductor particles is disturbed in the melt-kneading process, but the needle-like semiconductor particle rows are further arranged in a substantially one-dimensional manner in the fiber drawing process. The amount of particles can be reduced.

半導体粒子は、樹脂との混合過程で樹脂表面に吸着され、溶液混合とは異なり、不均一に固体状で分布するため、溶融過程で球状になることは少ない。したがって、成型後の結晶化処理で、針状の形状で存在する確率が大きい。溶液混合の場合は、半導体粒子は帯電性能のため球状に凝集する。赤外線効果を目的とする場合には、なるべく細かく一様に分散する必要があるので溶液混合が適用されるが、熱電効果の場合は、半導体粒子凝集体の針状形態が必要条件である。   The semiconductor particles are adsorbed on the surface of the resin in the mixing process with the resin, and unlike the solution mixing, the semiconductor particles are distributed in a non-uniform solid state, so that the semiconductor particles are rarely formed into a spherical shape in the melting process. Therefore, there is a high probability that the crystallization process after the molding will have a needle-like shape. In the case of solution mixing, the semiconductor particles aggregate in a spherical shape due to charging performance. In the case of aiming at the infrared effect, solution mixing is applied because it is necessary to disperse as finely and uniformly as possible. In the case of the thermoelectric effect, a needle-like form of the semiconductor particle aggregate is a necessary condition.

本発明によれば、大きな熱電能を有する高分子複合体を安定的に製造する方法を提供することができる。   The present invention can provide a method for stably producing a polymer composite having a large thermoelectric power.

本発明の実施の形態に係る熱電性高分子複合体の製造方法の工程を示す模式図である。It is a schematic diagram which shows the process of the manufacturing method of the thermoelectric polymer composite_body | complex which concerns on embodiment of this invention. 第3工程において用いられる押し出し成型機の一例を示す図である。It is a figure which shows an example of the extrusion molding machine used in a 3rd process. 第3工程において用いられる押し出し成型機の他例を示す図であるIt is a figure which shows the other example of the extrusion molding machine used in a 3rd process. 図1の第5工程において製造された繊維の断面構造を示す図である。It is a figure which shows the cross-section of the fiber manufactured in the 5th process of FIG. 実施例1の繊維のDSC(示唆熱分析)曲線を示す図である。2 is a diagram showing a DSC (suggested thermal analysis) curve of the fiber of Example 1. FIG. ナノダイヤ練込み糸の電気−温度感受性の時間的変化を示す図である。It is a figure which shows the time change of the electro-temperature sensitivity of nano diamond kneading | yarn. 実施例2の結晶化処理の加熱前後のDSC曲線を示す図である。It is a figure which shows the DSC curve before and behind the heating of the crystallization process of Example 2. FIG. 従来製法により製造された繊維中でのナノダイヤの分散状態を示す図面代用写真である。It is a drawing substitute photograph which shows the dispersion state of the nano diamond in the fiber manufactured by the conventional manufacturing method.

以下に、本発明の第1の実施の形態に係る熱電性高分子複合体の製造方法の各工程について、図1の模式図を参照しながら詳細に説明する。   Below, each process of the manufacturing method of the thermoelectric polymer composite which concerns on the 1st Embodiment of this invention is demonstrated in detail, referring the schematic diagram of FIG.

第1工程は、ナノ半導体粒子と高分子樹脂粉末とを混合する工程である。この工程では、図1の(a)に示すように、ナノ半導体粒子Aは高分子樹脂粉末Bの表面に吸着される。ナノ半導体粒子Aには、ナノダイヤモンド粒子が最適である。PET及びPBT(ポリブチ練テレフタレート)のようなエステル樹脂は、工程中での加水分解による劣化を防ぐため、前もって加熱脱水をしておくことが好ましい。加熱脱水条件は120〜150℃、2〜4時間で充分である。   The first step is a step of mixing the nano semiconductor particles and the polymer resin powder. In this step, the nano semiconductor particles A are adsorbed on the surface of the polymer resin powder B as shown in FIG. Nanodiamond particles are optimal for the nanosemiconductor particles A. Ester resins such as PET and PBT (polybutyl terephthalate) are preferably subjected to heat dehydration in advance in order to prevent degradation due to hydrolysis in the process. Heating dehydration conditions of 120 to 150 ° C. and 2 to 4 hours are sufficient.

