JP2010024589A - Functional fiber and functional textile product - Google Patents

Functional fiber and functional textile product Download PDF

Info

Publication number
JP2010024589A
JP2010024589A JP2008189057A JP2008189057A JP2010024589A JP 2010024589 A JP2010024589 A JP 2010024589A JP 2008189057 A JP2008189057 A JP 2008189057A JP 2008189057 A JP2008189057 A JP 2008189057A JP 2010024589 A JP2010024589 A JP 2010024589A
Authority
JP
Japan
Prior art keywords
semiconductor
functional fiber
particles
functional
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008189057A
Other languages
Japanese (ja)
Other versions
JP5282203B2 (en
Inventor
Masao Sumita
雅夫 住田
Kaku Kaneko
核 金子
Setsuo Takizawa
節夫 滝沢
Masayuki Notoya
正之 能登谷
Tadao Tokushima
忠夫 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Teijin Nestex Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Teijin Nestex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd, Teijin Nestex Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP2008189057A priority Critical patent/JP5282203B2/en
Publication of JP2010024589A publication Critical patent/JP2010024589A/en
Application granted granted Critical
Publication of JP5282203B2 publication Critical patent/JP5282203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional fiber or a functional textile product which generates a plenty of infrared rays and charged particles when excited, with the compounding amount of a necessary semiconductor reduced therein. <P>SOLUTION: The functional fiber or the functional textile product, which radiates infrared rays and charged particles, is provided, being obtained by the following steps that semiconductor particles are dispersed in a predetermined dispersion and selectively dispersed in the crystal interface regions or noncrystalline regions of a fibrous polymer to effect infiltration/diffusion into the fibrous polymer. Thus, the semiconductor particles are infiltrated into the interstices of the fibrous polymer crystals, and mutually pseudo-connected in series, effecting the multiplication of electrical potential among charged particles generated by excitation by low-temperature heating at about body temperature levels and generating large electromotive force, thereby exhibiting biological effects. As a product form, the fiber/textile processed product is to be used by being molded into a soft woven fabric, nonwoven fabric, or the like. When used as health care utensils, the functional fibers/functional textile product affords significantly body temperature-raising effects and blood circulation-promoting effects, thanks to sustainedly generating a plenty of charged particles and infrared rays from the semiconductor particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外線及び荷電粒子を放射する機能性繊維及び機能性繊維製品に関する。   The present invention relates to functional fibers and functional fiber products that emit infrared rays and charged particles.

火災報知機等の室温付近の温度センサーとしては、一般的には、サーミスター等の酸化物半導体温度センサーが使用されている。このセンサーは周囲温度を検知するため密閉された部屋又は屋根裏等に設置した場合、周囲温度が上がるため誤作動し易い。そのため、火災報知機等のセンサーとしては、周囲温度ではなく、構造物と周囲環境等の温度差を検知して作動させる熱感知素子が要求されている。   In general, an oxide semiconductor temperature sensor such as a thermistor is used as a temperature sensor near the room temperature of a fire alarm or the like. When this sensor is installed in a sealed room or attic to detect the ambient temperature, it tends to malfunction because the ambient temperature rises. Therefore, as a sensor for a fire alarm or the like, there is a demand for a heat sensing element that operates by detecting a temperature difference between the structure and the surrounding environment, not the ambient temperature.

バルク半導体熱電素子として、室温付近で最も効率の良い材料として知られているBi−Te、Pb−Te系化合物半導体熱電素子等は、上記要求に合うものであるが、起電力は300μV/℃と小さいので、火災報知器等室温付近での使用には特別な低ノイズ増幅器を必要とするため、あまり使用されていない。
熱電素子1対では熱起電力が小さいので、半導体薄膜の製造法を利用した複数個の熱電素子を直列接続した複合熱電素子も一部製造され、センサー以外に時計用発電素子としても利用されているが、製造コストが高いので、製造コストが安く、しかも、室温付近で大きな熱起電力の得られる素子が要求されている。
Bi-Te, Pb-Te compound semiconductor thermoelectric elements, etc., which are known as the most efficient materials near room temperature as bulk semiconductor thermoelectric elements, meet the above requirements, but the electromotive force is 300 μV / ° C. Since it is small, a special low noise amplifier is required for use near a room temperature such as a fire alarm, so it is not used so much.
Since thermoelectric power is small in a pair of thermoelectric elements, some composite thermoelectric elements in which a plurality of thermoelectric elements are connected in series using a method for manufacturing a semiconductor thin film are also manufactured. In addition to sensors, they are also used as power generation elements for watches. However, since the manufacturing cost is high, there is a demand for an element that is low in manufacturing cost and that can obtain a large thermoelectromotive force near room temperature.

従来のバルク半導体熱電素子の性能を上げるため、半導体熱電素子をナノオーダーに薄膜化して、両側を電気絶縁膜で挟むことにより発生した荷電粒子の運動を2次元に限定した積層型の量子効果熱電素子が提案されている。この素子の熱起電力は、加熱により半導体から出てくる励起荷電粒子の運動が2次元に制限されるので、量子効果によりバルク半導体の5−10倍程度の熱起電力が得られ、熱発電素子又は熱センサー等への応用が検討されている(非特許文献1)。
英国科学誌「ネイチャー」 マテリアル 2007.1.21(JST研 究グループ 大田、細野,幾原)
In order to improve the performance of conventional bulk semiconductor thermoelectric elements, stacked quantum-effect thermoelectrics that limit the movement of charged particles generated by thinning the semiconductor thermoelectric element to the nano-order and sandwiching both sides with an electrical insulating film in two dimensions Devices have been proposed. The thermoelectromotive force of this element is limited to the two-dimensional motion of the excited charged particles coming out of the semiconductor by heating, so that a thermoelectromotive force of about 5 to 10 times that of the bulk semiconductor can be obtained by the quantum effect. Application to an element or a thermal sensor has been studied (Non-Patent Document 1).
British Science “Nature” Material 2007.1.21 (JST Research Group Ota, Hosono, Ikuhara)

前記量子型熱電素子は、熱電半導体の先駆者であるア・エフ・ヨッフェ等により理論的に予想されていたフォノン格子振動による熱伝導成分を下げるのに有効であるBi,Te,Sb,Pb等の質量数の大きな有害な重金属を使用しなくても熱電変換性能が上げられる可能性を開いた画期的なものであると評価されている。使用される材料も、有害で資源的にも乏しい重金属ではなく、Ti,Sr等軽元素の酸化物等が使用でき、材料面及び使用される材料の資源面においても新しい展望を開いた。   The quantum-type thermoelectric element is effective for lowering the heat conduction component due to phonon lattice vibration, which is theoretically expected by A. F. Joffe, a pioneer of thermoelectric semiconductors, and the like. It is evaluated as a revolutionary thing that opens up the possibility of improving thermoelectric conversion performance without using harmful heavy metals with a large mass number. The materials used are not heavy metals that are harmful and resource-poor, but oxides of light elements such as Ti and Sr can be used. This has opened up new perspectives in terms of materials and the resources of the materials used.

しかしながら、その製造法は、イオンビームスパッタ法等の特別な真空薄膜製造装置を必要とするため、荷電粒子浸透型機能製品に使用するのは、コスト的に問題があった。 また、薄膜法で作られる熱電素子は、ソリッドで柔軟性がなく、面積の大きいものは作りにくいので、人体に密着して使用する生体応用の機能素子又は機能製品に適用することは難しい場合もある。   However, since the manufacturing method requires a special vacuum thin film manufacturing apparatus such as an ion beam sputtering method, there is a problem in cost to use it for a charged particle permeation type functional product. In addition, thermoelectric elements made by the thin film method are solid, inflexible, and have a large area, making it difficult to make thermoelectric elements, so it may be difficult to apply them to functional elements or functional products that are used in close contact with the human body. is there.

磁力線の人体への血行促進効果を利用するため、磁石材料をチップ状化し、これを粘着テープ等で人体に貼りつけて健康医療器具として使用することは、広く行われている。磁石には、(BH)maxが3程度のフェライト磁石、(BH)maxが5ないし10程度のアルニコ系金属磁石が用いられ、また、最近では、(BH)maxが10ないし30にもなるエネルギー積の大きな希土類磁石が使用されているが、いずれの磁石も人体に作用する磁界強度として400G以上が推奨され使用されている(特許文献1,2)。
特開平05−347206号公報 特開平10−241924号公報
In order to utilize the blood circulation promoting effect of magnetic lines of force on a human body, it is widely used to make a magnetic material into a chip shape and attach it to the human body with an adhesive tape or the like to use it as a health care device. As the magnet, a ferrite magnet having a (BH) max of about 3 and an alnico metal magnet having a (BH) max of about 5 to 10 are used, and recently, an energy having a (BH) max of 10 to 30 is used. Rare earth magnets with a large product are used, and any magnet is recommended and used as the magnetic field strength acting on the human body (Patent Documents 1 and 2).
JP 05-347206 A JP-A-10-241924

赤外線にも、血行促進効果、神経繊維活性化効果、鎮痛効果等があることが認められ、磁石と同様にチップ状に加工され、健康医療器具として使用されてきている。赤外線放射材料としては、Ge及びトルマリンが一般的に使用されてきているが、最近では、波長4-12μmの赤外線放射能に優れた衝撃波合成ダイヤモンド半導体も高分子複合体及び繊 維配合品として提案されている(特許文献3,4)。
特開2008−86714号公報 特開2008−106392号公報
Infrared rays are also recognized to have blood circulation promoting effects, nerve fiber activation effects, analgesic effects, etc., and have been processed into chips like magnets and used as health care devices. Ge and tourmaline have been generally used as infrared radiation materials, but recently, shock wave synthetic diamond semiconductors with excellent infrared radiation with a wavelength of 4-12 μm have also been proposed as polymer composites and fiber blends. (Patent Documents 3 and 4).
JP 2008-86714 A JP 2008-106392 A

トルマリン等の酸化物圧電焦電材料及び単結晶Geが、体温により活性化されて出てくる荷電粒子の人体への浸透による筋肉の疲労回復効果、鎮痛効果も認識され、利用されてきている。最近では、磁力線単体又は赤外線単体ではその作用効果が限定されるため、磁力線、赤外線及び荷電粒子の相乗効果を狙って、磁石材料と圧電焦電効果を有する赤外線放射材料からなる複合磁石が提案されている。   Oxide piezoelectric pyroelectric materials such as tourmaline and single crystal Ge have been recognized and utilized for muscle fatigue recovery effect and analgesic effect due to penetration of charged particles activated by body temperature into the human body. Recently, the effect of magnetic field lines alone or infrared rays alone is limited, so a composite magnet composed of a magnet material and an infrared radiation material having a piezoelectric pyroelectric effect has been proposed aiming at the synergistic effect of magnetic field lines, infrared rays and charged particles. ing.

