JP2016165808A - Prepreg mica tape - Google Patents

Prepreg mica tape Download PDF

Info

Publication number
JP2016165808A
JP2016165808A JP2015045806A JP2015045806A JP2016165808A JP 2016165808 A JP2016165808 A JP 2016165808A JP 2015045806 A JP2015045806 A JP 2015045806A JP 2015045806 A JP2015045806 A JP 2015045806A JP 2016165808 A JP2016165808 A JP 2016165808A
Authority
JP
Japan
Prior art keywords
mica
varnish
mica tape
thermosetting resin
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015045806A
Other languages
Japanese (ja)
Inventor
みゆき 室町
Miyuki Muromachi
みゆき 室町
貴耶 山本
Takaya Yamamoto
貴耶 山本
滝田 隆夫
Takao Takita
隆夫 滝田
敬二 福島
Keiji Fukushima
敬二 福島
竹澤 由高
Yoshitaka Takezawa
由高 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015045806A priority Critical patent/JP2016165808A/en
Publication of JP2016165808A publication Critical patent/JP2016165808A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a prepreg mica tape which improves electric insulation properties contributing to miniaturization and high efficiency of a device, and has less variation in a dielectric breakdown field strength even when a thickness of an interlayer insulation material is reduced.SOLUTION: In a prepreg mica tape, a mica layer and a fabric layer are impregnated with silica particles and a thermosetting resin by impregnating the fabric layer with a varnish containing silica particle aggregate having a most frequent size of 50-1,000 nm and the thermosetting resin, and sticking the fabric layer to the mica layer and drying the stuck layer. The thermosetting resin is preferably an epoxy resin. A content of nanosilica is preferably 0.5-30 mass% with respect to the thermosetting resin. A rate of change per 1 nm of reflective absorbance at a wavelength of 340-380 nm of the varnish is preferably -4.5×10or less.SELECTED DRAWING: Figure 1

Description

本発明は、プリプレグマイカテープに関する。   The present invention relates to a prepreg mica tape.

高電圧機器あるいは電動機用コイルの小型化、高効率化により、層間絶縁材の厚み低減が望まれている。   A reduction in the thickness of the interlayer insulating material is desired due to the miniaturization and high efficiency of coils for high voltage devices or motors.

従来の層間絶縁材には、樹脂と裏打ち材とマイカが一体化したプリプレグマイカテープやマイカと樹脂を接着剤で固定後、注型樹脂を含浸させるドライマイカテープが使用されている。   As the conventional interlayer insulating material, a prepreg mica tape in which a resin, a backing material, and mica are integrated, or a dry mica tape that is impregnated with a casting resin after fixing the mica and the resin with an adhesive is used.

上記プリプレグマイカテープは、樹脂と裏打ち材とマイカが一体化しているために樹脂を多量に使用する必要がなく、低コストで環境への負荷が小さい。   In the prepreg mica tape, since the resin, the backing material and the mica are integrated, it is not necessary to use a large amount of the resin, and the load on the environment is low at a low cost.

従来のプリプレグマイカテープの硬化物は絶縁破壊電圧の平均値と最低値に差があり、電気絶縁性を確保するためにある一定以上の厚みが必要であり、装置の小型化、高効率化が困難であった。   Conventional cured prepreg mica tapes have a difference between the average and minimum values of dielectric breakdown voltage, and a certain thickness or more is required to ensure electrical insulation, which reduces the size and efficiency of the equipment. It was difficult.

特許文献1には、電気絶縁性、機械強度を低下することなく熱伝導率が向上したHTC(高熱伝導性)材料を充填した複合体絶縁テープを製造するための方法が提案され、マイカ層と織物層の複合体テープの織物層にHTC粒子(酸化物、窒化物、炭化物等)含有樹脂を含浸させて、HTC粒子含有樹脂をマイカ層に移動させる方法が提案されている。   Patent Document 1 proposes a method for manufacturing a composite insulating tape filled with an HTC (high thermal conductivity) material having improved thermal conductivity without reducing electrical insulation and mechanical strength. There has been proposed a method in which a fabric layer of a composite tape of a fabric layer is impregnated with a resin containing HTC particles (oxide, nitride, carbide, etc.) and the resin containing the HTC particles is moved to the mica layer.

特許文献2には、電気絶縁性、機械強度が低下することなく熱伝導率が向上した絶縁テープが提案され、マイカフレーク小片と六方晶窒化ホウ素の無機充填材で紙を形成し、これに樹脂を含浸して電気絶縁部品としている。   Patent Document 2 proposes an insulating tape that has improved electrical conductivity and thermal conductivity without lowering mechanical strength, and forms a paper with an inorganic filler of mica flake pieces and hexagonal boron nitride, and resin It is impregnated as an electrical insulation part.

非特許文献1には、マイカと裏打ち材を接着剤で固定したドライマイカテープを使用し、導電体の周囲に巻き付けた後、ナノシリカを26質量%添加した注型樹脂で硬化させることで課電劣化寿命が2倍以上向上したことが報告されている。   Non-Patent Document 1 uses a dry mica tape in which mica and a backing material are fixed with an adhesive, and is wound around a conductor and then cured with a casting resin to which 26% by mass of nanosilica is added. It has been reported that the deterioration life has been improved more than twice.

特表2009−532242号公報Special table 2009-532242 特表2010−517222号公報Special table 2010-517222

CIGRE2012−A1−103(CIGRE;国際大電力システム会議)、「Nanotechnology in high voltage insulation system for large electrical machinery - First results」CIGRE2012-A1-103 (CIGRE; International Large Power System Conference), “Nanotechnology in high voltage insulation system for large electrical machinery-First results”

絶縁破壊電圧の平均値と最低値の差を低減し、装置を小型化、高効率化するには、樹脂層とマイカ含有層の電気絶縁性を向上させることが望ましい。しかし、特許文献1の無機充填材、樹脂で構成される絶縁テープでは、裏打ち材が無いため、テープとして導体に巻き付けて使用することが困難であった。
また、特許文献1のHTC粒子、樹脂、織物層、マイカ層、樹脂バックコーティングで構成される複合体絶縁テープでは、マイカ層と織物層の界面、マイカ層と樹脂の界面、織物層と樹脂の界面、HTC粒子と樹脂等の界面が多く、大気圧下で成型した場合、ボイドが発生しやすく電気絶縁性が低下する可能性があった。
また、非特許文献1のマイカと裏打ち材を接着剤で固定したドライマイカテープを使用し、導電体の周囲に巻き付けた後、ナノシリカを26質量%添加した注型樹脂で硬化させる方法では、ナノシリカ添加量が26質量%以上必要となり、大気圧下で成型した場合ボイドを含み電気絶縁性は低下する可能性があった。
また、ナノシリカを添加した際に、分散に偏りがあると電気絶縁性のばらつきが大きくなる可能性があった。
本発明はこれらの課題を解決しようとするものであり、装置の小型化、高効率化に寄与する電気絶縁性を向上し、層間絶縁材の厚みを低減しても絶縁破壊電界強度のばらつきが少ないプリプレグマイカテープを提供する。
In order to reduce the difference between the average value and the minimum value of the dielectric breakdown voltage and to reduce the size and increase the efficiency of the device, it is desirable to improve the electrical insulation between the resin layer and the mica-containing layer. However, the insulating tape composed of the inorganic filler and resin of Patent Document 1 has no backing material, so it is difficult to use the tape as a tape by winding it around a conductor.
Further, in the composite insulating tape composed of the HTC particles, the resin, the fabric layer, the mica layer, and the resin back coating of Patent Document 1, the interface between the mica layer and the fabric layer, the interface between the mica layer and the resin, the fabric layer and the resin There are many interfaces, such as HTC particles and resin, and when molding is performed under atmospheric pressure, voids are likely to be generated, and the electrical insulation may be lowered.
Further, in the method of using a dry mica tape in which the mica and the backing material of Non-Patent Document 1 are fixed with an adhesive, wound around a conductor, and cured with a casting resin to which 26% by mass of nanosilica is added, nanosilica The amount added must be 26% by mass or more, and when molded under atmospheric pressure, voids may be included and the electrical insulation properties may be reduced.
In addition, when nano silica is added, if the dispersion is biased, there may be a large variation in electrical insulation.
The present invention is intended to solve these problems, and improves the electrical insulation that contributes to downsizing and high efficiency of the device, and even if the thickness of the interlayer insulating material is reduced, the variation of the dielectric breakdown electric field strength does not occur. Provide few prepreg mica tapes.

