JP2016138607A - Thrust support device of operation member and machine tool having support device - Google Patents

Thrust support device of operation member and machine tool having support device Download PDF

Info

Publication number
JP2016138607A
JP2016138607A JP2015014266A JP2015014266A JP2016138607A JP 2016138607 A JP2016138607 A JP 2016138607A JP 2015014266 A JP2015014266 A JP 2015014266A JP 2015014266 A JP2015014266 A JP 2015014266A JP 2016138607 A JP2016138607 A JP 2016138607A
Authority
JP
Japan
Prior art keywords
thrust
throttle
support device
grindstone
pocket portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014266A
Other languages
Japanese (ja)
Other versions
JP6492699B2 (en
Inventor
雄太 大津
Yuta Otsu
雄太 大津
伸充 堀
Nobumitsu Hori
伸充 堀
鉄昭 和田
Tetsuaki Wada
鉄昭 和田
深見 孝夫
Takao Fukami
孝夫 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015014266A priority Critical patent/JP6492699B2/en
Priority to DE102016101295.5A priority patent/DE102016101295A1/en
Priority to CN201610051879.1A priority patent/CN105817994B/en
Publication of JP2016138607A publication Critical patent/JP2016138607A/en
Application granted granted Critical
Publication of JP6492699B2 publication Critical patent/JP6492699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se
    • F16C32/0659Details of the bearing area per se of pockets or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/08Arrangements for covering or protecting the ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • F16C2220/70Shaping by removing material, e.g. machining by grinding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Turning (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a constitution which receives a thrust force by bringing a first throttle and a second throttle functioning for receiving the thrust force into a cross arrangement relationship.SOLUTION: A grindstone 102 is supported to a thrust direction by the bearing oil of a thrust bearing metal 104. A first throttle 92 and a second throttle 94 which limit circulation from a fluid pocket part 96 are arranged in a right angle direction. The fluid pocket part 96 is formed while straddling a boundary part between a first formation face 70 and a second formation face 75 of the first throttle 92 and the second throttle 94 which are arranged in the right angle direction. A circulation direction of the first throttle 92 is set as a right angle with respect to an axial direction of a grindstone 102, and its throttle is throttled by the movement of the grindstone 102 to a thrust operation direction. By this constitution, since a length of the grindstone 102 in an axial right angle is influenced by the first throttle 92 and the fluid pocket part 96, the size of a device can be reduced.SELECTED DRAWING: Figure 4

Description

本発明は、作動部材のスラスト支持装置、及び同支持装置を備えた工作機械に関する。特に、回転軸等の作動部材をスラスト軸受メタル等のスラスト受け部材に流体の静圧支持によりスラスト方向の作用力を支持するスラスト支持装置に関する。   The present invention relates to a thrust support device for an operating member, and a machine tool including the support device. In particular, the present invention relates to a thrust support device that supports an actuating force in a thrust direction by supporting a working member such as a rotating shaft on a thrust receiving member such as a thrust bearing metal by hydrostatic pressure.

工作機械の作動部材である回転軸のスラスト作用力は、一般に、静圧スラスト軸受により支持されている。例えば、研削盤の砥石軸(スピンドル)は、その軸方向のスラスト力を静圧スラスト軸受により非接触支持している。図6はその静圧スラスト支持装置100の概略断面構成を示す。この静圧スラスト支持装置100は回転軸として配設される砥石軸(スピンドル)102が静圧軸受構成にてスラスト受け部材であるスラスト軸受メタル104に対して軸方向に相対移動可能に支持されている。その静圧軸受構成は、砥石軸102は大径軸部102Aと小径軸部102Bとが段付き形状の凹断面形状として形成されており、その凹断面形状の凹部内にスラスト軸受メタル104が挿入されて、このスラスト軸受メタル104により砥石軸102が支持される構成となっている。そして、この支持は、段付き形状部のスラスト軸受メタル104と砥石軸102との間に供給される軸受油を介して静圧支持されて行われている。   The thrust acting force of the rotating shaft that is the working member of the machine tool is generally supported by a hydrostatic thrust bearing. For example, a grindstone shaft (spindle) of a grinding machine supports the axial thrust force in a non-contact manner by a hydrostatic thrust bearing. FIG. 6 shows a schematic cross-sectional configuration of the hydrostatic thrust support device 100. In this hydrostatic thrust support device 100, a grindstone shaft (spindle) 102 disposed as a rotating shaft is supported by a hydrostatic bearing structure so as to be relatively movable in an axial direction with respect to a thrust bearing metal 104 which is a thrust receiving member. Yes. In the hydrostatic bearing structure, the grindstone shaft 102 has a large-diameter shaft portion 102A and a small-diameter shaft portion 102B formed as a stepped concave cross-sectional shape, and the thrust bearing metal 104 is inserted into the concave portion of the concave cross-sectional shape. Thus, the grinding wheel shaft 102 is supported by the thrust bearing metal 104. This support is performed by static pressure support via bearing oil supplied between the thrust bearing metal 104 of the stepped shape portion and the grindstone shaft 102.

軸受油による静圧スラスト軸受支持は、段付き形状のスラスト軸受メタル104の側面104Sと砥石軸102の側面102Sとの間の微小隙間106に軸受油が供給されることにより行われる。当該隙間106への軸受油の供給は、軸受メタル104に形成された油路98を通じて行われる。そして、スラスト軸受メタル104の側面104Sに開口する油路98の端部は円環状の流体ポケット部96に形成されており、一時的に軸受油は当該流体ポケット部96に貯留される。当該流体ポケット部96に供給された軸受油は、当該流体ポケット部96が形成される位置より径方向内方と径方向外方に形成される流通隙間92、94を通って排出される。すなわち、スラスト軸受メタル104と砥石軸102の両側面102S、104S間の隙間92,94を通って排出される。この両隙間92,94は砥石軸102のスラスト軸受メタル104に対する軸方向への相対的作動により隙間が変動する絞りとして形成されており、径方向外方の隙間92が第1絞りとなり、径方向内方の隙間94が第2絞りとなっている。なお、第2絞り94に接続されて形成される砥石軸102の小径軸部102Bとスラスト軸受メタル104との隙間116は、当該第2絞り94より隙間間隔が広く形成されており、その中央部位置に形成された排出路90に接続される排出経路となっている。   The hydrostatic thrust bearing is supported by the bearing oil by supplying the bearing oil to the minute gap 106 between the side surface 104S of the stepped thrust bearing metal 104 and the side surface 102S of the grindstone shaft 102. Supply of bearing oil to the gap 106 is performed through an oil passage 98 formed in the bearing metal 104. The end portion of the oil passage 98 opened to the side surface 104S of the thrust bearing metal 104 is formed in an annular fluid pocket portion 96, and the bearing oil is temporarily stored in the fluid pocket portion 96. The bearing oil supplied to the fluid pocket portion 96 is discharged through circulation gaps 92 and 94 formed radially inward and radially outward from the position where the fluid pocket portion 96 is formed. That is, it is discharged through the gaps 92 and 94 between the thrust bearing metal 104 and both side surfaces 102S and 104S of the grindstone shaft 102. Both the gaps 92 and 94 are formed as a diaphragm in which the gap fluctuates due to the relative operation of the grinding wheel shaft 102 relative to the thrust bearing metal 104 in the axial direction, and the radially outward gap 92 serves as the first diaphragm. An inward gap 94 is the second aperture. The gap 116 between the small-diameter shaft portion 102B of the grindstone shaft 102 and the thrust bearing metal 104 formed by being connected to the second diaphragm 94 is formed wider than the second diaphragm 94, and the central portion thereof. This is a discharge path connected to a discharge path 90 formed at a position.

図6において、砥石軸102に軸方向のスラスト力が作用して、スラスト軸受メタル104に対して砥石軸102が左右方向の一方向に相対移動すると、スラスト軸受メタル104の左右両側位置の隙間は一方側位置の隙間(第1絞り及び第2絞り)が絞られて狭くなり、他方側位置の隙間(第1絞り及び第2絞り)が広くなる。その結果、絞られた隙間を通る軸受油の流れが制限される。この流れが制限されることにより当該位置側のポケット溝に貯留される軸受油の静圧により砥石軸102のスラスト力を受けスラスト軸受メタル104の側面104Sにより支持される。   In FIG. 6, when an axial thrust force acts on the grindstone shaft 102 and the grindstone shaft 102 moves relative to the thrust bearing metal 104 in one horizontal direction, the clearance between the left and right side positions of the thrust bearing metal 104 is as follows. The gap at the one side position (first diaphragm and second diaphragm) is narrowed and narrowed, and the gap at the other side position (first diaphragm and second diaphragm) is widened. As a result, the flow of bearing oil through the narrowed gap is limited. By restricting this flow, the thrust force of the grindstone shaft 102 is received by the static pressure of the bearing oil stored in the pocket groove on the position side and is supported by the side surface 104S of the thrust bearing metal 104.

特開2005−66719号公報JP 2005-66719 A 特開平9−150336号公報JP-A-9-150336

ところで、最近、工作機械の小型化の要請がある。回転軸を備える工作機械で、例えば、砥石軸102を備える研削盤において、その砥石軸102に静圧スラスト軸受を設ける場合には、径方向に充分なスペースが必要となるため、小型化を図ることが困難であった。すなわち、上述した静圧スラスト軸受支持装置100の構成では、スラスト力を受けるために形成される第1絞り92と第2絞り94が共にスラスト軸受メタル104と砥石軸102の大径軸部102Aの側面に直線的に配列された構成となっている。このため、砥石軸102の小径軸部102Bの外形寸法に比して大径軸部102Aの外形寸法が大きくなる。このため、小型化が困難であった。なお、大径軸部102Aの外形寸法を小型化の要請に基づき単純に小径化するときには、小径軸部102Bの外形寸法が過度に小径とならざるを得ず、砥石軸102の剛性低下を招くという問題を生じる。   Recently, there has been a demand for downsizing machine tools. In a machine tool having a rotating shaft, for example, in a grinding machine having a grindstone shaft 102, when a static pressure thrust bearing is provided on the grindstone shaft 102, a sufficient space in the radial direction is required, so that the size can be reduced. It was difficult. That is, in the configuration of the hydrostatic thrust bearing support device 100 described above, the first throttle 92 and the second throttle 94 formed to receive the thrust force are both the thrust bearing metal 104 and the large-diameter shaft portion 102A of the grindstone shaft 102. It is configured to be linearly arranged on the side. For this reason, the outer dimension of the large-diameter shaft portion 102A is larger than the outer dimension of the small-diameter shaft portion 102B of the grindstone shaft 102. For this reason, size reduction was difficult. When the outer diameter of the large-diameter shaft portion 102A is simply reduced based on a request for downsizing, the outer diameter of the small-diameter shaft portion 102B must be excessively small, and the rigidity of the grindstone shaft 102 is reduced. This causes a problem.

而して、本発明は上記した点に鑑みて創案されたものであって、本発明が解決しようとする課題は、スラスト力を受けるための第1絞りと第2絞りを交差する配置関係として配置することによりスラスト力を受ける構成の小型化を可能とすることにある。   Thus, the present invention was devised in view of the above points, and the problem to be solved by the present invention is as an arrangement relationship in which the first diaphragm and the second diaphragm for receiving the thrust force intersect each other. It is to enable downsizing of the configuration that receives the thrust force by arranging.

上記課題を解決するため、本発明は次の手段をとる。   In order to solve the above problems, the present invention takes the following means.

本発明に係る作動部材のスラスト支持装置は、先ず、スラスト受け部材と、該スラスト受け部材に対してスラスト作用方向に静圧支持されて相対移動可能に配設される作動部材と、を備え、前記スラスト受け部材と前記作動部材とには前記スラスト作用方向に対して機能する面として形成されるそれぞれの第1形成面が対向して配設されると共に、該それぞれの第1形成面に直角に形成されるそれぞれの第2形成面が対向して配設されており、前記スラスト受け部材の第1形成面に形成される流体ポケット部に供給される流体圧により静圧支持される。そして、前記流体ポケット部は前記スラスト受け部材の前記第1形成面と前記第2形成面との境界部に跨って形成されており、前記ポケット部から前記第1形成面に向けて流出する流体の流量を絞る第1絞りが前記対向して配設される第1形成面間の流通隙間により形成されており、前記ポケット部から前記第2形成面に向けて流出する流体の流量を絞る第2絞りが前記対向して配設される第2形成面間の流通隙間により形成されており、前記第1絞りと第2絞りは前記作動部材の無負荷状態において前記第1絞りに前記流体ポケット部からの流れが生じる状態として配設されている。   A thrust support device for an actuating member according to the present invention includes a thrust receiving member, and an actuating member that is statically supported in the thrust acting direction with respect to the thrust receiving member and is disposed so as to be relatively movable. The thrust receiving member and the actuating member are provided with respective first forming surfaces formed as surfaces functioning in the thrust acting direction, and are perpendicular to the respective first forming surfaces. Each of the second forming surfaces formed on the thrust receiving member is opposed to each other, and is statically supported by the fluid pressure supplied to the fluid pocket portion formed on the first forming surface of the thrust receiving member. The fluid pocket portion is formed across the boundary between the first forming surface and the second forming surface of the thrust receiving member, and the fluid flows out from the pocket portion toward the first forming surface. A first restrictor that restricts the flow rate of the fluid is formed by a flow gap between the first forming surfaces disposed opposite to each other, and a first restrictor that restricts the flow rate of the fluid flowing out from the pocket portion toward the second forming surface. Two throttles are formed by a flow gap between the second forming surfaces arranged opposite to each other, and the first throttle and the second throttle are connected to the fluid pocket in the first throttle in a no-load state of the operating member. It is arrange | positioned as the state which the flow from a part produces.

上記の本発明によれば、スラスト受け部材と作動部材との間に形成される第1絞りと第2絞りは直角の配置関係として配置されおり、この第1絞りと第2絞りを形成するスラスト受け部材の第1形成面と第2形成面の直角部位箇所を跨いで流体ポケット部が設けられている。そして第1絞りと第2絞りとは作動部材の無負荷状態において第1絞りを流体ポケット部からの流れが生じる状態として配設されている。この第1絞りを形成する隙間方向(流体の流れ方向)は作動部材のスラスト作用方向に対して直角に交差する方向とされている。これにより作動部材にスラスト力が作用し、スラスト受け部材に対してスラスト作用方向に移動し、第1絞りを狭くする方向に相対移動すると、第1絞りが絞られて流体ポケット部に貯留される流体の静圧によりスラスト力が受けられて支持される。なお、第2絞りの隙間方向(流体の流れ方向)はスラスト作用方向と同方向とされているので、作動部材の移動によってもその隙間が変動することが無く流体ポケット部からの流体の流れ抵抗は常に同じである。しかして、本発明によれば、作動部材の厚み方向に必要とされる厚みは、第1絞りを形成するための厚みと、流体ポケット部を形成するための厚みのみとすることができ、作動部材及び作動部材を取り囲む構成の小型化を図ることができる。   According to the present invention described above, the first diaphragm and the second diaphragm formed between the thrust receiving member and the actuating member are arranged in a right-angled relationship, and the thrust forming the first diaphragm and the second diaphragm is formed. A fluid pocket portion is provided across the right-angled portion of the first forming surface and the second forming surface of the receiving member. The first throttle and the second throttle are disposed in a state where the flow from the fluid pocket portion is generated in the first throttle when the operating member is not loaded. The gap direction (fluid flow direction) that forms the first throttle is a direction that intersects at right angles to the thrust acting direction of the operating member. As a result, a thrust force acts on the operating member, moves in the thrust acting direction with respect to the thrust receiving member, and moves relative to the direction in which the first throttle is narrowed, the first throttle is throttled and stored in the fluid pocket portion. Thrust force is received and supported by the static pressure of the fluid. In addition, since the gap direction (fluid flow direction) of the second throttle is the same as the thrust acting direction, the gap does not fluctuate even if the operating member moves, and the flow resistance of the fluid from the fluid pocket portion Is always the same. Thus, according to the present invention, the thickness required in the thickness direction of the actuating member can be only the thickness for forming the first restriction and the thickness for forming the fluid pocket portion. The structure surrounding the member and the operating member can be reduced in size.

なお、上記の本発明は次の態様とすることができる。先ず、前記第1絞りと第2絞りは前記作動部材の無負荷状態において前記第2絞りの流通抵抗が前記第1絞りの流通抵抗と同じか又は大きくされていることにより前記第1絞りに前記流体ポケット部からの流れが生じる状態とされているのが好ましい。かかる態様によればより良好にスラスト力の支持を行うことができる。   The above-mentioned present invention can be set as the following aspects. First, the first diaphragm and the second diaphragm have the flow resistance of the second diaphragm equal to or larger than the flow resistance of the first diaphragm in a no-load state of the operating member. It is preferable that a flow from the fluid pocket portion is generated. According to this aspect, the thrust force can be more favorably supported.

次に、前記作動部材のスラスト支持装置における作動部材を回転軸とし、前記第2形成面を円筒面とすることができる。かかる構成は、例えば研削盤の砥石軸に適用した場合の構成である。   Next, the actuating member in the thrust support device of the actuating member can be a rotating shaft, and the second forming surface can be a cylindrical surface. Such a configuration is, for example, a configuration when applied to a grindstone shaft of a grinding machine.

次に、上記作動部材のスラスト支持装置は、前記流体ポケット部へ供給される流体の供給路が前記スラスト受け部材に形成されており、該供給路は前記流体ポケット部の底面に開口している構成とすることができる。これにより供給路は従来と同様に容易に形成することができる。   Next, in the thrust support device for the actuating member, a supply path for the fluid supplied to the fluid pocket portion is formed in the thrust receiving member, and the supply path opens at the bottom surface of the fluid pocket portion. It can be configured. As a result, the supply path can be easily formed as in the prior art.

次に、前記作動部材が研削盤のスピンドルであり、該研削盤のスピンドルのスラスト支持構成を上述した各スラスト支持装置により構成することができる。これにより研削盤の小型化を図ることができる。   Next, the operating member is a spindle of a grinding machine, and the thrust support structure of the spindle of the grinding machine can be configured by each of the thrust support devices described above. Thereby, size reduction of a grinding machine can be achieved.

上述した手段の本発明によれば、スラスト力を受けるための第1絞りと第2絞りを交差する配置関係として配置することによりスラスト力を受ける構成の小型化を図ることができる。   According to the present invention of the above-described means, it is possible to reduce the size of the structure for receiving the thrust force by arranging the first diaphragm and the second diaphragm for receiving the thrust force in an arrangement relationship that intersects.

本発明に係る作動部材のスラスト支持装置が適用される工作機械の一例としての研削盤の全体構成を示す平面図である。It is a top view which shows the whole structure of the grinding machine as an example of the machine tool with which the thrust support apparatus of the action | operation member which concerns on this invention is applied. 図1に示す研削盤の側面図である。It is a side view of the grinding machine shown in FIG. 研削盤における砥石軸支持構成の概念を示す模式図である。It is a schematic diagram which shows the concept of the grindstone shaft support structure in a grinding machine. 本発明の実施形態に係る静圧スラスト軸受構成を示す概略図である。It is the schematic which shows the hydrostatic thrust bearing structure which concerns on embodiment of this invention. 流体ポケット部の変形例を示す図である。It is a figure which shows the modification of a fluid pocket part. 従来の静圧スラスト軸受構成を示す概略図である。It is the schematic which shows the conventional static pressure thrust bearing structure.

以下、本発明の実施形態を図面を用いて説明する。本実施形態は、工作機械の代表として研削盤に備えられる砥石軸を取り上げて説明する。この場合、砥石軸102が本発明に言う作動部材に相当し、スラスト軸受メタル104が本発明に言うスラスト受け部材に相当する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a grindstone shaft provided in a grinding machine will be described as a representative of machine tools. In this case, the grindstone shaft 102 corresponds to the operating member according to the present invention, and the thrust bearing metal 104 corresponds to the thrust receiving member according to the present invention.

先ず、図1及び図2を用いて、研削盤10の概要構成を説明する。なお、図1及び図2に示されるX軸、Y軸、Z軸の関係は次のとおりである。X軸とY軸とZ軸は互いに直交しており、Y軸方向は鉛直上向きを示している。また、Z軸方向は砥石軸線L1と平行な方向を示しており、X軸方向は砥石軸線L1に直交する方向であり、砥石132がワークWに切り込む方向を示している。また砥石軸線L1とワーク回転軸線L2とツルア回転軸線L3は、いずれもZ軸方向と平行である。   First, a schematic configuration of the grinding machine 10 will be described with reference to FIGS. 1 and 2. The relationship between the X axis, the Y axis, and the Z axis shown in FIGS. 1 and 2 is as follows. The X axis, the Y axis, and the Z axis are orthogonal to each other, and the Y axis direction indicates a vertically upward direction. Further, the Z-axis direction indicates a direction parallel to the grindstone axis L1, the X-axis direction is a direction orthogonal to the grindstone axis L1, and the grindstone 132 indicates the direction of cutting into the workpiece W. The grindstone axis L1, the workpiece rotation axis L2, and the truer rotation axis L3 are all parallel to the Z-axis direction.

図1及び図2に示される研削盤10は、ワークWに対して砥石132をX軸方向及びZ軸方向へ相対的に移動制御してワークWを研削するようになっている。平面形状で矩形に形成された基台110上の略中央部には、Z軸方向に延びる一対のZ軸方向ガイドレール111にスライド案内されるZ軸方向スライドテーブル112が配設されている。Z軸方向スライドテーブル112は、制御手段180(NC制御装置等)によって作動制御されるZ軸方向駆動モータ114(Z軸方向移動手段に相当)を駆動源とするZ軸方向送りねじ113の回転動作によってZ軸方向へスライドされる。また、Z軸方向駆動モータ114には、Z軸方向スライドテーブル112のZ軸方向の位置を確認するために、Z軸方向駆動モータ114の出力軸の回転角度を検出してその検出信号を制御手段に送るエンコーダ等のZ軸方向位置検出手段115(Z軸相対移動量検出手段に相当)が設けられている。制御手段180は、Z軸方向駆動モータ114を用いて、ツルア177に対して砥石132を相対的にZ軸方向へ移動させ、Z軸方向位置検出手段115からの検出信号に基づいて、ツルア177に対する砥石132のZ軸方向への相対的な移動量を検出可能である。   The grinding machine 10 shown in FIGS. 1 and 2 grinds the workpiece W by controlling the movement of the grindstone 132 relative to the workpiece W in the X-axis direction and the Z-axis direction. A Z-axis direction slide table 112 that is slidably guided by a pair of Z-axis direction guide rails 111 extending in the Z-axis direction is disposed at a substantially central portion on the base 110 that is formed in a rectangular shape in a planar shape. The Z-axis direction slide table 112 rotates the Z-axis direction feed screw 113 using a Z-axis direction drive motor 114 (corresponding to the Z-axis direction moving means), which is controlled by a control means 180 (NC control device or the like) as a drive source. It is slid in the Z-axis direction by the operation. Further, the Z-axis direction drive motor 114 detects the rotation angle of the output shaft of the Z-axis direction drive motor 114 and controls the detection signal in order to confirm the position of the Z-axis direction slide table 112 in the Z-axis direction. Z-axis direction position detection means 115 (corresponding to Z-axis relative movement amount detection means) such as an encoder sent to the means is provided. The control means 180 uses the Z-axis direction drive motor 114 to move the grindstone 132 relative to the truer 177 in the Z-axis direction, and based on the detection signal from the Z-axis direction position detection means 115, the truer 177. The relative movement amount of the grindstone 132 in the Z-axis direction can be detected.

Z軸方向スライドテーブル122上には、X軸方向に延びる一対のX軸方向ガイドレール121にスライド案内されるX軸方向スライドテーブル(砥石スライドテーブル)122が配設されている。当該スライドテーブル122が上述した図1及び図2に示す実施形態の砥石台12に相当する。この砥石台12としてのX軸方向スライドテーブル122は、制御手段180によって作動制御されるX軸方向駆動モータ124(X軸方向移動手段に相当)を駆動源とするX軸方向送りねじ123の回転動作によってX軸方向へスライドされる。また、X軸方向駆動モータ124には、X軸方向スライドテーブル122のX軸方向の位置を確認するために、X軸方向駆動モータ124の出力軸の回転角度を検出してその検出信号を制御手段に送るエンコーダ等のX軸方向位置検出手段125(X軸相対移動量検出手段に相当)が設けられている。制御手段180は、X軸方向駆動モータ124を用いて、ツルア177に対して砥石132を相対的にX軸方向へ移動させ、X軸方向位置検出手段125からの検出信号に基づいて、ツルア177に対する砥石132のX軸方向への相対的な移動量を検出可能である。   On the Z-axis direction slide table 122, an X-axis direction slide table (grinding wheel slide table) 122 that is slidably guided by a pair of X-axis direction guide rails 121 extending in the X-axis direction is disposed. The slide table 122 corresponds to the grinding wheel base 12 of the embodiment shown in FIGS. 1 and 2 described above. The X-axis direction slide table 122 as the grinding wheel base 12 rotates the X-axis direction feed screw 123 using an X-axis direction drive motor 124 (corresponding to the X-axis direction moving means) that is controlled by the control means 180 as a drive source. It is slid in the X-axis direction by the operation. The X-axis direction drive motor 124 detects the rotation angle of the output shaft of the X-axis direction drive motor 124 and controls the detection signal in order to confirm the position of the X-axis direction slide table 122 in the X-axis direction. An X-axis direction position detecting means 125 (corresponding to an X-axis relative movement amount detecting means) such as an encoder to be sent to the means is provided. The control means 180 uses the X-axis direction drive motor 124 to move the grindstone 132 relative to the truer 177 in the X-axis direction, and based on the detection signal from the X-axis direction position detection means 125, the truer 177. It is possible to detect a relative movement amount of the grindstone 132 in the X-axis direction.

X軸方向スライドテーブル122上には、砥石駆動モータ126と砥石軸ホルダ130とがそれぞれ配設されており、砥石駆動モータ126の出力軸には駆動プーリ127が設けられる。一方、砥石軸ホルダ130に回転可能に支持されかつ一端部に略円筒状の砥石132が設けられる砥石軸102(Z軸方向に平行な砥石軸線L1回りに回転する砥石軸)の他端には、従動プーリ128が設けられている。そして、駆動プーリ127と従動プーリ128との間にはベルト129が張設され、これによって、砥石駆動モータ126の出力軸のトルクがベルト129を介して砥石軸102(図3参照)に伝達される。   A grindstone drive motor 126 and a grindstone shaft holder 130 are provided on the X-axis direction slide table 122, and a drive pulley 127 is provided on the output shaft of the grindstone drive motor 126. On the other hand, the other end of the grindstone shaft 102 (the grindstone shaft rotating around the grindstone axis L1 parallel to the Z-axis direction) is rotatably supported by the grindstone shaft holder 130 and provided with a substantially cylindrical grindstone 132 at one end. A driven pulley 128 is provided. A belt 129 is stretched between the drive pulley 127 and the driven pulley 128, whereby the torque of the output shaft of the grindstone drive motor 126 is transmitted to the grindstone shaft 102 (see FIG. 3) via the belt 129. The

基台110上には、軸状のワークWをZ軸方向のワーク回転軸線L2回りに回転させながら設定位置に保持する第1主軸装置140と第2主軸装置150とが、Z軸方向に平行なワーク回転軸L2上に配設されている。第1主軸装置140は、基台110上に固定された主軸台141と、主軸台141に対しワーク回転軸L2上に往復動可能な主軸ハウジング142と、この主軸ハウジング142内でワーク回転軸選L2回りに回転可能に支持された主軸143とを備え、主軸143の先端にはワークWの一方の端面の中心部を支持するセンタ部材144が設けられている。また、主軸143は、制御手段180によって作動制御される主軸モータ(図示省略)を駆動源として任意の角速度で任意の角度まで回転制御される。また、第2主軸装置150においても、第1主軸装置140と同様にして、主軸台151、主軸ハウジング152、主軸153及びセンタ部材154を備えて構成されている。また主軸ハウジング142には、ツルア回転軸線L3回りに回転可能に支持されたツルア177を備えたツルーイング装置160が設けられている。なお、図2に示すように、砥石軸線L1と、ワーク回転軸線L2と、ツルア回転軸線L3は、いずれも、X軸方向及びZ軸方向に平行な平面である仮想平面VM上にある。   On the base 110, the first main spindle device 140 and the second main spindle device 150 that hold the shaft-like workpiece W around the workpiece rotation axis L <b> 2 in the Z-axis direction at a set position are parallel to the Z-axis direction. Is disposed on the workpiece rotation axis L2. The first spindle device 140 includes a spindle base 141 fixed on the base 110, a spindle housing 142 that can reciprocate on the workpiece rotation axis L2 with respect to the spindle base 141, and a workpiece rotation axis selection within the spindle housing 142. The main shaft 143 is rotatably supported around L2, and a center member 144 that supports the center of one end surface of the workpiece W is provided at the tip of the main shaft 143. The main shaft 143 is rotationally controlled to an arbitrary angle at an arbitrary angular velocity by using a main shaft motor (not shown) controlled by the control means 180 as a drive source. The second spindle device 150 also includes a spindle stock 151, a spindle housing 152, a spindle 153, and a center member 154 in the same manner as the first spindle device 140. In addition, the main shaft housing 142 is provided with a truing device 160 including a truer 177 supported so as to be rotatable around the truer rotation axis L3. As shown in FIG. 2, the grindstone axis L1, the workpiece rotation axis L2, and the truer rotation axis L3 are all on a virtual plane VM that is a plane parallel to the X axis direction and the Z axis direction.

図3は砥石軸102が砥石軸ホルダ130に支持される箇所の支持装置の概念図を示す。砥石軸102の砥石軸ホルダ130への支持はラジアル支持手段80とスラスト支持手段85の2つの支持手段により支持されるようになっている。本実施形態では、両支持手段80,85とも両箇所には共通の軸受油が供給されて、静圧支持される構成をとっている。スラスト支持手段85については静圧スラスト軸受支持装置100として後述するが、ラジアル支持手段80は本実施形態では周知の構成であるので詳細な説明は省略する。   FIG. 3 is a conceptual diagram of a support device at a place where the grindstone shaft 102 is supported by the grindstone shaft holder 130. The support of the grindstone shaft 102 to the grindstone shaft holder 130 is supported by two support means, a radial support means 80 and a thrust support means 85. In this embodiment, both support means 80 and 85 are configured to be supported by static pressure by supplying common bearing oil to both locations. Although the thrust support means 85 will be described later as a hydrostatic thrust bearing support device 100, the radial support means 80 has a well-known configuration in this embodiment, and thus detailed description thereof is omitted.

図4は本実施形態の静圧スラスト軸受支持装置100の概略構成を示しており、図6に示す従来構成と対比して図示した。図4は図3にその配置位置が示された静圧スラスト軸受支持装置100の一つの概略構成を示すものであり、理解を容易とするために、軸受油が流通する通路隙間は誇張して図示してある。   FIG. 4 shows a schematic configuration of the hydrostatic thrust bearing support device 100 of the present embodiment, which is shown in comparison with the conventional configuration shown in FIG. FIG. 4 shows one schematic structure of the hydrostatic thrust bearing support device 100 whose arrangement position is shown in FIG. 3, and the passage gap through which the bearing oil flows is exaggerated for easy understanding. It is shown.

図4において、回転軸である砥石軸102は大径軸部102Aと小径軸部102Bとが段付き形状の凹断面形状に形成されて配設されている。この砥石軸102の軸方向の一方端に砥石132(図1参照)が取り付けられて配設されている。他方端には駆動源のモータ等の回転が伝達されており、砥石軸102を回転するようになっている。砥石軸102の回転はスラスト軸受メタル104により回転支持されるようになっている。その意味で、図4のスラスト軸受メタル104は図3に示す砥石軸ホルダー130の一部を構成する。スラスト軸受メタル104は砥石軸102の小径軸部102Bを支持する構成として配設されており、砥石軸102の凹断面形状の凹部内にスラスト軸受メタル104が挿入された状態として配置されている。なお、砥石軸102は軸方向及び径方向にわずか移動可能に支持されており、その軸方向支持が本実施形態の静圧スラスト軸受支持装置100で支持され、ラジアル方向支持が図3に示す静圧ラジアル軸受支持装置により支持される構成となっており、分担した構成とされている。   In FIG. 4, a grindstone shaft 102, which is a rotating shaft, has a large-diameter shaft portion 102A and a small-diameter shaft portion 102B formed in a stepped concave cross-sectional shape. A grindstone 132 (see FIG. 1) is attached to the one end of the grindstone shaft 102 in the axial direction. The other end is transmitted with the rotation of a drive source motor or the like, and rotates the grindstone shaft 102. The rotation of the grindstone shaft 102 is rotatably supported by a thrust bearing metal 104. In that sense, the thrust bearing metal 104 of FIG. 4 constitutes a part of the grindstone shaft holder 130 shown in FIG. The thrust bearing metal 104 is disposed so as to support the small-diameter shaft portion 102B of the grindstone shaft 102, and is disposed in a state in which the thrust bearing metal 104 is inserted into a concave portion having a concave cross-sectional shape. The grindstone shaft 102 is supported so as to be slightly movable in the axial direction and the radial direction. The axial support is supported by the hydrostatic thrust bearing support device 100 of the present embodiment, and the radial support is shown in FIG. It is the structure supported by the pressure radial bearing support apparatus, and is set as the shared structure.

図4に示されるように、本実施形態の砥石軸102のスラスト軸受メタル104によるスラスト支持は軸受油を介した静圧支持で行われる。スラスト支持は砥石軸102の段付き形状の両側の段部x,yで行われる構成となっている。段部x,yは第1形成面70と第2形成面75が直角に配設されて形成されている。第1形成面70はスラスト軸受メタル104側に形成される第1形成面70Aと砥石軸102側に形成される第1形成面70Bとからなっている。両者70A,70Bは対向して配置されており、流通隙間を形成する。この流通隙間が第1絞り92となっている。なお、この第1形成面70は砥石軸線に対して垂直方向とされて形成されており、第1絞り92は砥石軸102の軸方向移動によりその絞り状態が変動する。   As shown in FIG. 4, the thrust support by the thrust bearing metal 104 of the grindstone shaft 102 of the present embodiment is performed by static pressure support via bearing oil. The thrust support is configured to be performed by the step portions x and y on both sides of the stepped shape of the grindstone shaft 102. The step portions x and y are formed by arranging a first forming surface 70 and a second forming surface 75 at right angles. The first forming surface 70 includes a first forming surface 70A formed on the thrust bearing metal 104 side and a first forming surface 70B formed on the grindstone shaft 102 side. Both 70A and 70B are arrange | positioned facing, and form a distribution | circulation clearance gap. This distribution gap is the first throttle 92. The first forming surface 70 is formed in a direction perpendicular to the grinding wheel axis, and the state of the first diaphragm 92 varies as the grinding wheel shaft 102 moves in the axial direction.

第2形成面75はスラスト軸受メタル104側に形成される第2形成面75Aと砥石軸102側に形成される第2形成面75Bとからなっている。両者75A,75Bは対向して配置されており、流通隙間を形成する。本実施形態の砥石軸102は回転軸であることから、当該流通隙間は円筒形状の隙間として形成される。この流通隙間が第2絞り94となっている。この第2絞り94が形成される第2形成面75は砥石軸線と同方向とされている。このため、第2絞り94は砥石軸102の軸方向移動によっても絞り状態は変動しない。   The second forming surface 75 includes a second forming surface 75A formed on the thrust bearing metal 104 side and a second forming surface 75B formed on the grindstone shaft 102 side. Both 75A and 75B are arrange | positioned facing, and form a distribution | circulation clearance gap. Since the grindstone shaft 102 of this embodiment is a rotating shaft, the flow gap is formed as a cylindrical gap. This distribution gap is the second aperture 94. The second forming surface 75 on which the second diaphragm 94 is formed is in the same direction as the grindstone axis. For this reason, the second diaphragm 94 does not fluctuate even when the grindstone shaft 102 moves in the axial direction.

第1形成面70の流通隙間(第1絞り92)と第2形成面75の流通隙間(第2絞り94)への軸受油の供給は、スラスト軸受メタル104に形成された供給路98と流体ポケット部96を通じて行われるようになっている。流体ポケット部96はスラスト軸受メタル104の第1形成面70と第2形成面75の直角形成部位箇所を跨いで欠肉させて形成されており、円環状に形成されている。流体ポケット部96は、第1形成面70に開口する第1形成面開口部71と、第2形成面75に開口する第2形成面開口部76と、を有する。流体ポケット部96の断面形状は、本実施形態では軸方向に長辺、径方向に短辺とする長方形状とされているが、加工が可能な適宜形状であれば良い。例えば、図5に変形例として示すような断面L字形の流体ポケット部96aでも良い。供給路98はこの流体ポケット部96の底面部に接続されており、供給路98から流体ポケット部96に軸受油が供給される。   The supply of bearing oil to the flow gap (first throttle 92) of the first forming surface 70 and the flow gap (second throttle 94) of the second forming surface 75 is performed by the supply path 98 formed in the thrust bearing metal 104 and the fluid. This is performed through the pocket portion 96. The fluid pocket portion 96 is formed to be thinned across the right-angle forming portions of the first forming surface 70 and the second forming surface 75 of the thrust bearing metal 104, and is formed in an annular shape. The fluid pocket portion 96 includes a first formation surface opening 71 that opens to the first formation surface 70 and a second formation surface opening 76 that opens to the second formation surface 75. The cross-sectional shape of the fluid pocket portion 96 is a rectangular shape having a long side in the axial direction and a short side in the radial direction in the present embodiment, but may be any suitable shape that can be processed. For example, a fluid pocket portion 96a having an L-shaped cross section as shown in FIG. The supply passage 98 is connected to the bottom surface portion of the fluid pocket portion 96, and bearing oil is supplied from the supply passage 98 to the fluid pocket portion 96.

流体ポケット部96の軸受油は、第1形成面70の第1絞り92と第2形成面75の第2絞り94に供給されて排出される。第2絞り94を流通して排出される軸受油は、スラスト軸受メタル104の図4で見て中央部位置に設けられた排出路90を経由して行われる。本実施形態の排出路90は両側の第2絞り94,94の共通の排出路として構成されている。第1絞り92を流通した軸受油の排出は、第1絞り92より外方に放出されることにより行われる。   The bearing oil in the fluid pocket portion 96 is supplied to the first throttle 92 on the first forming surface 70 and the second throttle 94 on the second forming surface 75 and discharged. The bearing oil discharged through the second throttle 94 is discharged via a discharge passage 90 provided at the central position of the thrust bearing metal 104 as viewed in FIG. The discharge path 90 of this embodiment is configured as a common discharge path for the second stops 94 and 94 on both sides. The bearing oil flowing through the first throttle 92 is discharged by being discharged outward from the first throttle 92.

第1絞り92と第2絞り94の関係は、本実施形態では、砥石軸102のスラスト方向(軸線方向)の無負荷状態で第1絞り92の流通抵抗と第2絞り94の流通抵抗が同じ流通抵抵抗となるように設定されている。したがって、砥石軸102に一方向のスラスト力が作用して一方向に移動すると、例えば、図4で見て砥石軸102に右方向のスラスト力が作用して右方向に移動すると、左側位置の第1形成面70による第1絞り92は無負荷状態より絞られた状態となって、流通抵抗が変動しない第2絞り94の流通抵抗より流通抵抗が大きくなる。これによりスラスト軸受メタル104の第1形成面70Aに形成された流体ポケット部96に貯留される軸受油の静圧を介してスラスト軸受メタル104により受けられて支持される。なお、右側の段部yの第1絞り92の絞り状態は無負荷状態時より流通抵抗XR,XLが小さくなり、左側位置のスラスト力を受ける作用の反動として、砥石軸102の左方向への復帰動作をしやすくしている。砥石軸102に左方向のスラスト力が生じた場合には、これとは逆の動作がなされる。   In the present embodiment, the relationship between the first diaphragm 92 and the second diaphragm 94 is the same as that of the first diaphragm 92 and the second diaphragm 94 in the no-load state of the grinding wheel shaft 102 in the thrust direction (axial direction). It is set to be resistance to distribution. Therefore, when a thrust force in one direction acts on the grindstone shaft 102 and moves in one direction, for example, when a thrust force in the right direction acts on the grindstone shaft 102 and moves in the right direction as seen in FIG. The first diaphragm 92 formed by the first forming surface 70 is narrowed from the no-load state, and the flow resistance becomes larger than the flow resistance of the second throttle 94 where the flow resistance does not vary. As a result, the thrust bearing metal 104 receives and supports it through the static pressure of the bearing oil stored in the fluid pocket portion 96 formed on the first forming surface 70A of the thrust bearing metal 104. In addition, the flow resistance XR, XL is smaller in the throttle state of the first throttle 92 in the right step portion y than in the no-load state, and as a reaction to the action of receiving the thrust force at the left position, the grindstone shaft 102 moves to the left. It makes it easy to perform the return operation. When a thrust force in the left direction is generated on the grindstone shaft 102, the opposite operation is performed.

上述した実施形態によれば、静圧スラスト軸受装置100の大きさを決める要因となる段部の大きさ(径方向の長さ)は、第1絞り92を形成する第1形成面70の径方向の長さと、流体ポケット部96の径方向の長さにより決まる。これにより図6に示す従来の構成のように第2絞り94も第1形成面に形成していた場合に比べ、略第2絞り94分だけ径方向の小型化を図ることができる。したがって、砥石軸102の小径軸部102Bの外形寸法を図6に示す従来構成と同じとする場合には、砥石軸102の剛性を維持したまま、大径軸部102Aの外形寸法の小型化を図ることができる。なお、大径軸部102Aの外形寸法を図6に示す従来構成と同じ寸法とすることが可能なときは、小径軸部102Bの大径化を図ることが可能となり、全体の剛性アップを図ることができる。   According to the above-described embodiment, the size of the step portion (the length in the radial direction) that determines the size of the hydrostatic thrust bearing device 100 is the diameter of the first forming surface 70 that forms the first diaphragm 92. It is determined by the length of the direction and the length of the fluid pocket portion 96 in the radial direction. As a result, as compared with the case where the second diaphragm 94 is also formed on the first forming surface as in the conventional configuration shown in FIG. 6, it is possible to reduce the size in the radial direction by substantially the second diaphragm 94. Therefore, when the outer diameter of the small diameter shaft portion 102B of the grindstone shaft 102 is the same as that of the conventional configuration shown in FIG. 6, the outer diameter of the large diameter shaft portion 102A is reduced while maintaining the rigidity of the grindstone shaft 102. Can be planned. When the outer diameter of the large-diameter shaft portion 102A can be the same as that of the conventional configuration shown in FIG. 6, it is possible to increase the diameter of the small-diameter shaft portion 102B and increase the overall rigidity. be able to.

以上、本発明の実施形態について説明したが、本発明はその他各種の形態でも実施できる。例えば、上述した実施形態はスラスト支持する構成が回転軸を支持する構成の場合であった。しかし、本発明は平面状に作動する作動部材の場合にも適用することができて、小型化を図ることができる。   As mentioned above, although embodiment of this invention was described, this invention can be implemented also with other various forms. For example, in the above-described embodiment, the configuration for supporting the thrust is a configuration for supporting the rotating shaft. However, the present invention can also be applied to the case of an operating member that operates in a planar shape, and can be downsized.

なお、第1絞りと第2絞りの関係は、作動部材の無負荷状態において第1絞りを軸受油が流通する関係状態であればよい。   The relationship between the first throttle and the second throttle may be a relational state in which the bearing oil flows through the first throttle when the operating member is not loaded.

更に、スラスト力を受ける作動部材を静圧スラスト軸受で支持する装置には広く適用できるものである。   Furthermore, the present invention can be widely applied to devices that support an operating member that receives a thrust force with a hydrostatic thrust bearing.

10 研削盤
70 第1形成面
75 第2形成面
80 ラジアル支持手段
85 スラスト支持手段
90 排出路
92 隙間(第1絞り)
94 隙間(第2絞り)
96 流体ポケット部
98 供給路
100 静圧スラスト軸受支持装置
102 砥石軸(作動部材)
102A 大径軸部
102B 小径軸部
104 スラスト軸受メタル(スラスト受け部材)
106 隙間
132 砥石
x 段部(左側)
y 段部(右側)
W ワーク
DESCRIPTION OF SYMBOLS 10 Grinding machine 70 1st formation surface 75 2nd formation surface 80 Radial support means 85 Thrust support means 90 Discharge path 92 Crevice (1st aperture)
94 Clearance (second aperture)
96 Fluid pocket portion 98 Supply path 100 Hydrostatic thrust bearing support device 102 Grinding wheel shaft (actuating member)
102A Large diameter shaft portion 102B Small diameter shaft portion 104 Thrust bearing metal (thrust receiving member)
106 Clearance 132 Grinding wheel x Step (left side)
y Step (right side)
W Work

Claims (5)

スラスト受け部材と、該スラスト受け部材に対してスラスト作用方向に静圧支持されて相対移動可能に配設される作動部材と、を備え、
前記スラスト受け部材と前記作動部材とには前記スラスト作用方向に対して機能する面として形成されるそれぞれの第1形成面が対向して配設されると共に、該それぞれの第1形成面に直角に形成されるそれぞれの第2形成面が対向して配設されており、
前記スラスト受け部材の第1形成面に形成される流体ポケット部に供給される流体圧により静圧支持される作動部材のスラスト支持装置において、
前記流体ポケット部は前記スラスト受け部材の前記第1形成面と前記第2形成面との境界部に跨って形成されており、
前記流体ポケット部から前記第1形成面に向けて流出する流体の流量を絞る第1絞りが前記対向して配設される第1形成面間の流通隙間により形成されており、前記流体ポケット部から前記第2形成面に向けて流出する流体の流量を絞る第2絞りが前記対向して配設される第2形成面間の流通隙間により形成されており、
前記第1絞りと第2絞りは前記作動部材の無負荷状態において前記第1絞りに前記流体ポケット部からの流れが生じる状態として配設されている作動部材のスラスト支持装置。
A thrust receiving member, and an actuating member that is statically supported in the thrust acting direction with respect to the thrust receiving member and arranged to be relatively movable,
The thrust receiving member and the actuating member are provided with respective first forming surfaces formed as surfaces functioning in the thrust acting direction, and are perpendicular to the respective first forming surfaces. Each of the second forming surfaces formed on the opposite sides of each other,
In the thrust support device of the operating member that is statically supported by the fluid pressure supplied to the fluid pocket portion formed on the first forming surface of the thrust receiving member,
The fluid pocket portion is formed across a boundary portion between the first formation surface and the second formation surface of the thrust receiving member,
A first throttle for restricting the flow rate of the fluid flowing out from the fluid pocket portion toward the first formation surface is formed by a flow gap between the first formation surfaces arranged opposite to each other, and the fluid pocket portion A second restrictor for restricting the flow rate of the fluid flowing out from the second formation surface to the second formation surface is formed by a flow gap between the second formation surfaces disposed opposite to each other,
The thrust support device for an operating member, wherein the first throttle and the second throttle are arranged in such a state that a flow from the fluid pocket portion is generated in the first throttle in a no-load state of the operating member.
請求項1に記載の作動部材のスラスト支持装置であって、
前記第1絞りと第2絞りは前記作動部材の無負荷状態において前記第2絞りの流通抵抗が前記第1絞りの流通抵抗と同じか又は大きくされていることにより前記第1絞りに前記流体ポケット部からの流れが生じる状態とされている作動部材のスラスト支持装置。
The thrust support device for an operating member according to claim 1,
In the first throttle and the second throttle, the flow resistance of the second throttle is the same as or larger than the flow resistance of the first throttle in a no-load state of the operating member. A thrust support device for an actuating member in which a flow from the section is generated.
請求項1又は請求項2に記載の作動部材のスラスト支持装置であって、
前記作動部材は回転軸であり、前記第2形成面は円筒面である作動部材のスラスト支持装置。
A thrust support device for an actuating member according to claim 1 or 2,
The thrust support device for an operation member, wherein the operation member is a rotating shaft, and the second forming surface is a cylindrical surface.
請求項1から請求項3の何れかの請求項に記載の作動部材のスラスト支持装置であって、
前記流体ポケット部へ供給される静圧流体の供給路が前記スラスト受け部材に形成されており、該供給路は前記流体ポケット部の底面に開口している作動部材のスラスト支持装置。
A thrust support device for an actuating member according to any one of claims 1 to 3,
A thrust support device for an operating member, wherein a supply path for a hydrostatic fluid supplied to the fluid pocket portion is formed in the thrust receiving member, and the supply path is open to a bottom surface of the fluid pocket portion.
請求項1から請求項4の何れかの請求項に記載の作動部材が砥石のスピンドルであり、該砥石のスピンドルのスラスト支持装置が請求項1から請求項4の対応する請求項に記載のスラスト支持装置とされている工作機械。
The actuating member according to any one of claims 1 to 4 is a spindle of a grindstone, and the thrust support device for the spindle of the grindstone is a thrust according to a corresponding claim of claims 1 to 4. A machine tool that is regarded as a support device.
JP2015014266A 2015-01-28 2015-01-28 Thrust support device for operating member, and machine tool provided with the support device Active JP6492699B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015014266A JP6492699B2 (en) 2015-01-28 2015-01-28 Thrust support device for operating member, and machine tool provided with the support device
DE102016101295.5A DE102016101295A1 (en) 2015-01-28 2016-01-26 Axialkraftabstützvorrichtung for an actuator and machine tool with this
CN201610051879.1A CN105817994B (en) 2015-01-28 2016-01-26 The axial supporting arrangement of workpiece and the lathe for having the supporting arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014266A JP6492699B2 (en) 2015-01-28 2015-01-28 Thrust support device for operating member, and machine tool provided with the support device

Publications (2)

Publication Number Publication Date
JP2016138607A true JP2016138607A (en) 2016-08-04
JP6492699B2 JP6492699B2 (en) 2019-04-03

Family

ID=56364678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014266A Active JP6492699B2 (en) 2015-01-28 2015-01-28 Thrust support device for operating member, and machine tool provided with the support device

Country Status (3)

Country Link
JP (1) JP6492699B2 (en)
CN (1) CN105817994B (en)
DE (1) DE102016101295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107717730A (en) * 2016-08-12 2018-02-23 株式会社捷太格特 Main shaft device and the grinding machine for possessing the main shaft device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930193B1 (en) * 1970-05-18 1974-08-10
JPS5969523A (en) * 1982-10-08 1984-04-19 Matsushita Electric Ind Co Ltd Fluid bearing
JPS62148102A (en) * 1985-12-20 1987-07-02 Toyoda Mach Works Ltd Main spindle device
JPS6453625U (en) * 1987-09-30 1989-04-03

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119741A (en) * 1976-03-31 1977-10-07 Seiko Seiki Kk Sealing device for bearing
SU914256A2 (en) * 1980-05-07 1982-03-23 Vitebskij Sp K B Zuboobrabat Wheel head
JP3555634B2 (en) 1995-11-24 2004-08-18 豊田工機株式会社 Spindle device
JP2005066719A (en) 2003-08-20 2005-03-17 Nippei Toyama Corp Grinding machine
CN2659633Y (en) * 2003-10-15 2004-12-01 济南四机数控机床有限公司 Grinder grinding carriage with axially reciprocating shaking function
CN2841247Y (en) * 2005-08-18 2006-11-29 无锡开源机床集团有限公司 Dynamic-static pressure bearing structure for roller grinder sand-wheel main shaft
CN203622184U (en) * 2013-12-04 2014-06-04 西安交通大学苏州研究院 Axial locking-prevention hydrostatic spindle structure supported by combined journal and thrust bearings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930193B1 (en) * 1970-05-18 1974-08-10
JPS5969523A (en) * 1982-10-08 1984-04-19 Matsushita Electric Ind Co Ltd Fluid bearing
JPS62148102A (en) * 1985-12-20 1987-07-02 Toyoda Mach Works Ltd Main spindle device
JPS6453625U (en) * 1987-09-30 1989-04-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107717730A (en) * 2016-08-12 2018-02-23 株式会社捷太格特 Main shaft device and the grinding machine for possessing the main shaft device
CN107717730B (en) * 2016-08-12 2021-06-01 株式会社捷太格特 Spindle device and grinding machine provided with same

Also Published As

Publication number Publication date
CN105817994B (en) 2019-07-23
CN105817994A (en) 2016-08-03
JP6492699B2 (en) 2019-04-03
DE102016101295A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP5117260B2 (en) Rotational resistance device for spindle drive in machine tool
JP5277057B2 (en) Rotation resistance applying device in spindle drive device for machine tool
US8888366B2 (en) Hydrostatic guide device and machine tool using the hydrostatic guide device
US20160069385A1 (en) Bearing variable preload system utilizing gap between strokes for preload adjustment and elastic deformation of sealing member
JP2012030302A (en) Main shaft drive for machine tool
CN101780547B (en) Separated drive spindle system of ultraprecision machining tool
JP6492699B2 (en) Thrust support device for operating member, and machine tool provided with the support device
JP6000453B2 (en) Spindle device of machine tool and machine tool
JP7001813B2 (en) Machine tool spindle device
CN118076464A (en) Processing machine and method for manufacturing processed object
JPH10296631A (en) Super precise trueing device for grinding wheel
KR20140083102A (en) Spindle Assembly for Machine Tool
JP3223355U (en) Hydrostatic bearing device
KR101485559B1 (en) Verticality type numerically controlled lathe
JP5284772B2 (en) Spindle assembly
JP2015174181A (en) Fixing member of machine tool
JP3205638U (en) Hydrostatic bearing device
TWI840947B (en) Processing machine and method for manufacturing processed object
RU2013154338A (en) DEVICE FOR PROCESSING PARTS ON CNC MILLING MACHINE
JP6790574B2 (en) Spindle device and grinder equipped with the spindle device
JP5239397B2 (en) Balance cylinder device
JP2006142435A (en) Sealing device
JP5916929B1 (en) Non-circular processing equipment
JP2015217496A (en) Main spindle device
KR20150089641A (en) Machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150