しかしながら、提案されている圧電焦電材料、例えばトルマリン、単結晶バルク半導体Geを使用した健康医療器具について言えば、赤外線は人体温度による加温効果が続いている間は活性化され、材料固有の赤外線を放射し、その効果は持続する。しかし、Geは禁制帯幅が0.6eV程度と小さく、その活性化エネルギーレベル0.01eVより放射される赤外線は、主として波長100μm前後のものが多い。波長100μmの赤外線は、物体が30度K程度の極低温の物体から放射される赤外線に近く、温熱効果は少ない。トルマリンは、波長4−10μmの温熱効果の大きな赤外線波長を放射するが、絶縁体であるため、体温程度の熱励起では、赤外線を放射する励起キャリアー数が少ないので、放射量が充分確保できない。図1に、トルマリン50wt%と本発明に使用されたナノダイヤ半導体10wt%配合のPP高分子配合品の赤外線放射特性を示す。ナノダイヤは通常SP3ダイヤ層の周りをSP2グラファイト層で覆われた構造をとるがSP3単体及び複合体で波長4−10μmでのナノ半導体の赤外線放射能が大きいことを示している。トルマリンの赤外線放射能を利用した温熱製品として靴下、肌着等の繊維製品が使用されているが、その効果が充分でないため、余り普及していない。   However, in the case of a health care device using a proposed piezoelectric pyroelectric material, such as tourmaline, single crystal bulk semiconductor Ge, infrared is activated while the heating effect due to human body temperature continues, Infrared rays are emitted and the effect is sustained. However, Ge has a small forbidden band width of about 0.6 eV, and most of infrared rays emitted from an activation energy level of 0.01 eV mainly have a wavelength of about 100 μm. An infrared ray having a wavelength of 100 μm is close to an infrared ray emitted from a cryogenic object having a temperature of about 30 degrees K, and has little thermal effect. Tourmaline emits an infrared wavelength having a wavelength of 4 to 10 μm, which has a large thermal effect. However, since it is an insulator, the number of excited carriers that radiate infrared rays is small in thermal excitation at about body temperature, and thus a sufficient amount of radiation cannot be ensured. FIG. 1 shows infrared radiation characteristics of a PP polymer blended product of 50 wt% tourmaline and 10 wt% nanodiamond semiconductor used in the present invention. Nanodiamonds usually have a structure in which the SP3 diamond layer is covered with an SP2 graphite layer, but SP3 alone and composites show that the infrared radiation of nanosemiconductors at a wavelength of 4-10 μm is large. Textile products such as socks and underwear are used as thermal products utilizing the infrared radiation of tourmaline, but they are not so popular because their effects are not sufficient.

また、トルマリン等絶縁体の圧電焦電効果により発生する荷電粒子は、トルマリンが体温により加熱されて結晶体が歪む時、又は、体温と健康医療器具の間の温度差の変化が継続して結晶が歪む時に発生するものである。従って、健康医療器具等に使用した場合は、装着後、全体の温度が定常状態になると、圧電焦電材料は電気的には絶縁体に属するため、その放出電荷量は激減し、荷電粒子の効果は期待できなくなる。すなわち、圧電焦電材料の電荷放出効果は、健康医療器具の温度が定常状態に達するまでの時間に限られ、その作用効果は時間的に限定される。また、トルマリン等圧電焦電材料は電気的には絶縁物であるため、荷電粒子の数も少なく、発生した荷電粒子が電界により加速されて物体中を動く移動度も小さいので、人体への荷電粒子浸透効果はあまり期待できない。   Charged particles generated by the piezoelectric pyroelectric effect of insulators such as tourmaline are crystallized when the tourmaline is heated by the body temperature and the crystal body is distorted, or the temperature difference between the body temperature and the health care device continues to change. This occurs when the distortion occurs. Therefore, when used in health care devices, etc., when the entire temperature becomes steady after mounting, the piezoelectric pyroelectric material electrically belongs to the insulator, so the amount of emitted charges is drastically reduced and the charged particles The effect cannot be expected. In other words, the charge release effect of the piezoelectric pyroelectric material is limited to the time until the temperature of the health care device reaches a steady state, and the operation effect is limited in terms of time. In addition, since piezoelectric pyroelectric materials such as tourmaline are electrically insulating, the number of charged particles is small, and the generated charged particles are accelerated by the electric field and have little mobility to move in the object. The particle penetration effect cannot be expected so much.

Geは、半導体であるため荷電粒子放射能は大きいが、半導体バンド構造に起因する活性化エネルギーレベル0.01eVから輻射される赤外線の波長が100μmと大きいため、赤外線による温熱効果は小さい。このため、従来型の赤外線と荷電粒子を使用した複合磁石タイプでの電荷浸透効果は、殆ど期待できない。Geは、体温程度の加熱で荷電粒子を放出しても、半導体がバルク状態である場合は、Ge結晶が体温加熱による温度差で発生するゼーペック効果による起電力は最大でも1mV程度であるのに対し、人体インピーダンスは数百Ω−数KΩと大きいので、その荷電粒子の人体への浸透効果は小さい。このため、健康医療器具としての効果はあまり期待できない。   Since Ge is a semiconductor, its charged particle radioactivity is large, but since the wavelength of infrared rays radiated from an activation energy level of 0.01 eV due to the semiconductor band structure is as large as 100 μm, the thermal effect of infrared rays is small. For this reason, the charge penetration effect in the composite magnet type using conventional infrared rays and charged particles is hardly expected. Even if Ge emits charged particles by heating at about body temperature, if the semiconductor is in a bulk state, the electromotive force due to the Zepek effect generated by the temperature difference due to body temperature heating of the Ge crystal is about 1 mV at the maximum. On the other hand, since the human body impedance is as large as several hundred Ω to several KΩ, the penetration effect of the charged particles into the human body is small. For this reason, the effect as a health care device cannot be expected so much.

バルク半導体の微小熱起電力を増大させるため、本発明者の一人は、半導体を微紛末化して、その半導体粒子を高分子マトリクス中でパーコレーション配列することにより半導体粒子を直列接続させて、発生する荷電粒子の運動方向を1次元に限定させた結果、巨大熱起電力を生じる半導体高分子複合体を特願2007−017594において提案した。この巨大熱電能は従来より文献で理論的に予想されていた1次元熱電素子の実現に道を開くものである。非特許文献2には、次元が少なくなるほど熱電変換定数が上がることが示されているが、実現は容易でなかった。
Thermoelectric figure of merit of a one-dimensional conductor L.D.Hicks PHYSICAL REVIEW VOLUME 47.NO 24 1993
In order to increase the micro-electromotive force of bulk semiconductors, one of the inventors of the present invention generated semiconductor particles by connecting them in series by finely pulverizing the semiconductors and percolating the semiconductor particles in a polymer matrix. In Japanese Patent Application No. 2007-017594, a semiconductor polymer composite that generates a giant thermoelectromotive force as a result of limiting the moving direction of charged particles to one dimension is proposed. This enormous thermoelectric power opens the way to the realization of one-dimensional thermoelectric elements that have been theoretically expected in the literature. Non-Patent Document 2 shows that the thermoelectric conversion constant increases as the dimension decreases, but it is not easy to realize.
Thermoelectric figure of merit of a one-dimensional conductor LDHicks PHYSICAL REVIEW VOLUME 47.NO 24 1993

図2に半導体ナノダイヤ10wt%配合高分子複合体の電気伝導度と体温程度の加熱で発生する電位の関係を示す。半導体ナノダイヤ粒子の配合量が増え、電気伝導率が増すと、発生する電荷が3次元に拡散移動するため電位が下がり、本発明の非特許文献3で示されるパーコレーション配列時の電気伝導度付近で大きな起電力が生じることを示す。   FIG. 2 shows the relationship between the electrical conductivity of the semiconductor composite with 10% by weight of semiconductor nanodiameter and the potential generated by heating at about the body temperature. When the compounding amount of the semiconductor nanodiamond particles is increased and the electrical conductivity is increased, the generated electric charge is diffused and moved in three dimensions, so that the potential is lowered, and the electric conductivity is near the electric conductivity at the time of the percolation arrangement shown in Non-Patent Document 3 of the present invention. It shows that a large electromotive force is generated.

半導体粒子のパーコレーション配列構造(直列接続構造)を有する機能材料は、混合機、射出成型機、紡糸機等通常の機械で製造することができ、量子型2次元半導体熱電素子の製造等に必要な真空薄膜製造機械は必要としないので、大量生産には適していた。しかしながら、上記半導体高分子複合体は、高分子マトリクスの中に半導体粒子が3次元に一様に分散するため、パーコレーション配列をするには半導体粒子の配合量が10wt%程度必要となるので、コスト的な問題が残った。また、ナノダイヤ粒子等を使用した場合、ダイヤは研磨剤としても使用される材料であるため、使用される型材及び射出成型用ノズル等が消耗しやすく、生産機械のメンテナンスにも問題が残った。半導体粒子の配合量が5vol%を超すと、通常の紡糸加工は難しくなってくるので、繊維等の製造工程からも配合量の削減が求められていた。   A functional material having a percolation arrangement structure (series connection structure) of semiconductor particles can be manufactured by a normal machine such as a mixer, an injection molding machine, or a spinning machine, and is necessary for manufacturing a quantum type two-dimensional semiconductor thermoelectric element. Since a vacuum thin film manufacturing machine is not required, it was suitable for mass production. However, in the semiconductor polymer composite, since semiconductor particles are uniformly dispersed three-dimensionally in a polymer matrix, the amount of semiconductor particles added is about 10 wt% for percolation arrangement. Problems remained. Further, when nanodiamond particles are used, the diamond is a material that is also used as an abrasive, so that the used mold material and the injection molding nozzle are easily consumed, and there is still a problem in the maintenance of the production machine. When the blending amount of the semiconductor particles exceeds 5 vol%, normal spinning processing becomes difficult, and therefore a reduction in the blending amount has been demanded from the manufacturing process of fibers and the like.

半導体粒子の配合量を減らすため、本発明者の一人は、配合された粒子と高分子複合体との成型条件での濡れ性、表面張力、界面エネルギーで決定される濡れ係数Wa(wetting coefficient)の値により、非相溶性高分子AとBを使用した場合、
Wa > 1 (1)
-1>Wa>1 (2)
Wa<−1 (3)
の3条件が生じ、これにより半導体粒子の分布が決定されることを利用した改良発明を特願2007−269894で出願した。
(1)と(3)の場合は、半導体粒子はA又はB高分子の中にのみ優先的に分布し、(2)の場合は、高分子界面に分布する(非特許文献3参照。)。図3に半導体粒子分布の模式図を示す。ダブルパーコレーション配列の場合、半導体粒子の最適配合量は2wt%位まで下げられる。
Polymer Bulletin 25. P265-271 1991 Masao Sumita
In order to reduce the compounding amount of the semiconductor particles, one of the inventors of the present invention has a wetting coefficient Wa (wetting coefficient) determined by wettability, surface tension, and interfacial energy under the molding conditions of the compounded particles and the polymer composite. Depending on the value of incompatible polymers A and B,
Wa> 1 (1)
-1>Wa> 1 (2)
Wa <-1 (3)
Japanese Patent Application No. 2007-269894 was filed for an improved invention utilizing the fact that the following three conditions occur and the distribution of the semiconductor particles is thereby determined.
In the case of (1) and (3), the semiconductor particles are preferentially distributed only in the A or B polymer, and in the case of (2), the semiconductor particles are distributed at the polymer interface (see Non-Patent Document 3). . FIG. 3 shows a schematic diagram of semiconductor particle distribution. In the case of the double percolation arrangement, the optimum blending amount of the semiconductor particles is lowered to about 2 wt%.
Polymer Bulletin 25. P265-271 1991 Masao Sumita

すなわち、非相溶高分子複合体の中では、配合された半導体粒子は構成された個々の高分子マトリクスと粒子の表面濡れ性及び表面張力、界面自由エネルギーの相互関係により特定の高分子マトリクスの中のみに分散するか又は複合高分子マトリクスの界面に優先的に分散する現象を利用している。高分子半導体粒子の界面に生じるダブルパーコレーション効果を積極的に利用して、巨大熱起電力を生じさせることにより、高価な半導体粉末の使用量の軽減を可能にした。   That is, in the incompatible polymer composite, the blended semiconductor particles have a specific polymer matrix depending on the interrelationship between the individual polymer matrix and the surface wettability, surface tension, and interface free energy of the particles. It utilizes the phenomenon of dispersing only in or preferentially dispersing at the interface of the composite polymer matrix. By actively utilizing the double percolation effect generated at the interface of polymer semiconductor particles to generate a giant thermoelectromotive force, the amount of expensive semiconductor powder used can be reduced.