前記課題を解決するための具体的手段は以下の通りである。   Specific means for solving the above problems are as follows.

[1] 最頻サイズが50〜1000nmのシリカ粒子凝集体及び熱硬化性樹脂を含むワニスを織物層に含浸して、マイカ層と貼り合せ乾燥することで、マイカ層と織物層にシリカ粒子と熱硬化性樹脂を含浸したプリプレグマイカテープ。   [1] A varnish containing a silica particle aggregate having a mode size of 50 to 1000 nm and a thermosetting resin is impregnated into a fabric layer, and bonded to the mica layer and dried, whereby silica particles are bonded to the mica layer and the fabric layer. Prepreg mica tape impregnated with thermosetting resin.

[2] 前記熱硬化性樹脂が、エポキシ樹脂である上記[1]に記載のプリプレグマイカテープ。   [2] The prepreg mica tape according to the above [1], wherein the thermosetting resin is an epoxy resin.

[3] 前記最頻サイズが50〜1000nmのシリカ粒子凝集体の含有率が、熱硬化性樹脂に対し0.5〜30質量%である上記[1]または[2]に記載のプリプレグマイカテープ。   [3] The prepreg mica tape according to the above [1] or [2], wherein the content of the silica particle aggregate having a mode size of 50 to 1000 nm is 0.5 to 30% by mass with respect to the thermosetting resin. .

[4] 前記シリカ粒子凝集体及び熱硬化性樹脂を含むワニスの340〜380nm波長においての反射吸光度の1nm当たりの変化率が−4.5×10−3以下である上記[1]〜[3]のいずれか一項に記載のプリプレグマイカテープ。 [4] The above [1] to [3], wherein the change rate per 1 nm of the reflection absorbance at 340 to 380 nm wavelength of the varnish containing the silica particle aggregate and the thermosetting resin is −4.5 × 10 −3 or less. ] The prepreg mica tape as described in any one of.

[5] プリプレグマイカテープ硬化物の絶縁破壊電界強度が90kV/mm以上、絶縁破壊電界強度の測定の標準偏差が5.0kV/mm以下である上記[1]〜[4]のいずれか一項に記載のプリプレグマイカテープ。   [5] Any one of [1] to [4] above, wherein the prepreg mica tape cured product has a dielectric breakdown electric field strength of 90 kV / mm or more and a standard deviation of measurement of the dielectric breakdown electric field strength of 5.0 kV / mm or less. The prepreg mica tape described in 1.

本発明によれば、電気絶縁性が向上した絶縁破壊電界強度のばらつきが少ないプリプレグマイカテープを提供することができる。これにより、層間絶縁材の厚みを低減しても電気絶縁性が均一であるので高電圧機器あるいは電動機用コイルの小型化、高効率化に寄与することができる。   ADVANTAGE OF THE INVENTION According to this invention, the prepreg mica tape with few dispersion | variations in the electric breakdown strength with improved electric insulation can be provided. As a result, even if the thickness of the interlayer insulating material is reduced, the electrical insulation is uniform, which can contribute to the downsizing and high efficiency of the high voltage device or the motor coil.

実施例1、2、比較例2のプリプレグテープの断面を示す概略図である。1 is a schematic view showing a cross section of prepreg tapes of Examples 1 and 2 and Comparative Example 2. FIG. 比較例1のプリプレグテープの断面を示す概略図である。2 is a schematic view showing a cross section of a prepreg tape of Comparative Example 1. FIG.

本発明のプリプレグマイカテープは、最頻サイズが50〜1000nmのシリカ粒子凝集体及び熱硬化性樹脂を含むワニスを織物層に含浸して、マイカ層と貼り合せ、乾燥することで、マイカ層と織物層にシリカ粒子と熱硬化性樹脂を含浸したプリプレグマイカテープである。
図1は、本実施形態のプリプレグマイカテープの断面図を示している。このプリプレグマイカテープは、最頻サイズが50〜1000nmのシリカ粒子凝集体2と、織物層としての裏打ち材1と、熱硬化性樹脂3と、マイカ層としてのマイカペーパ4から構成され一体化している。プリプレグマイカテープは、粒子と熱硬化性樹脂を含むワニスを織物層1に含浸して、マイカ層4と貼り合せることで織物層1に含浸したワニスをマイカ層4に含浸させ、これを乾燥することで得ることができる。
このようなプリプレグテープとすることで、絶縁破壊電界強度のばらつきが少ない均質なテープとなる。
The prepreg mica tape of the present invention is obtained by impregnating a woven fabric layer with a varnish containing a silica particle aggregate having a mode size of 50 to 1000 nm and a thermosetting resin, bonding the mica layer, and drying. A prepreg mica tape in which a fabric layer is impregnated with silica particles and a thermosetting resin.
FIG. 1 shows a cross-sectional view of the prepreg mica tape of this embodiment. This prepreg mica tape is composed of a silica particle aggregate 2 having a mode size of 50 to 1000 nm, a backing material 1 as a fabric layer, a thermosetting resin 3, and a mica paper 4 as a mica layer. . The prepreg mica tape impregnates the varnish containing particles and thermosetting resin into the fabric layer 1 and bonds the mica layer 4 to impregnate the varnish impregnated in the fabric layer 1 into the mica layer 4 and dries it. Can be obtained.
By setting it as such a prepreg tape, it becomes a homogeneous tape with few dispersion | variation in dielectric breakdown electric field strength.

マイカは、JIS標準篩を用いて篩い分けした時の粒子径が10mm以下で、純度が50質量%以上であることが好ましい。マイカは、広範囲の水和ケイ酸アルミニウム鉱物に一般的に適用される総称であり、一般的には、シート状の構造、ならびに種々の程度の可撓性、弾性、硬度、および薄層に裂け得る性質を有することにより特徴付けられる。マイカは種々の組成で自然界に存在する。白雲母および金雲母は、工業的に重要な2つの天然マイカである。フッ素金雲母は広く使用されている合成マイカである。天然および合成マイカは、ともに本発明の実施で使用するのに適している。   Mica preferably has a particle diameter of 10 mm or less and a purity of 50 mass% or more when sieved using a JIS standard sieve. Mica is a generic term that is commonly applied to a wide range of hydrated aluminum silicate minerals, generally sheet-like structures, and to various degrees of flexibility, elasticity, hardness, and thin layers. Characterized by having properties to obtain. Mica exists in nature with various compositions. Biotite and phlogopite are two industrially important natural mica. Fluorophlogopite is a widely used synthetic mica. Both natural and synthetic mica are suitable for use in the practice of the present invention.

