JP2016144244A - Power generation situation diagnosis method for photovoltaic power generation system, and device therefor - Google Patents

Power generation situation diagnosis method for photovoltaic power generation system, and device therefor Download PDF

Info

Publication number
JP2016144244A
JP2016144244A JP2015016461A JP2015016461A JP2016144244A JP 2016144244 A JP2016144244 A JP 2016144244A JP 2015016461 A JP2015016461 A JP 2015016461A JP 2015016461 A JP2015016461 A JP 2015016461A JP 2016144244 A JP2016144244 A JP 2016144244A
Authority
JP
Japan
Prior art keywords
string
time zone
current value
value
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016461A
Other languages
Japanese (ja)
Other versions
JP6501535B2 (en
Inventor
純弥 菅野
Junya Sugano
純弥 菅野
佐藤 信之
Nobuyuki Sato
信之 佐藤
真理 長坂
Mari Nagasaka
真理 長坂
佐藤 誠
Makoto Sato
佐藤  誠
中村 浩
Hiroshi Nakamura
浩 中村
中島 栄一
Eiichi Nakajima
栄一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kandenko Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Kandenko Co Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kandenko Co Ltd, Tokyo Electric Power Co Holdings Inc filed Critical Toshiba Corp
Priority to JP2015016461A priority Critical patent/JP6501535B2/en
Publication of JP2016144244A publication Critical patent/JP2016144244A/en
Application granted granted Critical
Publication of JP6501535B2 publication Critical patent/JP6501535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation situation diagnosis method capable of detecting, speedily and surely as further as possible, performance deterioration caused by a failure of a solar cell panel for the unit of a string.SOLUTION: Instantaneous currents of a fixed number of strings at the same time are measured in a fixed cycle, for each time zone and over all the strings, and a median value of first measurement current values of all the strings is calculated. Excepting for data in a time zone including a first measurement current value that is separated from the median value by a fixed value or more, current values of the remaining strings for each time zone are further measured for a fixed period, second measurement current values are integrated, and an average value of the integration current values is calculated. A ratio of the integration current values of the strings for each time zone with respect to the average integration current value is calculated and defined as a correction coefficient. Current values of the strings are measured for each time zone thereafter, and third measurement current values are divided by the correction coefficient of a corresponding time zone. Thus, correction current values of the strings for each time zone are calculated, and the correction current values are compared as a reference value.SELECTED DRAWING: Figure 1

Description

この発明は、太陽光発電システムの分岐計測を用いた発電状況診断方法及びその装置に関するもので、ストリング単位で太陽電池パネルの故障による性能劣化をできるだけ早く且つ確実に検出できる診断方法及びその装置を提供するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation state diagnosis method using branch measurement of a solar power generation system and an apparatus thereof, and a diagnosis method and apparatus capable of detecting performance degradation due to a failure of a solar cell panel as quickly and reliably as a string unit. It is to provide.

当該太陽光発電システムの構成は、図4に示すように、太陽電池パネル1を十数枚〜20枚程度(但し、図では概略枚数を表す)を直列に接続した1個の分岐回路を1つのストリング2としてこれを複数個用意し、当該複数個のストリング2をそれぞれ接続箱3を介して集電箱4に集約し、パワーコンディショナ5でDC/AC変換等を行い、連系変圧器6を介して発電電力を電力系統に供給している。 As shown in FIG. 4, the solar power generation system has a structure in which one branch circuit in which about 10 to 20 solar cell panels 1 are connected in series (however, the approximate number is shown in the figure) is connected in series. A plurality of strings 2 are prepared, and the plurality of strings 2 are aggregated in a current collecting box 4 through a connection box 3, and DC / AC conversion is performed by a power conditioner 5, and an interconnection transformer. The generated power is supplied to the power system via 6.

前記太陽光発電システムの発電電力は、日射量と太陽電池温度から推定可能であるが、例えば、メガワットクラスの太陽光発電所で、1枚の太陽電池パネル1が故障した場合の発電電力の低下は単純計算でも約0.025%となり、発電所全体の発電電力からの検出はほぼ不可能に近い。これは、1枚の太陽電池パネル1につき250W程度の発電能力のため上記メガワットクラスの太陽光発電所となると、最低4000枚の太陽電池パネル1が使用される。このように1枚の太陽電池パネル1の発電電圧が低いことから、当該1枚の太陽電池パネル1の故障による発電所全体の発電電力の低下は極めて低く、検出できない。 The generated power of the solar power generation system can be estimated from the amount of solar radiation and the solar cell temperature. For example, in a megawatt-class solar power plant, the generated power decreases when one solar cell panel 1 fails. Is about 0.025% even in a simple calculation, and detection from the generated power of the entire power plant is almost impossible. This is because a solar power plant of the above megawatt class because of the power generation capacity of about 250 W per solar cell panel 1, at least 4000 solar cell panels 1 are used. Thus, since the power generation voltage of one solar cell panel 1 is low, the decrease in the generated power of the entire power plant due to the failure of the one solar cell panel 1 is extremely low and cannot be detected.

そこで、昨今では、上記複数枚の太陽電池パネル1を直列接続したストリング2毎に計測を行うシステム(ストリングモニタ)を設置し、部分的な故障によるわずかな発電量の低下の検出が試みられている。このストリングモニタでは、各ストリング2を流れる電流は、同一時刻、同一気象条件であればほぼ同じ値になるため、他のストリング2と比較して電流値の少ないストリング2があれば、そのストリング2を構成する太陽電池パネル1が故障している可能性があると判断できる。 Therefore, in recent years, a system (string monitor) that performs measurement for each string 2 in which the plurality of solar cell panels 1 are connected in series is installed, and detection of a slight decrease in power generation due to a partial failure has been attempted. Yes. In this string monitor, the current flowing through each string 2 has almost the same value at the same time and the same weather condition. Therefore, if there is a string 2 having a smaller current value than the other strings 2, the string 2 It can be determined that there is a possibility that the solar cell panel 1 constituting the above is out of order.

図5に、接続箱3内のストリング2を流れる電流及び分岐計測のイメージを示す。接続箱3に内蔵された計測システム(図示省略)により、各ストリング2の電流が計測される。 FIG. 5 shows an image of the current flowing through the string 2 in the junction box 3 and the branch measurement. The current of each string 2 is measured by a measurement system (not shown) built in the connection box 3.

そして、太陽電池パネル1の一つが故障すると、その分だけ発電量が低下し、ストリング2の発電量が小さくなる。ところが、太陽光発電システムにおける発電量は、日射量によっても大きく変化するため、発電量が低下したとしても、太陽電池の故障による発電量の低下なのか、日射量の低下による発電量の低下なのか、判断は容易ではない。 When one of the solar battery panels 1 breaks down, the power generation amount is reduced by that amount, and the power generation amount of the string 2 is reduced. However, the amount of power generation in the solar power generation system varies greatly depending on the amount of solar radiation, so even if the amount of power generation decreases, the power generation amount decreases due to solar cell failure or the amount of power generation decreases due to the decrease in solar radiation amount. Judgment is not easy.

これを解決するための技術として、特許文献1に示すように、太陽電池パネルの設置角度、設置場所の緯度、経度、設置方位、設置された地域における季節的な要因による平均の日射量などをパラメータとして予め設定することによって予測発電量を求め、この予測発電量を基準として故障を警報するシステムが開発されている。 As a technique for solving this, as shown in Patent Document 1, the installation angle of the solar cell panel, the latitude and longitude of the installation location, the installation orientation, the average solar radiation amount due to seasonal factors in the installed area, etc. A system has been developed that obtains a predicted power generation amount by presetting as a parameter and warns of a failure based on the predicted power generation amount.

特開2006−67738号公報JP 2006-67738 A

しかしながら、特許文献1に記載されているように平均の日射量などを固定的なパラメータとして与える方法では、現実問題として、予測発電量を求めることは不可能に近い。日射量が比較的大きくなる晴天時においては良いが、日射量が比較的小さな曇天時には、発電量の予測は困難となる。結果として、例えば梅雨時など長期間にわたって曇天が続くような場合は、その期間に積算される予測発電量は、実際の発電量から大きく外れてしまうおそれがある。また、特許文献1に記載の技術では、定性的な警告表示を行うにとどまり、故障診断としては不十分である。 However, in the method of giving an average solar radiation amount or the like as a fixed parameter as described in Patent Document 1, it is almost impossible to obtain the predicted power generation amount as a real problem. Although it is good during sunny weather when the amount of solar radiation is relatively large, it is difficult to predict the amount of power generation during cloudy weather when the amount of solar radiation is relatively small. As a result, for example, when cloudy weather continues for a long period of time, such as during the rainy season, the predicted power generation amount accumulated during that period may greatly deviate from the actual power generation amount. In addition, the technique described in Patent Document 1 is not sufficient for failure diagnosis because it only performs qualitative warning display.

また一方、前記図5に示すように、各ストリング2の電流計測による電力量の低下を観察し、低下が検出された場合に当該ストリング2の太陽電池パネル1の故障と判断する際、直流電流の測定には以下の問題があり、計測誤差が発生し易い。まず、直流電流は変化がない(0Hz)ため、電流値のゼロ調整をしないと、計測誤差が発生し易い。また、分岐数が多く、電流値のゼロ調整など、オフセット調整機能を具備した計測システムは通常導入していないのが現状である。 On the other hand, as shown in FIG. 5, when a decrease in the amount of power due to current measurement of each string 2 is observed, and a decrease is detected, it is determined that the solar cell panel 1 of the string 2 has failed. There are the following problems in measurement, and measurement errors are likely to occur. First, since direct current does not change (0 Hz), measurement errors are likely to occur unless the current value is zero-adjusted. In addition, a measurement system having a large number of branches and having an offset adjustment function such as zero adjustment of a current value is not usually introduced.

また、各ストリング2を構成する太陽電池1パネルには個々に性能差があるため、気象条件が同じであっても電流値が等しいとは限らない。図6は、8個のストリング2ごとの計測誤差及び性能差による電流差の例をしめす。同時刻であっても、あるストリング2では8.3A、最低値のストリングでは7.8Aと約0.5Aも異なり、測定値は各ストリングによってバラバラである。 Moreover, since the solar cell 1 panel which comprises each string 2 has a performance difference individually, even if a weather condition is the same, an electric current value may not necessarily be equal. FIG. 6 shows an example of current differences due to measurement errors and performance differences for each of the eight strings 2. Even at the same time, 8.3A is different for a certain string 2 and 7.8A is about 0.5A for the lowest value string, and the measured values are different for each string.

また、面的な広がりの大きいメガソーラでは、一部のパネルに影がかかるようなレイアウトになっているケースもあり、故障が無くても一時的に発電量が低下することがある。また、点検等のため一部のストリング2の運転を停止した、いわゆる作業停止(以下、単に「作業停止」という)の場合も故障が無いにも関わらず発電量が低下することとなる。この部分影、作業停止による発電量の低下は誤検出の原因となる。 In addition, a mega solar with a large area spread may have a layout in which some panels are shaded, and even if there is no failure, the amount of power generation may be temporarily reduced. In addition, in the case of so-called work stop (hereinafter simply referred to as “work stop”) in which the operation of some strings 2 is stopped for inspection or the like, the power generation amount decreases even though there is no failure. This partial shadow and a decrease in the amount of power generated due to work stoppage cause false detection.

そこで、この発明は、ストリング単位での太陽電池パネルの故障による性能劣化をできるだけ早く且つ確実に検出できる発電状況診断方法及びその装置を提供することを目的としたものである。 Therefore, an object of the present invention is to provide a power generation state diagnosis method and apparatus capable of detecting performance degradation due to a failure of a solar cell panel in units of strings as quickly and reliably as possible.

請求項1の発明は、太陽光発電システムにおいて、一定個数のストリングの同じ時刻の瞬時電流を全ストリングにわたり、一定周期で各時間帯ごとに一定期間測定して、全ストリングの第1の測定電流値の中央値を算出し、当該中央値から一定値以上乖離している第1の測定電流値を含む時間帯のデータを除外し、残った各ストリングの各時間帯ごとの第1の測定電流値を一定期間積算し、各ストリングの各時間帯における積算電流値の平均値を算出し、各ストリングの各時間帯の積算電流値の前記平均積算電流値に対する割合を算出してこれを補正係数とし、その後、各ストリングの各時間帯ごとに電流値を測定し、当該各第2の測定電流値を相応する時間帯の補正係数で割ることにより、各ストリングの各時間帯ごとの補正電流値を算出し、前記第2の測定電流値が前記各補正電流値に対して一定幅以上低い場合に、当該ストリングの性能低下と判定する、太陽光発電システムの発電状況診断方法とした。 According to the first aspect of the present invention, in the photovoltaic power generation system, the instantaneous current at the same time of a certain number of strings is measured for a certain period for each time period in a certain period across all the strings, and the first measurement current of all the strings is measured. Calculate the median of the values, exclude the data for the time zone that includes the first measured current value that deviates from the median by a certain value or more, and remove the first measured current for each time zone of each remaining string The value is integrated for a certain period, the average value of the integrated current value in each time zone of each string is calculated, the ratio of the integrated current value in each time zone of each string to the average integrated current value is calculated, and this is corrected. Then, the current value is measured for each time zone of each string, and the second measured current value is divided by the correction factor of the corresponding time zone, thereby correcting the current value for each time zone of each string. Calculate The photovoltaic power generation system power generation status diagnosis method determines that the performance of the string is deteriorated when the second measured current value is lower than the correction current value by a certain width or more.

また、請求項2の発明は、前記全ストリングの各時間帯ごとの補正電流値から中央値を算出し、前記第2の測定電流値が前記各ストリングの各時間帯の補正電流値の中央値より一定幅以上低い状態が一定期間連続した場合に、当該ストリングの性能低下と判定する、請求項1に記載の太陽光発電システムの発電状況診断方法とした。 According to a second aspect of the present invention, a median value is calculated from the corrected current value for each time zone of the entire string, and the second measured current value is a median value of the corrected current value for each time zone of the string. 2. The method for diagnosing power generation status of a photovoltaic power generation system according to claim 1, wherein when the state lower than a certain width continues for a certain period, it is determined that the performance of the string is degraded.

請求項3の発明は、前記請求項2においてストリングの性能低下と判断したものが、実際、当該ストリングに属する太陽電池パネルの故障であったかどうかを判定してその結果をフィードバックし、前記補正電流値の中央値からの一定幅の増減又は前記中央値より一定幅以下低い状態の連続している期間の増減を調整する、太陽光発電システムの発電状況診断方法とした。 According to a third aspect of the present invention, it is determined whether or not the performance degradation of the string in the second aspect is actually a failure of the solar cell panel belonging to the string, the result is fed back, and the corrected current value A method for diagnosing a power generation state of a photovoltaic power generation system is provided that adjusts the increase / decrease of a certain width from the median of the solar power generation or the increase / decrease of a continuous period lower than the median by a certain width.

また、請求項4の発明は、太陽光発電システムにおいて、一定個数のストリングの同じ時刻の瞬時電流を全ストリングにわたり、一定周期で各時間帯ごとに一定時間計測する電流計測手段と、全ストリングの第1の測定電流値の中央値を算出する中央値算出手段と、当該中央値から一定値以上乖離している第1の測定電流値を含む時間帯のデータを除外するデータ除外手段と、残った各ストリングの各時間帯の第1の測定電流値を一定期間積算する積算手段と、各ストリングの各時間帯の積算電流値の平均値を算出し、各ストリングの各時間帯の積算電流値の前記平均積算電流値に対する割合を算出してこれを補正係数とする補正係数算出手段と、各ストリングの各時間帯ごとに前記電流計測手段で測定した第2の測定電流値を相応する時間帯の補正係数で割ることにより、各ストリングの各時間帯ごとの補正電流値を算出する補正電流算出手段と、前記第2の測定電流値が前記補正電流値より一定幅以上低いかどうかを判定し、当該判定によって前記第2の測定電流値が一定幅以上低い場合に、当該ストリングの性能低下と判断する第1判定手段とを少なくとも具備した、太陽光発電システムの発電状況診断装置とした。 According to a fourth aspect of the present invention, in the photovoltaic power generation system, a current measuring means for measuring a constant number of strings at the same time for a certain period of time for each time period at a constant period, A median calculating means for calculating the median of the first measured current values, a data excluding means for excluding data in a time zone including the first measured current values that deviate from the median by a certain value or more, and the remaining Integration means for integrating the first measured current value of each string in each time zone for a certain period, and calculating the average value of the integrated current values in each time zone of each string, and the integrated current value of each string in each time zone Correction coefficient calculation means for calculating a ratio of the average integrated current value to the correction coefficient and a second measurement current value measured by the current measurement means for each time zone of each string in a corresponding time zone The correction current calculation means for calculating the correction current value for each time zone of each string and dividing whether the second measurement current value is lower than the correction current value by a certain width or more by dividing by the correction coefficient of When the second measured current value is lower than a certain width by the determination, the power generation state diagnosis apparatus for the solar power generation system includes at least a first determination unit that determines that the performance of the string is degraded.

請求項5の発明は、前記中央値算出手段により前記全ストリングの各時間帯ごとの補正電流値からそれぞれ中央値を算出し、前記第1の判定手段で、前記第2の測定電流値が前記各ストリングの各時間帯の補正電流値の中央値より一定幅以上低いかどうかを判定し、当該低い状態が一定期間連続した場合に、当該ストリングの性能低下と判定する第2判定手段を具備した、請求項4に記載の太陽光発電システムの発電状況診断装置とした。 According to a fifth aspect of the present invention, the median value is calculated from the correction current value for each time zone of the entire string by the median value calculation unit, and the second measurement current value is calculated by the first determination unit. A second determination means for determining whether or not the string is lower than a median value of the correction current value in each time zone of each string and determining that the performance of the string is degraded when the low state continues for a certain period of time; The photovoltaic power generation system power generation status diagnosis apparatus according to claim 4.

請求項1及び4の発明によれば、太陽光発電の発電診断において、各ストリングの電流の初期計測データを用いて測定電流値を補正することで、計測誤差及び性能差による電流差の影響を除去し、精度の高い診断が可能となる。また、各ストリングの各時間帯の補正係数を出して、当該補正係数により実際の同ストリングの測定電流値を補正して電流値の低下による太陽電池パネルの故障を判定するため、常に機器自体の性能に基づいて補正するため、場所や環境を問わず迅速に且つ正確な判定ができる。 According to the inventions of claims 1 and 4, in the power generation diagnosis of photovoltaic power generation, the measurement current value is corrected using the initial measurement data of the current of each string, so that the influence of the current difference due to the measurement error and the performance difference can be reduced. This makes it possible to perform highly accurate diagnosis. Also, the correction coefficient for each time zone of each string is output, and the actual measured current value of the same string is corrected by the correction coefficient to determine the failure of the solar panel due to the decrease in the current value. Since correction is performed based on performance, quick and accurate determination can be performed regardless of location or environment.

また、請求項2及び5の発明によれば、各ストリングの発電量の低下を一定の時間の経過をもって判定するため、部分影や作業停止の影響を除去し、一時的な発電量低下と故障による永続的な発電量低下を正確に判別することが可能である。 In addition, according to the inventions of claims 2 and 5, since the decrease in the power generation amount of each string is determined with the passage of a certain time, the influence of partial shadows and work stoppages are removed, and the temporary power generation decrease and failure are eliminated. It is possible to accurately determine the permanent decrease in power generation due to the.

また、請求項3の発明によれば、ストリングの性能低下と判断したものが、実際、当該ストリングに属する太陽電池パネルの故障であったかどうかを判定した結果をフィードバックして判定条件を調整することにより、さらにより正確な判定が可能となる。 Further, according to the invention of claim 3, by adjusting the determination condition by feeding back the result of determining whether the performance of the string is actually a failure of the solar panel belonging to the string. Even more accurate determination is possible.

この発明の実施の形態例1の発電状況診断方法の概略構成図である。It is a schematic block diagram of the power generation condition diagnosis method of Embodiment 1 of this invention. この発明の実施の形態例1の発電状況診断方法の各ストリングのある時間帯における補正係数を表したグラフ図である。It is a graph showing the correction coefficient in a certain time slot | zone of each string of the power generation condition diagnosis method of Embodiment 1 of this invention. この発明の実施の形態例1の発電状況診断方法の各ストリングの補正前の電流値と補正電流値を表すそれぞれのグラフ図である。It is each graph figure showing the electric current value before amendment and amendment electric current value of each string of the power generation situation diagnostic method of Example 1 of this invention. 太陽光発電システムの概略構成図である。It is a schematic block diagram of a solar power generation system. 太陽光発電システムの分岐計測を示す概略図である。It is the schematic which shows the branch measurement of a solar power generation system. 太陽光発電システムの分岐計測における各ストリングごとの測定電流値を示すグラフ図である。It is a graph which shows the measured current value for every string in the branch measurement of a photovoltaic power generation system.

(実施の形態例1)
以下、この発明の実施の形態例1の太陽光発電システムの発電状況診断方法を図1〜図3に基づいて説明する。
(Embodiment 1)
Hereinafter, a power generation state diagnosis method for a photovoltaic power generation system according to Embodiment 1 of the present invention will be described with reference to FIGS.

まず、運転開始後、最初の1ヶ月で取得したデータを用いて加工を行い、以下の様に、計測誤差および電流差に起因する電流値を補正し、補正電流値を各ストリング、各時間帯ごとに求める。 First, after starting operation, processing is performed using the data acquired in the first month, and the current value caused by the measurement error and current difference is corrected as follows, and the corrected current value is set for each string and each time zone. Ask for each.

瞬間電流を全ストリング分集約する。具体的には、例えば8個の全ストリングについて、同じ時刻の電流値を平均値で1分間周期で計測し、これを1時間の時間帯ごとに5時間にわたり電流計測手段10で測定する。これによって得た全ストリングの第1の測定電流値から中央値を中央値算出手段11により算出する。次に、当該中央値から±6%以上乖離しているかどうかをチェックする。±6%以上乖離している電流値を一つでも含んでいる時間帯のデータは異常があるものと推定して、データ除外手段12で除外する。そして、全てのストリングの電流値が中央値から±6%以内に収まっていれば、その時間帯は特に異常がなかったと判定し、各ストリングごとにその時刻(時間帯)の第1の測定電流値を積算する。これは1日に例えば5時間行う。これらの第1の測定電流値を積算手段13により積算する。 Aggregate instantaneous current for all strings. Specifically, for example, for all eight strings, the current value at the same time is measured as an average value in a cycle of 1 minute, and this is measured by the current measuring means 10 for 5 hours for each time zone of 1 hour. The median value is calculated by the median value calculation means 11 from the first measured current values of all the strings thus obtained. Next, it is checked whether or not there is a deviation of ± 6% or more from the median. The data excluding means 12 excludes the data in the time zone including at least one current value that deviates by ± 6% or more. If the current value of all the strings is within ± 6% of the median value, it is determined that there is no abnormality in the time zone, and the first measurement current at that time (time zone) is determined for each string. Accumulate values. This is done for 5 hours a day, for example. These first measured current values are integrated by the integrating means 13.

この様にして、この処理を1ヶ月行うと、各ストリングの各時間帯の電流の積算電流値が出る。これらの積算電流値から下記の式1によって電流差を補正する補正係数を、補正係数算出手段14で算出する。これは1ヶ月間の全ストリングの積算電流値の合計をストリングの数nで割って平均積算電流値を出し、この平均積算電流値に対するn番目のストリングの1ヶ月間の積算電流値の割合を出すことによりn番目のストリングの各時間帯の補正係数を出すものである。 In this way, when this process is performed for one month, an integrated current value of the current in each time zone of each string is obtained. From these integrated current values, the correction coefficient for correcting the current difference is calculated by the correction coefficient calculation means 14 according to the following formula 1. This is obtained by dividing the total accumulated current value of all strings for one month by the number n of strings to obtain the average accumulated current value, and the ratio of the accumulated current value for one month of the nth string to this average accumulated current value. The correction coefficient for each time zone of the nth string is output.

Figure 2016144244
Figure 2016144244

なお、上記式1において、
Kn:n番目のストリングの補正係数(n=1〜n)
Ahn:n番目のストリングの1ヶ月間積算電流値
N:全ストリング数
In Formula 1 above,
Kn: nth string correction coefficient (n = 1 to n)
Ahn: Current value accumulated for one month in the nth string N: Total number of strings

この補正係数は各ストリングについて、各時間帯の補正係数を算出する。従って、各ストリングにつき、1日5時間の計測であれば5個の時間帯の補正係数を算出する。図2はある時間帯の各ストリングの補正係数を表したグラフ図である。 This correction coefficient is calculated for each string for each time zone. Therefore, for each string, if the measurement is performed for 5 hours a day, correction coefficients for 5 time zones are calculated. FIG. 2 is a graph showing the correction coefficient of each string in a certain time zone.

次に、2ヶ月以降、上記と同様に各ストリングの電流値を測定する。そして、日中、例えば、9時〜14時の1時間毎に、発電量の低下を判定し、全ての時間帯で発電量の低下が発生していた時のみ故障による発電量の低下とみなすことで、部分影や作業停止の影響を除去する。 Next, after two months, the current value of each string is measured in the same manner as described above. And, during the day, for example, every hour from 9:00 to 14:00, a decrease in the amount of power generation is determined, and only when a decrease in the amount of power generation has occurred in all time zones, it is regarded as a decrease in the amount of power generation due to a failure. This eliminates the effects of partial shadows and work stoppages.

具体的には2ヶ月以降、上記と同様に各ストリングの電流値を前記電流計測手段10で測定し、各ストリングの各時間帯ごとの第2の測定電流値を各ストリングの各時間帯ごとの補正係数で割り、各ストリングの各時間帯ごとの補正電流値を、補正電流値算出手段15により算出する。図3の(a)図は各ストリングの補正前の電流値、(b)図は各ストリングの補正後の補正電流値を示すグラフ図である。この様に、補正をかけると各ストリングの電流値のばらつきが無くなり、略1本の太い線となる。 Specifically, after two months, the current value of each string is measured by the current measuring means 10 in the same manner as described above, and the second measured current value for each time zone of each string is measured for each time zone of each string. The correction current value for each time zone of each string is calculated by the correction current value calculation means 15 by dividing by the correction coefficient. 3A is a graph showing the current value before correction of each string, and FIG. 3B is a graph showing the corrected current value after correction of each string. In this way, when the correction is applied, there is no variation in the current value of each string, and approximately one thick line is obtained.

さらに、各ストリングの全時間帯の補正電流値の中央値を前記中央値算出手段11で算出し、各ストリングの各時間帯の第2の測定電流値が中央値から−3%以上乖離しているかどうかを第1判定手段16でチェックする。1時間の内で、全体の半分(30分)以上−3%以上乖離していた場合、当該ストリングの当該時間帯で発電量の低下が発生したとみなす。 Further, the median value of the corrected current values in all time zones of each string is calculated by the median value calculating means 11, and the second measured current value in each time zone of each string deviates by −3% or more from the median value. The first determination means 16 checks whether or not there is. If there is a divergence of more than half (30 minutes) or more and less than -3% within one hour, it is considered that a decrease in the amount of power generation has occurred in the relevant time zone of the string.

日中、9時〜14時の1時間毎に上記処理を行い、全ての時間帯で発電量の低下が発生していた時のみ、第2判定手段17で異常と認定し、表示手段18で表示又は警報を発する。これにより部分影や作業停止等の一時的な発電電力低下と故障による永続的な発電電力低下を判別する。 During the day, the above processing is performed every hour from 9:00 to 14:00, and only when the amount of power generation has decreased in all time zones, the second determination means 17 recognizes an abnormality, and the display means 18 Issue a display or alarm. As a result, a temporary power generation decrease such as a partial shadow or work stoppage and a permanent power generation decrease due to a failure are discriminated.

なお、上記実施の形態例1においては、各測定電流値等を記憶する記憶手段19、各手段を制御する、CPU等から成る制御手段20等を備えている。前記記憶手段19は、大容量メモリとして機能する、ハードディスクドライブを有しており、アプリケーションプログラム、OS、制御プログラム、関連プログラム等が記憶される。前記式(1)や前記各手段の演算式等は、アプリケーションプログラムとして当該記憶手段19のハードディスクドライブに記憶されている。 In the first embodiment, the storage means 19 for storing each measured current value and the like, the control means 20 including a CPU for controlling each means, and the like are provided. The storage means 19 has a hard disk drive that functions as a large-capacity memory, and stores application programs, OS, control programs, related programs, and the like. The equation (1), the arithmetic expressions of the respective means, and the like are stored in the hard disk drive of the storage means 19 as application programs.

その他、内部に基本I/Oプログラム、基本処理において使用する各種データを記憶するROM(=Read Only Memory)を有し、また、各種データを一時記憶するための制御手段20の主メモリ、ワークエリア等として機能する、RAM(Random AccessMemory)を有する。前記表示手段18は液晶ディスプレイ、有機ELディスプレイ、CRT等である。また、図示は省略したが、入力手段を有している。当該入力手段は、キーボード、タッチパネル、マウス等から構成されている。また、本件装置内の前記各手段は相互に信号線で接続されている。 In addition, a basic I / O program, a ROM (= Read Only Memory) for storing various data used in basic processing, and a main memory and work area of the control means 20 for temporarily storing various data It has a RAM (Random Access Memory) that functions as, for example. The display means 18 is a liquid crystal display, an organic EL display, a CRT or the like. Although not shown in the figure, it has an input means. The input means includes a keyboard, a touch panel, a mouse, and the like. Further, each means in the present apparatus is connected to each other by a signal line.

また、上記実施の形態例1の各ストリングの電流測定周期、1日の測定時間帯、1ヶ月の測定積算期間等の数値は限定的なものではなく、任意に設定できるものである。 In addition, numerical values such as the current measurement period, the measurement time zone of one day, and the measurement integration period of one month of each string in the first embodiment are not limited and can be arbitrarily set.

また、前記補正電流値の算出は判定精度を向上させるための処理であり、部分影や作業停止の影響を除去した発電量低下の検出自体は、1ヶ月目からでも可能である。 The calculation of the correction current value is a process for improving the determination accuracy, and the detection of a decrease in the amount of power generation that eliminates the effects of partial shadows and work stoppage can be performed from the first month.

また、上記実施の形態例1に代えて、第1判定手段において、補正電流値の中央値を算出せず、前記第2の測定電流値が前記各補正電流値に対して一定幅以上低い場合に、当該ストリングの性能低下と判定し、これを表示手段18で表示又は警報しても良い。 Further, instead of the first embodiment, the first determination unit does not calculate the median value of the correction current values, and the second measurement current value is lower than the correction current value by a certain width or more. Further, it may be determined that the performance of the string is deteriorated, and this may be displayed or alarmed by the display means 18.

なお、上記実施の形態例では最初の1ヶ月間モニタリングして、各ストリングの各時間帯の電流値の補正係数を求め、2ヶ月後からの各ストリングの電流値を計測して前記補補正係数から補正電流値を求めているが、上記期間に限定されるものではない。 In the above embodiment, monitoring is performed for the first month, a correction coefficient of the current value of each string in each time zone is obtained, and the current value of each string after two months is measured to calculate the complementary correction coefficient. The correction current value is obtained from the above, but is not limited to the above period.

また、前記補正係数の算出のモニタリングを、一年後の相応する月の発電診断に使用しても良く、また、直近の1ヶ月前のモニタリングを発電診断に使用しても良い。さらには、当該モニタリングを順次更新して、使用することができる。 Further, the monitoring of the calculation of the correction coefficient may be used for the power generation diagnosis for the corresponding month one year later, and the monitoring for the previous month may be used for the power generation diagnosis. Furthermore, the monitoring can be updated and used sequentially.

また、第2判定手段17でストリングの性能低下と判断したものが、実際、当該ストリングに属する太陽電池パネルの故障であったかどうかを判定してその結果をフィードバックし、前記補正電流値の中央値からの一定幅の増減又は前記中央値より一定幅以下低い状態の連続している期間の増減を調整することもできる。 In addition, it is determined whether the second determination means 17 has actually determined that the performance of the string is a failure of the solar panel belonging to the string, the result is fed back, and the median value of the correction current values is calculated. It is also possible to adjust the increase / decrease of the constant width of the continuous period or the increase / decrease of the continuous period lower than the median by a certain width or less.

実施例では、ストリング単位の部分故障の検出を示したが、パネル単位、接続箱単位、集電箱単位、PCS単位で電流値を測定し、ストリング単位と同様な処理をすることにより、それぞれの単位での部分故障を検出できる。 In the embodiment, the detection of the partial failure in the string unit is shown. However, the current value is measured in the panel unit, the connection box unit, the current collection box unit, and the PCS unit, and the same processing as the string unit is performed. Partial failure can be detected in units.

1 太陽電池パネル 2 ストリング
3 接続箱 4 集電箱
5 パワーコンディショナ 6 連系変圧器
10 電流計測手段 11 中央値算出手段
12 データ除外手段 13 積算手段
14 補正係数算出手段 15 補正電流値算出手段
16 第1判定手段 17 第2判定手段
18 表示手段 19 記憶手段
20 制御手段
DESCRIPTION OF SYMBOLS 1 Solar cell panel 2 String 3 Junction box 4 Current collection box 5 Power conditioner 6 Interconnection transformer 10 Current measurement means 11 Median value calculation means 12 Data exclusion means 13 Accumulation means 14 Correction coefficient calculation means 15 Correction current value calculation means 16 First determination means 17 Second determination means 18 Display means 19 Storage means 20 Control means

Claims (5)

太陽光発電システムにおいて、
一定個数のストリングの同じ時刻の瞬時電流を全ストリングにわたり、一定周期で各時間帯ごとに一定期間測定して、全ストリングの第1の測定電流値の中央値を算出し、当該中央値から一定値以上乖離している第1の測定電流値を含む時間帯のデータを除外し、
残った各ストリングの各時間帯ごとの第1の測定電流値を一定期間積算し、各ストリングの各時間帯における積算電流値の平均値を算出し、各ストリングの各時間帯の積算電流値の前記平均積算電流値に対する割合を算出してこれを補正係数とし、
その後、各ストリングの各時間帯ごとに電流値を測定し、当該各第2の測定電流値を相応する時間帯の補正係数で割ることにより、各ストリングの各時間帯ごとの補正電流値を算出し、前記第2の測定電流値が前記各補正電流値に対して一定幅以上低い場合に、当該ストリングの性能低下と判定することを特徴とする、太陽光発電システムの発電状況診断方法。
In the solar power generation system,
The instantaneous current of a certain number of strings at the same time is measured for a certain period for each time period in a certain period over the entire string, and the median value of the first measured current values of all the strings is calculated and constant from the median value Exclude data in the time zone that includes the first measured current value that is more than the value,
The first measured current value for each time zone of each remaining string is integrated for a certain period, the average value of the integrated current values for each time zone for each string is calculated, and the integrated current value for each time zone for each string is calculated. Calculate a ratio to the average integrated current value and use this as a correction coefficient,
Thereafter, the current value is measured for each time zone of each string, and the correction current value for each time zone of each string is calculated by dividing each second measured current value by the correction factor of the corresponding time zone. Then, when the second measured current value is lower than the correction current value by a certain width or more, it is determined that the performance of the string is degraded.
前記全ストリングの各時間帯ごとの補正電流値から中央値を算出し、前記第2の測定電流値が前記各ストリングの各時間帯の補正電流値の中央値より一定幅以上低い状態が一定期間連続した場合に、当該ストリングの性能低下と判定することを特徴とする、請求項1に記載の太陽光発電システムの発電状況診断方法。   A median value is calculated from the corrected current value for each time zone of the entire string, and the second measured current value is lower than the median value of the corrected current value for each time zone of the string by a certain width or more. 2. The method for diagnosing the power generation state of a solar power generation system according to claim 1, wherein, when continuous, it is determined that the performance of the string is degraded. 前記請求項2においてストリングの性能低下と判断したものが、実際、当該ストリングに属する太陽電池パネルの故障であったかどうかを判定してその結果をフィードバックし、前記補正電流値の中央値からの一定幅の増減又は前記中央値より一定幅以下低い状態の連続している期間の増減を調整することを特徴とする、太陽光発電システムの発電状況診断方法。   It is determined whether the performance degradation of the string in claim 2 is actually a failure of the solar cell panel belonging to the string, the result is fed back, and a constant width from the median value of the correction current value A method for diagnosing a power generation state of a solar power generation system, comprising adjusting an increase / decrease in a period or a change in a continuous period lower than the median by a certain width or less. 太陽光発電システムにおいて、
一定個数のストリングの同じ時刻の瞬時電流を全ストリングにわたり、一定周期で各時間帯ごとに一定時間計測する電流計測手段と、全ストリングの第1の測定電流値の中央値を算出する中央値算出手段と、当該中央値から一定値以上乖離している第1の測定電流値を含む時間帯のデータを除外するデータ除外手段と、
残った各ストリングの各時間帯の第1の測定電流値を一定期間積算する積算手段と、各ストリングの各時間帯の積算電流値の平均値を算出し、各ストリングの各時間帯の積算電流値の前記平均積算電流値に対する割合を算出してこれを補正係数とする補正係数算出手段と、
各ストリングの各時間帯ごとに前記電流計測手段で測定した第2の測定電流値を相応する時間帯の補正係数で割ることにより、各ストリングの各時間帯ごとの補正電流値を算出する補正電流値算出手段と、前記第2の測定電流値が前記補正電流値より一定幅以上低いかどうかを判定し、当該判定によって前記第2の測定電流値が一定幅以上低い場合に、当該ストリングの性能低下と判断する第1判定手段とを少なくとも具備したことを特徴とする、太陽光発電システムの発電状況診断装置。
In the solar power generation system,
Current measuring means for measuring a constant number of strings at the same time over the entire time for a certain period of time for each time zone over a certain period, and a median calculation for calculating the median of the first measured current values of all the strings Data excluding means for excluding data in a time zone including a first measured current value deviating from the median by a certain value or more,
Integration means for integrating the first measured current value of each remaining string in each time zone for a certain period of time, and calculating an average value of the accumulated current values in each time zone of each string, and integrating current in each time zone of each string Correction coefficient calculation means for calculating a ratio of the value to the average integrated current value and using this as a correction coefficient;
A correction current for calculating a correction current value for each time zone of each string by dividing the second measurement current value measured by the current measuring means for each time zone of each string by the correction factor of the corresponding time zone A value calculating means for determining whether the second measured current value is lower than the correction current value by a certain width or more, and when the second measured current value is lower than a certain width by the determination, the performance of the string A power generation status diagnosis apparatus for a solar power generation system, comprising at least first determination means for determining a decrease.
前記中央値算出手段により前記全ストリングの各時間帯ごとの補正電流値からそれぞれ中央値を算出し、前記第1判定手段で、前記第2の測定電流値が前記各ストリングの各時間帯の補正電流値の中央値より一定幅以上低いかどうかを判定し、当該低い状態が一定期間連続した場合に、当該ストリングの性能低下と判定する第2判定手段を具備したことを特徴とする、請求項4に記載の太陽光発電システムの発電状況診断装置。   The median value is calculated by the median value calculation means from the corrected current value for each time zone of all the strings, and the second measurement current value is corrected by the first determination means for each time zone of each string. A second determining means for determining whether or not the current value is lower than a median value by a certain width or more and determining that the performance of the string is degraded when the low state continues for a certain period of time is provided. 4. A power generation status diagnosis apparatus for a solar power generation system according to 4,
JP2015016461A 2015-01-30 2015-01-30 Method and apparatus for diagnosing power generation status of photovoltaic system Active JP6501535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016461A JP6501535B2 (en) 2015-01-30 2015-01-30 Method and apparatus for diagnosing power generation status of photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016461A JP6501535B2 (en) 2015-01-30 2015-01-30 Method and apparatus for diagnosing power generation status of photovoltaic system

Publications (2)

Publication Number Publication Date
JP2016144244A true JP2016144244A (en) 2016-08-08
JP6501535B2 JP6501535B2 (en) 2019-04-17

Family

ID=56570994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016461A Active JP6501535B2 (en) 2015-01-30 2015-01-30 Method and apparatus for diagnosing power generation status of photovoltaic system

Country Status (1)

Country Link
JP (1) JP6501535B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163413A1 (en) * 2018-02-20 2019-08-29 太陽誘電株式会社 Photovoltaic power generation failure diagnosis device, photovoltaic power generation failure diagnosis method, and program
CN113541600A (en) * 2021-05-25 2021-10-22 特变电工新疆新能源股份有限公司 Method, system, equipment and storage medium for judging branch fault of photovoltaic power station
KR20220031271A (en) * 2020-09-04 2022-03-11 동명대학교산학협력단 Sun light electric generator for detecting malfunction panel
KR20220031265A (en) * 2020-09-04 2022-03-11 동명대학교산학협력단 Sunlight generation of electricity system and the diagnosis method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511835A (en) * 1991-07-08 1993-01-22 Omron Corp Fault diagnostic device
JPH07334767A (en) * 1994-04-13 1995-12-22 Canon Inc Method and device for abnormality detection and power generation system using the same
JPH11175177A (en) * 1997-12-17 1999-07-02 Meidensha Corp Solar battery monitoring device
JP2011077477A (en) * 2009-10-02 2011-04-14 Sansha Electric Mfg Co Ltd Monitor
WO2011101916A1 (en) * 2010-02-19 2011-08-25 オーナンバ株式会社 Method for detecting failure of photovoltaic power system
US20120197557A1 (en) * 2009-09-02 2012-08-02 Sma Solar Technology Ag String Failure Monitoring
JP2013191719A (en) * 2012-03-14 2013-09-26 Tokyo Electron Ltd Effect monitoring system for solar cell module, and monitoring method for the same
JP2014081331A (en) * 2012-10-18 2014-05-08 Mitsubishi Electric Corp Anemometer
JP2015099858A (en) * 2013-11-19 2015-05-28 タケモトデンキ株式会社 Abnormality detection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511835A (en) * 1991-07-08 1993-01-22 Omron Corp Fault diagnostic device
JPH07334767A (en) * 1994-04-13 1995-12-22 Canon Inc Method and device for abnormality detection and power generation system using the same
JPH11175177A (en) * 1997-12-17 1999-07-02 Meidensha Corp Solar battery monitoring device
US20120197557A1 (en) * 2009-09-02 2012-08-02 Sma Solar Technology Ag String Failure Monitoring
JP2011077477A (en) * 2009-10-02 2011-04-14 Sansha Electric Mfg Co Ltd Monitor
WO2011101916A1 (en) * 2010-02-19 2011-08-25 オーナンバ株式会社 Method for detecting failure of photovoltaic power system
JP2013191719A (en) * 2012-03-14 2013-09-26 Tokyo Electron Ltd Effect monitoring system for solar cell module, and monitoring method for the same
JP2014081331A (en) * 2012-10-18 2014-05-08 Mitsubishi Electric Corp Anemometer
JP2015099858A (en) * 2013-11-19 2015-05-28 タケモトデンキ株式会社 Abnormality detection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163413A1 (en) * 2018-02-20 2019-08-29 太陽誘電株式会社 Photovoltaic power generation failure diagnosis device, photovoltaic power generation failure diagnosis method, and program
JPWO2019163413A1 (en) * 2018-02-20 2021-02-04 太陽誘電株式会社 Photovoltaic power generation failure diagnosis device, photovoltaic power generation failure diagnosis method, program
US11290056B2 (en) 2018-02-20 2022-03-29 Taiyo Yuden Co., Ltd. Solar power generation fault diagnosis device and solar power generation fault diagnosis method
JP7049440B2 (en) 2018-02-20 2022-04-06 太陽誘電株式会社 Photovoltaic power generation failure diagnosis device, solar power generation failure diagnosis method, program
KR20220031271A (en) * 2020-09-04 2022-03-11 동명대학교산학협력단 Sun light electric generator for detecting malfunction panel
KR20220031265A (en) * 2020-09-04 2022-03-11 동명대학교산학협력단 Sunlight generation of electricity system and the diagnosis method
KR102431426B1 (en) * 2020-09-04 2022-08-10 동명대학교산학협력단 Sunlight generation of electricity system and the diagnosis method
KR102431446B1 (en) 2020-09-04 2022-08-10 동명대학교산학협력단 Sun light electric generator for detecting malfunction panel
CN113541600A (en) * 2021-05-25 2021-10-22 特变电工新疆新能源股份有限公司 Method, system, equipment and storage medium for judging branch fault of photovoltaic power station

Also Published As

Publication number Publication date
JP6501535B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US8290745B2 (en) Systems and methods for identifying faulty sensors within a power generation system
US10340849B2 (en) Diagnosis system and diagnosis method for photovoltaic power generation system
US9998071B2 (en) Failure diagnosis method and failure diagnosis system for photovoltaic system
JP6813291B2 (en) Performance evaluation method for photovoltaic power generation
KR101327225B1 (en) Fault diagnosis method of grid-connected photovoltaic system and apparatus thereof
JP2016144244A (en) Power generation situation diagnosis method for photovoltaic power generation system, and device therefor
US20160356859A1 (en) Fault detection in energy generation arrangements
US9831827B2 (en) Photovoltaic inspection system and photovoltaic inspection method
JP2014179464A (en) Photovoltaic power generation system, abnormality determination processor, abnormality determination processing method and program
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
JP6608619B2 (en) Method and apparatus for diagnosing power generation status of solar power generation system
KR20170126623A (en) photovoltaic power generation equipment efficiency detection system based on multi variables
JP2011181614A (en) Device and method for fault diagnosis
US10600307B2 (en) Energy consumption alerting method, energy consumption alerting system and platform
JP2013239686A (en) Failure detection method and monitoring system for solar power generation
JP6548955B2 (en) Support system for power generation estimation learning in photovoltaic power generation
JP2015099858A (en) Abnormality detection device
JP7452119B2 (en) Diagnostic equipment, diagnostic methods and programs
US20210305936A1 (en) Method, computer-implemented tool and power plant control device for detecting power production degradation of solar power plants and solar power plant system
JP2012182923A (en) Photovoltaic power generation system, and inspection method thereof
JP6354946B2 (en) Abnormality diagnosis method for photovoltaic power generation system
JP2022008764A (en) Solar radiation amount estimation method for photovoltaic power plant
JP2021145509A (en) Abnormality detection device, abnormality detection method, and abnormality detection program
US9644958B2 (en) Method for the validation of solar altitude-dependent measured values of several measurement channels
WO2023095387A1 (en) Determination device and determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350