しかしながら、半導体粒子を繊維表面に付着させるか又は粒子を繊維素材に混入し、紡糸加工して、パーコレーション又はダブルパーコレーション効果を利用して配列し、熱電効果を得るには、実用上及び製造上、以下の問題があった。
繊維表面に接着剤を使用して塗布又はスプレイ法で付着させた半導体粒子は、洗濯等ではがれ易く、実用上商品寿命に問題があり、また、半導体粒子が2次元的に広がり易く、材料の使用効率が下がる。
ナノダイヤ10wt%配合のPP高分子複合体の温度による電気伝導度の電界強度依存性を 図4及び図5に示す。図4は生体温度上昇特性が1.7℃と優れた場合で、図5は0.1−0.2℃と劣る場合である。
最適配列された試料では、電気伝導度がほぼ電界強度の2乗に比例し、ナノダイヤからの荷電粒子が近接した粒子間での印加電界により加速される空間電荷律則の伝導度特性を示しており、粒子間では電気的にほぼ接続されていることが判る。ダイヤ内での電荷の移動度は1800cm2/V.secと大きく、電気伝導度の電界強度依存性には余り寄与しない。
最適配列されてない粒子間の開いた試料では、発生した電荷が高分子内に充満しており、印加電界で消滅した後は電気的な接続が不充分であるため、電気伝導度は下がる。印加電圧が低い場合は消滅までに時間がかかるので、見掛け上の電気伝導度は大きい。印加電圧が500Vになると、図4ではナノダイヤからの荷電粒子の供給量が不足するので、電界強度依存性は逆の傾向を示すようになる。図5では、絶縁破壊が起こり始め、同様電界強度依存性は逆になる。
図4の場合は、ナノダイヤ粒子が充分接近しており発生した電荷が高分子マトリクスの中を減衰することなく移動できる空間電荷律則型の伝導特性を示しておる。図5の場合は、粒子間の距離が離れているため電荷が高分子マトリクスの中で再結合により消滅する。このため、電荷が人体に浸透する割合が減少するため、体温上昇効果が減ることを示している。半導体粒子混入繊維を製造する場合、紡糸工程では延伸効果を利用して繊維の結晶配列等を制御して繊維が作成されるため、混入された半導体粒子の間隔が開きやすく、製品歩留まりが悪く粒子間距離を制御しながら製品を作成するには問題が残った。
また、織布及び不織布等を人体に接して使用する場合、構成する繊維の人体表面側にある半導体粒子からの荷電粒子及び赤外線放射が特に有効であり、必ずしも繊維内部にまで半導体粒子が存在する必要はない。
However, semiconductor particles are attached to the fiber surface, or the particles are mixed into the fiber material, spun, arranged using the percolation or double percolation effect, and in order to obtain a thermoelectric effect, practically and in production, There were the following problems.
The semiconductor particles applied to the fiber surface using an adhesive or attached by a spray method are easily peeled off by washing, etc., and there is a problem in practical use, and the semiconductor particles are likely to spread two-dimensionally. Usage efficiency is reduced.
FIG. 4 and FIG. 5 show the electric field strength dependence of the electrical conductivity depending on the temperature of the PP polymer composite containing 10% by weight of nanodiamond. FIG. 4 shows a case where the temperature rise characteristic of the living body is excellent at 1.7 ° C., and FIG. 5 shows a case where it is inferior at 0.1-0.2 ° C.
In the optimally aligned sample, the electric conductivity is almost proportional to the square of the electric field strength, and the charged particles from the nanodiameter show the conductivity characteristic of space charge law accelerated by the applied electric field between adjacent particles. It can be seen that the particles are almost electrically connected. The charge mobility in the diamond is as large as 1800 cm 2 /V.sec, which does not contribute much to the electric field strength dependence of electrical conductivity.
In an open sample between particles that are not optimally aligned, the generated electric charge is filled in the polymer, and after the electric field is extinguished by an applied electric field, the electrical connection is insufficient, so that the electric conductivity is lowered. When the applied voltage is low, it takes time to disappear, so the apparent electrical conductivity is large. When the applied voltage is 500 V, the supply amount of charged particles from the nanodiagram is insufficient in FIG. 4, and the electric field strength dependency shows a reverse tendency. In FIG. 5, dielectric breakdown begins to occur, and the electric field strength dependency is reversed.
The case of FIG. 4 shows a space charge rule-type conduction characteristic in which the nanodiameter particles are sufficiently close and the generated charges can move in the polymer matrix without being attenuated. In the case of FIG. 5, since the distance between the particles is large, the charge disappears by recombination in the polymer matrix. For this reason, since the rate which an electric charge osmose | permeates a human body reduces, it has shown that the body temperature rise effect reduces. When manufacturing fibers containing semiconductor particles, the spinning process creates fibers by controlling the crystal arrangement of the fibers using the stretching effect, so the intervals between the mixed semiconductor particles are easy to open, and the product yield is poor. The problem remained in creating products while controlling the distance.
In addition, when using a woven fabric or a non-woven fabric in contact with the human body, charged particles and infrared radiation from the semiconductor particles on the human body surface side of the constituent fibers are particularly effective, and the semiconductor particles are necessarily present even inside the fibers. There is no need.

本発明は、上記の点に鑑みてなされたものであり、第1の目的は、半導体粒子の使用量の削減を図り、なおかつ、巨大熱起電力が得られて効率の良い赤外線及び荷電粒子放射特性を有する機能性繊維及び機能性繊維製品を提供することにある。
本発明の第2の目的は、半導体粉末と高分子繊維の複合体の巨大熱起電力を利用した機能性繊維及び機能性繊維製品を低コストで実現することを目的とする。
本発明の第3の目的は、半導体粉末と高分子繊維の複合体の巨大熱起電力を利用し、かつ、人体への赤外線及び荷電粒子浸透能力の性能を損なうことのない機能性繊維及び機能性繊維製品を低コストで実現することを目的とする。
すなわち、本発明が解決しようとする課題は、半導体粒子の少ない配合量で温度により励起されて常に荷電粒子を多量に発生する半導体熱電能を利用して、繊維又は繊維製品等の荷電粒子発生体を安定に、歩留まり良く提供することにある。
The present invention has been made in view of the above points, and a first object is to reduce the amount of semiconductor particles used, and to obtain a large thermoelectromotive force and to provide efficient infrared and charged particle radiation. It is providing the functional fiber and functional fiber product which have a characteristic.
The second object of the present invention is to realize functional fibers and functional fiber products using a giant thermoelectromotive force of a composite of semiconductor powder and polymer fiber at low cost.
A third object of the present invention is to provide a functional fiber and a function that use the giant thermoelectromotive force of a composite of semiconductor powder and polymer fiber and that do not impair the performance of the ability to penetrate infrared rays and charged particles into the human body. The purpose is to realize low-cost fiber products.
That is, the problem to be solved by the present invention is that charged particle generators such as fibers or textile products are utilized by utilizing semiconductor thermoelectric power that is excited by temperature with a small amount of semiconductor particles and always generates a large amount of charged particles. Is to provide a stable and high yield.

本発明による赤外線及び荷電粒子放射特性を有する機能性繊維又は機能性繊維製品は、所定の分散液中で半導体粒子を分散させ、前記半導体粒子を繊維高分子の結晶界面領域又は非結晶領域に選択的に分散させてなることを特徴としている(請求項1)。
さらに好ましくは、染色法により半導体粒子を繊維に拡散浸透させたことを特徴としている。すなわち、本発明は、分散型染料を繊維中に浸透させて染色する技法(染色法)を応用して、半導体粒子の表面を改質するか又は粒子表面に染色キャリアーとしての活性基を付けた半導体粒子を溶液中に分散させ、繊維を浸漬することにより、半導体粒子を繊維に浸透させたことを特色とする。さらに詳述すると、請求項1に係る発明は、半導体粒子の表面を改質して所定の官能基を持たせるか又は特定の官能基を有する有機分子を染色キャリアーとした半導体粒子を溶液中に分散させ、繊維との間のイオン交換力、ファンデルワールス力等を使い、分散型染料を使用する染色法を適用し、繊維の結晶質部分及び非結晶質部分に半導体粒子を拡散浸透させ、半導体粒子の直列配列構造を持たせることによって、所定の熱電能を繊維又は繊維製品に持たせて機能性を付加したことを特徴としている。
In the functional fiber or functional fiber product having infrared and charged particle emission characteristics according to the present invention, semiconductor particles are dispersed in a predetermined dispersion, and the semiconductor particles are selected as a crystalline interface region or an amorphous region of the fiber polymer. It is characterized by being dispersed (claim 1).
More preferably, the semiconductor particles are diffused and penetrated into the fiber by a dyeing method. That is, the present invention applies a technique (dyeing method) in which a disperse dye is infiltrated into a fiber and dyes it to modify the surface of the semiconductor particle or attach an active group as a dye carrier to the particle surface. The semiconductor particles are dispersed in the solution, and the fibers are immersed to make the semiconductor particles penetrate into the fibers. More specifically, in the invention according to claim 1, the surface of the semiconductor particle is modified to have a predetermined functional group, or the semiconductor particle having an organic molecule having a specific functional group as a dyeing carrier is in solution. Disperse, use ion exchange force with the fiber, van der Waals force, etc., apply a dyeing method using a disperse dye, diffuse and penetrate the semiconductor particles into the crystalline and amorphous parts of the fiber, By providing a series arrangement structure of semiconductor particles, a predetermined thermoelectric power is imparted to a fiber or fiber product to add functionality.

上記機能性繊維又は機能性繊維製品は、シート抵抗が10E12Ω以下の電気特性を有することを特徴としている(請求項2)。   The functional fiber or the functional fiber product is characterized in that the sheet resistance has an electric characteristic of 10E12Ω or less (Claim 2).

上記機能性繊維又は機能性繊維製品は、半導体粒子が加熱されることにより発生する荷電粒子の量子効果に基づく巨大熱起電力を有することを特徴とする(請求項3)。   The functional fiber or the functional fiber product has a giant thermoelectromotive force based on a quantum effect of charged particles generated when the semiconductor particles are heated (claim 3).

また、本発明に係る機能性繊維又は機能性繊維製品は、半導体粒子が生体温度により活性化されて人体に浸透させ得る荷電粒子及び赤外線を発生することを特徴とする(請求項4)。   In addition, the functional fiber or the functional fiber product according to the present invention is characterized in that the semiconductor particles are activated by the living body temperature and generate charged particles and infrared rays that can penetrate the human body (claim 4).

そして、上記機能性繊維又は機能性繊維製品は、半導体粒子の原料として、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体又は禁制帯を有する半導体を用い、所定の分散液中で半導体粒子を分散させる方法として、その半導体粒子を染色法により絶縁体繊維マトリクスに0.01−10wt%配合することにより、繊維中で配列させて、赤外線及び荷電粒子の放射量を増大させたことを特徴とする(請求項5)。   The functional fiber or functional fiber product uses, as a raw material for semiconductor particles, a semiconductor whose activation energy level for generating charged particles near room temperature is 0.1-0.5 eV or a semiconductor having a forbidden band. As a method for dispersing semiconductor particles in a predetermined dispersion, 0.01-10 wt% of the semiconductor particles are blended in an insulator fiber matrix by a dyeing method so that the semiconductor particles are arranged in the fibers, and infrared and charged particles are dispersed. The amount of radiation is increased (claim 5).

さらに、上記機能性繊維又は機能性繊維製品は、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体粒子として、衝撃波法により作成されたナノダイヤモンドを用い、これを繊維高分子絶縁体マトリクスに0.01−10wt%配合することにより、赤外線及び荷電粒子の放射量を増大させたことを特徴とする(請求項6)。
衝撃法で作成されたナノダイヤモンドは、基本粒子サイズが4−20nmと小さく、表面がSP2炭素膜で覆われているため、OH基、NH基、COOH基等の官能基が付加し易いので、染色法で繊維中に電気力を利用して拡散し易い。
Furthermore, the functional fiber or the functional fiber product uses nanodiamonds created by a shock wave method as semiconductor particles having an activation energy level of 0.1 to 0.5 eV for generating charged particles near room temperature, The amount of radiation of infrared rays and charged particles is increased by blending 0.01-10 wt% of this into a fiber polymer insulator matrix (claim 6).
Nanodiamonds created by the impact method have a basic particle size as small as 4-20 nm and the surface is covered with an SP2 carbon film, so functional groups such as OH groups, NH groups, and COOH groups are easily added. It is easy to diffuse in the fiber using electric force in the dyeing method.

本発明は、請求項5記載の機能性繊維又は機能性繊維製品における室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体又は禁制帯を有する半導体粒子の原料として、単元素半導体であるGe,Si、化合物半導体であるInSb.InAs,Bi−Te系等熱電半導体、Ti−O系等酸化物半導体の一種又は複合体を使用していることを特徴とする(請求項7)。   The present invention provides a raw material for a semiconductor or a semiconductor particle having a forbidden band whose activation energy level for generating charged particles near room temperature in the functional fiber or functional fiber product according to claim 5 is 0.1 to 0.5 eV As a single element semiconductor, Ge, Si, a compound semiconductor InSb. One type or a composite of InAs, Bi-Te-based thermoelectric semiconductors, Ti-O-based oxide semiconductors, or the like is used (claim 7).

本発明は、請求項1又は2記載の機能性繊維又は機能性繊維製品において、半導体粉末として、単元素半導体に属する衝撃波で形成された半導体ダイヤモンド粒子に,単元素半導体であるGe,Si、化合物半導体であるInSb,BiTe,PbTe、酸化物半導体であるCa−Mn,Ca−Cr,Zn,Tiの酸化物、珪化物半導体であるFeSi2,CoSi等のいずれか1種又は複数種の半導体粉末を混合して使用していることを特徴とする(請求項8)。   In the functional fiber or functional fiber product according to claim 1 or 2, the present invention provides semiconductor diamond particles formed by shock waves belonging to a single element semiconductor as semiconductor powder, Ge, Si which is a single element semiconductor, compound One or more kinds of semiconductor powders such as InSb, BiTe, PbTe as semiconductors, oxides of Ca—Mn, Ca—Cr, Zn, Ti as oxide semiconductors, FeSi2, CoSi as silicide semiconductors, etc. It is characterized by being mixed and used (claim 8).

半導体粒子として、衝撃法でつくられたナノダイヤ単体粉末及びナノダイヤと活性化エネルギーレベル0.1−0.4eVをもつ半導体粉末との混合粉末も使用できる。配合量は、繊維重量の0.01−10wt%が望ましい。配合量が0.01wt%以下では、その効果が得られず、10wt%以上では、半導体粒子の直列接続状態が崩れて相互に密着し、大きな塊に成り易く、荷電粒子放射効率が落ちる(請求項6,7,8)。   As the semiconductor particles, single powder of nanodiamond produced by an impact method and mixed powder of nanodiamond and semiconductor powder having an activation energy level of 0.1 to 0.4 eV can be used. The blending amount is desirably 0.01-10 wt% of the fiber weight. If the blending amount is 0.01 wt% or less, the effect cannot be obtained. If the blending amount is 10 wt% or more, the serial connection state of the semiconductor particles collapses and adheres to each other easily, forming a large lump, and the charged particle radiation efficiency decreases (claims) Item 6, 7, 8).

そして、本発明は、上記各請求項の機能性繊維又は機能性繊維製品の素材として、木綿等に代表されるセルロース系天然繊維,羊毛等に代表される蛋白質系繊維、及び、ナイロン、ビニロン、ポリアクリルニトリル、ポリエステル等化学繊維を使用していることを特徴とする(請求項9)。   And, as a material of the functional fiber or functional fiber product of the above-mentioned claims, the present invention is a cellulose-based natural fiber typified by cotton or the like, a protein-based fiber typified by wool or the like, and nylon, vinylon, Chemical fibers such as polyacrylonitrile and polyester are used (claim 9).

本発明に係る機能性繊維製品は、請求項1ないし9のいずれか1項記載の機能性繊維で作られた不織布、糸、織物又は編み物などであることを特徴としている(請求項10)。   The functional fiber product according to the present invention is a non-woven fabric, yarn, woven fabric, knitted fabric or the like made of the functional fiber according to any one of claims 1 to 9 (claim 10).

機能性繊維の半導体粒子が加熱されることにより発生する荷電粒子の量子効果に基づく巨大熱起電力を有する機能性繊維製品は、一例として、健康医療用熱電繊維製品としての用途を有する。   The functional fiber product having a giant thermoelectromotive force based on the quantum effect of charged particles generated when the semiconductor particles of the functional fiber are heated has, for example, a use as a thermoelectric fiber product for health care.

さらに、前記機能性繊維製品は、人体に放射された荷電粒子の運動に影響を及ぼす100−1200Gの磁場が付与されていることを特徴とする(請求項11)。   Furthermore, the functional fiber product is provided with a magnetic field of 100 to 1200 G that affects the motion of charged particles emitted to the human body (claim 11).

請求項1の発明によれば、赤外線及び荷電粒子放射特性を有する機能性繊維又は機能性繊維製品に必要な半導体粒子の量を削減することができ、しかも、効率良く赤外線及び荷電粒子を放射する機能性繊維を提供することができる。
一般に、溶液中に浸漬された繊維は液中で膨張し、繊維の結晶及び非結晶間隔が広がる。膨張が充分でなく、間隔が狭い場合は、分散液を加熱して粒子が浸透し易くする。繊維の結晶部分より非結晶部分の方が膨張し易いので、粒子は最初非結晶部分に浸透する。繊維の結晶部分及び非結晶部分は、繊維加工時の延伸作用により直線状に配列しており、膨張した繊維の結晶及び非結晶領域の隙間も直線状になる。この隙、間に浸透した半導体粒子も、隙間に沿って直列状に配列され易いため、1次元熱電素子としての構造が容易に構成される。
半導体粒子と高分子繊維素材の混入品の紡糸加工等でパーコレーション配列された場合、繊維内部の半導体粒子から放射される赤外線及び荷電粒子放射能は、繊維表面に到達するまでにかなり減衰される。また、延伸加工で粒子間隙が増えやすいので、個々の粒子の熱電積算能が落ちやすく、起電力が下がる。粒子間隙を下げるため、粒子の配合量を増やすと、1次元配列が崩れやすく、電荷が周辺に拡散し、電気伝導度が上がると共に、発生する電位は急激に減少する。本発明の場合、繊維素材表面より半導体粒子が繊維の結晶界面に沿って拡散するため、粒子は表面部分に集中しており、体温程度の加熱による半導体粒子よりの赤外線及び荷電粒子は、効率よく外部に放射される。このため、半導体粒子の最低必要量が0.01wt%と一桁下げられる。
半導体粒子が繊維素材の非結晶部分に選択的に浸透した段階で作業を中断すれば、繊維の長手方向に断続した1次元熱電素子が連なった状態が作成でき、一層の材料の節約ができる。
図6に繊維結晶と浸透粒子の模式図を示す。
一般に、天然繊維及び一部の化成繊維は、結晶連鎖の重合度も高く、結晶の質及び配列が良いので、半導体粒子の浸透は常温では難しく、加工時間短縮のため加熱作業が行われる。
According to the first aspect of the present invention, the amount of semiconductor particles required for functional fibers or functional fiber products having infrared and charged particle emission characteristics can be reduced, and infrared and charged particles can be efficiently emitted. Functional fibers can be provided.
In general, a fiber immersed in a solution expands in the solution, and the crystal and amorphous spacing of the fiber is increased. If the expansion is not sufficient and the interval is narrow, the dispersion is heated to facilitate the penetration of the particles. Because the amorphous portion is more likely to expand than the crystalline portion of the fiber, the particles initially penetrate the amorphous portion. The crystal part and the non-crystal part of the fiber are linearly arranged by the drawing action at the time of fiber processing, and the gap between the crystal and the non-crystalline region of the expanded fiber is also linear. Since the semiconductor particles that have penetrated between the gaps are also easily arranged in series along the gap, a structure as a one-dimensional thermoelectric element is easily configured.
In the case of percolation arrangement such as spinning of a mixture of semiconductor particles and polymer fiber material, the infrared and charged particle radioactivity emitted from the semiconductor particles inside the fiber is considerably attenuated before reaching the fiber surface. In addition, since the particle gap is easily increased by the stretching process, the thermoelectric integration ability of each particle is likely to be lowered, and the electromotive force is decreased. When the amount of particles is increased in order to lower the particle gap, the one-dimensional arrangement is easily broken, the electric charges are diffused to the periphery, the electric conductivity is increased, and the generated potential is rapidly decreased. In the case of the present invention, since semiconductor particles diffuse from the fiber material surface along the fiber crystal interface, the particles are concentrated on the surface portion, and the infrared and charged particles from the semiconductor particles by heating at about body temperature are efficiently Radiated to the outside. For this reason, the minimum required amount of semiconductor particles is reduced by an order of magnitude to 0.01 wt%.
If the operation is interrupted when the semiconductor particles selectively permeate into the non-crystalline portion of the fiber material, a state in which one-dimensional thermoelectric elements that are intermittent in the longitudinal direction of the fiber are connected can be created, and further material saving can be achieved.
FIG. 6 shows a schematic diagram of fiber crystals and penetrating particles.
In general, natural fibers and some chemical fibers have a high degree of polymerization of crystal chains, and the quality and arrangement of crystals are good, so that the penetration of semiconductor particles is difficult at room temperature, and a heating operation is performed to shorten the processing time.

また、請求項1の発明によれば、繊維の結晶配列の特異性を利用した粒子の配列を利用しているので、半導体粒子の使用量が軽減でき、また、半導体粒子の配合量を増しても電荷が3次元には広がりにくく、医療用等赤外線及び荷電粒子放射能を多く必要とされる用途に適する。   In addition, according to the invention of claim 1, since the arrangement of particles utilizing the specificity of the fiber crystal arrangement is used, the amount of semiconductor particles used can be reduced, and the amount of semiconductor particles added can be increased. However, the charge is difficult to spread in three dimensions, and is suitable for applications that require a large amount of infrared rays and charged particle radioactivity such as medical use.

請求項2の発明によれば、シート抵抗が10E12Ω以下であるので、赤外線及び荷電粒子放射特性に優れた保温性を有する機能性繊維又は機能性繊維製品の提供が可能である。従って、請求項10の発明による機能性繊維製品は、シート抵抗が10E12Ω以下の機能性繊維で作られているので、赤外線及び荷電粒子放射特性に優れた保温材及び健康器具として使用できる不織布、糸、織物、編み物などの機能製品の提供が可能である。   According to the invention of claim 2, since the sheet resistance is 10E12Ω or less, it is possible to provide a functional fiber or a functional fiber product having heat retention excellent in infrared and charged particle emission characteristics. Therefore, since the functional fiber product according to the invention of claim 10 is made of a functional fiber having a sheet resistance of 10E12Ω or less, a nonwoven fabric, a yarn that can be used as a heat insulating material and a health appliance excellent in infrared and charged particle emission characteristics Functional products such as textiles and knitting can be provided.

請求項3の発明によれば、請求項1に記載の機能性繊維又は機能性繊維製品の半導体粒子が加熱されることにより発生する荷電粒子の運動が1次元に制限される量子効果に基づく巨大熱起電力を利用するので、室温付近で大きな熱起電力が得られ、低コストの健康医療用低温熱電繊維製品、巨大熱起電力を有する温度センサー等の機能素子の提供が可能である。   According to invention of Claim 3, the giant based on the quantum effect by which the movement of the charged particle which generate | occur | produces when the semiconductor particle of the functional fiber or functional fiber product of Claim 1 is heated is restrict | limited to one dimension. Since the thermoelectromotive force is used, a large thermoelectromotive force is obtained near room temperature, and it is possible to provide functional elements such as a low-cost low-temperature thermoelectric fiber product for health care and a temperature sensor having a giant thermoelectromotive force.

請求項4の発明によれば、請求項1に記載の機能性繊維又は機能性繊維製品の半導体粒子が生体温度により活性化されて人体に浸透させ得る荷電粒子及び赤外線を発生するから、優れた赤外線と荷電粒子放射特性による相乗効果の大きい健康医療器具の提供が可能である。すなわち、本発明の赤外線及び荷電粒子放射特性に優れた機能製品は、例えば、健康医療器具として使用可能で、人体に使用した場合に荷電粒子の人体表面への浸透効果の時間的制約をなくし、装着している時には常に荷電粒子を人体に浸透させ、赤外線と荷電粒子の相乗効果を十分に発揮する。また、荷電粒子は還元作用及びこれによる殺菌作用も期待できるので、消臭面でも応用範囲が広がる。人体からの汗等の気体の凝縮熱を利用した発熱繊維は、凝縮した液体の汗が蒸発するとき、同じ熱量を奪うので、その効果には時間的な制約があり、通常は30分以内で効果が消える。   According to the invention of claim 4, the semiconductor particles of the functional fiber or the functional fiber product according to claim 1 are activated by the living body temperature and generate charged particles and infrared rays that can penetrate the human body. It is possible to provide a health care device having a large synergistic effect due to infrared and charged particle emission characteristics. That is, the functional product excellent in infrared and charged particle emission characteristics of the present invention can be used as, for example, a health care device, and eliminates the time restriction of the penetration effect of charged particles on the human body surface when used on the human body. When worn, it always infiltrates the human body with charged particles and fully exhibits the synergistic effect of infrared rays and charged particles. In addition, since charged particles can be expected to have a reducing action and a bactericidal action thereby, the application range is widened in terms of deodorization. The heat-generating fiber using heat of condensation of gas such as sweat from the human body takes the same amount of heat when the condensed liquid sweat evaporates, so its effect is limited in time, usually within 30 minutes The effect disappears.

請求項5,6,7、8の発明によれば、室温付近で荷電粒子を発生させる活性化エネルギーレベル0.1−0.5eVを有する半導体又は禁制帯を有する半導体を粉砕微粉化して半導体粒子の原料として用い、その半導体粒子を染色法により繊維高分子絶縁体マトリクスの結晶界面及び結晶間隙に0.01−10wtl%拡散浸透し配合してあるため、半導体粉末が直列接続された状態(パーコレーション)になり、電気抵抗が急激に下がり、各粒子の熱起電力が積算されるので、大きな起電力を有するようになる。パーコレーション状態にある半導体粉末が温度により励起された場合は、半導体粉末から発生した荷電粒子は、周囲の結合材が絶縁物であるため、1次元運動をして直列接続された粒子間を伝わって電荷が荷電粒子発生体の表面に滲み出る。   According to the inventions of claims 5, 6, 7 and 8, the semiconductor particles are obtained by pulverizing and pulverizing a semiconductor having an activation energy level of 0.1 to 0.5 eV for generating charged particles near room temperature or a semiconductor having a forbidden band. Since the semiconductor particles are blended by diffusing and penetrating 0.01-10 wt% into the crystal interface and crystal gap of the fiber polymer insulator matrix by dyeing method, the semiconductor powders are connected in series (percolation). ), The electric resistance is drastically decreased, and the thermoelectromotive force of each particle is integrated, so that the electromotive force is increased. When the semiconductor powder in the percolation state is excited by temperature, the charged particles generated from the semiconductor powder are transferred between the serially connected particles by one-dimensional motion because the surrounding binder is an insulator. Charge oozes out on the surface of the charged particle generator.

請求項9の発明によれば、本発明を天然繊維、再生繊維、化成繊維等あらゆる繊維及び繊維製品に適用できる。   According to the ninth aspect of the present invention, the present invention can be applied to all kinds of fibers and fiber products such as natural fibers, regenerated fibers, and chemical fibers.

請求項10に係る機能性繊維製品は、請求項1ないし9のいずれか1項記載の機能性繊維で作られているので、同機能性繊維が有する特性を活用した、赤外線と荷電粒子放射特性に優れた機能性繊維製品を提供することができる。   Since the functional fiber product which concerns on Claim 10 is made with the functional fiber of any one of Claim 1 thru | or 9, the infrared rays and charged particle radiation | emission characteristic which utilized the characteristic which the functional fiber has It is possible to provide an excellent functional fiber product.

請求項11の発明によれば、請求項10記載の機能性繊維製品において、人体に放射された荷電粒子の運動に影響を及ぼす100−1200Gの磁場が付与されているから、優れた赤外線と荷電粒子放射特性と磁場による相乗効果の大きい健康医療器具の提供が可能である。   According to the invention of claim 11, in the functional fiber product according to claim 10, since a magnetic field of 100-1200 G that affects the movement of charged particles emitted to the human body is applied, excellent infrared rays and charges It is possible to provide a health care device having a large synergistic effect due to particle radiation characteristics and magnetic field.

続いて、本発明の実施の形態について説明する。
本発明に係る機能性繊維又は機能性繊維製品は、電気絶縁性の繊維又は繊維製品に対して半導体粉末を0.01−10wt%、染色法により拡散浸透して作成されたものである。使用される繊維の種類によって、半導体粒子分散液の水の硬度、PH、温度、助剤等が調整される。
Next, embodiments of the present invention will be described.
The functional fiber or functional fiber product according to the present invention is prepared by diffusing and penetrating 0.01-10 wt% of semiconductor powder into an electrically insulating fiber or fiber product by a dyeing method. Depending on the type of fiber used, the hardness, pH, temperature, auxiliary agent, etc. of the water of the semiconductor particle dispersion are adjusted.

半導体粉末を電気絶縁性の繊維又は繊維製品に染色法で拡散浸透する場合、配合率を0.01−10wt%の範囲とすると、半導体粉末が繊維の結晶間隙内部で直列接続された状態(パーコレーション)になり、電気抵抗が急激に下がり、大きな起電力を有するようになる。パーコレーション状態にある半導体粉末が温度により励起された場合は、半導体粉末から発生した荷電粒子は、周囲の繊維素材が絶縁物であるため、1次元運動をして直列接続された粒子間を伝わって、電荷が荷電粒子発生体の表面に滲み出る。繊維の種類のよっては、表面を研削加工したのち、本発明を適用することが望ましい。   When semiconductor powder is diffused and infiltrated into an electrically insulating fiber or fiber product by a dyeing method, the semiconductor powder is connected in series inside the crystal gap of the fiber (percolation) when the blending ratio is in the range of 0.01-10 wt%. ), The electric resistance rapidly decreases and has a large electromotive force. When the semiconductor powder in the percolation state is excited by temperature, the charged particles generated from the semiconductor powder are transferred between the particles connected in series by one-dimensional movement because the surrounding fiber material is an insulator. , The charge oozes out on the surface of the charged particle generator. Depending on the type of fiber, it is desirable to apply the present invention after grinding the surface.

半導体粒子のサイズ(平均粒径)は、3nm−1μm位の範囲が望ましい。3nmを切ると、半導体としてのバンド構造が乱れ、1μmを超すと、半導体粒子内の励起荷電粒子相互間の反発作用が強く起こるようになり、荷電粒子は1次元的な動きが出来なくなり、半導体粒子内の電位差が減少する。バルク半導体内では、熱励起荷電粒子が相互の電気的反発力で3次元で動くため、素子として発生する電位が、最大でも300μV程度であり、室温付近での使用には問題が残った。また、粒子サイズが大きくなると、繊維結晶間隙に浸透し難くなり、分散浴の温度を上げる必要が生じる。   The size (average particle diameter) of the semiconductor particles is preferably in the range of about 3 nm to 1 μm. If it is less than 3 nm, the band structure as a semiconductor is disturbed, and if it exceeds 1 μm, the repulsive action between excited charged particles in the semiconductor particles will occur strongly, and the charged particles cannot move one-dimensionally. The potential difference within the particle is reduced. In the bulk semiconductor, the thermally excited charged particles move in three dimensions by mutual electric repulsion, so that the potential generated as an element is about 300 μV at the maximum, and there remains a problem in use near room temperature. Further, when the particle size is increased, it becomes difficult to penetrate the fiber crystal gap, and the temperature of the dispersion bath needs to be increased.

半導体粒子の配合量は、0.01−10wt%位が最適配合量である。0.01wt%を切ると、粒子配列が乱れ、電気的な接続が難しくなるため、熱電能が下がる。10wt%以上では、半導体粒子が塊状に繊維表面にも付着し易くなり、粒子相互間でも電気的な短絡回路を作り易く、粒子の利用効率が落ちるともに、作業時間及び使用粒子量が増えて、コスト高により経済的なメリットが無くなる。   The optimum blending amount of the semiconductor particles is about 0.01-10 wt%. When less than 0.01 wt%, the particle arrangement is disturbed and electrical connection becomes difficult, so the thermoelectric power decreases. If it is 10 wt% or more, the semiconductor particles tend to adhere to the fiber surface in a lump shape, and it is easy to create an electrical short circuit between the particles. Economic benefits are lost due to high costs.

上記機能性繊維又は機能性繊維製品からなる荷電粒子発生体を健康医療器具に用いる場合は、繊維製品を人体接触面に備えて使用する。人体接触面では、体温による加熱効果と人体外表面との冷却効果で、粒子間に温度差が生じるので、健康医療器具として装着しているときは、赤外線放射と荷電粒子放出が持続する。本発明による機能性繊維が、布状に加工された場合は、粘着テープ等で患部に貼付けても使用される。保温機能を利用する場合は、紡糸加工等により繊維化したものを織布又は不織布として半導体粒子を拡散浸透させ、衣服等に裁断加工縫製して使用してもよい。また、繊維表面を研削し、半導体粒子を拡散浸透させたあと、所定の製品に加工した場合は、いっそうの効果が期待できる。   When the charged particle generator made of the functional fiber or the functional fiber product is used for a health care device, the fiber product is provided on the human body contact surface. On the human body contact surface, a temperature difference occurs between the particles due to the heating effect due to body temperature and the cooling effect on the outer surface of the human body, so that infrared radiation and charged particle emission continue when worn as a health care device. When the functional fiber according to the present invention is processed into a cloth shape, it is used even if it is applied to the affected area with an adhesive tape or the like. When utilizing the heat retaining function, semiconductor fibers may be diffused and infiltrated as a woven or non-woven fabric obtained by spinning or the like, and cut and sewn on clothes or the like. Further, when the fiber surface is ground and the semiconductor particles are diffused and permeated and then processed into a predetermined product, further effects can be expected.