織物層としての裏打ち材としては、例えば、高分子材料で構成される繊維を全部又は一部用いて得られるクロスを用いてもよい。クロスを構成する高分子材料としてはアラミド、ポリイミド、ポリエステル等の高分子材料の繊維、マグネシア繊維、炭化ホウ素繊維、炭化ケイ素繊維、シリカ繊維、ボロン繊維、ボロンナイトライド繊維、アルミナ繊維、酸化ジルコニウム繊維等のセラミック繊維、Eガラス、A−ガラス、C−ガラス、L−ガラス、D−ガラス、S−ガラス、M−ガラス等のガラス繊維、クリソタイル石綿、青石綿、アモサイト石綿、アンソフィライト石綿、トレモライト石綿、アクチノライト石綿等の岩石繊維などが挙げられる。高分子材料を繊維の一部として用いる場合には、クロスの縦糸、あるいは横糸又はその両方として用いてもよい。ガラス繊維で構成されるガラスクロスと高分子フィルムを併用してもよい。織物層としては、ガラスクロスが好ましい。   As the backing material as the fabric layer, for example, a cloth obtained by using all or a part of fibers made of a polymer material may be used. The polymer material constituting the cloth is a fiber of a polymer material such as aramid, polyimide, polyester, magnesia fiber, boron carbide fiber, silicon carbide fiber, silica fiber, boron fiber, boron nitride fiber, alumina fiber, zirconium oxide fiber Ceramic fibers such as E glass, A-glass, C-glass, L-glass, D-glass, S-glass, M-glass, etc., chrysotile asbestos, blue asbestos, amosite asbestos, anthophyllite asbestos, Examples include rock fibers such as tremolite asbestos and actinolite asbestos. When the polymer material is used as a part of the fiber, it may be used as a warp yarn, a weft yarn, or both. A glass cloth composed of glass fibers and a polymer film may be used in combination. As the fabric layer, glass cloth is preferable.

本発明において最頻サイズは、例えば、レーザー回折・散乱式粒度分布計SALD−7500(株式会社島津製作所製商品名)にて、屈折率1.55として粒度分布を測定し、その粒度分布における積算粒度分布グラフ(体積基準)の傾きが最大値をとる粒径を最頻サイズとしてもよい。   In the present invention, the most frequent size is determined by measuring the particle size distribution with a refractive index of 1.55 using, for example, a laser diffraction / scattering particle size distribution analyzer SALD-7500 (trade name, manufactured by Shimadzu Corporation), and integrating the particle size distribution. The particle size at which the gradient of the particle size distribution graph (volume basis) takes the maximum value may be set as the mode size.

ナノシリカの粒子凝集体は50〜1000nmのものが好ましく、100〜500nmのものがより好ましい。ナノシリカの平均一次粒径は、5〜50nmのものが好ましく、5〜20nmのものがより好ましい。また、前記ナノシリカ粒子凝集体には、一次粒子が含まれていてもよい。
ナノシリカの形状は、球状、りん片状のいずれでもよいが球状が好ましい。ナノシリカの表面には、ヒドロキシル基、アミノ基、カルボキシル基、シラノール基、メチル基、エチル基、イソプロピル基、メトキシ基、エトキシ基、ジメチルシリル基、トリメチルシリル基等の官能基の内少なくとも1つ以上が存在することが好ましく、前記官能基を有するシラン系、アルミニウム系、チタン系カップリング剤等により表面処理して、粒子表面に官能基を付与してもよい。
Nanosilica particle aggregates are preferably 50 to 1000 nm, more preferably 100 to 500 nm. The average primary particle diameter of nano silica is preferably 5 to 50 nm, more preferably 5 to 20 nm. The nanosilica particle aggregate may contain primary particles.
The shape of the nanosilica may be either spherical or flake shaped, but is preferably spherical. The surface of the nanosilica has at least one of functional groups such as hydroxyl group, amino group, carboxyl group, silanol group, methyl group, ethyl group, isopropyl group, methoxy group, ethoxy group, dimethylsilyl group, and trimethylsilyl group. It is preferably present, and may be surface treated with a silane-based, aluminum-based, titanium-based coupling agent or the like having the functional group to impart a functional group to the particle surface.

前記最頻サイズが50〜1000nmのシリカ粒子凝集体の含有率は、熱硬化性樹脂に対し0.5〜30質量%が好ましく、2〜10質量%がより好ましい。   The content of the silica particle aggregate having the mode size of 50 to 1000 nm is preferably 0.5 to 30% by mass and more preferably 2 to 10% by mass with respect to the thermosetting resin.

前記最頻サイズが50〜1000nmのシリカ粒子凝集体を熱硬化性樹脂中に均一に分散させるためには、ナノシリカの表面処理、分散剤やレベリング剤の添加、又は混練方法を組み合わせ均一に分散させる手法を用いてもよい。   In order to uniformly disperse the silica particle aggregate having the most frequent size of 50 to 1000 nm in the thermosetting resin, it is uniformly dispersed by combining nanosilica surface treatment, addition of a dispersant or leveling agent, or a kneading method. A technique may be used.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シアン酸エステル樹脂、ポリイミド樹脂、ビスマレイミド・トリアノン樹脂、フェノール・アラルキル樹脂等を、単独あるいは2種以上組み合わせて用いることができる。
熱硬化性樹脂の中でも、エポキシ樹脂が好ましく、エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂のうち少なくとも1つを含むものを用いることができる。エポキシ樹脂は、硬化剤、硬化促進剤と組み合わせることで熱硬化することができ、エポキシ樹脂は、これらを包含する。
これらエポキシ樹脂に組み合わせて使用される硬化剤としては、フェノールノボラック、クレゾールノボラック、ビスフェノールノボラック、レゾルシン、ビスフェノールA等の多価フェノール類、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等のアミン系硬化剤、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸等の酸無水物硬化剤等が例示される。これらの硬化剤は単独または2種以上混合して用いられる。
硬化促進剤としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール等のイミダゾール類、ベンジルジメチルアミン、トリメチルアミン等の第三アミン類、ホスフィン系やホスホニウム系のリン化合物、三フッ化ホウ素モノエチルアミン等のルイス酸類のうち少なくとも1つを含むものを用いることができる。
As thermosetting resins, epoxy resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, cyanate ester resins, polyimide resins, bismaleimide / trianone resins, phenol / aralkyl resins, etc., alone or in combination They can be used in combination.
Among thermosetting resins, epoxy resins are preferred, and examples of the epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and alicyclic epoxy resins. One containing at least one can be used. The epoxy resin can be thermally cured by combining with a curing agent and a curing accelerator, and the epoxy resin includes these.
Curing agents used in combination with these epoxy resins include polyphenols such as phenol novolac, cresol novolac, bisphenol novolac, resorcin, and bisphenol A, amine curing agents such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone, and anhydrous. Examples thereof include acid anhydride curing agents such as pyromellitic acid, trimellitic anhydride, and benzophenone tetracarboxylic acid. These curing agents are used alone or in combination of two or more.
As curing accelerators, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, One containing at least one of tertiary amines such as benzyldimethylamine and trimethylamine, phosphine-based and phosphonium-based phosphorus compounds, and Lewis acids such as boron trifluoride monoethylamine can be used.

本発明のプリプレグマイカテープは、最頻サイズが50〜1000nmのシリカ粒子凝集体及び熱硬化性樹脂を含むワニスを織物層に含浸して、マイカ層と貼り合せ、乾燥することで、マイカ層と織物層に、粒子と熱硬化性樹脂を含浸したものである。
なお、熱硬化性樹脂にはA、B、Cステージがあり、硬化の程度を示す。Aステージは、未硬化で流動状のワニス状態であり、Bステージは半硬化状態である。Cステージは完全に硬化した状態を言う。本発明ではBステージの半硬化状態を想定しているが、Aステージでも良い。
最頻サイズが50〜1000nmのシリカ粒子凝集体と熱硬化性樹脂を溶剤に溶解ないし分散させてワニスを作製する。この際、粒子が十分に分散するようにすることが重要であり、粒子が凝集しないように分散する。
本実施形態のプリプレグマイカテープは、例えば、最頻サイズが50〜1000nmのシリカ粒子凝集体及び熱硬化性樹脂を含むワニスをロールコーター等で、織物層へ塗布し、それをマイカペーパと貼り合せて乾燥し、製造することができる。前記ワニスは、最頻サイズが50〜1000nmのシリカ粒子凝集体と、熱硬化性樹脂と、硬化促進剤と、溶剤(反応希釈剤)とを含む。
ワニスは、最頻サイズが50〜1000nmのシリカ粒子凝集体を1〜10質量%、熱硬化性樹脂を30〜88質量%、硬化促進剤を1〜10質量%、溶剤(反応希釈剤)を10〜50質量%の割合で含むことが好ましい。
The prepreg mica tape of the present invention is obtained by impregnating a woven fabric layer with a varnish containing a silica particle aggregate having a mode size of 50 to 1000 nm and a thermosetting resin, bonding the mica layer, and drying. A fabric layer is impregnated with particles and a thermosetting resin.
The thermosetting resin has A, B, and C stages, and indicates the degree of curing. The A stage is an uncured and fluid varnish state, and the B stage is a semi-cured state. The C stage is a completely cured state. In the present invention, the semi-cured state of the B stage is assumed, but the A stage may be used.
A varnish is prepared by dissolving or dispersing a silica particle aggregate having a mode size of 50 to 1000 nm and a thermosetting resin in a solvent. At this time, it is important that the particles are sufficiently dispersed, and the particles are dispersed so as not to aggregate.
The prepreg mica tape of the present embodiment is, for example, a method of applying a varnish containing a silica particle aggregate having a mode size of 50 to 1000 nm and a thermosetting resin to a fabric layer with a roll coater or the like, and laminating it with mica paper. Can be dried and manufactured. The varnish includes an aggregate of silica particles having a mode size of 50 to 1000 nm, a thermosetting resin, a curing accelerator, and a solvent (reaction diluent).
The varnish contains 1 to 10% by mass of a silica particle aggregate having a mode size of 50 to 1000 nm, 30 to 88% by mass of a thermosetting resin, 1 to 10% by mass of a curing accelerator, and a solvent (reaction diluent). It is preferable to contain in the ratio of 10-50 mass%.

ワニスをロールコーター等で、織物層へ塗布し、それをマイカペーパと貼り合せ、その後乾燥するが、乾燥条件としては、60℃、10〜30分である。ワニスを塗布した織物層と、マイカペーパとを貼り合せることにより、ワニス中の成分(粒子凝集体と熱硬化性樹脂)がマイカペーパに移行し、織物層中に粒子と熱硬化性樹脂とを含む粒子含有樹脂層と、マイカペーパ中に粒子と熱硬化性樹脂とを含む粒子含有樹脂層とを有し、織物層とマイカ層が一体複合化されたプリプレグマイカテープとなるものである。
溶剤(反応希釈剤)としては、例えば、メチルエチルケトン(MEK)、メタノール、エタノール、アセトン、シクロヘキサンノン等の有機溶剤が挙げられる。
The varnish is applied to the fabric layer with a roll coater or the like, bonded to mica paper, and then dried. Drying conditions are 60 ° C. and 10 to 30 minutes. By bonding the fabric layer coated with varnish and mica paper, the components in the varnish (particle aggregates and thermosetting resin) migrate to the mica paper, and the particles containing particles and thermosetting resin in the fabric layer The prepreg mica tape has a resin-containing layer and a particle-containing resin layer containing particles and a thermosetting resin in mica paper, and a woven fabric layer and a mica layer are integrally combined.
Examples of the solvent (reaction diluent) include organic solvents such as methyl ethyl ketone (MEK), methanol, ethanol, acetone, and cyclohexanenone.

本発明のプリプレグマイカテープは、プリプレグマイカテープを所定の枚数積層し、高電圧機器あるいは電動機用コイルなどの被着体に積層し、加熱して硬化させることで電気絶縁性を発揮させることができる。加熱条件としては、圧力1〜20MPa、100〜120℃、5〜30分である。後硬化(後加熱)として、圧力1〜20MPa、170〜190℃、60〜120分で、さらに、加熱成形してもよい。
得られたプリプレグマイカテープの硬化物において、最頻サイズが50〜1000nmのシリカ粒子凝集体および粒子の含有量が、熱硬化性樹脂100質量部に対して0.5〜30質量%であることが好ましい。より好ましくは、5〜10質量部%である。ナノシリカの含有量が、前記範囲内であることによって、絶縁破壊電界強度の向上等の効果が得られ、好ましい。なお、本実施形態の熱硬化性樹脂とは、熱硬化性樹脂、硬化促進剤、その他の樹脂成分等を含むものである。
The prepreg mica tape of the present invention can exhibit electrical insulation properties by laminating a predetermined number of prepreg mica tapes, laminating them on an adherend such as a high voltage device or a coil for an electric motor, and curing by heating. . As heating conditions, the pressure is 1 to 20 MPa, 100 to 120 ° C., and 5 to 30 minutes. As post-curing (post-heating), heat molding may be performed at a pressure of 1 to 20 MPa, 170 to 190 ° C., and 60 to 120 minutes.
In the cured product of the obtained prepreg mica tape, the content of silica particle aggregates and particles having a mode size of 50 to 1000 nm is 0.5 to 30% by mass with respect to 100 parts by mass of the thermosetting resin. Is preferred. More preferably, it is 5-10 mass parts%. When the content of nanosilica is within the above range, an effect such as improvement of the dielectric breakdown electric field strength is obtained, which is preferable. The thermosetting resin of this embodiment includes a thermosetting resin, a curing accelerator, other resin components, and the like.

本発明では、織物層にワニスを含浸して、マイカ層と貼り合せる。その際に織物層のワニスがマイカ層に移動しマイカ層の空隙を充填する。マイカ層にはマイカ層を形成するマイカ片が重ねられ、マイカ片とマイカ片との間には空隙があり、マイカ片表面にも凹凸によるミクロ的な空隙やクラックがある。織物層からのワニスは、織物層に接するマイカ層面からマイカ層の他面に向けて浸透していき、マイカ片表面のミクロ的空隙やクラックをワニスの溶剤による湿潤、濡れ性、親和力でマイカ片の微視的表面を濡らしこの空隙、クラックやマイカ片同士の空隙をワニスで埋めつつマイカ層他面に達する。
本発明では、織物層にワニスを含浸してから、マイカ層と貼り合せて、織物層のワニスをマイカ層に移動しマイカ層の空隙を充填するので、マイカ層のミクロ的な空隙がなく、また、マイカ層表面にばらつきの原因となる樹脂層が形成されにくく、織物層に含浸したワニスの塗布量が変化し厚みが多少ばらついてもマイカ層への含浸により緩和され全体として均一な特性を有するようになる結果、絶縁破壊電界強度のばらつきが小さくなると思われる。
In the present invention, the fabric layer is impregnated with varnish and bonded to the mica layer. At that time, the varnish of the fabric layer moves to the mica layer and fills the voids of the mica layer. The mica layer is overlaid with mica pieces forming the mica layer. There is a gap between the mica pieces and the mica pieces, and the surface of the mica pieces also has microscopic voids and cracks due to unevenness. The varnish from the fabric layer penetrates from the surface of the mica layer in contact with the fabric layer toward the other surface of the mica layer, and the microscopic voids and cracks on the surface of the mica piece are moistened by the varnish solvent, wettability, and affinity. It reaches the other side of the mica layer while wetting the microscopic surface and filling the gaps, cracks and gaps between the mica pieces with varnish.
In the present invention, the fabric layer is impregnated with varnish, and then bonded to the mica layer, and the fabric layer varnish is moved to the mica layer to fill the void in the mica layer, so there is no micro void in the mica layer, In addition, it is difficult to form a resin layer that causes variation on the surface of the mica layer, and even if the coating amount of the varnish impregnated in the fabric layer changes and the thickness varies somewhat, the mica layer is alleviated by the impregnation and has uniform characteristics as a whole. As a result, the variation in the electric field strength of the breakdown is considered to be small.

<実施例1>
(1)ナノシリカ含有ワニスの作製
熱硬化性樹脂(エポキシノボラック樹脂、ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標。))83.0質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社製)2.5質量%と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社製)10.0質量%とを混合した。その後、ナノシリカ(一次粒径:平均粒径7nm)4.5質量%を加え、さらにニーダーを用いてよく混合しナノシリカ含有ワニスを得た。
<Example 1>
(1) Production of nanosilica-containing varnish Thermosetting resin (epoxy novolac resin, Dow Chemical Japan Co., Ltd., trade name “D.N.438” (“D.N.” is a registered trademark)) ) 83.0% by mass, 2.5% by mass of boron trifluoride monoethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator, and methyl ethyl ketone (MEK) (manufactured by Wako Pure Chemical Industries, Ltd.) as an organic solvent. 10.0% by mass was mixed. Thereafter, 4.5% by mass of nanosilica (primary particle size: average particle size 7 nm) was added, and further mixed well using a kneader to obtain a nanosilica-containing varnish.

(2)ナノシリカ含有プリプレグマイカテープの作製
得られたナノシリカ含有ワニスをロールコーターでガラスクロス(厚み40μm)へ塗布した直後に、マイカペーパ(180g/m)と貼り合せた。そして、密封した状態で60℃で40時間の熟成を行い、マイカペーパにワニスを含浸させた後、乾燥炉長7mの乾燥機で乾燥温度80℃、速度1.1m/minで熱風乾燥後、幅30mmに切断し厚み約230μmのナノシリカ含有プリプレグマイカテープを得た。
(2) Production of nanosilica-containing prepreg mica tape Immediately after the obtained nanosilica-containing varnish was applied to a glass cloth (thickness 40 μm) with a roll coater, it was bonded to mica paper (180 g / m 2 ). Then, after aging for 40 hours at 60 ° C. in a sealed state and impregnating mica paper with varnish, drying with hot air at a drying temperature of 80 ° C. and a speed of 1.1 m / min in a dryer with a drying oven length of 7 m, width A nanosilica-containing prepreg mica tape having a thickness of about 230 μm was obtained by cutting into 30 mm.

(3)評価
前記で得たナノシリカ含有プリプレグマイカテープおよびナノシリカ含有ワニスについて以下の評価を行った。
(3) Evaluation The following evaluation was performed about the nano silica containing prepreg mica tape and nano silica containing varnish obtained above.

(4)反射吸光度の測定
ワニスの反射吸光度を、分光光度計(株式会社日立製作所製U−4100形自記分光光度計)を用いて測定した。ペットフィルム(厚さ38μm)の未処理面にワニスを50、100、150μmの厚さで塗布し、ペットフィルムの未処理面で挟んだものをサンプルとした。測定範囲は240〜2600nm、透過光入射角は0℃、リファレンスはスペクトラロン標準反射板、99%(labsphere社製、SRS−99−010 SN OD57A−4618)を用いた。340〜380nm波長においての反射吸光度の1nm当たりの変化率の平均は−5.2×10−3であった。
(4) Measurement of reflection absorbance The reflection absorbance of the varnish was measured using a spectrophotometer (U-4100 type self-recording spectrophotometer manufactured by Hitachi, Ltd.). A sample was prepared by applying varnish to a non-treated surface of a pet film (thickness 38 μm) at a thickness of 50, 100, 150 μm and sandwiching the untreated surface of the pet film. The measurement range was 240 to 2600 nm, the transmitted light incident angle was 0 ° C., and the reference was Spectralon standard reflector, 99% (manufactured by labsphere, SRS-99-010 SN OD57A-4618). The average rate of change per 1 nm in reflection absorbance at wavelengths of 340 to 380 nm was −5.2 × 10 −3 .

(5)粒度分布測定
粒度分布計(株式会社島津製作所製 SALD-7500)を用いてワニスの粒度分布を測定した。ワニスをフラットガラスに挟み込み、屈折率1.55として粒度分布を測定し、その粒度分布における積算粒度分布グラフ(体積基準)の傾きが最大値をとる粒径を最頻サイズとした。最頻サイズは280nm(凝集体)であった。
(5) Particle size distribution measurement The particle size distribution of the varnish was measured using a particle size distribution meter (SALD-7500, manufactured by Shimadzu Corporation). The varnish was sandwiched between flat glasses, the particle size distribution was measured with a refractive index of 1.55, and the particle size at which the gradient of the integrated particle size distribution graph (volume basis) in the particle size distribution had the maximum value was defined as the mode size. The most frequent size was 280 nm (aggregate).

(6)絶縁破壊試験装置を用いた絶縁破壊電界強度試験
絶縁破壊試験装置を用いて、プリプレグテープの硬化物の絶縁破壊電界強度を測定した。測定は直径20mmの円筒電極ではさみ、昇圧速度500V/s、交流50Hz、室温(25±1℃)、油中、測定数は計12点にて行った。絶縁破壊電界強度の平均値は93.0kV/mm、その標準偏差は4.2kV/mmであった。
(ナノシリカ含有プリプレグマイカテープの硬化物作製)
プリプレグテープの硬化物は、上記で得たプリプレグマイカテープを圧力2.5MPa、110℃で30分加熱成形した。その後、圧力5MPa、170℃で60分加熱成形し、プリプレグマイカテープの硬化物を得た(以下同様)。
(6) Dielectric breakdown field strength test using a dielectric breakdown test device The dielectric breakdown field strength of the cured prepreg tape was measured using a dielectric breakdown test device. The measurement was carried out with a cylindrical electrode having a diameter of 20 mm, the pressure increase rate was 500 V / s, the alternating current was 50 Hz, room temperature (25 ± 1 ° C.), and the number of measurements was 12 points in total. The average value of the dielectric breakdown electric field strength was 93.0 kV / mm, and the standard deviation thereof was 4.2 kV / mm.
(Preparation of cured product of nano silica-containing prepreg mica tape)
The cured product of the prepreg tape was formed by heating the prepreg mica tape obtained above at a pressure of 2.5 MPa and 110 ° C. for 30 minutes. Then, it heat-molded for 60 minutes at the pressure of 5 MPa and 170 degreeC, and the hardened | cured material of the prepreg mica tape was obtained (hereinafter the same).

<実施例2>
(1)ナノシリカ含有ワニスの作製
熱硬化性樹脂(ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標。))81.6質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社製)2.5質量%と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社製)10.0質量%とを混合した。その後、ナノシリカ(平均粒径7nm)5.9質量%を加え、さらにニーダーを用いてよく混合しナノシリカ含有ワニスを得た。
<Example 2>
(1) Production of nano silica-containing varnish Thermosetting resin (Dow Chemical Japan Co., Ltd., trade name “D.N.438” (“D.N.” is a registered trademark)) 81.6 2.5% by mass of boron trifluoride monoethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator, and 10.0 mass of methyl ethyl ketone (MEK) (manufactured by Wako Pure Chemical Industries, Ltd.) as an organic solvent. %. Thereafter, 5.9% by mass of nanosilica (average particle size 7 nm) was added, and further mixed well using a kneader to obtain a nanosilica-containing varnish.

(2)ナノシリカ含有プリプレグマイカテープの作製
得られたナノシリカ含有ワニスをロールコーターでガラスクロス(厚み40μm)へ塗布した直後に、マイカペーパ(180g/m)と貼り合せた。そして、密封した状態で60℃で40時間の熟成を行い、マイカペーパにワニスを含浸させた後、乾燥炉長7mの乾燥機で乾燥温度80℃、速度1.1m/minで熱風乾燥後、幅30mmに切断し厚み約220μmのナノシリカ含有プリプレグマイカテープを得た。
(2) Production of nanosilica-containing prepreg mica tape Immediately after the obtained nanosilica-containing varnish was applied to a glass cloth (thickness 40 μm) with a roll coater, it was bonded to mica paper (180 g / m 2 ). Then, after aging for 40 hours at 60 ° C. in a sealed state and impregnating mica paper with varnish, drying with hot air at a drying temperature of 80 ° C. and a speed of 1.1 m / min in a dryer with a drying oven length of 7 m, width A nanosilica-containing prepreg mica tape having a thickness of about 220 μm was obtained by cutting into 30 mm.

(3)評価
前記で得たナノシリカ含有プリプレグマイカテープおよびナノシリカ含有ワニスについて以下の評価を行った。
(3) Evaluation The following evaluation was performed about the nano silica containing prepreg mica tape and nano silica containing varnish obtained above.

(4)反射吸光度の測定
ワニスの反射吸光度を、分光光度計(株式会社日立製作所製U−4100形自記分光光度計)を用いて測定した。ペットフィルム(厚さ38μm)の未処理面にワニスを50、100、150μmの厚さで塗布し、ペットフィルムの未処理面で挟んだものをサンプルとした。測定範囲は240〜2600nm、透過光入射角は0℃、リファレンスはスペクトラロン標準反射板、99%(labsphere社製、SRS−99−010 SN OD57A−4618)を用いた。340〜380nm波長においての反射吸光度の1nm当たりの変化率の平均は−4.5×10−3であった。
(4) Measurement of reflection absorbance The reflection absorbance of the varnish was measured using a spectrophotometer (U-4100 type self-recording spectrophotometer manufactured by Hitachi, Ltd.). A sample was prepared by applying varnish to a non-treated surface of a pet film (thickness 38 μm) at a thickness of 50, 100, 150 μm and sandwiching the untreated surface of the pet film. The measurement range was 240 to 2600 nm, the transmitted light incident angle was 0 ° C., and the reference was Spectralon standard reflector, 99% (manufactured by labsphere, SRS-99-010 SN OD57A-4618). The average rate of change per 1 nm in reflection absorbance at wavelengths of 340 to 380 nm was −4.5 × 10 −3 .

(5)粒度分布測定
粒度分布計(株式会社島津製作所製 SALD-7500)を用いてワニスの粒度分布を測定した。ワニスをフラットガラスに挟み込み、屈折率1.55として粒度分布を測定し、その粒度分布における積算粒度分布グラフ(体積基準)の傾きが最大値をとる粒径を最頻サイズとした。最頻サイズは100nmであった。
(5) Particle size distribution measurement The particle size distribution of the varnish was measured using a particle size distribution meter (SALD-7500, manufactured by Shimadzu Corporation). The varnish was sandwiched between flat glasses, the particle size distribution was measured with a refractive index of 1.55, and the particle size at which the gradient of the integrated particle size distribution graph (volume basis) in the particle size distribution had the maximum value was defined as the mode size. The most frequent size was 100 nm.

(6)絶縁破壊試験装置を用いた絶縁破壊電界強度試験
絶縁破壊試験装置を用いてプリプレグテープの硬化物の絶縁破壊電界強度を測定した。測定は直径20mmの円筒電極ではさみ、昇圧速度500V/s、交流50Hz、室温(25±1℃)、油中、測定数は計12点にて行った。絶縁破壊電界強度の平均値は99.6kV/mm、その標準偏差は3.3kV/mmであった。
(6) Dielectric breakdown field strength test using dielectric breakdown test apparatus The dielectric breakdown electric field strength of the cured prepreg tape was measured using a dielectric breakdown test apparatus. The measurement was carried out with a cylindrical electrode having a diameter of 20 mm, the pressure increase rate was 500 V / s, the alternating current was 50 Hz, room temperature (25 ± 1 ° C.), and the number of measurements was 12 points in total. The average value of the dielectric breakdown electric field strength was 99.6 kV / mm, and the standard deviation thereof was 3.3 kV / mm.

<比較例1>
(1)樹脂ワニスの作製
熱硬化性樹脂(ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標。))95.4質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社製)2.0質量%と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社製)2.6質量%とを混合し樹脂ワニスを得た。
<Comparative Example 1>
(1) Preparation of resin varnish Thermosetting resin (Dow Chemical Japan Co., Ltd., trade name “DEN 438” (“DEN” is a registered trademark)) 95.4 mass %, Boron trifluoride monoethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) 2.0 mass% as a curing accelerator, and methyl ethyl ketone (MEK) (manufactured by Wako Pure Chemical Industries, Ltd.) 2.6 mass% as an organic solvent. Were mixed to obtain a resin varnish.

(2)プリプレグマイカテープの作製
得られたワニスをロールコーターでガラスクロス(厚み40μm)へ塗布した直後に、マイカペーパ(225g/m)と貼り合せた。そして、密封した状態で60℃で40時間の熟成を行い、マイカペーパにワニスを含浸させた後、乾燥炉長7mの乾燥機で乾燥温度80℃、速度1.1m/minで熱風乾燥後、幅30mmに切断し厚み約300μmのナノシリカ含有プリプレグマイカテープを得た。
(2) Preparation of Prepreg Mica Tape Immediately after the obtained varnish was applied to a glass cloth (thickness 40 μm) with a roll coater, it was bonded to mica paper (225 g / m 2 ). Then, after aging for 40 hours at 60 ° C. in a sealed state and impregnating mica paper with varnish, drying with hot air at a drying temperature of 80 ° C. and a speed of 1.1 m / min in a dryer with a drying oven length of 7 m, width The nanosilica-containing prepreg mica tape having a thickness of about 300 μm was cut into 30 mm.

(3)評価
前記で得たプリプレグマイカテープおよびワニスについて以下の評価を行った。
(3) Evaluation The following evaluation was performed about the prepreg mica tape and varnish obtained above.

(4)反射吸光度測定
ワニスの反射吸光度を、分光光度計(株式会社日立製作所製U−4100形自記分光光度計)を用いて測定した。ペットフィルム(厚さ38μm)の未処理面にワニスを50、100μmの厚さで塗布し、ペットフィルムの未処理面で挟んだものをサンプルとした。測定範囲は240〜2600nm、透過光入射角は0℃、リファレンスはスペクトラロン標準反射板、99%(labsphere社製、SRS−99−010 SN OD57A−4618)を用いた。340〜380nm波長においての反射吸光度の1nm当たりの変化率の平均は−2.3×10−3であった。
(4) Reflection Absorbance Measurement The reflection absorbance of the varnish was measured using a spectrophotometer (U-4100 type self-recording spectrophotometer manufactured by Hitachi, Ltd.). A varnish was applied to a non-treated surface of a pet film (thickness 38 μm) at a thickness of 50 or 100 μm and sandwiched between untreated surfaces of a pet film. The measurement range was 240 to 2600 nm, the transmitted light incident angle was 0 ° C., and the reference was Spectralon standard reflector, 99% (manufactured by labsphere, SRS-99-010 SN OD57A-4618). The average rate of change per 1 nm in reflection absorbance at wavelengths of 340 to 380 nm was −2.3 × 10 −3 .

(6)絶縁破壊試験装置を用いた絶縁破壊電界強度試験
絶縁破壊試験装置を用いてプリプレグテープの硬化物の絶縁破壊電界強度を測定した。測定は直径20mmの円筒電極ではさみ、昇圧速度500V/s、交流50Hz、室温(25±1℃)、油中、測定数は計12点にて行った。絶縁破壊電界強度の平均値は103.8kV/mm、その標準偏差は7.5kV/mmであった。
(6) Dielectric breakdown field strength test using dielectric breakdown test apparatus The dielectric breakdown electric field strength of the cured prepreg tape was measured using a dielectric breakdown test apparatus. The measurement was carried out with a cylindrical electrode having a diameter of 20 mm, the pressure increase rate was 500 V / s, the alternating current was 50 Hz, room temperature (25 ± 1 ° C.), and the number of measurements was 12 points in total. The average value of the dielectric breakdown electric field strength was 103.8 kV / mm, and its standard deviation was 7.5 kV / mm.

<比較例2>
(1)樹脂ワニスの作製
熱硬化性樹脂(ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標。))83.0質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社製)2.5質量%と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社製)10.0質量%とを混合した。その後、ナノシリカ(平均粒径7nm)4.5質量%を加え、さらに卓上撹拌機を用いてナノシリカ含有ワニスを得た。
<Comparative example 2>
(1) Production of resin varnish Thermosetting resin (Dow Chemical Japan Co., Ltd., trade name “DEN 438” (“DEN” is a registered trademark)) 83.0 mass %, Boron trifluoride monoethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) 2.5 mass% as a curing accelerator, and methyl ethyl ketone (MEK) (manufactured by Wako Pure Chemical Industries, Ltd.) 10.0 mass% as an organic solvent. And mixed. Thereafter, 4.5% by mass of nanosilica (average particle size 7 nm) was added, and a nanosilica-containing varnish was obtained using a desktop stirrer.

(2)プリプレグマイカテープの作製
得られたナノシリカ含有ワニスをロールコーターでガラスクロス(厚み40μm)へ塗布した直後に、マイカペーパ(180g/m)と貼り合せた。そして、密封した状態で60℃で40時間の熟成を行い、マイカペーパにワニスを含浸させた後、乾燥炉長7mの乾燥機で乾燥温度80℃、速度1.1m/minで熱風乾燥後、幅30mmに切断し厚み約30μmのナノシリカ含有プリプレグマイカテープを得た。
(2) Preparation of Prepreg Mica Tape Immediately after the obtained nanosilica-containing varnish was applied to a glass cloth (thickness 40 μm) with a roll coater, it was bonded to mica paper (180 g / m 2 ). Then, after aging for 40 hours at 60 ° C. in a sealed state and impregnating mica paper with varnish, drying with hot air at a drying temperature of 80 ° C. and a speed of 1.1 m / min in a dryer with a drying oven length of 7 m, width A nanosilica-containing prepreg mica tape having a thickness of about 30 μm was obtained by cutting into 30 mm.

(3)評価
前記で得たナノシリカ含有プリプレグマイカテープおよびナノシリカ含有ワニスについて以下の評価を行った。
(3) Evaluation The following evaluation was performed about the nano silica containing prepreg mica tape and nano silica containing varnish obtained above.

(4)反射吸光度測定
ワニスの反射吸光度を、分光光度計(株式会社日立製作所製U−4100形自記分光光度計)を用いて測定した。ペットフィルム(厚さ38μm)の未処理面にワニスを50、100、150μmの厚さで塗布し、ペットフィルムの未処理面で挟んだものをサンプルとした。測定範囲は240〜2600nm、透過光入射角は0℃、リファレンスはスペクトラロン標準反射板、99%(labsphere社製、SRS−99−010 SN OD57A−4618)を用いた。340〜380nm波長においての反射吸光度の1nm当たりの変化率の平均は−3.7×10−3であった。
(4) Reflection Absorbance Measurement The reflection absorbance of the varnish was measured using a spectrophotometer (U-4100 type self-recording spectrophotometer manufactured by Hitachi, Ltd.). A sample was prepared by applying varnish to a non-treated surface of a pet film (thickness 38 μm) at a thickness of 50, 100, 150 μm and sandwiching the untreated surface of the pet film. The measurement range was 240 to 2600 nm, the transmitted light incident angle was 0 ° C., and the reference was Spectralon standard reflector, 99% (manufactured by labsphere, SRS-99-010 SN OD57A-4618). The average rate of change per 1 nm in reflection absorbance at wavelengths of 340 to 380 nm was −3.7 × 10 −3 .

(5)粒度分布測定
粒度分布計(株式会社島津製作所製 SALD-7500)を用いてワニスの粒度分布を測定した。ワニスをフラットガラスに挟み込み、屈折率1.55として粒度分布を測定し、その粒度分布における積算粒度分布グラフ(体積基準)の傾きが最大値をとる粒径を最頻サイズとした。最頻サイズは10μmであった。
(5) Particle size distribution measurement The particle size distribution of the varnish was measured using a particle size distribution meter (SALD-7500, manufactured by Shimadzu Corporation). The varnish was sandwiched between flat glasses, the particle size distribution was measured with a refractive index of 1.55, and the particle size at which the gradient of the integrated particle size distribution graph (volume basis) in the particle size distribution had the maximum value was defined as the mode size. The most frequent size was 10 μm.

(6)絶縁破壊試験装置を用いた絶縁破壊電界強度試験
絶縁破壊試験装置を用いてプリプレグテープの硬化物の絶縁破壊電界強度を測定した。測定は直径20mmの円筒電極ではさみ、昇圧速度500V/s、交流50Hz、室温(25±1℃)、油中、測定数は計12点にて行った。絶縁破壊電界強度の平均値は90kV/mm、その標準偏差は8.5kV/mmであった。
(6) Dielectric breakdown field strength test using dielectric breakdown test apparatus The dielectric breakdown electric field strength of the cured prepreg tape was measured using a dielectric breakdown test apparatus. The measurement was carried out with a cylindrical electrode having a diameter of 20 mm, the pressure increase rate was 500 V / s, the alternating current was 50 Hz, room temperature (25 ± 1 ° C.), and the number of measurements was 12 points in total. The average value of the dielectric breakdown electric field strength was 90 kV / mm, and the standard deviation thereof was 8.5 kV / mm.

実施例1,2、比較例1,2の評価結果を表1に示した。   The evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2016165808
Figure 2016165808

表1より、比較例2は、実施例1と同じ組成のワニスであるが、分散方法が異なり最頻粒子径は10μmであり、実施例1の最頻粒子径280nmより大きく、反射吸光度の1nm当たりの変化率が実施例1、2より大きくなった。実施例2は、実施例1よりワニス中のナノシリカ量が少し多い場合である。本発明によれば、最頻サイズが50〜1000nmのシリカ粒子凝集体を含むプリプレグマイカテープは、ワニスの340〜380nm波長においての反射吸光度の1nm当たりの変化率が−4.5×10−3以下となれば、ばらつきの少ない均質なプリプレグマイカテープを得ることができる。 From Table 1, Comparative Example 2 is a varnish having the same composition as Example 1, but the dispersion method is different and the mode particle diameter is 10 μm, which is larger than the mode particle diameter of 280 nm in Example 1 and the reflection absorbance is 1 nm. The rate of change per hit was greater than in Examples 1 and 2. Example 2 is a case where the amount of nanosilica in the varnish is slightly larger than that of Example 1. According to the present invention, the prepreg mica tape containing the silica particle aggregate having a mode size of 50 to 1000 nm has a change rate per 1 nm of the reflection absorbance at a wavelength of 340 to 380 nm of varnish of −4.5 × 10 −3. If it is below, a homogeneous prepreg mica tape with little variation can be obtained.

1 織物層(裏打ち材)
2 最頻サイズが50〜1000nmのシリカ粒子凝集体およびシリカ粒子
3 熱硬化性樹脂(エポキシ樹脂)
4 マイカ層(マイカペーパ)
1 Fabric layer (lining material)
2 Silica particle aggregates and silica particles having a mode size of 50 to 1000 nm 3 Thermosetting resin (epoxy resin)
4 Mica layer (Mica paper)

Claims (5)

最頻サイズが50〜1000nmのシリカ粒子凝集体及び熱硬化性樹脂を含むワニスを織物層に含浸して、マイカ層と貼り合せ乾燥することで、マイカ層と織物層にシリカ粒子と熱硬化性樹脂を含浸したプリプレグマイカテープ。   By impregnating the fabric layer with a varnish containing silica particle aggregates and thermosetting resins with a mode size of 50 to 1000 nm, the mica layer and the fabric layer are dried together with silica particles and thermosetting. Prepreg mica tape impregnated with resin. 前記熱硬化性樹脂が、エポキシ樹脂である請求項1に記載のプリプレグマイカテープ。   The prepreg mica tape according to claim 1, wherein the thermosetting resin is an epoxy resin. 前記最頻サイズが50〜1000nmのシリカ粒子凝集体の含有率が、熱硬化性樹脂に対し0.5〜30質量%である請求項1又は請求項2に記載のプリプレグマイカテープ。   The prepreg mica tape according to claim 1 or 2, wherein a content of the silica particle aggregate having a mode size of 50 to 1000 nm is 0.5 to 30% by mass with respect to the thermosetting resin. 前記シリカ粒子凝集体及び熱硬化性樹脂を含むワニスの340〜380nm波長においての反射吸光度の1nm当たりの変化率が−4.5×10−3以下である請求項1〜3のいずれか一項に記載のプリプレグマイカテープ。 The rate of change per 1 nm of the reflection absorbance at a wavelength of 340 to 380 nm of the varnish containing the silica particle aggregate and the thermosetting resin is −4.5 × 10 −3 or less. The prepreg mica tape described in 1. プリプレグマイカテープ硬化物の絶縁破壊電界強度が90kV/mm以上、絶縁破壊電界強度の測定の標準偏差が5.0kV/mm以下である請求項1〜4のいずれか一項に記載のプリプレグマイカテープ。   The prepreg mica tape according to any one of claims 1 to 4, wherein the cured prepreg mica tape has a dielectric breakdown electric field strength of 90 kV / mm or more and a standard deviation of measurement of the dielectric breakdown electric field strength of 5.0 kV / mm or less. .
JP2015045806A 2015-03-09 2015-03-09 Prepreg mica tape Pending JP2016165808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045806A JP2016165808A (en) 2015-03-09 2015-03-09 Prepreg mica tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045806A JP2016165808A (en) 2015-03-09 2015-03-09 Prepreg mica tape

Publications (1)

Publication Number Publication Date
JP2016165808A true JP2016165808A (en) 2016-09-15

Family

ID=56897796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045806A Pending JP2016165808A (en) 2015-03-09 2015-03-09 Prepreg mica tape

Country Status (1)

Country Link
JP (1) JP2016165808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179440A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2019130588A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Prepreg mica tape, coil for rotary electrical machine, and production method therefor
WO2019130586A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Prepreg mica tape, coil for rotating electrical machine, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179440A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2019130588A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Prepreg mica tape, coil for rotary electrical machine, and production method therefor
WO2019130586A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Prepreg mica tape, coil for rotating electrical machine, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6520966B2 (en) Prepreg mica tape and coil using the same
Jia et al. Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite☆
EP1766636B1 (en) High thermal conductivity materials aligned within resins
Wu et al. Thermal and electrical properties of epoxy composites at high alumina loadings and various temperatures
TWI716407B (en) Resin composition, resin sheet, prepreg, insulator, hardened resin sheet and heat dissipation member
Liang et al. Study of mechanical and thermal performances of epoxy resin filled with micro particles and nanoparticles
TW202307023A (en) Fluorine-containing resin-based resin composition and application thereof
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
WO2017175397A1 (en) Mica tape, cured product of mica tape, and insulating material
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
Park et al. Thermal and mechanical properties of epoxy/micro-and nano-mixed silica composites for insulation materials of heavy electric equipment
JP2016165808A (en) Prepreg mica tape
US11834593B2 (en) Electrically conductive adhesive
Yang et al. Effect of SiO2 and TiO2 nanoparticle on the properties of phenyl silicone rubber
Ribeiro et al. Superhydrophobic nanostructured coatings for electrical insulators
Suriati et al. Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties
CN109599208A (en) The preparation method and coil of enameled wire
JP2014122346A (en) High thermal conductivity composite for electric insulation, and articles thereof
Song et al. Preparation and performance of HGM/PPENK-based high temperature-resistant thermal insulating coatings
CN108048011A (en) A kind of heat dissipation mica tape
JP2016119142A (en) Prepreg mica tape and inorganic/organic composite hardened material
JP5254359B2 (en) Curable reactive resin system
Zhang et al. Thermally conductive silicone rubber used as insulation coating through incremental curing and the effects of thermal filler on its mechanical and thermal properties
Bommegowda et al. Role of fillers in controlling the properties of polymer composites: a review
Wang et al. Epoxy/h-BN composites based on oriented boron nitride platelets with high thermally conductivity for electronic encapsulation