第2工程では、図1の(b)に示すように、第1工程においてナノ半導体粒子を表面に吸着した複合樹脂ABを溶融混練する。溶融混練には、通常のスクリュウ回転機構を有する2軸混練押出機が使用できるが、混練加工中は樹脂にせん断応力によるシェアーを与えるメカニズムをもつ混練方法が望ましい。シェアー力を与えられた複合樹脂は、配合されたナノ半導体粒子が球状に凝集するのを防止する作用が強いためである。   In the second step, as shown in FIG. 1B, the composite resin AB having the nano semiconductor particles adsorbed on the surface in the first step is melt-kneaded. For melt-kneading, a normal twin-screw kneading extruder having a screw rotation mechanism can be used, but a kneading method having a mechanism for imparting a shear stress to the resin during kneading is desirable. This is because the composite resin provided with the shear force has a strong effect of preventing the blended nano-semiconductor particles from agglomerating in a spherical shape.

第3工程では、図1の(c)に示すように、第2工程において溶融混練されたナノ半導体複合樹脂を所定の径を有するノズルから押出し成型する。第2工程において2軸混練押出機を使用する場合は、第2工程と第3工程とが切れ目なく行われる。   In the third step, as shown in FIG. 1C, the nano-semiconductor composite resin melt-kneaded in the second step is extruded from a nozzle having a predetermined diameter. When a biaxial kneading extruder is used in the second step, the second step and the third step are performed without a break.

第3工程における押出し成型において、図2の(a)に示すように、押し出し成型機Pに口径が2〜10mmのノズルn1を用い、押出し成型しながら、または押出し成型後に、成型品を切断すれば、熱電機能ペレットの製造が可能である。図2の(b)は(a)の側面図である。   In the extrusion molding in the third step, as shown in FIG. 2 (a), a nozzle n1 having a diameter of 2 to 10 mm is used for the extrusion molding machine P, and the molded product is cut during or after extrusion molding. For example, thermoelectric functional pellets can be manufactured. FIG. 2B is a side view of FIG.

また、第3工程における押出し成型において、図3の(a)に示すように、1〜3mmの口径を多数有するノズルn2を用いる場合は、熱電機能繊維の製造が可能である。図3の(b)は(a)の側面図である。   Further, in the extrusion molding in the third step, as shown in FIG. 3A, when a nozzle n2 having a large diameter of 1 to 3 mm is used, a thermoelectric functional fiber can be manufactured. FIG. 3B is a side view of FIG.

第3工程においては、押出し成型後、急冷して、高分子結晶化を防ぐことが好ましい。樹脂が押出工程で結晶化すると、配合半導体粒子がパーコレーション効果により配列しにくいからである。温水冷却程度の冷却速度でも良いが、樹脂及び半導体粒子の種類によって条件が変わる。ナノダイヤモンド粒子の場合は、ダイヤからの熱励起電子により樹脂の結晶化が阻害されるので、空冷でも良い。   In the third step, it is preferable to rapidly cool after extrusion to prevent polymer crystallization. This is because when the resin is crystallized in the extrusion process, the blended semiconductor particles are difficult to align due to the percolation effect. The cooling rate may be as high as that of hot water cooling, but the conditions vary depending on the type of resin and semiconductor particles. In the case of nanodiamond particles, crystallization of the resin is inhibited by thermally excited electrons from the diamond, so air cooling may be used.

第4工程では、図1の(d)に示すように、第3工程において押出し成型された物Cを所定の温度で加熱し、所定時間をかけて結晶化(D)させる。樹脂の結晶化の過程で、パーコレーション及びダイナミックパーコレーション効果により配合された半導体粒子は、結晶界面に押出される。また、樹脂は押出工程で押出方向に異方性をもって結晶化しやすいので、押出し成型品C中の半導体粒子は所定の方向にほぼ一次元配列し、半導体粒子からの励起電子による電圧が積算されて、巨大なゼーペック係数を有する熱電性高分子複合体ができる。   In the fourth step, as shown in FIG. 1 (d), the product C extruded in the third step is heated at a predetermined temperature and crystallized (D) over a predetermined time. During the resin crystallization process, the semiconductor particles blended by the percolation and dynamic percolation effects are extruded to the crystal interface. Further, since the resin is easily crystallized with anisotropy in the extrusion direction in the extrusion process, the semiconductor particles in the extruded product C are arranged almost one-dimensionally in a predetermined direction, and the voltage due to the excited electrons from the semiconductor particles is integrated. Thus, a thermoelectric polymer composite having a huge Seepek coefficient can be obtained.

上記特許文献3には、押出成型後のペレットの結晶化及び再加熱による半導体粒子凝集体の結晶粒界への偏析による針状化配列の思想はない。   The above-mentioned Patent Document 3 does not have the idea of needle-like arrangement by crystallization of pellets after extrusion molding and segregation of semiconductor particle aggregates to crystal grain boundaries by reheating.

本発明の第2の実施の形態に係る熱電性高分子複合体の製造方法においては、上記第1の実施の形態における第3工程において成型された物を切断してペレットを成形し、そのペレットを第4工程において結晶化した後、図1の(e)に示すように、第5工程において、そのペレットD’をマスターバッチとして、半導体粒子を含まない高分子ペレットまたは高分子粉末Eを所定量配合し、溶融紡糸法により繊維中に半導体粒子がほゞ1次元配列をされた繊維Fを製造する   In the method for manufacturing a thermoelectric polymer composite according to the second embodiment of the present invention, the pellet formed by cutting the product molded in the third step in the first embodiment is formed. After crystallizing in the fourth step, as shown in FIG. 1 (e), in the fifth step, the pellet D ′ is used as a master batch, and polymer pellets or polymer powder E not containing semiconductor particles are placed. A fiber F in which semiconductor particles are roughly arranged in a one-dimensional array in the fiber is manufactured by blending a fixed amount.

図4は、本発明方法により製造された繊維Fを示すものであり、(a)は繊維Fの拡大側面図、(b)は(a)のX−X拡大断面図、(c)は(a)のY−Y拡大断面図である。(b)(c)に示されるように、結晶化処理により繊維F中に1次元配列したナノダイヤ粒子A’の偏析が進み、顕著な配向性が認められる。   FIG. 4 shows the fiber F manufactured by the method of the present invention. (A) is an enlarged side view of the fiber F, (b) is an XX enlarged sectional view of (a), and (c) is ( It is a YY expanded sectional view of a). (B) As shown in (c), the segregation of the nanodiamond particles A ′ one-dimensionally arranged in the fibers F by the crystallization process proceeds, and a remarkable orientation is recognized.

以下に、実施例を説明する。
<実施例 1> PBT繊維
PBT樹脂粉末及び基本粒径分布範囲3〜10nmの凝集体を用いて、マスターバッチとするペレットを製作した。PBT樹脂は10〜30μm程度に粉砕し、120〜150℃で2〜4時間乾燥し、脱水処理をした。脱水処理した樹脂粉末と凝集体を粉末混合して、樹脂粉末の表面にナノダイヤ粒子を付着させた。0.1wt%のナノダイヤ粒子を配合したマスターバッチは、10%混合体にダイア無しの樹脂を加えて10倍に薄め、更に同様のプロセスで10倍に薄めて所定の配合にした。しかし、ナノダイヤ粒子の凝集体のサイズによっては、最初から0.1wt%配合にしてもよい。
Examples will be described below.
<Example 1> PBT fibers PBT resin powder and aggregates having a basic particle size distribution range of 3 to 10 nm were used to produce pellets as master batches. The PBT resin was pulverized to about 10 to 30 μm, dried at 120 to 150 ° C. for 2 to 4 hours, and dehydrated. The dehydrated resin powder and the agglomerate were mixed with powder to attach nanodiamond particles to the surface of the resin powder. A master batch containing 0.1 wt% nanodiamond particles was diluted 10 times by adding a resin without diamond to a 10% mixture, and further diluted 10 times by the same process to obtain a predetermined composition. However, depending on the size of the aggregates of nanodiamond particles, 0.1 wt% may be blended from the beginning.

混合されたナノダイア樹脂粉末を、2軸混練押出機にて直径2mmφに押出し成型した。押出し成型温度は、樹脂により200〜270℃の範囲に選定した。スクリュウ回転数は、5〜25rpmで行った。成型品は強制冷却して、徐冷による結晶化を防いだ。   The mixed nanodia resin powder was extruded to a diameter of 2 mmφ with a twin-screw kneading extruder. The extrusion molding temperature was selected in the range of 200 to 270 ° C. depending on the resin. The screw rotation speed was 5 to 25 rpm. The molded product was forcibly cooled to prevent crystallization due to slow cooling.

押出成型品は、押出し方向にテクスチャーを持っているので、長手方向に結晶化し易い。所定の長さに切断後、120〜150℃の温度で2〜6時間加熱して結晶化した。これにより、長手方向に伸びた結晶粒界にナノダイヤを析出させ、0.1wt%ナノダイヤ配合マスターバッチを作った。   Since the extruded product has a texture in the extrusion direction, it is easily crystallized in the longitudinal direction. After cutting to a predetermined length, it was crystallized by heating at a temperature of 120 to 150 ° C. for 2 to 6 hours. As a result, nanodiamonds were precipitated on the grain boundaries extending in the longitudinal direction, and a 0.1 wt% nanodiamond master batch was prepared.

図5にマスターバッチとダイヤ無しのPBT結晶化繊維のDSC曲線を示す。PBT樹脂は、ナノダイヤの影響を受けず、完全に結晶化していた。PBTマスターバッチの結晶化処理により、生体温度差で起電力は200mVが得られた。繊維ではより配向性が増すので配合量0.001wt%で起電力は300Vにも達した。マスターバッチの起電力の測定には、CUSTOM製CDM−11電子テスターを、繊維の測定には、春日製静電電圧計KSD−0102を、使用した。
これに対して、バルク半導体の起電力は、最大でも300〜1000μVである。
FIG. 5 shows a DSC curve of a masterbatch and a PBT crystallized fiber without diamond. The PBT resin was not crystallized and was completely crystallized. Due to the crystallization treatment of the PBT master batch, an electromotive force of 200 mV was obtained due to a difference in living body temperature. Since the orientation of fibers was increased, the electromotive force reached 300 V at a blending amount of 0.001 wt%. A CUSTOM CDM-11 electronic tester was used to measure the electromotive force of the master batch, and a Kasuga electrostatic voltmeter KSD-0102 was used to measure the fibers.
On the other hand, the electromotive force of the bulk semiconductor is 300 to 1000 μV at the maximum.

0.1wt%ダイヤ配合PBTマスターバッチをダイヤ無しのPBT樹脂と混合し、溶融紡糸機にてナノダイア0.001wt%配合のナノダイア機能繊維を作成した。そのナノダイア機能繊維の熱電性能、抗菌性を測定した。   A 0.1 wt% diamond blended PBT masterbatch was mixed with a diamond-free PBT resin, and a nanodia functional fiber blended with nanodia 0.001 wt% was prepared by a melt spinning machine. The thermoelectric performance and antibacterial properties of the nanodia functional fiber were measured.

丸型0.6mmφのノズルで溶融紡糸し、延伸工程を経て、50μφと180μφのナノダイア配合繊維を試作した。熱電性能の測定には、各繊維が離散的に配置された180μmφ繊維使用の歯ブラシで測定した。測定結果を図6に示す。測定には上記KSD−0102を使用した。   Melt spinning was performed with a round 0.6 mmφ nozzle, and after passing through a drawing process, 50 μφ and 180 μφ nanodia blended fibers were made as trial products. The thermoelectric performance was measured with a toothbrush using 180 μmφ fibers in which each fiber was discretely arranged. The measurement results are shown in FIG. The above KSD-0102 was used for the measurement.

測定結果がナノダイヤ半導体粒子の略1次元配列による熱電性能によるものか確かめるため、各繊維が密着した、直径4cm、長さ1cmの集合体に集束成型し、温度変化を与え、起電力を測定した。室温保持したサンプルを36℃の加熱板に移動し、温度変化を与えて、発生する起電力を静電電圧計KSD−0102で測定した。いずれのサンプルも、室温及び温度変化で起電力は見られなかった。ダイヤ無しの繊維は、誘電体繊維の形状異方性効果による帯電が集合体になることにより消滅し、ダイア有りの熱電繊維は、繊維束になることにより、繊維相互の電気反発力が増し、バルク半導体熱電素子と同じ現象になり、マイクロボルト単位の熱電性能を示したためである。   In order to confirm whether the measurement result is due to the thermoelectric performance due to the approximately one-dimensional arrangement of nanodiamond semiconductor particles, each fiber was closely bonded to an aggregate of 4 cm in diameter and 1 cm in length to give a temperature change, and the electromotive force was measured. . The sample kept at room temperature was moved to a heating plate at 36 ° C. to give a temperature change, and the generated electromotive force was measured with an electrostatic voltmeter KSD-0102. In any sample, no electromotive force was observed at room temperature and temperature change. The non-diamond fiber disappears when the charge due to the shape anisotropy effect of the dielectric fiber becomes an aggregate, and the thermoelectric fiber with the diamond becomes a fiber bundle, thereby increasing the electric repulsion between the fibers, This is because the same phenomenon as that of a bulk semiconductor thermoelectric element occurs and thermoelectric performance in units of microvolts is exhibited.

歯ブラシの離散した繊維配列では、一定温度では起電力0で温度変化により300Vの起電力が発生した。時間経過とともに、繊維長て方向の温度差がなくなるので、起電力は減少した。ダイヤ無の繊維では、誘電体PBT繊維の形状異方性効果により定常状態でも帯電し、時間経過とともに減少することはない。   In the discrete fiber arrangement of the toothbrush, an electromotive force of 300 V was generated due to a temperature change with an electromotive force of 0 at a constant temperature. The electromotive force decreased with the passage of time because the temperature difference in the direction of the fiber length disappeared. The fiber without diamond is charged even in a steady state due to the shape anisotropy effect of the dielectric PBT fiber and does not decrease with time.

繊維集合体では、どちらの繊維も定常状態及び温度変化で帯電しないことから、ナノダイア配合機能繊維は、熱電機能繊維で半導体ナノダイヤ粒子の略1次元配列により巨大ゼーペック係数を有していることが分かる。   In the fiber assembly, since neither fiber is charged in a steady state or a temperature change, it is understood that the nanodia compound functional fiber is a thermoelectric functional fiber and has a huge Zepek coefficient due to a substantially one-dimensional array of semiconductor nanodiamond particles. .

ナノダイヤ繊維が集合体になると、各繊維の電気反発力相互作用で起電力が無くなることが判明したので、50μmφ繊維20%混紡品に繊維布加工し、腕に巻いて血流向上効果を測定した。   When nanodiamond fibers were aggregated, it was found that the electromotive force disappeared due to the electric repulsive interaction of each fiber. Therefore, the fiber cloth was processed into a 50 μmφ fiber 20% blended product and wound around the arm to measure the blood flow improvement effect. .

発生電圧は300Vで、血流は10%UPしており、本発明のマスターバッチ製法を用いれば、略1次元ナノダイヤ配列熱電機能繊維及びペレットが作成できることが分かった。   The generated voltage was 300 V and the blood flow was increased by 10%, and it was found that substantially one-dimensional nanodiamond array thermoelectric functional fibers and pellets can be produced by using the master batch manufacturing method of the present invention.

本実施例では、ナノダイア半導体が使用されたが、使用される半導体の種類に限定はない。パーコレーション配列を起こすには、半導体粒子表面エネルギーが高分子樹脂マトリクスと大きく異なることが望ましい。   In this embodiment, a nanodia semiconductor is used, but the type of semiconductor used is not limited. In order to cause percolation alignment, it is desirable that the surface energy of the semiconductor particles is significantly different from that of the polymer resin matrix.

<実施例 2> PP樹脂ペレット
PP樹脂粉末及び粒径20〜300nmのダイヤ粒子を混合後、射出成型機にて加熱溶解し、5mmφのペレットを成型した。5mmφ成型品を5mm長に切断し、生体熱電ペレットとした。ペレットは、成型後90℃で2時間加熱処理し、結晶化した。
<Example 2> PP resin pellets After mixing PP resin powder and diamond particles having a particle diameter of 20 to 300 nm, they were heated and dissolved in an injection molding machine to form pellets having a diameter of 5 mm. A 5 mmφ molded product was cut to a length of 5 mm to obtain a biothermoelectric pellet. The pellet was crystallized by heating at 90 ° C. for 2 hours after molding.

結晶化処理前の熱起電力15V平均値が、20Vに上昇した。これは、結晶化処理によりナノダイヤの偏析が進み、配向性が増したことを示す。加熱前後のDSC曲線を図7に示す。   The average value of 15V thermoelectromotive force before crystallization treatment increased to 20V. This shows that the segregation of the nano diamond progressed due to the crystallization treatment, and the orientation increased. FIG. 7 shows DSC curves before and after heating.

以上の実施例に示されるように、紛体混合品を成型後加熱し、結晶化を進めることにより、半導体粒子の配列が増し、熱電繊維及びペレットでも熱電性能が向上することから、本発明の有効性が確かめられた。繊維の場合は、溶融紡糸後の延伸過程で配向性が一層増進するので、特に効果が大きい。   As shown in the above examples, the powder mixture is heated after molding, and by proceeding with crystallization, the arrangement of the semiconductor particles is increased, and the thermoelectric performance is improved even with thermoelectric fibers and pellets. Sex was confirmed. In the case of fibers, the orientation is further enhanced in the drawing process after melt spinning, so that the effect is particularly great.

Claims (4)

ナノ半導体粒子と高分子樹脂粉末とを混合する第1工程と、第1工程においてナノ半導体粒子を表面に吸着した複合樹脂を溶融混練する第2工程と、第2工程において溶融混練された物を所定の口径を有するノズルから押出し成型する第3工程と、第3工程において成型された物を所定の温度で加熱し、所定の時間をかけて結晶化する第4工程とからなる熱電性高分子複合体の製造方法。   A first step of mixing nanosemiconductor particles and polymer resin powder, a second step of melting and kneading the composite resin having the nanosemiconductor particles adsorbed on the surface in the first step, and a product melt-kneaded in the second step Thermoelectric polymer comprising a third step of extrusion molding from a nozzle having a predetermined diameter, and a fourth step of heating the product molded in the third step at a predetermined temperature and crystallization over a predetermined time A method for producing a composite. 請求項1に記載の熱電性高分子複合体の製造方法において、
前記第3工程において成型された物を切断してペレットを成形し、そのペレットを前記第4工程において所定の温度で加熱し、所定の時間をかけて結晶化した後、第5工程として、そのペレットをマスターバッチとして、半導体粒子を含まない高分子ペレットまたは高分子粉末を所定量配合し、溶融紡糸法により繊維中に半導体粒子がほゞ1次元配列をされた繊維を製造することを特徴とする熱電性高分子複合体の製造方法。
In the manufacturing method of the thermoelectric polymer composite according to claim 1,
The material molded in the third step is cut to form a pellet, and the pellet is heated at a predetermined temperature in the fourth step and crystallized over a predetermined time. Using pellets as a master batch, a predetermined amount of polymer pellets or polymer powder not containing semiconductor particles is blended, and fibers in which semiconductor particles are roughly arranged in a one-dimensional array are produced by melt spinning. A method for producing a thermoelectric polymer composite.
請求項1又は2に記載の熱電性高分子複合体の製造方法において、
半導体粒子として活性化エネルギー0.2〜1eV及び粒子サイズ3〜300nmのナノダイヤ粒子を使用し、温度範囲230〜280℃で押出し成型し、成型品を80〜170℃で1〜5時間加熱結晶化し、高分子結晶粒界にダイヤを偏析させて海島構造を有するマスターバッチ及びペレットを製造することを特徴とする熱電性高分子複合体の製造方法。
In the manufacturing method of the thermoelectric polymer composite according to claim 1 or 2,
Using nanodiamond particles with activation energy of 0.2 to 1 eV and particle size of 3 to 300 nm as semiconductor particles, extrusion molding is performed at a temperature range of 230 to 280 ° C., and the molded product is heated and crystallized at 80 to 170 ° C. for 1 to 5 hours. A method for producing a thermoelectric polymer composite comprising producing a masterbatch and pellets having a sea-island structure by segregating diamond at polymer crystal grain boundaries.
請求項1,2または3に記載の熱電性高分子複合体の製造方法において、半導体粒子を0.0001〜10wt%含むことを特徴とする熱電性高分子複合体の製造方法。   The method for producing a thermoelectric polymer composite according to claim 1, 2 or 3, wherein the semiconductor particles are contained in an amount of 0.0001 to 10 wt%.
JP2015051021A 2015-03-13 2015-03-13 Method for producing thermoelectric polymer composite Active JP6476375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051021A JP6476375B2 (en) 2015-03-13 2015-03-13 Method for producing thermoelectric polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051021A JP6476375B2 (en) 2015-03-13 2015-03-13 Method for producing thermoelectric polymer composite

Publications (2)

Publication Number Publication Date
JP2016169334A true JP2016169334A (en) 2016-09-23
JP6476375B2 JP6476375B2 (en) 2019-03-06

Family

ID=56982173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051021A Active JP6476375B2 (en) 2015-03-13 2015-03-13 Method for producing thermoelectric polymer composite

Country Status (1)

Country Link
JP (1) JP6476375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291235A (en) * 2016-11-29 2019-09-27 恒德利公司 Prepare the application of the method and this fiber of the thermoplastic fibre of type containing Nano diamond in yarn and fabric

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292370A1 (en) * 2005-05-10 2006-12-28 Cornell Research Foundation, Inc. Fibers from polymer nanoclay nanocomposites by electrospinning
JP2009096880A (en) * 2007-10-17 2009-05-07 Masakazu Komuro Functional element and functional product radiating infrared ray and charged particle
JP2010024589A (en) * 2008-07-22 2010-02-04 Teijin Nestex Ltd Functional fiber and functional textile product
JP2010106378A (en) * 2008-10-28 2010-05-13 Vision Development Co Ltd Fiber containing particles comprising graphite-based carbon and diamond, and bedding using the same
JP2011074553A (en) * 2009-09-02 2011-04-14 Teijin Fibers Ltd Functional product composed of semiconductor particle-compounded polymer composite
US20110129668A1 (en) * 2009-12-02 2011-06-02 Electronics And Telecommunications Research Institute Organic-inorganic hybrid nanofiber for thermoelectric application and method of forming the same
JP2011526660A (en) * 2008-07-03 2011-10-13 アルケマ フランス Manufacturing method of composite conductive fiber, fiber obtained by this method, and use of the fiber
JP2012177131A (en) * 2003-07-29 2012-09-13 Univ Of Akron Electrically-conducting polymer, method for preparing electrically-conducting polymer, and method for controlling electrical conductivity of polymer
EP2660284A1 (en) * 2012-05-04 2013-11-06 Université Catholique De Louvain Electroconductive nanocomposite
US20140065422A1 (en) * 2012-09-04 2014-03-06 Industry-University Cooperation Foundation Sogang University Stretchable conductive nanofibers and methods of producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177131A (en) * 2003-07-29 2012-09-13 Univ Of Akron Electrically-conducting polymer, method for preparing electrically-conducting polymer, and method for controlling electrical conductivity of polymer
US20060292370A1 (en) * 2005-05-10 2006-12-28 Cornell Research Foundation, Inc. Fibers from polymer nanoclay nanocomposites by electrospinning
JP2009096880A (en) * 2007-10-17 2009-05-07 Masakazu Komuro Functional element and functional product radiating infrared ray and charged particle
JP2011526660A (en) * 2008-07-03 2011-10-13 アルケマ フランス Manufacturing method of composite conductive fiber, fiber obtained by this method, and use of the fiber
JP2010024589A (en) * 2008-07-22 2010-02-04 Teijin Nestex Ltd Functional fiber and functional textile product
JP2010106378A (en) * 2008-10-28 2010-05-13 Vision Development Co Ltd Fiber containing particles comprising graphite-based carbon and diamond, and bedding using the same
JP2011074553A (en) * 2009-09-02 2011-04-14 Teijin Fibers Ltd Functional product composed of semiconductor particle-compounded polymer composite
US20110129668A1 (en) * 2009-12-02 2011-06-02 Electronics And Telecommunications Research Institute Organic-inorganic hybrid nanofiber for thermoelectric application and method of forming the same
EP2660284A1 (en) * 2012-05-04 2013-11-06 Université Catholique De Louvain Electroconductive nanocomposite
US20140065422A1 (en) * 2012-09-04 2014-03-06 Industry-University Cooperation Foundation Sogang University Stretchable conductive nanofibers and methods of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291235A (en) * 2016-11-29 2019-09-27 恒德利公司 Prepare the application of the method and this fiber of the thermoplastic fibre of type containing Nano diamond in yarn and fabric
JP2020502392A (en) * 2016-11-29 2020-01-23 ザ エイチ.ディー.リー カンパニー,インコーポレイテッド Method of preparing nanodiamond-containing thermoplastic fibers and use of such fibers in yarns and fabrics

Also Published As

Publication number Publication date
JP6476375B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
Hasan et al. Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6
JP7019613B2 (en) Conductive molded body with positive temperature coefficient
US20220305719A1 (en) Piezoelectric composite filaments and use thereof in additive manufacturing
EP2006334A1 (en) Thermally conductive resin material and molded body thereof
CN100455621C (en) Conductive mother paticle, conductive polymer filament, its production and use
JP2011526660A (en) Manufacturing method of composite conductive fiber, fiber obtained by this method, and use of the fiber
TWI393730B (en) Conductive masterbatches and conductive monofilaments
KR20120057976A (en) High thermal conductive resin composite, fabrication method of the same and product using the same
Kumar et al. Fused deposition modelling of PLA reinforced with cellulose nano-crystals
JP6476375B2 (en) Method for producing thermoelectric polymer composite
CN108859347A (en) A kind of two anisotropy electro shape memory macromolecule microlayer composites
CN103204700A (en) Preparation method of high crystal orientation zinc oxide nanofiber
KR101621126B1 (en) Polymer pellet for extrusion, polymer composites and method for preparing them
Chandra et al. Effect of injection molding parameters on the electrical conductivitiy of polycarbonate/carbon nanotube nanocomposite
CN101942137A (en) Method for preparing conductivity-enhanced polymer/carbon nano tube composite material by vibration injection molding device
EP2428597B1 (en) All-polymer fibrillar nanocomposites and method for manufacture thereof
Chen et al. Controlled release of diclofenac sodium from polylactide acid-based solid dispersions prepared by hot-melt extrusion
CN113527850A (en) Cool functional masterbatch, cool fiber and preparation method and application thereof
CN109957223B (en) Inorganic nano-silica modified PBT nano-composite spinning material and preparation method thereof
JP2015074674A (en) Glass fiber-reinforced member and thermoplastic resin molded article
Nasrin et al. ’Influence of Talc Filler Content on the Mechanical and DC Electrical Behavior of Compression Molded Isotactic Polypropylene Composites
CN115232336B (en) Heating film material and preparation method thereof
Zoldan et al. Anisotropy in the electrical behavior of immiscible polypropylene/nylon/carbon black blends processed slightly below the melting temperature of the nylon
KR20150142313A (en) Polymer/Hybrid conductive fillers composite with high electrical conductivity and the preparation
Arasteh et al. Effects of fiber spinning on the morphology, rheology, thermal, and mechanical properties of poly (trimethylene terephthalate)/poly (ethylene terephthalate) blends

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6476375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150