活性化エネルギー0.5eV以下のエネルギーレベルを持つ半導体は、バルク半導体の場合でも、体温加熱で半導体が励起されて荷電粒子を発生し、半導体内部に温度差に基ずくキャリア濃度の差が生じて、電位が発生する。これはゼーペック効果として知られている。この場合、発生した電荷による電位勾配は、電荷相互間の反発作用のため、キャリア濃度を均一化する方向に働く。このため、バルク半導体両端の電位差は小さく、キャリア濃度10E16の高純度半導体でも、ゼーペック係数は高々数百μVである(非特許文献4)。
サーモエレメント 日刊工業新聞社 ヨッフェ著 坂田訳P58 図2.11
Even in the case of a bulk semiconductor, a semiconductor having an activation energy level of 0.5 eV or less generates charged particles by exciting the semiconductor by body temperature heating, resulting in a difference in carrier concentration based on the temperature difference inside the semiconductor. A potential is generated. This is known as the Seepek effect. In this case, the potential gradient due to the generated charges acts in the direction of making the carrier concentration uniform because of the repulsive action between the charges. For this reason, the potential difference between both ends of the bulk semiconductor is small, and even in a high-purity semiconductor having a carrier concentration of 10E16, the Seepek coefficient is at most several hundred μV (Non-patent Document 4).
THERMO ELEMENT Nikkan Kogyo Shimbun Joffe Translation Sakata Translation P58 Figure 2.11

本発明は、活性化エネルギーレベル0.1−0.5eVを有する半導体を微粒子化して高分子繊維素材に染色法により拡散浸透させることにより、擬似的に半導体粒子を直列接続して、発生する荷電粒子の運動方向を1次元ライクに限定している。このため、体温付近の低温状態で数V−数十Vの大きな熱起電力を得ることに成功している。電気伝導度と発生起電力の関係を図2に示す。半導体粒子が増えてパーコレーション配列が崩れると、発生する電位が下がることが示されている。また、発生した荷電粒子の人体への浸透に際して、その作用能力を増すため、100−1200G程度の磁場を加えることが望ましい。100G未満では、磁場の荷電粒子に与える効果は少なく、1200Gを超える磁界は、単独でも健康器具として効果を発揮するので、不必要である。   In the present invention, a semiconductor having an activation energy level of 0.1 to 0.5 eV is finely divided and diffused and infiltrated into a polymer fiber material by a dyeing method, whereby semiconductor particles are pseudo-connected in series to generate generated charges. The movement direction of the particles is limited to one-dimensional like. For this reason, it has succeeded in obtaining a large electromotive force of several V to several tens of V in a low temperature state near body temperature. The relationship between electrical conductivity and generated electromotive force is shown in FIG. It is shown that the potential generated decreases as the number of semiconductor particles increases and the percolation arrangement collapses. In addition, when the generated charged particles penetrate into the human body, it is desirable to apply a magnetic field of about 100 to 1200 G in order to increase the working ability. If it is less than 100 G, the effect of the magnetic field on the charged particles is small, and a magnetic field exceeding 1200 G is not necessary because it alone is effective as a health device.

半導体粉末には、CB火薬等の衝撃波で合成されたSP3及びSP2複合構造を有する半導体炭素粒子を用いることが特に好ましい。衝撃波で合成されたSP3構造を有するダイヤ複合粒子は、基本粒径が3−10nmであり、成型後の粉砕工程が不要である。表面を構成するSP2層は化学的に活性で、各種の官能基の付与及びアニオン及びカチオン等イオン種を有する添加剤との結合作用が容易にできる。爆発成形時に火薬等の成分である窒素がダイヤ格子に浸透する場合、N型半導体になり、ホウ素を拡散させた場合は、P型半導体になる。   As the semiconductor powder, it is particularly preferable to use semiconductor carbon particles having an SP3 and SP2 composite structure synthesized by a shock wave such as CB explosive. Diamond composite particles having an SP3 structure synthesized by a shock wave have a basic particle size of 3 to 10 nm, and a pulverization step after molding is unnecessary. The SP2 layer constituting the surface is chemically active, and can easily impart various functional groups and bond with additives having ionic species such as anions and cations. When nitrogen, which is a component such as explosive, penetrates the diamond lattice during explosion molding, it becomes an N-type semiconductor, and when boron is diffused, it becomes a P-type semiconductor.

衝撃波で合成されたSP3及びSP2構造を有する半導体複合炭素粒子を得る方法の具体例として、次の2方法がある。(1)密閉容器の中で高性能CB爆薬を爆発させ、200万気圧と数千度の温度を瞬時に発生させ、複合構造を有する半導体炭素粒子を合成する方法。(2)カーボン微粉末及びCu粉末等を容器に入れ、上部にセットされた爆薬を点火することにより、同様の圧力温度を粉末混合品にかけて、カーボンの結晶構造をダイヤモンド半導体に変えた後、金属粉を酸で溶かして、前記構造の粒子を得る方法(非特許文献5,6)があるが、(1)の方法によるダイヤは、基本粒子が3−7nmと小さく、火薬の成分である窒素がSP3骨格に入りやすくN型半導体になりやすい。
大澤映二 Japan Nanonet Bulletin 108 2006.03.08 住友石炭鉱業kk クラスター技術研究会 2006.03.27
As specific examples of the method for obtaining semiconductor composite carbon particles having SP3 and SP2 structures synthesized by shock waves, there are the following two methods. (1) A method of synthesizing semiconductor carbon particles having a composite structure by exploding a high-performance CB explosive in a sealed container and instantaneously generating temperatures of 2 million atmospheres and several thousand degrees. (2) Put carbon fine powder, Cu powder, etc. in a container, ignite the explosive set on the top, apply the same pressure temperature to the powder mixture, change the crystal structure of carbon to diamond semiconductor, then metal There is a method (Non-Patent Documents 5 and 6) for obtaining particles having the above-mentioned structure by dissolving powder with an acid, but the diamond obtained by the method (1) has a basic particle as small as 3-7 nm and is a component of explosives. Tends to enter the SP3 skeleton and easily becomes an N-type semiconductor.
Eiji Osawa Japan Nanonet Bulletin 108 2006.03.08 Sumitomo Coal Mining KK Cluster Technology Study Group 2006.03.27

絶縁体に近く、比抵抗が大きいダイヤは、不純物レベルの密度が低いため、体温程度の加熱では電荷がバンド幅を超えて励起されにくいので、荷電粒子放出効果はなく、したがって、励起される荷電粒子がバレンス帯に落ちるとき放出される放射光も少ない。これに対し,衝撃波法で得られた半導体複合炭素粒子は粒子製造工程中の不純物、特に爆薬の中に含まれる窒素を含み、N型半導体になり易く、また、爆発時の圧力により粒子内部の歪等の影響で固体バンド構造が乱れ、0.2−0.4eVの不純物レベルを持つため、4−10μmの赤外線を効率よく放射し、電気伝導性がある。また、粉末が特種なSP3及びSP2複合構造を有するため、赤外線放射能及び荷電粒子放出能が従来品のトルマリン等に比較して5-10倍大きい。通常の単結晶ダイヤモンドは、禁制帯幅5.5evで、常 温では比抵抗10E16Ωとほぼ完全な絶縁体であるが、本発明で使用するSP3及びSP2複合炭素粒子は、製造条件により比抵抗が10Ω−10E10Ω位の値を得ることが可能である。   A diamond close to an insulator and having a large specific resistance has a low impurity level density, so that it is difficult for the charge to be excited beyond the bandwidth by heating at about body temperature, so there is no charged particle emission effect, and therefore the excited charge Less radiation is emitted when particles fall into the valence zone. On the other hand, semiconductor composite carbon particles obtained by the shock wave method contain impurities in the particle manufacturing process, particularly nitrogen contained in explosives, and are likely to become N-type semiconductors. The solid band structure is disturbed by the influence of strain and the like, and has an impurity level of 0.2-0.4 eV. Further, since the powder has a special SP3 and SP2 composite structure, the infrared radiation ability and the charged particle emission ability are 5 to 10 times larger than that of the conventional tourmaline or the like. Ordinary single-crystal diamond has a forbidden band width of 5.5 ev and a resistivity of 10E16Ω at a normal temperature, which is an almost perfect insulator. However, the SP3 and SP2 composite carbon particles used in the present invention have a specific resistance depending on manufacturing conditions. A value on the order of 10Ω-10E10Ω can be obtained.

半導体としては、添加剤により0.5eV以下の活性化エネルギーレベルを持つもの又は同程度の禁制帯幅をもつ半導体が、体温程度の加熱により励起されたキャリアが多く発生するので好ましい。具体例としては、単元素半導体に属する衝撃波で形成されたダイヤモンド,Ge,Si、化合物半導体に属するInSb,BiTe,PbTe、酸化物半導体に属するCa−Mn,Ca−Cr,Zn,Tiの酸化物、珪化物半導体に属するFeSi2,CoSi等が上げられる。半導体粉末には、これらのいずれか1種又は複数種の粒子を用いることができる。   As the semiconductor, a semiconductor having an activation energy level of 0.5 eV or less by an additive or a semiconductor having the same forbidden band width is preferable because many carriers excited by heating at about body temperature are generated. Specific examples include diamond, Ge, Si formed by a shock wave belonging to a single element semiconductor, InSb, BiTe, PbTe belonging to a compound semiconductor, and Ca—Mn, Ca—Cr, Zn, Ti belonging to an oxide semiconductor. And FeSi2, CoSi, etc. belonging to silicide semiconductors. Any one or more of these particles can be used for the semiconductor powder.

半導体粒子が絶縁体の中でパーコレーション配列を起こした場合、半導体粒子は電気的には直列接続されるが、横方向には互いに絶縁された状態で配列する。半導体粒子は細かいので、個々の粒子内に発生した電荷量は少なく、バルク半導体のように内部で相互反発されることもなく、電位は粒子間で直列接続されるので、成型体として発生する積算電位は大きく、ボルト単位の電圧が発生する。上述したように,従来のバルクGe結晶が体温加熱による温度差で発生するゼーペック効果による起電力は、最大でも1mV程度であるのに比較すると、本発明に係る荷電粒子発生体は、数Vから数十Vの格段に大きな起電力を有することが理解される。   When the semiconductor particles cause a percolation arrangement in the insulator, the semiconductor particles are electrically connected in series, but are arranged in a laterally insulated state. Since the semiconductor particles are fine, the amount of charge generated in each particle is small, there is no mutual repulsion inside the bulk semiconductor, and the potential is connected in series between the particles. The potential is large, and a voltage in volts is generated. As described above, the charged particle generator according to the present invention has a voltage of several volts compared to the electromotive force due to the Seepek effect generated by the temperature difference due to body temperature heating in the conventional bulk Ge crystal, which is about 1 mV at the maximum. It is understood that the electromotive force is remarkably large of several tens of volts.

本発明に係る機能性繊維又は機能性繊維製品として使用される荷電粒子発生体のシート抵抗は、10E12Ωとバルク半導体に比較して高いが、保温繊維製品及び健康器具として使用した場合は、生体のインピーダンスは数百−数千Ωと高いので、インピーダンスマッチングが取れ、生体効果が期待できる。保温繊維製品及び健康医療器具において、この荷電粒子浸透効果に加えて、赤外線及び磁力線の相乗作用を利用すれば、身体に対する保温効果及び医療効果をより向上させることができる。   The sheet resistance of the charged particle generator used as the functional fiber or the functional fiber product according to the present invention is 10E12Ω, which is higher than that of the bulk semiconductor, but when used as a heat-retaining fiber product and a health device, Since the impedance is as high as several hundred to several thousand Ω, impedance matching can be taken and a biological effect can be expected. In addition to this charged particle permeation effect, the heat retention effect and medical effect on the body can be further improved by utilizing the synergistic action of infrared rays and magnetic lines of force in the heat insulation fiber product and the health care device.

繊維素材及び半導体粒子の試料として下記のものを用い、下記の染色法によりテストを行った。
繊維素材:ポリエステル系繊維布 0.9g/100cm2
半導体粒子:ナノダイヤ半導体粒子(住友石炭鉱業製 商品名「クラスターダイヤ」 基本粒子サイズ…4−20nm、活性化エネルギ−…0.37eV
SP2層…CH3官能基(図7参照)
染色法: 分散液;浴温…100−130℃、液濃度…ナノダイヤ100mg/L
PH…3−4、 染色キャリアー…アニオン
浸漬時間;4〜60分
The following were used as a sample of the fiber material and semiconductor particles, and the test was performed by the following dyeing method.
Textile material: Polyester fiber cloth 0.9g / 100cm2
Semiconductor particles: Nanodiamond semiconductor particles (trade name “Cluster Diamond” manufactured by Sumitomo Coal Mining Co., Ltd.) Basic particle size: 4-20 nm, activation energy: 0.37 eV
SP2 layer: CH3 functional group (see FIG. 7)
Dyeing method: Dispersion; bath temperature ... 100-130 ° C, liquid concentration ... Nanodia 100 mg / L
PH ... 3-4, Dyeing carrier ... Anion
Immersion time; 4-60 minutes

ポリエステル繊維は、高い結晶性を有し、配列度も大きく、繊維が緻密なため、高温染色法を用いた。ポリエステル繊維においても温度が高くなると、繊維の内部構造はソフト化して、重合分子の鎖の熱的かく乱は増大し、染料粒子が通過しうる孔隙が増加し、拡散距離も増す。   Since the polyester fiber has high crystallinity, a large degree of alignment, and a dense fiber, a high-temperature dyeing method was used. Even in polyester fibers, as the temperature increases, the internal structure of the fibers softens, the thermal disturbance of the polymer molecule chains increases, the pores through which the dye particles can pass, and the diffusion distance increases.

試作した機能性繊維布を腕に装着し、10分後の体温上昇をサーモグラフで測定した。テストした織布の内シート抵抗10E10Ωオーダーの酸5の場合は、ナノダイヤ付着量が0.25mg/cm2となり、1.7℃の体温上昇が得られた。抵抗10E12Ωオーダーの酸4の場合は、ナノダイヤ付着量が0.1mg/cm2となり、0.3℃の温度上昇が得られた。   The prototype functional fiber cloth was attached to the arm, and the temperature rise after 10 minutes was measured with a thermograph. In the case of acid 5 having an inner sheet resistance of 10E10Ω order of the tested woven fabric, the amount of nanodiamond adhered was 0.25 mg / cm 2, and an increase in body temperature of 1.7 ° C. was obtained. In the case of acid 4 having a resistance of 10E12Ω order, the nanodiamond adhesion amount was 0.1 mg / cm 2, and a temperature increase of 0.3 ° C. was obtained.

図8に、染色法で作成された上記ポリエステル繊維の電気伝導特性を、図9に、同ポリエステル繊維のSEM写真を示す。電気伝導度の電圧依存性は、図4及び5と異なり、オーミック特性に近い傾向を示す。これは、ナノダイヤ粒子間隙が紡糸加工又は射出成型法等粒子混入成型品より小さいことを示す。
ナノダイヤ有機高分子混入パーコレーション配列の最適配合量10wt%と比較して、本発明の染色法による機能性繊維及び機能性繊維製品のナノダイヤ配合量の効率が良いことが判る。さらに、染色法では、ナノダイヤ粒子が個別に浸透拡散するので、塊状になることがなく、粒子がナノオーダーである場合、可視光線の波長以下であるため、製品の着色が観測されにくく、後の染色加工が容易になるメリットもある。
FIG. 8 shows the electrical conductivity characteristics of the polyester fiber prepared by the dyeing method, and FIG. 9 shows an SEM photograph of the polyester fiber. Unlike FIGS. 4 and 5, the voltage dependency of the electrical conductivity shows a tendency close to ohmic characteristics. This indicates that the nanodiameter particle gap is smaller than that of a particle-mixed molded article such as a spinning process or an injection molding method.
It can be seen that the efficiency of the nanodiamond blending amount of the functional fiber and the functional fiber product by the dyeing method of the present invention is better than the optimum blending amount of 10 wt% of the nanodiamond organic polymer-mixed percolation array. Furthermore, in the dyeing method, since the nanodiamond particles permeate and diffuse individually, they do not become agglomerated, and when the particles are nano-order, since the wavelength is below the wavelength of visible light, coloring of the product is difficult to be observed, and later There is also an advantage that dyeing processing becomes easy.

本発明の染色法を利用して半導体粒子を繊維及び繊維製品に浸透拡散させてなる機能性繊維又は機能性繊維製品は、発生電位が大きく、半導体粒子の体温程度の低温加熱による励起荷電粒子が有効に人体に浸透し、合わせて半導体粉末からの赤外線放射能との相乗効果が得られる。このため、保温繊維製品及び健康医療器具として使用することができ、肌着、靴下、腹巻、シーツ、枕及び寝具等の必要とされる形状に加工して使用する以外に、荷電粒子による殺菌効果等による防臭効果も期待できる。また、微細なゴミは静電気力で物体に付着しており、機能性織布又は不織布は電荷を発生しゴミ付着の電気力を中和するのでゴミ取り効果が大きい。特に、磁性体の使用が禁止されている電子医療器具、例えば心臓ペースメーカーの近くでも使用可能であるので、産業上有用である。本発明の荷電粒子発生体は熱電能が大きいので、火災報知器等のセンサーユニットとしても使用できる可能性が開けた。さらに、巨大熱電能は常温付近での温度センサーとしても使用できる。   A functional fiber or functional fiber product obtained by osmotically diffusing semiconductor particles into fibers and fiber products using the dyeing method of the present invention has a large generated potential, and excited charged particles generated by low-temperature heating at about the body temperature of the semiconductor particles. Effectively penetrates the human body, and a synergistic effect with the infrared radiation from the semiconductor powder is obtained. For this reason, it can be used as a warming fiber product and a health care device, in addition to processing and using it in the required shape such as underwear, socks, abdomen, sheets, pillows and bedding, etc. The deodorizing effect by can also be expected. In addition, fine dust adheres to the object by electrostatic force, and the functional woven or non-woven fabric generates electric charge and neutralizes the electric force of dust adhesion, so that the dust removal effect is great. In particular, since it can be used in the vicinity of an electronic medical device in which use of a magnetic material is prohibited, for example, a cardiac pacemaker, it is industrially useful. Since the charged particle generator of the present invention has a large thermoelectric power, the possibility of using it as a sensor unit for a fire alarm or the like has been opened. Furthermore, the giant thermoelectric power can be used as a temperature sensor near room temperature.

ナノダイヤ半導体複合炭素粒子とトルマリンの赤外線分光放射能を示すグラフ。The graph which shows the infrared spectrum radioactivity of nano diamond semiconductor composite carbon particle and tourmaline. ナノダイヤ半導体10wt%配合有機高分子複合体の電気伝導度と発生電位及び生体効果を示す図。The figure which shows the electrical conductivity of the organic polymer composite containing 10 wt% of nanodiamond semiconductor, the generated potential, and the biological effect. 半導体粒子の有機高分子への混入複合体内でのパーコレーション配列の場合の粒子分布の模式図。The schematic diagram of particle distribution in the case of the percolation arrangement | sequence in the composite_body | complex in which the semiconductor particle mixed with the organic polymer. ナノダイヤ有機樹脂混入パーコレーション配列の場合の電気抵抗印加電圧特性図。The electrical resistance applied voltage characteristic diagram in the case of a nanodiaphragm organic resin mixed percolation array. ナノダイヤ有機樹脂混入パーコレーション配列の場合の電気抵抗印加電圧特性図。The electrical resistance applied voltage characteristic diagram in the case of a nanodiaphragm organic resin mixed percolation array. 染色法による分散粒子の繊維内への浸透模式図。The penetration | invasion schematic diagram into the fiber of the dispersion particle by a dyeing | staining method. 本発明に使用したナノダイヤ半導体粒子の電気抵抗温度特性図。The electrical resistance temperature characteristic figure of the nano diamond semiconductor particle used for this invention. ナノダイヤ染色布の電気抵抗印加電圧特性図。The electrical resistance applied voltage characteristic figure of nano diamond dyeing cloth. ナノダイヤ染色布の1実施例でのSEM写真。The SEM photograph in one Example of nano diamond dyeing cloth.

Claims (11)

所定の分散液中で半導体粒子を分散させ、前記半導体粒子を繊維高分子の結晶界面領域又は非結晶領域に選択的に分散させてなる赤外線及び荷電粒子放射特性を有する機能性繊維又は機能性繊維製品。   Functional fibers or functional fibers having infrared and charged particle emission characteristics obtained by dispersing semiconductor particles in a predetermined dispersion and selectively dispersing the semiconductor particles in a crystalline interface region or an amorphous region of a fiber polymer. Product. シート抵抗が10E12Ω以下である電気特性を有することを特徴とする請求項1記載の機能性繊維又は機能性繊維製品。   The functional fiber or the functional fiber product according to claim 1, wherein the functional fiber or the functional fiber product has an electric characteristic of a sheet resistance of 10E12Ω or less. 半導体粒子が加熱されることにより発生する荷電粒子の量子効果に基づく巨大熱起電力を有することを特徴とする請求項1又は2記載の機能性繊維又は機能性繊維製品。   The functional fiber or the functional fiber product according to claim 1, wherein the functional fiber or the functional fiber product has a giant thermoelectromotive force based on a quantum effect of charged particles generated when the semiconductor particles are heated. 半導体粒子が生体温度により活性化されて人体に浸透させ得る荷電粒子及び赤外線を発生することを特徴とする請求項1又は2記載の機能性繊維又は機能性繊維製品。   The functional fiber or the functional fiber product according to claim 1 or 2, wherein the semiconductor particles are activated by a living body temperature to generate charged particles and infrared rays that can penetrate the human body. 請求項1,2,3又は4記載の機能性繊維又は機能性繊維製品において、半導体粒子の原料として、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体又は禁制帯を有する半導体を用い、所定の分散液中で半導体粒子を分散させる方法として、その半導体粒子を染色法により絶縁体繊維マトリクスに0.01−10wt%配合することにより、繊維中で配列させて、赤外線及び荷電粒子の放射量を増大させたことを特徴とする機能性繊維又は機能性繊維製品。   5. The functional fiber or functional fiber product according to claim 1, 2, 3 or 4, wherein the semiconductor has an activation energy level of 0.1-0.5 eV for generating charged particles near room temperature as a raw material for semiconductor particles. Alternatively, as a method of dispersing semiconductor particles in a predetermined dispersion using a semiconductor having a forbidden band, the semiconductor particles are arranged in the fiber by blending 0.01-10 wt% in an insulator fiber matrix by a dyeing method. A functional fiber or a functional fiber product characterized in that the radiation amount of infrared rays and charged particles is increased. 請求項5記載の機能性繊維又は機能性繊維製品において、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体粒子として、衝撃波法により作成されたナノダイヤモンドを用い、これを繊維高分子絶縁体マトリクスに0.01−10wt%配合することにより、赤外線及び荷電粒子の放射量を増大させたことを特徴とする機能性繊維又は機能性繊維製品。   6. The functional fiber or the functional fiber product according to claim 5, wherein nanodiamonds produced by a shock wave method are used as semiconductor particles having an activation energy level of 0.1 to 0.5 eV for generating charged particles near room temperature. A functional fiber or a functional fiber product characterized in that the radiation amount of infrared rays and charged particles is increased by using 0.01-10 wt% of this in a fiber polymer insulator matrix. 請求項5記載の機能性繊維又は機能性繊維製品において、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−0.5eVである半導体又は禁制帯を有する半導体粒子の原料として、単元素半導体であるGe,Si、化合物半導体であるInSb.InAs,Bi−Te系等熱電半導体、Ti−O系等酸化物半導体の一種又は複合体を使用していることを特徴とする機能性繊維又は機能性繊維製品。   In the functional fiber or the functional fiber product according to claim 5, as a raw material for a semiconductor having an activation energy level for generating charged particles near room temperature of 0.1 to 0.5 eV or a semiconductor particle having a forbidden band, Elemental semiconductors such as Ge and Si, and compound semiconductors such as InSb. A functional fiber or a functional fiber product characterized by using one or a composite of a thermoelectric semiconductor such as InAs, Bi-Te, or the like, or an oxide semiconductor such as a Ti-O. 請求項1又は2記載の機能性繊維又は機能性繊維製品において、半導体粉末として、単元素半導体に属する衝撃波で形成された半導体ダイヤモンド粒子に,単元素半導体であるGe,Si、化合物半導体であるInSb,BiTe,PbTe、酸化物半導体であるCa−Mn,Ca−Cr,Zn,Tiの酸化物、珪化物半導体であるFeSi2,CoSi等のいずれか1種又は複数種の半導体粉末を混合して使用していることを特徴とする機能性繊維又は機能性繊維製品。   3. The functional fiber or the functional fiber product according to claim 1, wherein semiconductor diamond particles formed by shock waves belonging to a single element semiconductor are used as semiconductor powder, Ge, Si, which is a single element semiconductor, and InSb, which is a compound semiconductor. , BiTe, PbTe, oxide semiconductors such as Ca-Mn, Ca-Cr, Zn, Ti oxides, silicide semiconductors such as FeSi2, CoSi, etc. A functional fiber or a functional fiber product. 機能性繊維素材として、木綿等に代表されるセルロース系天然繊維,羊毛等に代表される蛋白質系繊維、及び、ナイロン、ビニロン、ポリアクリルニトリル、ポリエステル等化学繊維を使用していることを特徴とする請求項1ないし8のいずれか1項記載の機能性繊維又は機能性繊維製品。   It is characterized by using cellulose-based natural fibers such as cotton, protein-based fibers such as wool, and chemical fibers such as nylon, vinylon, polyacrylonitrile, and polyester as functional fiber materials. The functional fiber or the functional fiber product according to any one of claims 1 to 8. 請求項1ないし9のいずれか1項記載の機能性繊維製品は、請求項1ないし9のいずれか1項記載の機能性繊維で作られた不織布、糸、織物又は編み物などであることを特徴とする機能性繊維製品。   The functional fiber product according to any one of claims 1 to 9, wherein the functional fiber product is a non-woven fabric, a yarn, a woven fabric, or a knitted fabric made of the functional fiber according to any one of claims 1 to 9. Functional fiber products. 人体に放射された荷電粒子の運動に影響を及ぼす100−1200Gの磁場が付与されていることを特徴とする請求項10記載の機能性繊維製品。   The functional fiber product according to claim 10, wherein a magnetic field of 100 to 1200 G that affects the motion of charged particles emitted to a human body is applied.
JP2008189057A 2008-07-22 2008-07-22 Functional fibers and functional fiber products Expired - Fee Related JP5282203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189057A JP5282203B2 (en) 2008-07-22 2008-07-22 Functional fibers and functional fiber products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189057A JP5282203B2 (en) 2008-07-22 2008-07-22 Functional fibers and functional fiber products

Publications (2)

Publication Number Publication Date
JP2010024589A true JP2010024589A (en) 2010-02-04
JP5282203B2 JP5282203B2 (en) 2013-09-04

Family

ID=41730675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189057A Expired - Fee Related JP5282203B2 (en) 2008-07-22 2008-07-22 Functional fibers and functional fiber products

Country Status (1)

Country Link
JP (1) JP5282203B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027789A1 (en) * 2009-09-02 2011-03-10 スミノエテイジンテクノ株式会社 Functional product comprising semiconductor particle-compounded macromolecular complex
WO2011058808A1 (en) * 2009-11-12 2011-05-19 スミノエテイジンテクノ株式会社 Organic functional material and product using same
JP2012107370A (en) * 2010-11-19 2012-06-07 Vision Development Co Ltd Water repellent fiber and fiber product using the same
CN102965822A (en) * 2012-11-22 2013-03-13 吴江市虹凯纺织有限公司 Germanium fiber anti-fatigue fabric
CN104305595A (en) * 2014-09-17 2015-01-28 李忠 Physiotherapy health care clothes
JP2016082132A (en) * 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2016169334A (en) * 2015-03-13 2016-09-23 ブラバス・ジャパン株式会社 Method for producing thermoelectric polymer composite
WO2020013282A1 (en) * 2018-07-11 2020-01-16 株式会社ヤギ Toothbrush bristles, toothbrush and method for manufacturing toothbrush bristles
WO2020045615A1 (en) * 2018-08-31 2020-03-05 株式会社ヤギ Antibacterial product
CN111621188A (en) * 2020-04-17 2020-09-04 杭州纳巍前沿科学技术研究院有限公司 Preparation method of nano composite slurry

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158468A (en) * 1981-09-17 1991-07-08 Semiconductor Energy Lab Co Ltd Carbon-based coating film
JP2001148236A (en) * 1999-11-19 2001-05-29 Nippon Sheet Glass Co Ltd Alkaline secondary battery separator and battery using it
JP2002161009A (en) * 2000-11-27 2002-06-04 Nippon Zeon Co Ltd Deodorizing antimicrobial agent, deodorizing antimicrobial processing method and fiber product subjected to deodorizing antimicrobial treatment
JP2004162223A (en) * 2002-11-15 2004-06-10 Katsuhiro Yoshie Negative ion generation material
JP2006070403A (en) * 2004-09-03 2006-03-16 Kenbi Science Kk Cloth for printing
JP2007051396A (en) * 2005-08-19 2007-03-01 Omg:Kk Pile fabric and fabric product using the same
JP2008106392A (en) * 2006-10-25 2008-05-08 Nippon Aruta:Kk Functional fiber, and finished article and molded article including the functional fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158468A (en) * 1981-09-17 1991-07-08 Semiconductor Energy Lab Co Ltd Carbon-based coating film
JP2001148236A (en) * 1999-11-19 2001-05-29 Nippon Sheet Glass Co Ltd Alkaline secondary battery separator and battery using it
JP2002161009A (en) * 2000-11-27 2002-06-04 Nippon Zeon Co Ltd Deodorizing antimicrobial agent, deodorizing antimicrobial processing method and fiber product subjected to deodorizing antimicrobial treatment
JP2004162223A (en) * 2002-11-15 2004-06-10 Katsuhiro Yoshie Negative ion generation material
JP2006070403A (en) * 2004-09-03 2006-03-16 Kenbi Science Kk Cloth for printing
JP2007051396A (en) * 2005-08-19 2007-03-01 Omg:Kk Pile fabric and fabric product using the same
JP2008106392A (en) * 2006-10-25 2008-05-08 Nippon Aruta:Kk Functional fiber, and finished article and molded article including the functional fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027789A1 (en) * 2009-09-02 2011-03-10 スミノエテイジンテクノ株式会社 Functional product comprising semiconductor particle-compounded macromolecular complex
JP2011074553A (en) * 2009-09-02 2011-04-14 Teijin Fibers Ltd Functional product composed of semiconductor particle-compounded polymer composite
WO2011058808A1 (en) * 2009-11-12 2011-05-19 スミノエテイジンテクノ株式会社 Organic functional material and product using same
JP2011106035A (en) * 2009-11-12 2011-06-02 Teijin Fibers Ltd Organic functional material and product using the same
JP2012107370A (en) * 2010-11-19 2012-06-07 Vision Development Co Ltd Water repellent fiber and fiber product using the same
CN102965822A (en) * 2012-11-22 2013-03-13 吴江市虹凯纺织有限公司 Germanium fiber anti-fatigue fabric
CN104305595A (en) * 2014-09-17 2015-01-28 李忠 Physiotherapy health care clothes
CN104305595B (en) * 2014-09-17 2015-12-09 李忠 A kind of health-care physiotherapeutic clothing
JP2016082132A (en) * 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2016169334A (en) * 2015-03-13 2016-09-23 ブラバス・ジャパン株式会社 Method for producing thermoelectric polymer composite
WO2020013282A1 (en) * 2018-07-11 2020-01-16 株式会社ヤギ Toothbrush bristles, toothbrush and method for manufacturing toothbrush bristles
WO2020045615A1 (en) * 2018-08-31 2020-03-05 株式会社ヤギ Antibacterial product
JPWO2020045615A1 (en) * 2018-08-31 2020-09-03 株式会社ヤギ Antibacterial products
CN111621188A (en) * 2020-04-17 2020-09-04 杭州纳巍前沿科学技术研究院有限公司 Preparation method of nano composite slurry
CN111621188B (en) * 2020-04-17 2022-11-01 杭州纳巍前沿科学技术研究院有限公司 Preparation method of nano composite slurry

Also Published As

Publication number Publication date
JP5282203B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5282203B2 (en) Functional fibers and functional fiber products
Dresselhaus et al. The promise of low-dimensional thermoelectric materials
Shi et al. Large thermoelectric figure of merit in Si1− xGex nanowires
Martin et al. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites
JP2009096880A (en) Functional element and functional product radiating infrared ray and charged particle
CN102443848B (en) Method for improving thermoelectric properties of bismuth sulfide polycrystal
Wang et al. Thermoelectrics in misfit-layered oxides [(Ca, Ln) 2CoO3] 0.62 [CoO2]: From bulk to nano
KR20130015402A (en) Thermoelectric material, thermoelectric element, and thermoelectric module
AU2016233239A1 (en) Energy harvesting mattress with thermoelectric fabric
JP2008106392A (en) Functional fiber, and finished article and molded article including the functional fiber
WO2011027789A1 (en) Functional product comprising semiconductor particle-compounded macromolecular complex
Slack et al. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O
Rahman et al. Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping
US20090293930A1 (en) High efficiency skutterudite type thermoelectric materials and devices
Dresselhaus et al. Advances in 1D and 2D thermoelectric materials
Lincoln et al. A hybrid ceramic-based flexible thermoelectric nanogenerator with enhanced thermopower for human energy harvesting
Guo et al. Improved thermoelectric performance of Bi 2 Te 3-x Se x bulk materials produced by the preparation of high-pressure
JP2008183090A (en) Charge particle generator and health medical appliance using it
JP2011078546A (en) Functional element radiating infrared ray, magnetic filed line and charged particle and functional element carrier using the functional element
Xu et al. Thermoelectric properties of silicon carbide nanowires with nitride dopants and vacancies
US20080319518A1 (en) Charged particle generator and functional fabric having a charged particle emission function
Koçyiğit et al. Graphene doped metal oxide based thermoelectric materials production method
Wei et al. Electronic structure and transport coefficients of binary skutterudite antimonide
Jiang et al. HPHT synthesis and electrical transport properties of SmxCo4Sb12
JP2008086714A (en) Healthcare device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Ref document number: 5282203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees