JP2016158445A - Deterioration monitoring device for surge protection element - Google Patents

Deterioration monitoring device for surge protection element Download PDF

Info

Publication number
JP2016158445A
JP2016158445A JP2015036306A JP2015036306A JP2016158445A JP 2016158445 A JP2016158445 A JP 2016158445A JP 2015036306 A JP2015036306 A JP 2015036306A JP 2015036306 A JP2015036306 A JP 2015036306A JP 2016158445 A JP2016158445 A JP 2016158445A
Authority
JP
Japan
Prior art keywords
protection element
surge protection
eddy current
deterioration
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015036306A
Other languages
Japanese (ja)
Other versions
JP6412444B2 (en
Inventor
圭吾 見澤
Keigo Misawa
圭吾 見澤
林 智仁
Tomohito Hayashi
智仁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015036306A priority Critical patent/JP6412444B2/en
Publication of JP2016158445A publication Critical patent/JP2016158445A/en
Application granted granted Critical
Publication of JP6412444B2 publication Critical patent/JP6412444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily monitor deterioration of a surge protection element in simple circuit configuration and with a little power.SOLUTION: Between lines L1 and L2 to a circuit 1 to be protected, a direct connection circuit of a varistor 2 and a coil 4 is connected in parallel to the circuit 1 to be protected, and a conductor 5 is disposed in the vicinity of the coil 4. The coil 4 generates a magnetic field by receiving supply of a current that flows via the variator 2. An eddy current is generated in the conductor 5 by the magnetic field that is generated by the coil 4. A magnitude of the eddy current generated in the conductor 5 is detected by an eddy current detection part 6 and sent to a deterioration decision degree discrimination part 7. Based on the magnitude of the eddy current detected by the eddy current detection part 6, the deterioration decision degree discrimination part 7 integrates how many times a surge current flows to the variator 2, discriminates a degree of deterioration of the variator 2 from the integrated number of times and sends a discriminated result to a discrimination result notification part 8.SELECTED DRAWING: Figure 1

Description

この発明は、被保護回路へのサージ電流の侵入を防止するサージ保護素子の劣化の度合いを監視するサージ保護素子の劣化監視装置に関するものである。   The present invention relates to a deterioration monitoring device for a surge protection element that monitors the degree of deterioration of a surge protection element that prevents a surge current from entering a protected circuit.

従来より、プラントのプロセス制御などで使用している電子システムでは、電源配線や通信線路などの線路を伝わって機器内に侵入しようとするサージ電流から機器内の電子回路を保護するために、線路にサージ保護素子を設けている。すなわち、電源配線や通信線路などの線路にサージ保護素子を設けることによって、機器内の電子回路(被保護回路)へのサージ電流の侵入を防止するようにしている。   Conventionally, in an electronic system used for process control of a plant, in order to protect an electronic circuit in a device from a surge current that tries to enter the device through a line such as a power supply wiring or a communication line, Is provided with a surge protection element. That is, by providing a surge protection element in a line such as a power supply line or a communication line, entry of a surge current into an electronic circuit (protected circuit) in the device is prevented.

図4にサージ保護素子としてバリスタを用いた例を示す。同図において、1は被保護回路、2はバリスタであり、被保護回路1への線路L1,L2間に被保護回路1に対して並列にバリスタ2を接続している。3はインパルス性のノイズ電圧を示し、Z0はノイズ発生源の内部抵抗やラインインピーダンスを示す。 FIG. 4 shows an example using a varistor as a surge protection element. In the figure, reference numeral 1 denotes a protected circuit, and 2 denotes a varistor, and a varistor 2 is connected in parallel to the protected circuit 1 between lines L1 and L2 to the protected circuit 1. 3 represents an impulsive noise voltage, and Z 0 represents the internal resistance and line impedance of the noise generation source.

図5にバリスタ2の電圧−電流特性を示す。バリスタ2は、両端子間の電圧が低い場合には電気抵抗が高いが、ある程度以上に電圧が高くなると急激に電気抵抗が低くなる性質を持つ。この急激に電気抵抗が低くなる点の電圧をバリスタ電圧と呼ぶ。   FIG. 5 shows the voltage-current characteristics of the varistor 2. The varistor 2 has a high electrical resistance when the voltage between the two terminals is low, but has a property that the electrical resistance rapidly decreases when the voltage becomes higher than a certain level. The voltage at which the electric resistance rapidly decreases is called a varistor voltage.

図4に示した回路は、ノイズ電圧3がバリスタ電圧以下のときには、図6に示すような回路として表される。これに対して、ノイズ電圧3がバリスタ電圧を超えたときには、図7に示すような回路として表され、バリスタ2にサージ電流が流れることにより、被保護回路1へのサージ電流の侵入が防がれる。   The circuit shown in FIG. 4 is represented as a circuit shown in FIG. 6 when the noise voltage 3 is equal to or lower than the varistor voltage. On the other hand, when the noise voltage 3 exceeds the varistor voltage, it is represented as a circuit as shown in FIG. 7, and a surge current flows through the varistor 2, thereby preventing the surge current from entering the protected circuit 1. It is.

バリスタなどのサージ保護素子は、その動作原理上、サージ電流が流れる度に劣化する。例えば、酸化亜鉛(ZnO)バリスタは、主成分を酸化亜鉛とし、この酸化亜鉛に数種類の添加物質を加え、焼成して造られる。酸化亜鉛(ZnO)バリスタでは、1つのZnO結晶粒当たり約3Vの立ち上がり電圧(バリスタ電圧)が得られる。なお、酸化亜鉛(ZnO)バリスタは、図8に示すように、ZnO結晶粒がブロック状に結合している構造とされており、直列に積み上げることでバリスタ電圧を制御できる。また、電極間の面積を変えることで、サージ電流耐量を制御できる。   A surge protection element such as a varistor deteriorates every time a surge current flows due to its operating principle. For example, a zinc oxide (ZnO) varistor is made by making zinc oxide as a main component, adding several kinds of additive substances to the zinc oxide, and baking it. With a zinc oxide (ZnO) varistor, a rising voltage (varistor voltage) of about 3 V per ZnO crystal grain is obtained. As shown in FIG. 8, the zinc oxide (ZnO) varistor has a structure in which ZnO crystal grains are combined in a block shape, and the varistor voltage can be controlled by stacking them in series. Further, the surge current resistance can be controlled by changing the area between the electrodes.

ZnOバリスタは、その構造上、バリスタ電圧の低下と漏れ電流の増加が起こるため、サージ電流が繰り返し流れると、劣化が進む。これは、サージ電流のエネルギーにより境界(高抵抗)層の弱い部分が徐々に破壊(短絡)されて行くためである。ZnOバリスタにおいて、劣化が進むと、最終的には電極間が短絡状態になる。ダイオードについても、過大な電流が加わると、接合部が局所的に発熱する。これにより、接合部が融解し、短絡状態となる。   A ZnO varistor has a structure in which the varistor voltage decreases and the leakage current increases, so that the deterioration progresses when a surge current repeatedly flows. This is because the weak part of the boundary (high resistance) layer is gradually destroyed (short-circuited) by the energy of the surge current. When the ZnO varistor deteriorates, the electrodes are eventually short-circuited. As for the diode, when an excessive current is applied, the junction portion locally generates heat. Thereby, a junction part melt | dissolves and it will be in a short circuit state.

サージ保護素子は、劣化が進む度に、電流が流れ易くなる。劣化が進み短絡状態で大電流が流れると、短絡状態のサージ保護素子は溶融破損し、絶縁状態となる。この絶縁状態でサージ電流が発生した場合、そのサージ電流は全て被保護回路に流れるため、回路保護が達成できなくなる。   The surge protection element is more likely to cause current to flow each time the deterioration progresses. When deterioration progresses and a large current flows in a short-circuited state, the surge protection element in the short-circuited state is melted and broken and becomes insulative. When a surge current is generated in this insulated state, all the surge current flows through the protected circuit, so that circuit protection cannot be achieved.

サージ保護素子が破壊した場合に、それを回路から切り離すように、ヒューズを直列に入れる例もある(例えば、非特許文献1参照)。しかし、サージ保護素子が回路から切り離された状態でサージ電流が流れれば、上記と同様に、そのサージ電流が全て被保護回路に流れるため、回路保護が達成できなくなる。また、ヒューズが断線するまで劣化の度合いが不明である。   There is also an example in which a fuse is inserted in series so that when the surge protection element is broken, it is disconnected from the circuit (for example, see Non-Patent Document 1). However, if a surge current flows in a state where the surge protection element is disconnected from the circuit, all of the surge current flows to the protected circuit as described above, and thus circuit protection cannot be achieved. Further, the degree of deterioration is unknown until the fuse is disconnected.

このために、サージ保護素子の劣化の度合いを監視する必要性が生じ、サージ保護素子の劣化を監視する装置として種々の提案がなされている。例えば、特許文献1では、サージ吸収素子をギャップ式の放電管と非直線抵抗体とで構成し、ギャップ式の放電管に対向して放電光を検出する受光素子を設け、受光素子の検出信号をカウント(サージ侵入回数をカウント)するようにしている。また、特許文献2では、バリスタと接地端子との間に放電ギャップを有するガスアレスタを接続し、このガスアレスタの放電時の発光をフォトトランジスタで検知するようにし、ガスアレスタの発光時間に基づいてバリスタの劣化を判定するようにしている。   For this reason, it becomes necessary to monitor the degree of deterioration of the surge protection element, and various proposals have been made as apparatuses for monitoring the deterioration of the surge protection element. For example, in Patent Document 1, a surge absorbing element is composed of a gap type discharge tube and a non-linear resistor, a light receiving element for detecting discharge light is provided opposite to the gap type discharge tube, and a detection signal of the light receiving element is provided. Is counted (the number of surge intrusions is counted). Further, in Patent Document 2, a gas arrester having a discharge gap is connected between a varistor and a ground terminal, and light emission at the time of discharge of the gas arrester is detected by a phototransistor. Based on the light emission time of the gas arrester. The deterioration of the varistor is judged.

特開平05−089938号公報Japanese Patent Laid-Open No. 05-089938 特開2012−104598号公報JP 2012-104598 A

発明協会公開技報2002−500636号Japan Society of Invention and Innovation Open Technical Report 2002-200266

しかしながら、特許文献1に示された方式では放電管と受光素子とを必要とし、また特許文献2に示された方式ではガスアレスタとフォトトランジスタとを必要とし、回路の構成が複雑となる。また、回路電力を消費し易い。   However, the method disclosed in Patent Document 1 requires a discharge tube and a light receiving element, and the method disclosed in Patent Document 2 requires a gas arrester and a phototransistor, resulting in a complicated circuit configuration. In addition, it is easy to consume circuit power.

なお、他の例として、サージ保護素子の漏れ電流を検知する方式もある。しかし、サージ保護素子の漏れ電流は僅かな値(μAレベル)であるため、被保護回路からサージ保護素子を外し、専用の機器で測定しなくては分からない。   As another example, there is a method for detecting the leakage current of the surge protection element. However, since the leakage current of the surge protection element is a small value (μA level), it is not known unless the surge protection element is removed from the protected circuit and measured with a dedicated device.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、簡単な回路構成で、かつ少ない電力で、簡易にサージ保護素子の劣化を監視することが可能なサージ保護素子の劣化監視装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to easily monitor the deterioration of the surge protection element with a simple circuit configuration and a small amount of power. An object of the present invention is to provide a deterioration monitoring device for a surge protection element.

このような目的を達成するために本発明は、被保護回路へのサージ電流の侵入を防止するサージ保護素子の劣化の度合いを監視するサージ保護素子の劣化監視装置において、サージ保護素子と直列に接続され、サージ保護素子を通して流れるサージ電流の供給を受けて磁界を発生するコイルと、コイルの近傍に配置され、コイルが発生する磁界によって渦電流が生じる導電体と、導電体に生じる渦電流の大きさを検出する渦電流検出部と、渦電流検出部によって検出された渦電流の大きさに基づいて、サージ保護素子にサージ電流が流れた回数を積算し、その積算した回数に基づいてサージ保護素子の劣化の度合いを判定する劣化度合い判定部とを備えることを特徴とする。   In order to achieve such an object, the present invention provides a deterioration monitoring device for a surge protection element that monitors the degree of deterioration of the surge protection element that prevents the surge current from entering the protected circuit. A coil that is connected and generates a magnetic field by receiving a surge current supplied through the surge protection element, a conductor that is disposed near the coil and generates an eddy current due to the magnetic field generated by the coil, and an eddy current generated in the conductor; Based on the eddy current detection unit that detects the magnitude, and the magnitude of the eddy current detected by the eddy current detection unit, the number of times the surge current flows through the surge protection element is integrated, and the surge is detected based on the integrated number. It is provided with the deterioration degree determination part which determines the degree of deterioration of a protection element.

この発明において、サージ保護素子にサージ電流が流れると、このサージ保護素子を通して流れるサージ電流の供給を受けてコイルが磁界を発生する。そして、このコイルが発生する磁界によって導電体に渦電流が生じ、この導電体に生じる渦電流の大きさが渦電流検出部によって検出される。渦電流の大きさは、その渦電流によって生じる電圧の値として検出することが可能である。そして、この渦電流検出部によって検出された渦電流の大きさに基づいて、サージ保護素子にサージ電流が流れた回数が積算され、その積算された回数に基づいてサージ保護素子の劣化の度合いが判定される。   In the present invention, when a surge current flows through the surge protection element, the coil generates a magnetic field in response to the supply of the surge current flowing through the surge protection element. An eddy current is generated in the conductor by the magnetic field generated by the coil, and the magnitude of the eddy current generated in the conductor is detected by the eddy current detector. The magnitude of the eddy current can be detected as a voltage value generated by the eddy current. Based on the magnitude of the eddy current detected by the eddy current detector, the number of times the surge current has flowed through the surge protection element is integrated, and the degree of deterioration of the surge protection element is determined based on the integrated number. Determined.

例えば、本発明では、渦電流検出部によって検出された渦電流の大きさが所定の閾値を超えた直後に再び所定の閾値以内に収まった時を1回として、サージ保護素子にサージ電流が流れた回数を積算し、この積算した回数がサージ保護素子に対して定められている使用可能な限界値に達したときをサージ保護素子の寿命がつきたと判定するようにする。   For example, in the present invention, when the magnitude of the eddy current detected by the eddy current detection unit exceeds the predetermined threshold value and falls within the predetermined threshold value once, the surge current flows through the surge protection element. When the accumulated number reaches the usable limit value defined for the surge protection element, it is determined that the life of the surge protection element has been reached.

このような構成とすることにより、本発明では、放電時の発光を検出する方式と比較して回路構成が簡単となる。また、コイルが発生する磁界によって生じる渦電流を利用するので、電力の消費も少なくなる。また、サージ保護素子の漏れ電流よりも大きな値として得られる渦電流を利用するので、被保護回路に対してサージ保護素子を取り付けたままでの劣化の監視が可能である。   By adopting such a configuration, in the present invention, the circuit configuration is simplified as compared with a method of detecting light emission during discharge. Further, since eddy current generated by the magnetic field generated by the coil is used, power consumption is reduced. In addition, since an eddy current obtained as a value larger than the leakage current of the surge protection element is used, it is possible to monitor deterioration with the surge protection element attached to the protected circuit.

本発明において、コイルと導電体とは、所定の距離を保って絶縁部材によって覆うようにするとよい。これにより、コイルと導電体との間の距離が保たれ、コイルが発生する磁界を導電体に確実に作用させることが可能となる。また、コイルと導電体とを覆う絶縁部材を金属シールドで覆うようにするとよい。これにより、外部からの磁気の影響を防ぐことも可能となる。   In the present invention, the coil and the conductor may be covered with an insulating member while maintaining a predetermined distance. Thereby, the distance between the coil and the conductor is maintained, and the magnetic field generated by the coil can be reliably applied to the conductor. Moreover, it is good to cover the insulating member which covers a coil and a conductor with a metal shield. This also makes it possible to prevent the influence of magnetism from the outside.

本発明によれば、サージ保護素子を通して流れるサージ電流をコイルに供給し、このコイルが発生する磁界によって導電体に渦電流を生じさせ、この導電体に生じる渦電流の大きさに基づいてサージ保護素子にサージ電流が流れた回数を積算し、その積算した回数に基づいてサージ保護素子の劣化の度合いを判定するようにしたので、簡単な回路構成で、かつ少ない電力で、簡易にサージ保護素子の劣化を監視することが可能となる。   According to the present invention, a surge current flowing through a surge protection element is supplied to a coil, an eddy current is generated in a conductor by a magnetic field generated by the coil, and surge protection is performed based on the magnitude of the eddy current generated in the conductor. Since the number of surge currents flowing through the element is integrated and the degree of deterioration of the surge protection element is determined based on the accumulated number, the surge protection element can be easily configured with a simple circuit configuration and low power consumption. It is possible to monitor the deterioration of the battery.

本発明に係るサージ保護素子の劣化監視装置の一実施の形態の要部を示す図である。It is a figure which shows the principal part of one Embodiment of the deterioration monitoring apparatus of the surge protection element which concerns on this invention. コイルと導電体とを樹脂(絶縁部材)でモールドするようにした例を示す図である。It is a figure which shows the example which molded the coil and the conductor with resin (insulating member). コイルと導電体とを覆う樹脂(絶縁部材)を金属シールドで覆うようにした例を示す図である。It is a figure which shows the example which covered the resin (insulating member) which covers a coil and a conductor with a metal shield. 被保護回路へのサージ電流の侵入を防止するサージ保護素子としてバリスタを用いた例を示す図である。It is a figure which shows the example which used the varistor as a surge protection element which prevents the penetration | invasion of the surge current to a to-be-protected circuit. バリスタの電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of a varistor. ノイズ電圧がバリスタ電圧以下のときの状態を表した図である。It is a figure showing the state when a noise voltage is below a varistor voltage. ノイズ電圧がバリスタ電圧を超えたときの状態を表した図である。It is a figure showing the state when a noise voltage exceeds a varistor voltage. バリスタの構造模式図である。It is a structural schematic diagram of a varistor.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係るサージ保護素子の劣化監視装置の一実施の形態の要部を示す図である。同図において、図4と同一符号は図4を参照して説明した構成要素と同一或いは同等の構成要素を示し、その説明は省略する。   FIG. 1 is a diagram showing a main part of an embodiment of a deterioration monitoring device for a surge protection element according to the present invention. 4, the same reference numerals as those in FIG. 4 denote the same or equivalent components as those described with reference to FIG.

この実施の形態では、被保護回路1への線路L1,L2間に、被保護回路1に対して並列にバリスタ2とコイル4との直接接続回路を接続し、コイル4の近傍に導電体5を配置している。   In this embodiment, a direct connection circuit of a varistor 2 and a coil 4 is connected in parallel to the protected circuit 1 between the lines L1 and L2 to the protected circuit 1, and a conductor 5 is provided in the vicinity of the coil 4. Is arranged.

また、導電体5に生じる渦電流の大きさを渦電流検出部6によって検出し、劣化判定度合い判定部7へ送り、この劣化判定度合い判定部7での判定結果を判定結果報知部8へ送るようにしている。   The magnitude of the eddy current generated in the conductor 5 is detected by the eddy current detection unit 6 and sent to the deterioration determination degree determination unit 7, and the determination result in the deterioration determination degree determination unit 7 is sent to the determination result notification unit 8. I am doing so.

渦電流検出部6や劣化度合い判定部7などは、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種機能を実現させるプログラムとによって実現される。   The eddy current detection unit 6 and the deterioration degree determination unit 7 are realized by hardware including a processor and a storage device and a program that realizes various functions in cooperation with these hardware.

このサージ保護素子の劣化監視装置では、線路L1,L2間にノイズ電圧NZが印加されると、被保護回路1へ侵入しようとするサージ電流がバリスタ2を通してコイル4に流れ、コイル4が磁界を発生する。   In this surge protection element deterioration monitoring device, when a noise voltage NZ is applied between the lines L1 and L2, a surge current that attempts to enter the protected circuit 1 flows to the coil 4 through the varistor 2, and the coil 4 generates a magnetic field. Occur.

コイル4が磁界を発生すると、このコイル4が発生する磁界によって、コイル4の近傍に配置されている導電体5に渦電流が流れる。この導電体5に流れる渦電流の大きさは、渦電流検出部6によって検出される。この場合、渦電流検出部6は、導電体5に流れる渦電流の大きさを、この渦電流によって生じる電圧の値として検出する。   When the coil 4 generates a magnetic field, an eddy current flows through the conductor 5 disposed in the vicinity of the coil 4 due to the magnetic field generated by the coil 4. The magnitude of the eddy current flowing through the conductor 5 is detected by the eddy current detector 6. In this case, the eddy current detector 6 detects the magnitude of the eddy current flowing through the conductor 5 as the value of the voltage generated by this eddy current.

渦電流検出部6によって検出された渦電流の大きさは劣化度合い判定部7へ送られる。劣化度合い判定部7は、渦電流検出部6によって検出された渦電流の大きさが所定の閾値thを超えた直後に再び所定の閾値th以内に収まった時を1回として、バリスタ2にサージ電流が流れた回数を積算する。   The magnitude of the eddy current detected by the eddy current detection unit 6 is sent to the deterioration degree determination unit 7. The deterioration degree determination unit 7 applies a surge to the varistor 2 once when the magnitude of the eddy current detected by the eddy current detection unit 6 falls within the predetermined threshold th immediately after exceeding the predetermined threshold th. Accumulate the number of times the current flows.

そして、劣化度合い判定部7は、バリスタ2にサージ電流が流れた回数の積算値(積算回数)をNとし、この積算回数Nとバリスタ2に対して使用可能な積算回数の限界値として定められているNmaxとを比較し、積算回数Nが限界値Nmaxに達したときをバリスタ2に寿命がつきたと判定する。この劣化度合い判定部7での判定結果は判定結果報知部8へ送られる。   The deterioration degree determination unit 7 sets N as the integrated value (the integrated number) of the number of times the surge current has flowed through the varistor 2, and is defined as the limit value of the integrated number that can be used for the integrated number N and the varistor 2. It is determined that the life of the varistor 2 has been reached when the cumulative number N reaches the limit value Nmax. The determination result in the deterioration degree determination unit 7 is sent to the determination result notification unit 8.

判定結果報知部8は、劣化度合い判定部7からの判定結果を受けて、その判定結果を保守員などに知らせる。例えば、バリスタ2に寿命がつきたとする判定結果を受けて、LED(Light Emitting Diode)を点灯したり、LCD( Liquid Crystal Display)に寿命がつきた旨のメッセージを表示したり、ブザーを鳴動させたりする。   The determination result notification unit 8 receives the determination result from the deterioration degree determination unit 7 and notifies the determination result to a maintenance staff or the like. For example, in response to the judgment result that the varistor 2 has reached the end of its life, the LED (Light Emitting Diode) is turned on, the LCD (Liquid Crystal Display) displays a message that the end of life is reached, or the buzzer is sounded. Or

保守員は、判定結果報知部8からの知らせを受けることにより、バリスタ2が寿命に到達しているか否かを即座に確認することができる。そして、バリスタ2が寿命に到達している場合には、例えば、その場でバリスタ2の交換作業を行ったり、メーカ等に交換を依頼したりする。   The maintenance staff can immediately confirm whether or not the varistor 2 has reached the end of its life by receiving the notification from the determination result notification unit 8. When the varistor 2 has reached the end of its life, for example, the varistor 2 is replaced on the spot, or the manufacturer is requested to replace it.

以上の説明から分かるように、本実施の形態のサージ保護素子の劣化監視装置によれば、バリスタ2にコイル4を直列に接続し、コイル4の近傍に導電体5を配置するのみでよく、放電時の発光を検出する方式と比較して回路構成が簡単となる。また、コイル4が発生する磁界によって生じる渦電流を利用するので、電力の消費も少なくなる。また、バリスタ2の漏れ電流よりも大きな値として得られる渦電流を利用するので、被保護回路1に対してバリスタ2を取り付けたままでの劣化の監視が可能となる。   As can be seen from the above description, according to the deterioration monitoring device for a surge protection element of the present embodiment, it is only necessary to connect the coil 4 to the varistor 2 in series and arrange the conductor 5 in the vicinity of the coil 4. The circuit configuration is simple compared to a method for detecting light emission during discharge. In addition, since eddy current generated by the magnetic field generated by the coil 4 is used, power consumption is reduced. In addition, since an eddy current obtained as a value larger than the leakage current of the varistor 2 is used, it is possible to monitor deterioration with the varistor 2 attached to the circuit 1 to be protected.

なお、上述した実施の形態では、コイル4の近傍に導電体5を単に配置するものとしたが、図2に示すように、コイル4と導電体5とを樹脂(絶縁部材)9でモールドするようにし、コイル4と導電体5との間の距離を所定の距離Lに保つようにしてもよい。これにより、コイル4と導電体5との間の距離が保たれ、コイル4が発生する磁界を導電体5に確実に作用させることが可能となる。   In the above-described embodiment, the conductor 5 is simply arranged in the vicinity of the coil 4. However, as shown in FIG. 2, the coil 4 and the conductor 5 are molded with a resin (insulating member) 9. In this way, the distance between the coil 4 and the conductor 5 may be kept at a predetermined distance L. Thereby, the distance between the coil 4 and the conductor 5 is maintained, and the magnetic field generated by the coil 4 can be reliably applied to the conductor 5.

また、図3に示すように、図2に示した構成において、さらに、コイル4と導電体5とを覆う樹脂(絶縁部材)9を金属シールド10で覆うようにすると、外部からの磁界の影響を防ぐことも可能となる。   In addition, as shown in FIG. 3, if the resin (insulating member) 9 that covers the coil 4 and the conductor 5 is further covered with the metal shield 10 in the configuration shown in FIG. It is also possible to prevent this.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…被保護回路、2…バリスタ、4…コイル、5…導電体、6…渦電流検出部、7…劣化度合い判定部、8…判定結果報知部、9…樹脂(絶縁部材)、10…金属シールド、L1,L2…線路、NZ…ノイズ電圧。   DESCRIPTION OF SYMBOLS 1 ... Circuit to be protected, 2 ... Varistor, 4 ... Coil, 5 ... Conductor, 6 ... Eddy current detection part, 7 ... Deterioration degree determination part, 8 ... Determination result alerting part, 9 ... Resin (insulating member), 10 ... Metal shield, L1, L2 ... lines, NZ ... noise voltage.

Claims (5)

被保護回路へのサージ電流の侵入を防止するサージ保護素子の劣化の度合いを監視するサージ保護素子の劣化監視装置において、
前記サージ保護素子と直列に接続され、前記サージ保護素子を通して流れるサージ電流の供給を受けて磁界を発生するコイルと、
前記コイルの近傍に配置され、前記コイルが発生する磁界によって渦電流が生じる導電体と、
前記導電体に生じる渦電流の大きさを検出する渦電流検出部と、
前記渦電流検出部によって検出された渦電流の大きさに基づいて、前記サージ保護素子にサージ電流が流れた回数を積算し、その積算した回数に基づいて前記サージ保護素子の劣化の度合いを判定する劣化度合い判定部と
を備えることを特徴とするサージ保護素子の劣化監視装置。
In the surge protection element degradation monitoring device that monitors the degree of degradation of the surge protection element that prevents the surge current from entering the protected circuit,
A coil that is connected in series with the surge protection element and receives a supply of surge current flowing through the surge protection element to generate a magnetic field;
A conductor disposed in the vicinity of the coil and generating an eddy current by a magnetic field generated by the coil;
An eddy current detector for detecting the magnitude of eddy current generated in the conductor;
Based on the magnitude of the eddy current detected by the eddy current detector, the number of times the surge current has flowed through the surge protection element is integrated, and the degree of deterioration of the surge protection element is determined based on the integrated number of times. A deterioration monitoring device for a surge protection element, comprising:
請求項1に記載されたサージ保護素子の劣化監視装置において、
前記コイルと前記導電体とは、所定の距離を保って絶縁部材によって覆われている
ことを特徴とするサージ保護素子の劣化監視装置。
In the deterioration monitoring device for a surge protection element according to claim 1,
The deterioration monitoring device for a surge protection element, wherein the coil and the conductor are covered with an insulating member while maintaining a predetermined distance.
請求項2に記載されたサージ保護素子の劣化監視装置において、
前記コイルと前記導電体とを覆う絶縁部材は、さらに金属シールドで覆われている
ことを特徴とするサージ保護素子の劣化監視装置。
In the deterioration monitoring device for the surge protection element according to claim 2,
The insulation member for covering the coil and the conductor is further covered with a metal shield.
請求項1に記載されたサージ保護素子の劣化監視装置において、
前記劣化度合い判定部は、
前記渦電流検出部によって検出された渦電流の大きさが所定の閾値を超えた直後に再び所定の閾値以内に収まった時を1回として、前記サージ保護素子にサージ電流が流れた回数を積算する
ことを特徴とするサージ保護素子の劣化監視装置。
In the deterioration monitoring device for a surge protection element according to claim 1,
The deterioration degree determination unit
The number of times surge current flows through the surge protection element is counted once when the magnitude of the eddy current detected by the eddy current detection unit falls within the predetermined threshold again immediately after exceeding the predetermined threshold. A deterioration monitoring device for a surge protection element, characterized by:
請求項1に記載されたサージ保護素子の劣化監視装置において、
前記劣化度合い判定部は、
前記積算した回数が前記サージ保護素子に対して定められている使用可能な限界値に達したときを前記サージ保護素子の寿命がつきたと判定する
ことを特徴とするサージ保護素子の劣化監視装置。
In the deterioration monitoring device for a surge protection element according to claim 1,
The deterioration degree determination unit
It is determined that the life of the surge protection element has been reached when the accumulated number of times reaches a usable limit value determined for the surge protection element.
JP2015036306A 2015-02-26 2015-02-26 Surge protection element deterioration monitoring device Expired - Fee Related JP6412444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036306A JP6412444B2 (en) 2015-02-26 2015-02-26 Surge protection element deterioration monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036306A JP6412444B2 (en) 2015-02-26 2015-02-26 Surge protection element deterioration monitoring device

Publications (2)

Publication Number Publication Date
JP2016158445A true JP2016158445A (en) 2016-09-01
JP6412444B2 JP6412444B2 (en) 2018-10-24

Family

ID=56826665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036306A Expired - Fee Related JP6412444B2 (en) 2015-02-26 2015-02-26 Surge protection element deterioration monitoring device

Country Status (1)

Country Link
JP (1) JP6412444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600181A (en) * 2020-12-11 2021-04-02 北京京航计算通讯研究所 Strong electromagnetic pulse protection system with device degradation self-monitoring function

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519894B1 (en) * 1969-10-22 1976-03-31
JPH02111003A (en) * 1988-10-20 1990-04-24 Matsushita Electric Works Ltd Current transformer
JPH06276674A (en) * 1993-03-19 1994-09-30 Sharp Corp Safety protective circuit
JPH07280845A (en) * 1994-04-14 1995-10-27 Yazaki Corp Current detector
JPH08178990A (en) * 1994-12-27 1996-07-12 Toshiba Corp Lightning arrester diagnosing apparatus
JPH10253685A (en) * 1997-03-05 1998-09-25 Hioki Ee Corp Apparatus for inspecting measuring leakage current
JP2001281270A (en) * 2000-03-31 2001-10-10 Sumitomo Special Metals Co Ltd Split type current detector
JP2004273362A (en) * 2003-03-11 2004-09-30 Hitachi Kokusai Electric Inc Lifetime determination method and lifetime determination circuit for surge resistant element
WO2011058318A1 (en) * 2009-11-11 2011-05-19 Pepperl + Fuchs Gmbh Electrical circuit with surge protection monitoring
JP2011223645A (en) * 2010-04-02 2011-11-04 Nishi Nippon Electric Wire & Cable Co Ltd Power supply mechanism employing cable ground current
JP2014048188A (en) * 2012-08-31 2014-03-17 Bekutoru:Kk Current sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519894B1 (en) * 1969-10-22 1976-03-31
JPH02111003A (en) * 1988-10-20 1990-04-24 Matsushita Electric Works Ltd Current transformer
JPH06276674A (en) * 1993-03-19 1994-09-30 Sharp Corp Safety protective circuit
JPH07280845A (en) * 1994-04-14 1995-10-27 Yazaki Corp Current detector
JPH08178990A (en) * 1994-12-27 1996-07-12 Toshiba Corp Lightning arrester diagnosing apparatus
JPH10253685A (en) * 1997-03-05 1998-09-25 Hioki Ee Corp Apparatus for inspecting measuring leakage current
JP2001281270A (en) * 2000-03-31 2001-10-10 Sumitomo Special Metals Co Ltd Split type current detector
JP2004273362A (en) * 2003-03-11 2004-09-30 Hitachi Kokusai Electric Inc Lifetime determination method and lifetime determination circuit for surge resistant element
WO2011058318A1 (en) * 2009-11-11 2011-05-19 Pepperl + Fuchs Gmbh Electrical circuit with surge protection monitoring
JP2011223645A (en) * 2010-04-02 2011-11-04 Nishi Nippon Electric Wire & Cable Co Ltd Power supply mechanism employing cable ground current
JP2014048188A (en) * 2012-08-31 2014-03-17 Bekutoru:Kk Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600181A (en) * 2020-12-11 2021-04-02 北京京航计算通讯研究所 Strong electromagnetic pulse protection system with device degradation self-monitoring function
CN112600181B (en) * 2020-12-11 2023-05-30 北京京航计算通讯研究所 Strong electromagnetic pulse protection system with device degradation self-monitoring function

Also Published As

Publication number Publication date
JP6412444B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US9312679B2 (en) Overvoltage protection device with a measuring device for monitoring overvoltage protection elements
US8026696B2 (en) Rechargeable battery pack
KR101268355B1 (en) Failure prediction system of spd
US10840698B2 (en) Leakage current detection and protection device for power cord
US6477025B1 (en) Surge protection device with thermal protection, current limiting, and failure indication
KR101595658B1 (en) Apparatus and method for detecting residual current
CN103033686B (en) For having the method that the insulation fault of dynamic response characteristic is monitored
US20150270086A1 (en) Surge protector with safety mechanism
JP2014522628A (en) Power supply
US8422189B2 (en) Serially connected surge suppression optimization device
ES2726808T3 (en) Leakage current sensor for pole type insulator
JP2012104598A (en) Spd with deterioration alarm function
US6249415B1 (en) Surge protector and method for preventing damage from line surges
JP6412444B2 (en) Surge protection element deterioration monitoring device
US8372260B1 (en) Marine drive cathodic protection system with accurate detection of reference potential
CN106471700B (en) Battery protection plate, battery and mobile terminal
JP2009104821A (en) Battery pack
FR2966260A1 (en) Electronic control unit for vehicle, has detecting unit detecting absence of grounding of ground terminal, and control unit preventing charging of load when detecting unit detects absence of grounding of ground terminal
KR102555504B1 (en) Ground fault detecting device and method
EP3413419B1 (en) Electrical circuit with electrical protection device - integrity test
JP5697263B2 (en) Abnormality detection circuit for communication surge protection element
JP2012010469A (en) Surge detector
JP3147886U (en) Lightning arrester damage notification device and lightning arrester system
KR101850377B1 (en) A condition monitoring device of lightning arrester
KR101454121B1 (en) A detection device of leakage current for deterioration diagnosis of DC lightning arresters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees