JP2012059396A - Negative electrode for power storage device and power storage device, and method of manufacturing them - Google Patents

Negative electrode for power storage device and power storage device, and method of manufacturing them Download PDF

Info

Publication number
JP2012059396A
JP2012059396A JP2010198828A JP2010198828A JP2012059396A JP 2012059396 A JP2012059396 A JP 2012059396A JP 2010198828 A JP2010198828 A JP 2010198828A JP 2010198828 A JP2010198828 A JP 2010198828A JP 2012059396 A JP2012059396 A JP 2012059396A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
storage device
collector foil
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010198828A
Other languages
Japanese (ja)
Inventor
Makiko Kichise
万希子 吉瀬
Kenro Mitsuta
憲朗 光田
Seiji Yoshioka
省二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010198828A priority Critical patent/JP2012059396A/en
Publication of JP2012059396A publication Critical patent/JP2012059396A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device that has high energy density and output density, and also has a small decrease in capacity even when rapid charging and discharging are repeated.SOLUTION: The power storage device includes a lithium ion capacitor part 20 and a lithium cell part 30. Particles 12 including resin are charged in a through hole 10 of a negative electrode current collecting foil 7 of a common negative electrode 6, and after the common negative electrode 6 is doped with lithium ions, the particles 12 are fused through a heat treatment to close the through hole 10. Consequently, no lithium ions move in and out through the through hole 10 during charging and discharging, and an electrode reaction distribution is not formed at a periphery of the through hole 10, so that the power storage device, which has a small decrease in capacity and superior cycle characteristics even when rapid charging and discharging are repeated, can be obtained. Further, electrode paste is applied after the particles 12 including the resin are charged in the through hole 10 of the negative electrode current collecting foil 7, so uniform negative electrode layers 8 and 9 can be easily formed.

Description

本発明は、貫通孔を有する負極集電箔を用いた蓄電デバイス用負極及び蓄電デバイス、並びにそれらの製造方法に関する。   The present invention relates to a negative electrode for an electricity storage device and an electricity storage device using a negative electrode current collector foil having a through hole, and a method for producing them.

リチウム二次電池は、携帯情報端末、携帯電子機器、家庭用小型蓄電装置及び電動工具、さらには電気自動車、ハイブリッド電気自動車等に用いられており、近年その需要が増加している。リチウム二次電池の正極には、LiCoOのようなリチウム含有金属酸化物、負極には黒鉛等の炭素材料が使用される。リチウム二次電池の動作は、充電時に正極のリチウム含有金属酸化物から負極にリチウムが供給され、放電時に負極中のリチウムが正極に戻るというリチウムイオンの挿入・脱離反応を利用したものである。この電池は電圧が高く、高エネルギー密度である反面、出力特性やサイクル特性、安全性の面では十分とはいえない。 Lithium secondary batteries are used in portable information terminals, portable electronic devices, small household electric storage devices and electric tools, electric vehicles, hybrid electric vehicles, and the like, and their demand has been increasing in recent years. A lithium-containing metal oxide such as LiCoO 2 is used for the positive electrode of the lithium secondary battery, and a carbon material such as graphite is used for the negative electrode. The operation of the lithium secondary battery utilizes a lithium ion insertion / extraction reaction in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode during charging and lithium in the negative electrode returns to the positive electrode during discharging. . This battery has a high voltage and a high energy density, but it is not sufficient in terms of output characteristics, cycle characteristics, and safety.

一方、電気二重層キャパシタは、活性炭等のカーボン材料とバインダからなるシート状の正極及び負極と、両極を電気的に絶縁する多孔質セパレータと、これらに含浸された電解液で構成されている。電気二重層キャパシタは、両極と電解液との界面に発生する電気二重層の静電容量により電解液中のイオンが電極間を移動するのを利用して充放電を行うもので、電気化学反応を伴わない。このため、電気二重層キャパシタは、充放電レート特性、サイクル特性に優れており、電子機器のバックアップ電源や自動車等の各種輸送機の電源として使用されている。しかし、電気二重層キャパシタは、リチウム二次電池に比べるとエネルギー密度が低い。   On the other hand, the electric double layer capacitor is composed of a sheet-like positive electrode and negative electrode made of a carbon material such as activated carbon and a binder, a porous separator that electrically insulates both electrodes, and an electrolytic solution impregnated therein. Electric double layer capacitors are charged and discharged using the movement of ions in the electrolyte between the electrodes due to the capacitance of the electric double layer generated at the interface between the two electrodes and the electrolyte. Not accompanied. For this reason, the electric double layer capacitor is excellent in charge / discharge rate characteristics and cycle characteristics, and is used as a backup power source for electronic devices and a power source for various transport equipment such as automobiles. However, the electric double layer capacitor has a lower energy density than the lithium secondary battery.

近年、これらのリチウム二次電池と電気二重層キャパシタを組み合わせたリチウムイオンキャパシタの開発が盛んに行われている。リチウムイオンキャパシタは、正極電極層に電気二重層キャパシタ用活性炭、負極電極層にリチウム電池用炭素材料を用いたハイブリッド型のキャパシタである。このリチウムイオンキャパシタは、負極電極層にリチウムイオンをドープすることにより負極電位を低くして高いセル電圧を得ることができるため、従来の電気二重層キャパシタに比べてエネルギー密度の向上が図られる。   In recent years, development of lithium ion capacitors in which these lithium secondary batteries and electric double layer capacitors are combined has been actively performed. The lithium ion capacitor is a hybrid type capacitor using an activated carbon for an electric double layer capacitor for a positive electrode layer and a carbon material for a lithium battery for a negative electrode layer. In this lithium ion capacitor, since the negative electrode potential can be lowered and a high cell voltage can be obtained by doping lithium ions into the negative electrode layer, the energy density can be improved as compared with the conventional electric double layer capacitor.

リチウムイオンキャパシタにおいては、正極及び負極の集電箔がそれぞれ貫通孔を有しており、これらの電極に金属リチウム箔を接触させ、リチウムイオンが電気化学的接触により正極または負極を透過することにより、リチウムイオンがドープされる。例えば特許文献1では、集電箔としてリチウムイオンを移動させる貫通孔が開いたエキスパンドメタルやパンチングメタル等を用いた帯電デバイスが提示されている   In the lithium ion capacitor, the current collector foils of the positive electrode and the negative electrode each have through-holes, the metal lithium foil is brought into contact with these electrodes, and the lithium ions pass through the positive electrode or the negative electrode by electrochemical contact. , Doped with lithium ions. For example, Patent Document 1 proposes a charging device using an expanded metal, a punching metal, or the like in which a through hole for moving lithium ions is opened as a current collector foil.

また、特許文献2では、リチウム二次電池と電気二重層キャパシタを組み合わせた蓄電デバイスとして、貫通孔を有する負極集電箔の片面に負極電極層を設けた共通負極を有し、この共通負極の負極電極層側の面に第一のセパレータを介してリチウムイオンキャパシタ正極を対向させ、負極集電箔側の面に第二のセパレータを介してリチウム二次電池正極を対向させた蓄電デバイスが提示されている。   Moreover, in patent document 2, it has a common negative electrode which provided the negative electrode layer in the single side | surface of the negative electrode current collection foil which has a through hole as an electrical storage device which combined the lithium secondary battery and the electric double layer capacitor, Presented is an electricity storage device in which a lithium ion capacitor positive electrode is opposed to the surface on the negative electrode layer side via a first separator, and a lithium secondary battery positive electrode is opposed to the surface on the negative electrode current collector foil side via a second separator Has been.

特開2009−26480号公報JP 2009-26480 A 特開2009−141181号公報JP 2009-141181 A

上記特許文献1及び特許文献2で提示されたものも含め、貫通孔を有する集電箔を用いた蓄電デバイスにおいては、集電箔の一方の面に電極活物質層(電極層)を形成する際に、塗布した電極ペーストが貫通孔を通って反対側の面に流れたり、反対側の面に塗布した電極ペーストの溶媒が貫通孔に浸み込んだりするため、均一な電極活物質層の形成が困難であった。これらの問題を回避するため、電極活物質層を集電箔の両面同時に形成する方法があるが、装置が大型化し、製造コストが上昇するという問題があった。   In an electricity storage device using a current collector foil having a through hole, including those presented in Patent Document 1 and Patent Document 2, an electrode active material layer (electrode layer) is formed on one surface of the current collector foil. In this case, since the applied electrode paste flows through the through hole to the opposite surface, or the electrode paste solvent applied to the opposite surface penetrates into the through hole, a uniform electrode active material layer is formed. Formation was difficult. In order to avoid these problems, there is a method in which the electrode active material layer is formed on both sides of the current collector foil at the same time. However, there is a problem that the apparatus becomes large and the manufacturing cost increases.

さらに、集電箔が貫通孔を有する多孔体から形成されている蓄電デバイスにおいては、急速な充放電を繰り返すことにより貫通孔周辺で電極反応分布が生じ、電極の劣化を進行させ、充放電容量の低下を引き起こすという問題があった。   Furthermore, in an electricity storage device in which the current collector foil is formed from a porous body having through-holes, electrode reaction distribution occurs around the through-holes by repeating rapid charge and discharge, and the deterioration of the electrodes progresses. There was a problem of causing a drop in

本発明は、上記のような課題を解決するためになされたものであり、貫通孔を有する集電箔に対して均一な電極活物質層の形成が容易に行える蓄電デバイス用負極を得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides a negative electrode for an electricity storage device in which a uniform electrode active material layer can be easily formed on a current collector foil having a through hole. Objective.

さらに、エネルギー密度、出力密度が高く、急速な充放電を繰り返しても容量低下が少ない蓄電デバイスを提供することを目的とする。   It is another object of the present invention to provide an energy storage device that has high energy density and power density and that has little decrease in capacity even after repeated rapid charge and discharge.

また、貫通孔を有する集電箔に対して均一な電極活物質層の形成が容易に行える蓄電デバイス用負極の製造方法を提供することを目的とする。   Moreover, it aims at providing the manufacturing method of the negative electrode for electrical storage devices which can form a uniform electrode active material layer easily with respect to the current collection foil which has a through-hole.

さらに、エネルギー密度、出力密度が高く、急速な充放電を繰り返しても容量低下が少ない蓄電デバイスを作製することが可能な蓄電デバイスの製造方法を提供することを目的とする。   Furthermore, it aims at providing the manufacturing method of the electrical storage device which can produce an electrical storage device with a high energy density and an output density, and little capacity | capacitance fall even if it repeats rapid charging / discharging.

本発明に係る蓄電デバイス用負極は、負極集電箔と、負極集電箔の少なくとも一方の面に設けられた負極活物質層を備え、負極集電箔は、その一方の面から他方の面に貫通する複数の貫通孔を有し、貫通孔の内部に樹脂を含む粒子が充填されているものである。   The negative electrode for an electricity storage device according to the present invention includes a negative electrode current collector foil and a negative electrode active material layer provided on at least one surface of the negative electrode current collector foil, and the negative electrode current collector foil is formed from one surface to the other surface. The through holes are filled with particles containing resin in the through holes.

また、本発明に係る蓄電デバイス用負極の製造方法は、複数の貫通孔を有する負極集電箔と、負極集電箔の少なくとも一方の面に設けられた負極活物質層を備えた蓄電デバイス用負極の製造方法であって、樹脂を含む粒子、第一のバインダ、及び第一の溶媒からなる樹脂溶液を混合調製し、この樹脂溶液を負極集電箔の貫通孔に充填する負極集電箔作製工程と、負極集電箔作製工程の後、負極活物質層材料、第二のバインダ、及び第二の溶媒からなる電極ペーストを混合調製し、この電極ペーストを負極集電箔の少なくとも一方の面に塗布して負極活物質層を形成する負極作製工程を含んで製造するようにしたものである。   The negative electrode current collector foil having a plurality of through holes and a negative electrode active material layer provided on at least one surface of the negative electrode current collector foil are also provided. A negative electrode current collector foil comprising a negative electrode current collector foil prepared by mixing and preparing a resin solution comprising resin-containing particles, a first binder, and a first solvent, and filling the through holes of the negative electrode current collector foil After the preparation step and the negative electrode current collector foil preparation step, an electrode paste composed of the negative electrode active material layer material, the second binder, and the second solvent is mixed and prepared, and this electrode paste is prepared as at least one of the negative electrode current collector foils. It is manufactured including a negative electrode preparation step in which a negative electrode active material layer is formed by coating on the surface.

また、本発明に係る蓄電デバイスは、キャパシタ正極集電箔の一方の面にキャパシタ正極電極層が設けられたリチウムイオンキャパシタ正極と、負極集電箔の両面に負極電極層が設けられた共通負極と、電池正極集電箔の一方の面にリチウム金属化合物を含む電池正極電極層が設けられたリチウム電池正極と、キャパシタ正極電極層と共通負極の一方の負極電極層との間に配置された第一のセパレータと、電池正極電極層と共通負極の他方の負極電極層との間に配置された第二のセパレータを備え、負極集電箔は、その一方の面から他方の面に貫通する複数の貫通孔を有し、貫通孔の内部に樹脂を含む粒子が充填されているものである。   The power storage device according to the present invention includes a lithium ion capacitor positive electrode in which a capacitor positive electrode layer is provided on one surface of a capacitor positive electrode current collector foil, and a common negative electrode in which negative electrode layers are provided on both sides of the negative electrode current collector foil. And a lithium battery positive electrode provided with a battery positive electrode layer containing a lithium metal compound on one surface of the battery positive electrode current collector foil, and the capacitor positive electrode layer and one negative electrode layer of the common negative electrode. A first separator, and a second separator disposed between the battery positive electrode layer and the other negative electrode layer of the common negative electrode, and the negative electrode current collector foil penetrates from one surface to the other surface It has a plurality of through holes, and the through holes are filled with particles containing resin.

また、本発明に係る蓄電デバイスの製造方法は、複数の貫通孔を有する負極集電箔を用意し、樹脂を含む粒子、第一のバインダ、及び第一の溶媒からなる樹脂溶液を貫通孔の内部に充填した後、負極集電箔の両面に負極電極層を順次形成し、共通負極を作製する共通負極作製工程と、キャパシタ正極集電箔の一方の面にキャパシタ正極電極層が設けられたリチウムイオンキャパシタ正極と、第一のセパレータと、共通負極と、第二のセパレータと、電池正極集電箔の一方の面にリチウム金属化合物を含む電池正極電極層が設けられたリチウム電池正極をこの順に積層した蓄電素子を容器内に収納し、電解液を注入して容器を封口するセル作製工程と、セル作製工程の後、リチウム電池正極から共通負極へ電気化学的操作によりリチウムイオンをドープするリチウムイオンドープ工程と、リチウムイオンドープ工程の後、容器の外側から蓄電素子を加熱し、貫通孔内部の樹脂を含む粒子を溶融させる貫通孔閉塞工程を含んで製造するようにしたものである。   Further, the method for manufacturing an electricity storage device according to the present invention provides a negative electrode current collector foil having a plurality of through holes, and a resin solution comprising particles containing a resin, a first binder, and a first solvent. After filling inside, a negative electrode layer was sequentially formed on both sides of the negative electrode current collector foil, a common negative electrode preparation step for preparing a common negative electrode, and a capacitor positive electrode layer was provided on one surface of the capacitor positive electrode current collector foil A lithium battery positive electrode having a lithium ion capacitor positive electrode, a first separator, a common negative electrode, a second separator, and a battery positive electrode layer including a lithium metal compound on one surface of the battery positive electrode current collector foil is provided. A cell manufacturing process in which the stacked storage elements are sequentially housed in a container, and an electrolytic solution is injected to seal the container. After the cell manufacturing process, lithium ions are obtained by electrochemical operation from the lithium battery positive electrode to the common negative electrode. After the lithium ion doping step to dope and the lithium ion doping step, the storage element is heated from the outside of the container, and includes a through-hole closing step for melting particles containing resin inside the through-hole. is there.

本発明によれば、負極集電箔の貫通孔内部に樹脂を含む粒子が充填されているので、この負極に対してリチウムイオンをドープした後に加熱処理により樹脂を含む粒子を溶融させて貫通孔を閉塞することができるため、急速な充放電を繰り返しても容量低下が少ない蓄電デバイス用負極を得ることが可能である。   According to the present invention, since the resin containing particles are filled inside the through holes of the negative electrode current collector foil, the resin containing particles are melted by heat treatment after the lithium ions are doped into the negative electrode, and the through holes are obtained. Therefore, it is possible to obtain a negative electrode for an electricity storage device with little decrease in capacity even after repeated rapid charge / discharge.

また、本発明に係る蓄電デバイス用負極の製造方法によれば、負極集電箔の貫通孔内部に樹脂を含む粒子を充填した後に、電極ペーストを負極集電箔の少なくとも一方の面に塗布して負極活物質層を形成するようにしたので、電極ペーストが貫通孔を通って反対側の面に流れたり、電極ペーストの溶媒が貫通孔に浸み込んだりすることを防止でき、貫通孔を有する負極集電箔に対して均一な電極活物質層の形成が容易に行える。   Further, according to the method for manufacturing a negative electrode for an electricity storage device according to the present invention, after filling the through holes of the negative electrode current collector foil with resin-containing particles, the electrode paste is applied to at least one surface of the negative electrode current collector foil. Thus, the negative electrode active material layer is formed to prevent the electrode paste from flowing through the through hole to the opposite surface, or the solvent of the electrode paste from penetrating into the through hole. A uniform electrode active material layer can be easily formed on the negative electrode current collector foil.

また、リチウムイオンキャパシタ正極、共通負極、及びリチウム電池正極を備えた蓄電デバイスにおいて、負極集電箔の貫通孔内部に樹脂を含む粒子が充填された共通負極を用いることにより、この負極に対してリチウムイオンをドープした後に加熱処理により樹脂を含む粒子を溶融させて貫通孔を閉塞することができるため、エネルギー密度、出力密度が高く、急速な充放電を繰り返しても容量低下が少ない蓄電デバイスを得ることが可能である。   In addition, in an electricity storage device including a lithium ion capacitor positive electrode, a common negative electrode, and a lithium battery positive electrode, by using a common negative electrode filled with resin-containing particles inside the through hole of the negative electrode current collector foil, Since the resin containing particles can be melted by heat treatment after doping with lithium ions to close the through-holes, an energy storage device with high energy density, high output density, and low capacity loss even after repeated rapid charge / discharge It is possible to obtain.

また、本発明に係る蓄電デバイスの製造方法によれば、リチウムイオンドープ工程の後、容器の外側から蓄電素子を加熱し、貫通孔内部の樹脂を含む粒子を溶融させて貫通孔を閉塞するようにしたので、エネルギー密度、出力密度が高く、急速な充放電を繰り返しても容量低下が少ない蓄電デバイスを製造することが可能である。   In addition, according to the method for manufacturing an electricity storage device according to the present invention, after the lithium ion doping step, the electricity storage element is heated from the outside of the container to melt the particles containing the resin inside the through hole so as to close the through hole. Therefore, it is possible to manufacture an electric storage device that has high energy density and high output density, and has little reduction in capacity even after repeated rapid charge / discharge.

本発明の実施の形態1に係る蓄電デバイスセルの構成を示す断面図である。It is sectional drawing which shows the structure of the electrical storage device cell which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る蓄電デバイスセルに用いられる負極集電箔の加熱処理前、加熱処理後の状態を示す断面図である。It is sectional drawing which shows the state before heat processing of the negative electrode current collection foil used for the electrical storage device cell which concerns on Embodiment 1 of this invention, and after heat processing. 本発明の実施の形態2に係る蓄電デバイスセルの構成を示す断面図である。It is sectional drawing which shows the structure of the electrical storage device cell which concerns on Embodiment 2 of this invention. 本発明の実施例及び比較例における蓄電デバイスセルの充放電サイクル試験結果を示す図である。It is a figure which shows the charging / discharging cycle test result of the electrical storage device cell in the Example and comparative example of this invention.

実施の形態1.
以下に、本発明の実施の形態1について図面に基づいて説明する。図1は、本発明の実施の形態1に係る蓄電デバイスセルの構成を示している。本実施の形態1に係る蓄電デバイスセルは、リチウムイオンキャパシタ正極1(以下キャパシタ正極1と略す)とリチウム電池正極4、及びこれらの正極1、4との間にそれぞれ第一、第二のセパレータ11a、11bを介して配置された共通負極6を備えている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an electricity storage device cell according to Embodiment 1 of the present invention. The power storage device cell according to the first embodiment includes a lithium ion capacitor positive electrode 1 (hereinafter abbreviated as capacitor positive electrode 1), a lithium battery positive electrode 4, and first and second separators between these positive electrodes 1 and 4, respectively. A common negative electrode 6 is provided via 11a and 11b.

キャパシタ正極1は、平滑なアルミニウム箔であるキャパシタ正極集電箔2aの一方の面に、リチウムイオンキャパシタ正極電極層3(以下キャパシタ正極電極層3と略す)が設けられている。また、リチウム電池正極4は、電池正極集電箔2bの一方の面に、リチウム金属化合物を含む電池正極電極層であるリチウム電池正極電極層5が設けられている。   The capacitor positive electrode 1 is provided with a lithium ion capacitor positive electrode layer 3 (hereinafter abbreviated as capacitor positive electrode layer 3) on one surface of a capacitor positive electrode current collector foil 2a which is a smooth aluminum foil. Moreover, the lithium battery positive electrode 4 is provided with the lithium battery positive electrode layer 5 which is a battery positive electrode layer containing a lithium metal compound on one surface of the battery positive electrode current collector foil 2b.

共通負極6は、複数の貫通孔10を有する負極集電箔7の両面に、負極活物質層が設けられたもので、一方の面にはリチウムイオンキャパシタ負極電極層8(以下キャパシタ負極電極層8と略す)が、もう一方の面にはリチウム電池負極電極層9が設けられている。キャパシタ正極電極層3とキャパシタ負極電極層8の間には第一のセパレータ11aが配置され、リチウムイオンキャパシタ部20を構成している。また、リチウム電池正極電極層5とリチウム電池負極電極層9の間には第二のセパレータ11bが配置され、リチウム電池部30を構成している。   The common negative electrode 6 includes a negative electrode active material layer provided on both surfaces of a negative electrode current collector foil 7 having a plurality of through holes 10, and a lithium ion capacitor negative electrode layer 8 (hereinafter referred to as a capacitor negative electrode layer) on one surface. 8 is abbreviated as 8), but on the other surface, a lithium battery negative electrode layer 9 is provided. A first separator 11 a is disposed between the capacitor positive electrode layer 3 and the capacitor negative electrode layer 8 to constitute a lithium ion capacitor unit 20. A second separator 11 b is disposed between the lithium battery positive electrode layer 5 and the lithium battery negative electrode layer 9 to constitute a lithium battery unit 30.

キャパシタ正極電極層3の材料としては、表面積が広く静電容量が大きいカーボン材料が用いられる。具体的には、例えば直径10μm程度の粒子状の活性炭が好適であり、水蒸気賦活活性炭、アルカリ活性炭、及びナノゲートカーボン等を用いることができる。キャパシタ正極電極層3の厚さは通常50μm〜150μmであるが、使用するカーボンの種類やセルの設計容量によって最適な厚さは異なる。   As a material of the capacitor positive electrode layer 3, a carbon material having a large surface area and a large capacitance is used. Specifically, for example, particulate activated carbon having a diameter of about 10 μm is suitable, and water vapor activated activated carbon, alkaline activated carbon, nanogate carbon, and the like can be used. The thickness of the capacitor positive electrode layer 3 is usually 50 μm to 150 μm, but the optimum thickness varies depending on the type of carbon used and the design capacity of the cell.

キャパシタ正極電極層3は、バインダによって結着され、圧延法、塗布法及びモールド成形法等により、キャパシタ正極集電箔2aの一方の面の全域に形成される。従って、キャパシタ正極電極層3の外形形状は、端子部を除いてキャパシタ正極集電箔2aの形状と同じである。なお、バインダとしては、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、スチレンブタジエンラバー(SBR)系、アクリル系合成ゴム、ポリフッ化ビニリデン(PVDF)等が用いられる。   The capacitor positive electrode layer 3 is bound by a binder, and is formed over the entire area of one surface of the capacitor positive electrode current collector foil 2a by a rolling method, a coating method, a molding method, or the like. Therefore, the outer shape of the capacitor positive electrode layer 3 is the same as that of the capacitor positive electrode current collector foil 2a except for the terminal portion. As the binder, fluororesin such as polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), acrylic synthetic rubber, polyvinylidene fluoride (PVDF), or the like is used.

一方、リチウム電池正極電極層5の材料としては、リチウム二次電池の正極電極層として一般的に用いられるリチウム金属化合物が用いられる。具体的には、リン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、及びこれらの複合体等を用いることができるが、これらに限定されるものではない。中でも、オリビン型結晶構造を有するリン酸鉄リチウムを用いた場合、負極に炭素材料を使用したときの作動電圧範囲がリチウムイオンキャパシタの作動電圧範囲内にあり、リチウム電池部30の容量を効率的に使用できる。   On the other hand, as a material of the lithium battery positive electrode layer 5, a lithium metal compound generally used as a positive electrode layer of a lithium secondary battery is used. Specifically, lithium iron phosphate, lithium cobaltate, lithium manganate, and composites thereof can be used, but are not limited thereto. In particular, when lithium iron phosphate having an olivine type crystal structure is used, the operating voltage range when a carbon material is used for the negative electrode is within the operating voltage range of the lithium ion capacitor, and the capacity of the lithium battery unit 30 is efficiently increased. Can be used for

キャパシタ正極集電箔2a、電池正極集電箔2b、及び負極集電箔7等の集電箔の厚さは通常8μm〜50μmであり、その蓄電デバイスを充放電する際の充放電電流によって選定される。充放電電流が大きい場合には、内部抵抗を小さくするために厚い集電箔が用いられ、充放電電流が小さい場合には、エネルギー密度を向上させるために薄い集電箔が用いられる。   The thickness of the current collector foils such as the capacitor positive electrode current collector foil 2a, the battery positive electrode current collector foil 2b, and the negative electrode current collector foil 7 is usually 8 μm to 50 μm, and is selected according to the charge / discharge current when charging / discharging the electricity storage device Is done. When the charge / discharge current is large, a thick current collector foil is used to reduce the internal resistance, and when the charge / discharge current is small, a thin current collector foil is used to improve the energy density.

共通負極6の負極集電箔7には、リチウムイオンを透過させるためにイオンが拡散する経路として、その一方の面から他方の面に貫通する複数の貫通孔10が形成されている。貫通孔10の断面形状は特に規定されるものではなく、円形、正方形、長方形、くさび型等が用いられる。孔径は10μm〜500μm程度が好ましい。貫通孔10内部には、樹脂を含む粒子が充填されている。これについては、後に図2を用いて詳細に説明する。   The negative electrode current collector foil 7 of the common negative electrode 6 is formed with a plurality of through holes 10 penetrating from one surface to the other surface as a path for ions to diffuse to allow lithium ions to pass therethrough. The cross-sectional shape of the through hole 10 is not particularly defined, and a circular shape, a square shape, a rectangular shape, a wedge shape, or the like is used. The pore diameter is preferably about 10 μm to 500 μm. The inside of the through hole 10 is filled with particles containing a resin. This will be described later in detail with reference to FIG.

キャパシタ正極集電箔2a、電池正極集電箔2b、及び負極集電箔7に接続される集電端子は、デバイス内で安定に存在する導電性の材質であれば特に限定はしないが、正極ではアルミニウム、負極ではニッケル、銅等の金属、及びニッケルメッキ銅のようなメッキ金属で形成されたものが用いられる。あるいは、集電箔の端部付近の電極層が塗布されていない部分を集電端子としてもよい。   The current collector terminal connected to the capacitor positive electrode current collector foil 2a, the battery positive electrode current collector foil 2b, and the negative electrode current collector foil 7 is not particularly limited as long as it is a conductive material that is stably present in the device. In the case of aluminum, the negative electrode is formed of a metal such as nickel or copper and a plated metal such as nickel-plated copper. Alternatively, a portion where the electrode layer near the end of the current collector foil is not applied may be used as a current collector terminal.

キャパシタ負極電極層8及びリチウム電池負極電極層9の材料としては、電気化学反応によってリチウムの脱挿入が可能な材料が用いられる。具体的には、黒鉛、ハードカーボン、ソフトカーボン、スズまたはシリコン系の合金、チタン酸リチウム、あるいはリチウム電池の負極として用いられている負極材料等を用いることができる。なお、キャパシタ負極電極層8の静電容量はキャパシタ正極1の静電容量より十分大きいことが望ましい。これは、キャパシタ負極電極層8の容量が小さい場合、充放電時の負極の電位変化が大きく、サイクル特性が低下するためである。   As a material of the capacitor negative electrode layer 8 and the lithium battery negative electrode layer 9, a material capable of removing and inserting lithium by an electrochemical reaction is used. Specifically, graphite, hard carbon, soft carbon, tin or silicon alloy, lithium titanate, a negative electrode material used as a negative electrode of a lithium battery, or the like can be used. The capacitance of the capacitor negative electrode layer 8 is desirably sufficiently larger than the capacitance of the capacitor positive electrode 1. This is because when the capacity of the capacitor negative electrode layer 8 is small, the potential change of the negative electrode during charging / discharging is large, and the cycle characteristics deteriorate.

第一のセパレータ11a及び第二のセパレータ11bは、負極と正極とを隔離し、両極間の絶縁を確保しつつ、リチウムイオンを通過させるものである。セパレータ11a、11bの材料としては、ポリエチレン、ポリプロピレン等からなる微多孔膜、セルロース系の紙セパレータ、及びポリエステルからなる不織布等が用いられる。   The 1st separator 11a and the 2nd separator 11b isolate | separate a negative electrode and a positive electrode, and let lithium ion pass through ensuring the insulation between both electrodes. As the material of the separators 11a and 11b, a microporous film made of polyethylene, polypropylene, or the like, a cellulose paper separator, a nonwoven fabric made of polyester, or the like is used.

図1に示す蓄電デバイスセルは、図示しない容器に収納され、容器内には電解液が満たされる。容器は、デバイス内部からの電解液の漏出やデバイス外部からの水分の侵入を防ぐもので、ステンレス、アルミニウム等の金属からなる円筒型または角型の容器や、金属と樹脂により構成されるラミネートフィルムからなる袋状または箱型の容器等が用いられる。ラミネートフィルムによる容器は、熱融着(ヒートシール)によってシールすることができるものがよい。   The electricity storage device cell shown in FIG. 1 is accommodated in a container (not shown), and the container is filled with an electrolytic solution. The container prevents leakage of electrolyte from the inside of the device and intrusion of moisture from the outside of the device. Cylindrical or square containers made of metal such as stainless steel and aluminum, and laminate films made of metal and resin A bag-shaped or box-shaped container made of or the like is used. The container made of a laminate film is preferably one that can be sealed by heat sealing (heat sealing).

金属容器を用いる場合、十分な厚さがあれば単独で用いることもできるが、一般には軽量化のために、数μm〜数10μmの厚さの金属箔に樹脂がラミネートされたものを用いる。その際、容器の内面には熱融着性を付与するためのポリエチレンまたはポリプロピレンのフィルム、外面には強度向上のためのポリエチレンテレフタレートや延伸ナイロンフィルムを積層させることが好ましい。   When a metal container is used, it can be used alone as long as it has a sufficient thickness, but generally a metal foil having a thickness of several μm to several tens of μm laminated with a resin is used for weight reduction. At that time, it is preferable to laminate a polyethylene or polypropylene film for imparting heat-fusibility on the inner surface of the container and a polyethylene terephthalate or stretched nylon film for improving the strength on the outer surface.

電解液は、特に限定するものではないが、リチウム二次電池に使用される電解質、例えばLiPF、LiClO、LiBF等を有機溶媒に溶解したものが用いられる。有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のエステル系溶媒、ジメトキシエタン、ジエチルエーテル等のエーテル系溶媒、γ−ブチロラクトン(GBL)、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)等の溶媒を、単独または複数組み合わせて用いることができる。なお、100℃以上の高温においてもイオン伝導性を有するように、有機溶媒はEC、PC、GBL等の高沸点溶媒を含むことが望ましい。さらに、電解液には、他の添加物が含まれていてもよい。 The electrolytic solution is not particularly limited, but an electrolyte used for a lithium secondary battery, for example, LiPF 6 , LiClO 4 , LiBF 4 or the like dissolved in an organic solvent is used. Organic solvents include ester solvents such as ethylene carbonate (EC), propylene carbonate (PC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and ether solvents such as dimethoxyethane and diethyl ether. Solvents and solvents such as γ-butyrolactone (GBL), tetrahydrofuran (THF), tetrahydropyran (THP) and the like can be used alone or in combination. In addition, it is desirable that the organic solvent contains a high boiling point solvent such as EC, PC, GBL so as to have ionic conductivity even at a high temperature of 100 ° C. or higher. Furthermore, the electrolyte solution may contain other additives.

次に、本実施の形態1に係る蓄電デバイスセルに用いられる負極集電箔7について、図2を用いて詳細に説明する。図2(a)は、加熱処理前の負極集電箔、図2(b)は、加熱処理後の負極集電箔を示している。図2(a)に示すように、負極集電箔7の貫通孔10内部には、樹脂を含む粒子12が充填されている。樹脂を含む粒子12は、バインダ13により互いに結着され、貫通孔10の内部に保持されている。粒子径は1μm〜数10μmであり、形状は特に限定されるものではないが、球形に近い方がよい。   Next, the negative electrode current collector foil 7 used in the electricity storage device cell according to Embodiment 1 will be described in detail with reference to FIG. 2A shows the negative electrode current collector foil before the heat treatment, and FIG. 2B shows the negative electrode current collector foil after the heat treatment. As shown in FIG. 2A, particles 12 containing a resin are filled in the through holes 10 of the negative electrode current collector foil 7. The particles 12 containing a resin are bound to each other by a binder 13 and are held inside the through hole 10. The particle diameter is from 1 μm to several tens of μm, and the shape is not particularly limited, but it is preferable to be close to a sphere.

樹脂を含む粒子12としては、結晶性樹脂からなるものが好ましく、例えば、低密度ポリエチレン粒子、エチレンアクリル酸共重合体粒子、低融点ポリエステル粒子、及びこれらの複合粒子等が用いられる。これらの結晶性樹脂からなる粒子12は、蓄電デバイスセルを加熱処理することによって溶融し、貫通孔10内部でより密着する。低融点ポリエステル粒子は、比較的低い温度で溶融するため、加熱処理時の電解液の揮発や分解を抑制することができる。   The resin-containing particles 12 are preferably made of a crystalline resin. For example, low-density polyethylene particles, ethylene acrylic acid copolymer particles, low-melting polyester particles, and composite particles thereof are used. The particles 12 made of these crystalline resins are melted by heat treatment of the electricity storage device cell, and are more closely adhered inside the through hole 10. Since the low melting point polyester particles melt at a relatively low temperature, volatilization and decomposition of the electrolytic solution during the heat treatment can be suppressed.

バインダ13は、樹脂を含む粒子12を互いに結着させ、貫通孔10の内部に保持するために用いられる。このため、加熱処理により溶融される前の状態において、樹脂を含む粒子12だけで貫通孔10内部に留まることが可能であれば、バインダ13は必ずしも必要ではない。バインダ13としては、蓄電デバイス用電極の結着剤として用いられているポリフッ化ビニリデン、スチレンブタジエンラバー、ポリテトラフルオロエチレン等が用いられる。   The binder 13 is used for binding the particles 12 containing resin to each other and holding them inside the through hole 10. For this reason, the binder 13 is not necessarily required as long as it can remain inside the through-hole 10 only with the particles 12 including the resin before being melted by the heat treatment. As the binder 13, polyvinylidene fluoride, styrene butadiene rubber, polytetrafluoroethylene, or the like used as a binder for an electrode for an electricity storage device is used.

以下に、蓄電デバイス用負極の製造方法及びこの蓄電デバイス用負極を用いた蓄電デバイスの製造方法について、図1及び図2を用いて説明する。本実施の形態1に係る蓄電デバイス用負極である共通負極6は、負極集電箔7の両面にそれぞれ負極活物質層であるキャパシタ負極電極層8とリチウム電池負極電極層9が設けられているが、以下に示す蓄電デバイス用負極の製造方法は、負極集電箔7の一方の面に負極電極層が設けられた蓄電デバイス用負極に対しても同様に適用可能である。なお、具体的な材料や寸法については後述の実施例1〜実施例3に示し、ここでは省略する。   Below, the manufacturing method of the negative electrode for electrical storage devices and the manufacturing method of the electrical storage device using this negative electrode for electrical storage devices are demonstrated using FIG.1 and FIG.2. In the common negative electrode 6 that is the negative electrode for the electricity storage device according to the first embodiment, a capacitor negative electrode layer 8 and a lithium battery negative electrode layer 9 that are negative electrode active material layers are provided on both surfaces of the negative electrode current collector foil 7, respectively. However, the following method for manufacturing a negative electrode for an electricity storage device can be similarly applied to the negative electrode for an electricity storage device in which a negative electrode layer is provided on one surface of the negative electrode current collector foil 7. Specific materials and dimensions are shown in Examples 1 to 3 described later, and are omitted here.

まず、樹脂を含む粒子12、第一のバインダ13、及び第一の溶媒(図示せず)からなる樹脂溶液を混合し、粘度を調整する。複数の貫通孔10を有する負極集電箔7を離型フィルム上に固定し、上記樹脂溶液を負極集電箔7上に塗布し、ゴム製のヘラで樹脂溶液を掻き取りながら貫通孔10に充填する。その後、所定温度で乾燥する(負極集電箔作製工程)。   First, a resin solution composed of resin-containing particles 12, a first binder 13, and a first solvent (not shown) is mixed to adjust the viscosity. A negative electrode current collector foil 7 having a plurality of through holes 10 is fixed on a release film, the resin solution is applied onto the negative electrode current collector foil 7, and the resin solution is scraped off with a rubber spatula into the through holes 10. Fill. Then, it dries at predetermined temperature (negative electrode current collector foil preparation process).

負極集電箔作製工程の後、負極活物質層材料、第二のバインダ、及び第二の溶媒からなる電極ペーストを混合調製し、この電極ペーストを負極集電箔7の少なくとも一方の面に塗布して負極電極層を形成する(負極作製工程)。図1に示すセルの場合は、負極集電箔7の両面に負極電極層8、9を順次形成し、共通負極6を作製する。塗工後の負極電極層8、9は、気孔率が高く密度が低すぎるため、所定の温度で平滑ロール(カレンダーロール)プレスを行い、適正な気孔率に調整される(共通負極作製工程)。   After the negative electrode current collector foil preparation step, an electrode paste composed of the negative electrode active material layer material, the second binder, and the second solvent is mixed and prepared, and this electrode paste is applied to at least one surface of the negative electrode current collector foil 7 Thus, a negative electrode layer is formed (negative electrode manufacturing step). In the case of the cell shown in FIG. 1, the negative electrode layers 8 and 9 are sequentially formed on both surfaces of the negative electrode current collector foil 7 to produce the common negative electrode 6. Since the negative electrode layers 8 and 9 after coating have a high porosity and a density that is too low, a smooth roll (calendar roll) press is performed at a predetermined temperature to adjust to an appropriate porosity (common negative electrode preparation step). .

この時点では、図2(a)に示すように、貫通孔10内部に充填された粒子12は、バインダ13で結着されているが、貫通孔10は完全には閉塞されておらず、空隙14が存在する。この空隙14は、貫通孔10の径に比べて非常に小さく、リチウムイオンは通過させるが、電極ペーストのような高粘度の液体は通さない。従って、負極作製工程において負極集電箔7に電極ペーストを塗布する際に、電極ペーストが貫通孔10を通って反対側の面に流れたり、溶媒が貫通孔10から浸み込んだりすることを防止でき、均一な負極電極層8、9を形成することができる。   At this time, as shown in FIG. 2 (a), the particles 12 filled in the through holes 10 are bound by the binder 13, but the through holes 10 are not completely closed, and the voids 14 exists. The void 14 is very small compared to the diameter of the through hole 10 and allows lithium ions to pass therethrough, but does not allow a highly viscous liquid such as an electrode paste to pass therethrough. Therefore, when applying the electrode paste to the negative electrode current collector foil 7 in the negative electrode manufacturing step, the electrode paste flows through the through hole 10 to the opposite surface, or the solvent penetrates from the through hole 10. Therefore, uniform negative electrode layers 8 and 9 can be formed.

次に、キャパシタ正極集電箔2aの一方の面にキャパシタ正極電極層3が設けられたキャパシタ正極1と、第一のセパレータ11aと、共通負極6と、第二のセパレータ11bと、電池正極集電箔2bの一方の面にリチウム金属化合物を含む電池正極電極層5が設けられたリチウム電池正極4をこの順に積層し、図1に示す蓄電素子を形成する。この蓄電素子を容器内に収納し、電解液を注入して容器を封口する(セル作製工程)。   Next, the capacitor positive electrode 1 provided with the capacitor positive electrode layer 3 on one surface of the capacitor positive electrode current collector foil 2a, the first separator 11a, the common negative electrode 6, the second separator 11b, and the battery positive electrode collector. A lithium battery positive electrode 4 provided with a battery positive electrode layer 5 containing a lithium metal compound on one surface of the electric foil 2b is laminated in this order to form the power storage device shown in FIG. The electricity storage element is accommodated in a container, and an electrolytic solution is injected to seal the container (cell manufacturing process).

セル作製工程の後、リチウム電池正極4から共通負極6へ電気化学的操作(電気化学的接触もしくは電位操作)によりリチウムイオンをドープする(リチウムイオンドープ工程)。このリチウムイオンドープ工程の後、容器の外側から蓄電素子を加熱し、貫通孔10内部の樹脂を含む粒子12を溶融させ、貫通孔10を閉塞する(貫通孔閉塞工程)。   After the cell manufacturing step, lithium ions are doped from the lithium battery positive electrode 4 to the common negative electrode 6 by electrochemical operation (electrochemical contact or potential operation) (lithium ion doping step). After this lithium ion doping step, the electricity storage element is heated from the outside of the container to melt the particles 12 containing the resin inside the through hole 10 and close the through hole 10 (through hole closing step).

加熱処理後の負極集電箔7は、図2(b)に示すように、樹脂を含む粒子12が加熱により軟化、溶融し、体積が膨張するとともにその形状が変形し、空隙に充填される。これにより、リチウムイオンの通路が閉塞される。   As shown in FIG. 2B, the negative electrode current collector foil 7 after the heat treatment softens and melts the resin-containing particles 12 to expand its volume and deform its shape, and fills the voids. . As a result, the lithium ion passage is closed.

蓄電素子の加熱方法としては、容器の外側を直接シート状のヒーターで挟んで加熱する方法(全体加熱)と、共通負極6に接続された負極端子部を抵抗加熱または誘導加熱することにより、負極集電箔7を選択的に加熱する方法(部分加熱)がある。加熱温度は、樹脂を含む粒子12の融点近傍の温度が適当であり、加熱により樹脂が軟化、溶融して貫通孔10内部の空隙14を閉塞する温度とする。また、加熱時間は、貫通孔10内部の樹脂を含む粒子12を溶融するために必要な時間とするが、電解液の揮発や分解を抑えるために短時間であることが好ましい。部分加熱では、全体加熱に比べて加熱時間を短く、セル全体としての加熱温度を低くすることが可能である。   As a heating method of the electricity storage element, a method of heating the entire outside of the container with a sheet-like heater (overall heating) and a negative electrode terminal connected to the common negative electrode 6 by resistance heating or induction heating are used. There is a method (partial heating) in which the current collector foil 7 is selectively heated. The heating temperature is suitably a temperature in the vicinity of the melting point of the particles 12 containing the resin, and is a temperature at which the resin is softened and melted by heating to close the voids 14 in the through holes 10. The heating time is set to a time required for melting the particles 12 including the resin inside the through-hole 10, but is preferably a short time in order to suppress volatilization and decomposition of the electrolytic solution. In partial heating, it is possible to shorten the heating time as compared with the whole heating, and to lower the heating temperature of the whole cell.

なお、本実施の形態1に係る蓄電デバイスセルは、図1に示す構造に限定されるものではなく、負極に対して正極が対向しており、この正負極間に電解液を含浸させたセパレータが存在している構造であればよい。図1では単一ユニットのセルを示しているが、平板状の電極を複数枚重ね合わせた積層型構造、帯状の電極を捲回した巻き型構造、または帯状の電極を折り畳みながら重ねた折り畳み型構造とすることにより、大容量のセルを作製することができる。また、負極に対向する正極の面積を若干小さく(約1%〜10%)することにより、正負極間のイオン伝導性を向上させることができる。   The electricity storage device cell according to the first embodiment is not limited to the structure shown in FIG. 1, and a separator in which a positive electrode is opposed to a negative electrode and an electrolyte is impregnated between the positive and negative electrodes. Any structure may be used. Although a single unit cell is shown in FIG. 1, a stacked structure in which a plurality of flat electrodes are stacked, a wound structure in which strip-shaped electrodes are wound, or a folded structure in which strip-shaped electrodes are folded and stacked With the structure, a large capacity cell can be manufactured. Moreover, the ionic conductivity between positive and negative electrodes can be improved by slightly reducing the area of the positive electrode facing the negative electrode (about 1% to 10%).

本実施の形態1に係る蓄電デバイス用負極の製造方法によれば、負極集電箔7の貫通孔10内部に樹脂を含む粒子12を充填した後、負極集電箔7に電極ペーストを塗布するようにしたので、電極ペーストが貫通孔10を通って反対側の面に流れたり、電極ペーストの溶媒が貫通孔10に浸み込んだりすることを防止できる。従って、貫通孔10を有する負極集電箔7に対して、均一な負極電極層8、9を容易に形成することができる。   According to the method for manufacturing a negative electrode for an electricity storage device according to the first embodiment, after filling particles 12 containing resin in the through holes 10 of the negative electrode current collector foil 7, the electrode paste is applied to the negative electrode current collector foil 7. Since it did in this way, it can prevent that an electrode paste flows into the surface of the other side through the through-hole 10, and the solvent of an electrode paste permeates the through-hole 10. FIG. Therefore, uniform negative electrode layers 8 and 9 can be easily formed on the negative electrode current collector foil 7 having the through holes 10.

また、本実施の形態1に係る蓄電デバイスの製造方法によれば、蓄電デバイスの共通負極6にリチウムイオンをドープした後、加熱処理により貫通孔10内部の樹脂を含む粒子12を溶融させ、貫通孔10を閉塞するようにした。これにより、充放電の際に貫通孔10を通じてリチウムイオンが出入りすることなく、貫通孔10周辺で電極反応分布が生じないため、充放電の繰り返しによる電極の劣化が抑制され、サイクル特性が大幅に向上する。   Further, according to the method for manufacturing the electricity storage device according to the first embodiment, after the common negative electrode 6 of the electricity storage device is doped with lithium ions, the particles 12 containing the resin inside the through holes 10 are melted by heat treatment, The hole 10 was closed. As a result, lithium ions do not enter and exit through the through-hole 10 during charge and discharge, and no electrode reaction distribution occurs around the through-hole 10, so that deterioration of the electrode due to repeated charge and discharge is suppressed, and cycle characteristics are greatly improved. improves.

これらのことから、本実施の形態1によれば、リチウムイオンキャパシタ部20とリチウム電池部30を含む蓄電デバイスにおいて、共通負極6の負極集電箔7の貫通孔10内部に樹脂を含む粒子12を充填することにより、リチウムイオンキャパシタの高い出力密度と、リチウム二次電池の高いエネルギー密度を実現できるとともに、急速な充放電を繰り返しても容量低下が少ない、サイクル特性に優れた蓄電デバイスを提供することが可能である。   For these reasons, according to the first embodiment, in the electricity storage device including the lithium ion capacitor portion 20 and the lithium battery portion 30, the particles 12 containing a resin in the through hole 10 of the negative electrode current collector foil 7 of the common negative electrode 6 are provided. In addition to realizing the high output density of lithium-ion capacitors and the high energy density of lithium secondary batteries, the battery storage device with excellent cycle characteristics is provided with less capacity loss even after repeated rapid charge and discharge. Is possible.

実施の形態2.
図3は、本発明の実施の形態2に係る蓄電デバイスセルの構成を示している。なお、図3中、図1と同一、相当部分には同一符号を付している。本実施の形態2に係る蓄電デバイスセルは、図1に示す蓄電デバイスセルを複数積層したものである。このような積層構造の場合、両端以外の正極は、正極集電箔2の一方の面にキャパシタ正極電極層3、もう一方の面にリチウム電池正極電極層5が設けられた共通正極15となる。
Embodiment 2. FIG.
FIG. 3 shows the configuration of the electricity storage device cell according to Embodiment 2 of the present invention. In FIG. 3, the same reference numerals are given to the same or corresponding parts as in FIG. The power storage device cell according to Embodiment 2 is obtained by stacking a plurality of power storage device cells shown in FIG. In the case of such a laminated structure, the positive electrodes other than both ends serve as a common positive electrode 15 in which the capacitor positive electrode layer 3 is provided on one surface of the positive electrode current collector foil 2 and the lithium battery positive electrode layer 5 is provided on the other surface. .

本実施の形態2に係る積層構造の蓄電デバイスセルの製造方法について説明する。なお、共通負極作製工程は、上記実施の形態1と同様であるのでここでは省略する。また、具体的な材料や寸法については後述の実施例4に示し、ここでは省略する。   A method for manufacturing a power storage device cell having a laminated structure according to the second embodiment will be described. Note that the common negative electrode manufacturing step is the same as that in the first embodiment, and is omitted here. Further, specific materials and dimensions will be described in Example 4 described later, and are omitted here.

キャパシタ正極電極層材料、バインダ、及び溶媒からなる電極ペーストを混合調製し、この電極ペーストを正極集電箔2の一方の面に塗布してキャパシタ正極電極層3を形成する。続いて、リチウム電池正極電極層材料、バインダ、及び溶媒からなる電極ペーストを混合調製し、この電極ペーストを正極集電箔2のもう一方の面に塗布してリチウム電池正極電極層5を形成し、共通正極15を作製する(共通正極作製工程)。   An electrode paste composed of a capacitor positive electrode layer material, a binder, and a solvent is mixed and prepared, and this electrode paste is applied to one surface of the positive electrode current collector foil 2 to form the capacitor positive electrode layer 3. Subsequently, an electrode paste comprising a lithium battery positive electrode layer material, a binder, and a solvent is mixed and prepared, and this electrode paste is applied to the other surface of the positive electrode current collector foil 2 to form a lithium battery positive electrode layer 5. Then, the common positive electrode 15 is manufactured (common positive electrode manufacturing step).

次に、図3に示すように、最下層となるリチウム電池正極電極層5の上に、共通負極6、共通正極15を交互に重ね合わせた後、その上にさらに共通負極6、キャパシタ正極1を互いの電極層が対向するように中心を揃えて積層する。なお、正負の電極層間には、セルロース系紙からなるセパレータ11を配置する。   Next, as shown in FIG. 3, after the common negative electrode 6 and the common positive electrode 15 are alternately stacked on the lithium battery positive electrode layer 5 as the lowermost layer, the common negative electrode 6 and the capacitor positive electrode 1 are further stacked thereon. Are laminated with their centers aligned so that the electrode layers face each other. A separator 11 made of cellulosic paper is disposed between the positive and negative electrode layers.

さらに、キャパシタ正極集電箔2a端部に設けられた集電タブと、電池正極集電箔2b端部に設けられた集電タブ、及び正極集電箔2の端部に設けられた集電タブを重ね、これらを接続して正極端子16とする。同様に、各々の負極集電箔7の端部に設けられた集電タブを重ね、これらを接続して負極端子17とする。このようにして得られた蓄電素子を容器内に収納し、電解液を注入して容器を封口する(セル作製工程)。   Furthermore, a current collecting tab provided at the end of the capacitor positive electrode current collector foil 2a, a current collecting tab provided at the end of the battery positive electrode current collector foil 2b, and a current collector provided at the end of the positive electrode current collector foil 2 The tabs are stacked and connected to form the positive terminal 16. Similarly, current collecting tabs provided at end portions of the respective negative electrode current collector foils 7 are overlapped and connected to form a negative electrode terminal 17. The storage element thus obtained is housed in a container, and an electrolytic solution is injected to seal the container (cell manufacturing process).

セル作製工程の後、正極端子16を充放電装置のプラス端子に、負極端子17をマイナス端子に接続して充電を行い、負極へのリチウムイオンのドープを行う(リチウムイオンドープ工程)。このリチウムイオンドープ工程の後、容器の外側から蓄電素子を加熱し、貫通孔10内部の樹脂を含む粒子12を溶融させ、貫通孔10を閉塞する(貫通孔閉塞工程)。その後、容器を開封し、電解液量を調整した後、再度封口する。本実施の形態2によれば、上記実施の形態1と同様の効果に加え、蓄電デバイスセルを積層構造とすることにより、大容量のデバイスを実現することができる。   After the cell manufacturing process, the positive electrode terminal 16 is connected to the plus terminal of the charging / discharging device and the negative electrode terminal 17 is connected to the minus terminal for charging, and the negative electrode is doped with lithium ions (lithium ion doping process). After this lithium ion doping step, the electricity storage element is heated from the outside of the container to melt the particles 12 containing the resin inside the through hole 10 and close the through hole 10 (through hole closing step). Then, after opening a container and adjusting electrolyte amount, it seals again. According to the second embodiment, in addition to the same effects as those of the first embodiment, a large-capacity device can be realized by making the power storage device cell have a laminated structure.

以下に、実施例1として、本発明に係る蓄電デバイスセルの製造方法について具体的な数値を挙げて説明する。実施例1で作製される蓄電デバイスセルの構造は、図1に示すものと同様である。なお、実施例1で作製された蓄電デバイスセルについて充放電サイクル試験を実施し、他の実施例及び比較例で作製された蓄電デバイスと性能の比較を行った結果を図4に示す。   Hereinafter, as Example 1, a method for manufacturing an electricity storage device cell according to the present invention will be described with specific numerical values. The structure of the electricity storage device cell fabricated in Example 1 is the same as that shown in FIG. In addition, the result of having implemented the charging / discharging cycle test about the electrical storage device cell produced in Example 1, and performing the performance comparison with the electrical storage device produced in the other Example and the comparative example is shown in FIG.

(負極集電箔作製工程)
負極集電箔の貫通孔に充填される樹脂を含む粒子としての平均粒子径6μmの低密度ポリエチレン、第一のバインダとしてのポリフッ化ビニリデン、及び第一の溶媒としてのn−メチルピロリドンからなる樹脂溶液を混合調整した。幅200mm、厚さ15μmの銅箔に孔径100μmの貫通孔が形成された開口率10%の集電箔を離型フィルム上に固定し、その上に上記樹脂溶液を所定量滴下し、ゴムヘラで表面の樹脂溶液を掻き落として70℃の乾燥機中で乾燥した。乾燥後、離型フィルムから集電箔を剥がし、表面に残った粒子及びバインダを除去して負極集電箔とした。
(Negative electrode current collector foil production process)
Resin comprising low-density polyethylene having an average particle diameter of 6 μm as particles containing resin filled in the through holes of the negative electrode current collector foil, polyvinylidene fluoride as the first binder, and n-methylpyrrolidone as the first solvent The solution was mixed and adjusted. A current collector foil having a 10% aperture ratio in which a through hole having a hole diameter of 100 μm was formed on a copper foil having a width of 200 mm and a thickness of 15 μm was fixed on a release film, and a predetermined amount of the resin solution was dropped on the release film, and a rubber spatula The resin solution on the surface was scraped off and dried in a dryer at 70 ° C. After drying, the current collector foil was peeled off from the release film, and particles and binder remaining on the surface were removed to obtain a negative electrode current collector foil.

(共通負極作製工程)
負極電極層の材料としての黒鉛、第二のバインダとしてのポリフッ化ビニリデン、及び第二の溶媒としてのn−メチルピロリドンからなる電極ペーストを混合調製した。上記負極集電箔を離型フィルム上に固定し、その上に上記電極ペーストをドクターブレード法により塗布後、70℃の乾燥機中で乾燥して負極電極層を形成した。本実施例1では、負極集電箔の貫通孔に粒子が充填されているため、電極ペーストが貫通孔を通って裏面に流れることはなかった。裏面も同様に電極ペーストを塗布し、乾燥して共通負極原反を得た。この共通負極原反をカレンダーロールプレスにて加圧して電極の気孔率を調整し、負極集電箔の両面に負極電極層が設けられた共通負極を得た。
(Common negative electrode manufacturing process)
An electrode paste comprising graphite as a material for the negative electrode layer, polyvinylidene fluoride as the second binder, and n-methylpyrrolidone as the second solvent was prepared by mixing. The negative electrode current collector foil was fixed on a release film, and the electrode paste was applied thereon by a doctor blade method and then dried in a dryer at 70 ° C. to form a negative electrode layer. In Example 1, since the through holes of the negative electrode current collector foil were filled with particles, the electrode paste did not flow to the back surface through the through holes. Similarly, an electrode paste was applied to the back surface and dried to obtain a common negative electrode raw material. The common negative electrode original fabric was pressed with a calender roll press to adjust the porosity of the electrode, and a common negative electrode having negative electrode layers provided on both sides of the negative electrode current collector foil was obtained.

上記工程で得られた共通負極を一辺30mm×43mmの長方形に切り出し、長尺方向の端部7mmの負極電極層を剥がして集電タブとした。また、短辺側の電極層の一部を剥がして集電タブとした。その後、集電タブにNiメッキ銅箔を超音波溶接により接続し、負極集電端子とした。   The common negative electrode obtained in the above process was cut into a rectangle with a side of 30 mm × 43 mm, and the negative electrode layer with the end portion of 7 mm in the longitudinal direction was peeled to form a current collecting tab. Further, a part of the electrode layer on the short side was peeled off to obtain a current collecting tab. Then, Ni plating copper foil was connected to the current collection tab by ultrasonic welding, and it was set as the negative electrode current collection terminal.

(キャパシタ正極作製工程)
キャパシタ正極電極層材料としての活性炭、バインダとしてのアクリル系ポリマー、及び溶媒としての水からなる電極ペーストを混合調製した。この電極ペーストを幅200mm、厚さ20μmのアルミニウム箔からなるキャパシタ正極集電箔の一方の面に塗布後、100℃の乾燥機中で乾燥し、キャパシタ正極電極層を形成した。この正極原反をカレンダーロールプレスにて加圧して電極の気孔率を調整し、キャパシタ正極を得た。このキャパシタ正極を29mm×42mmの長方形に切り出し、長尺方向の端部7mmのキャパシタ正極電極層を剥がして集電タブとした。
(Capacitor positive electrode manufacturing process)
An electrode paste made of activated carbon as a capacitor positive electrode layer material, an acrylic polymer as a binder, and water as a solvent was prepared by mixing. The electrode paste was applied to one surface of a capacitor positive electrode current collector foil made of an aluminum foil having a width of 200 mm and a thickness of 20 μm, and then dried in a dryer at 100 ° C. to form a capacitor positive electrode layer. This positive electrode raw material was pressed with a calender roll press to adjust the porosity of the electrode, and a capacitor positive electrode was obtained. The capacitor positive electrode was cut into a rectangle of 29 mm × 42 mm, and the capacitor positive electrode layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a current collecting tab.

(リチウム電池正極作製工程)
リチウム電池正極電極層材料としてのリン酸鉄リチウム、導電材としてのアセチレンブラック、バインダとしてのポリフッ化ビニリデン、及びNMP溶媒からなる電極ペーストを混合調整した。この電極ペーストを厚さ20μmのアルミニウム箔からなる電池正極集電箔の一方の面に塗布後、乾燥し、リチウム電池正極電極層を形成した。この正極原反をカレンダーロールプレスにて加圧して電極の気孔率を調整し、リチウム電池正極を得た。このリチウム電池正極を29mm×42mmの長方形に切り出し、長尺方向の端部7mmのリチウム電池正極電極層を剥がして集電タブとした。
(Lithium battery positive electrode manufacturing process)
An electrode paste comprising lithium iron phosphate as a lithium battery positive electrode layer material, acetylene black as a conductive material, polyvinylidene fluoride as a binder, and an NMP solvent was mixed and adjusted. This electrode paste was applied to one surface of a battery positive electrode current collector foil made of an aluminum foil having a thickness of 20 μm, and then dried to form a lithium battery positive electrode layer. This positive electrode original fabric was pressed with a calender roll press to adjust the porosity of the electrode to obtain a lithium battery positive electrode. The lithium battery positive electrode was cut into a 29 mm × 42 mm rectangle, and the lithium battery positive electrode layer having a 7 mm end in the longitudinal direction was peeled off to form a current collecting tab.

(セル作製工程)
キャパシタ正極、第一のセパレータ、共通負極、第二のセパレータ、リチウム電池正極をこの順に、互いの電極層が対向するように中心を揃えて積層し、蓄電素子を形成した。第一及び第二のセパレータとして、厚さ40μmのセルロース系紙セパレータを用いた。さらに、キャパシタ正極集電タブとリチウム電池正極集電タブを重ね、これらにアルミニウム箔を超音波溶接により接続して正極集電端子とした。この蓄電素子を容器としてのアルミラミネートフィルム外装に収納し、電解液として1.2mol/リットルのLiPF6を含むエチレンカーボネート−ジエチルカーボネートの混合溶媒を注入して容器を封口し、セルを作製した。
(Cell manufacturing process)
The capacitor positive electrode, the first separator, the common negative electrode, the second separator, and the lithium battery positive electrode were stacked in this order so that the electrode layers face each other in this order, thereby forming a storage element. As the first and second separators, cellulosic paper separators having a thickness of 40 μm were used. Furthermore, a capacitor positive electrode current collecting tab and a lithium battery positive electrode current collecting tab were stacked, and an aluminum foil was connected thereto by ultrasonic welding to obtain a positive electrode current collecting terminal. This electricity storage device was housed in an aluminum laminate film exterior as a container, and a mixed solvent of ethylene carbonate-diethyl carbonate containing 1.2 mol / liter LiPF 6 as an electrolyte was injected to seal the container, thereby producing a cell.

(リチウムイオンドープ工程及び貫通孔閉塞工程)
その後、正極集電端子を充放電装置のプラス端子に、負極集電端子を充放電装置のマイナス端子に接続して2mAで2時間充電を行い、リチウム電池正極から共通負極へ電気化学的操作によりリチウムイオンをドープした。リチウムイオンドープ工程の後、セルをシート状のヒーターで挟み、100℃で2分間加熱した。その後、容器を開封し、電解液量を調整した後、再度封口して試験用セルとした。
(Lithium ion doping process and through hole closing process)
After that, the positive electrode current collector terminal is connected to the positive terminal of the charge / discharge device, the negative electrode current collector terminal is connected to the negative terminal of the charge / discharge device, and charging is performed at 2 mA for 2 hours. Doped with lithium ions. After the lithium ion doping step, the cell was sandwiched between sheet heaters and heated at 100 ° C. for 2 minutes. Then, after opening a container and adjusting the amount of electrolyte solution, it sealed again and it was set as the test cell.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、60mAで4VまでCC充電、60mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は81%であり、良好な結果が得られた。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was done on the conditions of CC charge to 4V at 60 mA and CC discharge to 2V at 60 mA. In this test, the capacity retention after 5000 cycles was 81%, and good results were obtained.

以下に、実施例2として、本発明に係る蓄電デバイスセルの製造方法について具体的な数値を挙げて説明する。実施例2で作製される蓄電デバイスセルの構造は、図1に示すものと同様である。なお、実施例2で作製された蓄電デバイスセルについて充放電サイクル試験を実施し、他の実施例及び比較例で作製された蓄電デバイスと性能の比較を行った結果を図4に示す。   Hereinafter, as Example 2, a method for manufacturing an electricity storage device cell according to the present invention will be described with specific numerical values. The structure of the electricity storage device cell fabricated in Example 2 is the same as that shown in FIG. In addition, the charge / discharge cycle test was implemented about the electrical storage device cell produced in Example 2, and the result of having performed the performance comparison with the electrical storage device produced in the other Example and the comparative example is shown in FIG.

(負極集電箔作製工程)
負極集電箔の貫通孔に充填される樹脂を含む粒子としての平均粒子径2μmの低融点結晶性ポリエステル粒子、第一のバインダとしてのスチレンブタジエンラバー、粘度調整剤としてのカルボキシメチルセルロース及び水からなる樹脂溶液を混合調整した。幅200mm、厚さ15μmの銅箔に孔径100μmの貫通孔が形成された開口率10%の負極集電箔を離型フィルム上に固定し、その上に上記樹脂溶液を所定量滴下し、ゴムヘラで表面の溶液を掻き落として60℃の乾燥機中で乾燥した。乾燥後、離型フィルムから集電箔を剥がし、表面に残った粒子及びバインダを除去して負極集電箔とした。
(Negative electrode current collector foil production process)
It consists of low melting crystalline polyester particles having an average particle diameter of 2 μm as particles containing resin filled in the through holes of the negative electrode current collector foil, styrene butadiene rubber as the first binder, carboxymethyl cellulose as the viscosity modifier, and water. The resin solution was mixed and adjusted. A negative electrode current collector foil having a 10% aperture ratio in which a through hole having a hole diameter of 100 μm is formed on a copper foil having a width of 200 mm and a thickness of 15 μm is fixed on a release film, and a predetermined amount of the resin solution is dropped on the negative electrode current collector foil. The surface solution was scraped off and dried in a dryer at 60 ° C. After drying, the current collector foil was peeled off from the release film, and particles and binder remaining on the surface were removed to obtain a negative electrode current collector foil.

以降の共通負極作製工程からリチウムイオンドープ工程までは上記実施例1と同様であるので説明を省略する。本実施例2では、貫通孔閉塞工程において、セルをシート状のヒーターで挟み、80℃で2分間加熱した。その後容器を開封し、電解液量を調整した後、再度封口して試験用セルとした。   Since the subsequent common negative electrode preparation process to the lithium ion doping process are the same as those in Example 1, description thereof will be omitted. In Example 2, in the through hole closing step, the cell was sandwiched between sheet heaters and heated at 80 ° C. for 2 minutes. Thereafter, the container was opened, and after adjusting the amount of the electrolytic solution, it was sealed again to obtain a test cell.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、60mAで4VまでCC充電、60mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は86%であり、良好な結果が得られた。本実施例2では、貫通孔に充填する粒子として低融点のポリエステル粒子を用いているため、上記実施例1よりもドープ後の加熱温度を低くすることができ、電解液の揮発や分解が抑制された結果、上記実施例1よりも高い容量維持率が得られたと考えられる。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was done on the conditions of CC charge to 4V at 60 mA and CC discharge to 2V at 60 mA. In this test, the capacity retention after 5000 cycles was 86%, and good results were obtained. In Example 2, since polyester particles having a low melting point are used as the particles filled in the through holes, the heating temperature after the doping can be made lower than in Example 1 and the volatilization and decomposition of the electrolyte are suppressed. As a result, it is considered that a higher capacity retention rate than that in Example 1 was obtained.

以下に、実施例3として、本発明に係る蓄電デバイスセルの製造方法について具体的な数値を挙げて説明する。実施例3で作製される蓄電デバイスセルの構造は、図1に示すものと同様である。なお、実施例3で作製された蓄電デバイスセルについて充放電サイクル試験を実施し、他の実施例及び比較例で作製された蓄電デバイスと性能の比較を行った結果を図4に示す。   Hereinafter, as Example 3, a method for manufacturing an electricity storage device cell according to the present invention will be described with specific numerical values. The structure of the electricity storage device cell manufactured in Example 3 is the same as that shown in FIG. In addition, the charge / discharge cycle test was implemented about the electrical storage device cell produced in Example 3, and the result of having compared the performance with the electrical storage device produced in the other Example and the comparative example is shown in FIG.

負極集電箔作製工程については、上記実施例2と同様である。また、以降の共通負極作製工程からリチウムイオンドープ工程までは上記実施例1と同様であるので説明を省略する。本実施例3では、貫通孔閉塞工程において、セルをシート状のヒーターで挟み、80℃で1分間加熱すると同時に、負極集電端子をヒーターにより180℃で1分間加熱した。その後容器を開封し、電解液量を調整した後、再度封口して試験用セルとした。   The negative electrode current collector foil production process is the same as in Example 2 above. Further, since the subsequent common negative electrode preparation step to the lithium ion doping step are the same as those in the first embodiment, description thereof will be omitted. In Example 3, in the through-hole closing step, the cell was sandwiched between sheet-like heaters and heated at 80 ° C. for 1 minute, and at the same time, the negative electrode current collector terminal was heated at 180 ° C. for 1 minute. Thereafter, the container was opened, and after adjusting the amount of the electrolytic solution, it was sealed again to obtain a test cell.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、60mAで4VまでCC充電、60mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は87%であり、良好な結果が得られた。本実施例3では、上記実施例2と同様に低融点のポリエステル粒子を用い、さらに、負極端子部を加熱することにより選択的に負極集電箔を加熱しているので、セル全体の加熱温度を低く、且つ加熱時間を短くすることができ、電解液の揮発や分解がさらに抑制された結果、上記実施例1及び実施例2よりも高い容量維持率が得られたと考えられる。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was done on the conditions of CC charge to 4V at 60 mA and CC discharge to 2V at 60 mA. In this test, the capacity retention rate after 5000 cycles was 87%, and good results were obtained. In this Example 3, since the low melting point polyester particles are used as in Example 2 above, and the negative electrode current collector foil is selectively heated by heating the negative electrode terminal portion, the heating temperature of the entire cell It is considered that the capacity retention rate was higher than those of Example 1 and Example 2 as a result of lowering the heating time and shortening the heating time and further suppressing the volatilization and decomposition of the electrolyte.

以下に、実施例4として、本発明に係る蓄電デバイスセルの製造方法について具体的な数値を挙げて説明する。実施例4で作製される蓄電デバイスセルの構造は、図3に示すものと同様である。なお、負極集電箔作製工程、共通負極作製工程については、上記実施例1と同様であるので説明を省略する。   Hereinafter, as Example 4, a method for manufacturing an electricity storage device cell according to the present invention will be described with specific numerical values. The structure of the electricity storage device cell fabricated in Example 4 is the same as that shown in FIG. Note that the negative electrode current collector foil production step and the common negative electrode production step are the same as those in Example 1 described above, and thus the description thereof is omitted.

(共通正極作製工程)
キャパシタ正極電極層材料としての活性炭、バインダとしてのアクリル系ポリマー、溶媒としての水からなる電極ペーストを混合調製した。この電極ペーストを、正極集電箔である幅300mm、厚さ20μmのアルミニウム箔の一方の面に塗布し、キャパシタ正極電極層を形成した。さらに、正極集電箔のもう一方の面にリチウム電池正極電極層材料としてのリン酸鉄リチウム、導電材としてのアセチレンブラック、PVDFをNMPに分散させた電極ペーストを塗布後、100℃で乾燥させ、ロールプレスして気孔率を調整した。これを29mm×42mmの長方形に切り出し、長尺方向の端部7mmの電極層を剥がして集電タブとした。
(Common positive electrode manufacturing process)
An electrode paste made of activated carbon as a capacitor positive electrode layer material, an acrylic polymer as a binder, and water as a solvent was mixed and prepared. This electrode paste was applied to one side of an aluminum foil having a width of 300 mm and a thickness of 20 μm, which was a positive electrode current collector foil, to form a capacitor positive electrode layer. Furthermore, after applying an electrode paste in which lithium iron phosphate as a lithium battery positive electrode layer material, acetylene black as a conductive material, and PVDF dispersed in NMP are applied to the other surface of the positive electrode current collector foil, it is dried at 100 ° C. The porosity was adjusted by roll pressing. This was cut into a rectangle of 29 mm × 42 mm, and the electrode layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a current collecting tab.

(セル作製工程)
最下層となるリチウム電池正極電極層の上に、共通負極、共通正極の順に交互に9枚ずつ重ね合わせた後、その上にさらに共通負極、キャパシタ正極を互いの電極層が対向するように中心を揃えて積層した。正負の電極層間には、それぞれ厚さ40μmのセルロース系紙からなるセパレータを配置した。
(Cell manufacturing process)
Nine sheets of the common negative electrode and the common positive electrode are alternately stacked on the lithium battery positive electrode layer as the lowermost layer in this order, and then the common negative electrode and the capacitor positive electrode are further centered so that the electrode layers face each other. Were laminated together. A separator made of cellulosic paper having a thickness of 40 μm was disposed between the positive and negative electrode layers.

さらに、キャパシタ正極集電箔端部に設けられた集電タブと、電池正極集電箔端部に設けられた集電タブ、及び正極集電箔の端部に設けられた集電タブを重ね、これらにアルミニウム箔を超音波溶接により接続して正極端子とした。同様に、各々の負極集電箔の端部に設けられた集電タブを重ね、これらにNiメッキ銅箔を超音波溶接により接続して負極端子とした。このようにして得られた蓄電素子を、容器としてのアルミラミネートフィルムの外装に収納し、電解液として例えば1.2mol/リットルのLiPF6を含むエチレンカーボネート−ジエチルカーボネートの混合溶媒を注入した後、アルミラミネートフィルムの外装を封口し、セルを作製した。 Furthermore, the current collecting tab provided at the end of the capacitor positive electrode current collector foil, the current collecting tab provided at the end of the battery positive electrode current collector foil, and the current collecting tab provided at the end of the positive electrode current collector foil are overlapped. These were connected to an aluminum foil by ultrasonic welding to form a positive electrode terminal. Similarly, current collecting tabs provided at the end portions of the respective negative electrode current collector foils were stacked, and Ni-plated copper foils were connected thereto by ultrasonic welding to form negative electrode terminals. The storage element thus obtained was housed in an aluminum laminate film exterior as a container, and after injecting an ethylene carbonate-diethyl carbonate mixed solvent containing 1.2 mol / liter LiPF 6 as an electrolyte, The exterior of the aluminum laminate film was sealed to produce a cell.

(リチウムイオンドープ工程及び貫通孔閉塞工程)
その後、正極端子を充放電装置のプラス端子に、負極端子を充放電装置のマイナス端子に接続して20mAで2時間充電を行い、負極へのリチウムイオンのドープを行った。リチウムイオンのドープ後、セル全体をシート状のヒーターで挟み、90℃で3分間加熱すると共に、負極端子をヒーターにより180℃で3分間加熱した。その後、容器を開封し、電解液量を調整した後、再度封口して試験用セルとした。
(Lithium ion doping process and through hole closing process)
Thereafter, the positive electrode terminal was connected to the plus terminal of the charging / discharging device, the negative electrode terminal was connected to the minus terminal of the charging / discharging device, and charging was performed at 20 mA for 2 hours to dope lithium ions into the negative electrode. After doping with lithium ions, the entire cell was sandwiched between sheet heaters and heated at 90 ° C. for 3 minutes, and the negative electrode terminal was heated at 180 ° C. for 3 minutes with a heater. Then, after opening a container and adjusting the amount of electrolyte solution, it sealed again and it was set as the test cell.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、500mAで4VまでCC充電、500mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は85%であり、良好な結果が得られた。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was performed on condition of CC charge to 500V and 4V CC discharge, and 500mA to CC discharge to 2V. In this test, the capacity retention rate after 5000 cycles was 85%, and good results were obtained.

〔比較例1〕
以下に、比較例1に係る蓄電デバイスセルの製造方法について説明する。この比較例1で作製される蓄電デバイスセルの主な構造は、図1に示すものと同様である。なお、比較例1で作製された蓄電デバイスセルについて充放電サイクル試験を実施し、他の実施例及び比較例で作製された蓄電デバイスと性能の比較を行った結果を図4に示す。
[Comparative Example 1]
Below, the manufacturing method of the electrical storage device cell which concerns on the comparative example 1 is demonstrated. The main structure of the electricity storage device cell manufactured in Comparative Example 1 is the same as that shown in FIG. In addition, the charge / discharge cycle test was implemented about the electrical storage device cell produced by the comparative example 1, and the result of having compared performance with the electrical storage device produced by the other Example and the comparative example is shown in FIG.

(共通負極作製工程)
負極集電箔の貫通孔に樹脂を含む粒子を充填せずに使用した。負極電極層の形成は、上記実施例1と同様に、負極電極層材料としての黒鉛、第二のバインダとしてのポリフッ化ビニリデン、第二の溶媒としてのn−メチルピロリドンからなる電極ペーストを、離型フィルム上に固定した集電箔上にドクターブレード法により塗布した。
(Common negative electrode manufacturing process)
The negative electrode current collector foil was used without filling the through-holes with resin-containing particles. In the same manner as in Example 1 above, the negative electrode layer was formed by separating an electrode paste made of graphite as the negative electrode layer material, polyvinylidene fluoride as the second binder, and n-methylpyrrolidone as the second solvent. It apply | coated by the doctor blade method on the current collection foil fixed on the type | mold film.

しかし、電極ペーストが貫通孔を通って集電箔裏面に流れてしまい、表面に所定の目付量が塗布できなかった。また、乾燥後の電極表面は凹凸が多く、平滑な電極を形成することができなかった。70℃で乾燥後、裏面に流れ出た負極電極層を剥ぎ取り、裏面に所定量のペーストを塗布し乾燥した後、再度、表面に不足分の電極ペーストを塗布し、所定の目付とした。以降のリチウムイオンドープ工程までは上記実施例1と同様に行ったが、貫通孔閉塞工程は行わなかった。   However, the electrode paste flowed through the through hole to the back surface of the current collector foil, and a predetermined basis weight could not be applied to the surface. Moreover, the electrode surface after drying had many irregularities, and a smooth electrode could not be formed. After drying at 70 ° C., the negative electrode layer flowing out on the back surface was peeled off, a predetermined amount of paste was applied to the back surface and dried, and then an insufficient amount of electrode paste was applied again on the surface to obtain a predetermined basis weight. Although it carried out similarly to the said Example 1 until the subsequent lithium ion dope process, the through-hole obstruction | occlusion process was not performed.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、60mAで4VまでCC充電、60mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は51%であり、上記実施例1〜実施例3に比べて大幅に低かった。本比較例1では、負極集電箔の貫通孔に樹脂を含む粒子を充填しなかったため、貫通孔内部には電極ペーストが充填されており、貫通孔を通じてリチウムイオンが出入りする。このため、充放電時に貫通孔内部をリチウムイオンが移動し、負極内における電極反応分布が生じ、電極劣化が促進されたと考えられる。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was done on the conditions of CC charge to 4V at 60 mA and CC discharge to 2V at 60 mA. In this test, the capacity retention rate after 5000 cycles was 51%, which was significantly lower than those in Examples 1 to 3. In Comparative Example 1, the through holes of the negative electrode current collector foil were not filled with the resin-containing particles, so that the through holes were filled with electrode paste, and lithium ions entered and exited through the through holes. For this reason, it is considered that lithium ions moved inside the through-hole during charge / discharge, an electrode reaction distribution was generated in the negative electrode, and electrode deterioration was promoted.

〔比較例2〕
以下に、比較例2に係る蓄電デバイスセルの製造方法について説明する。この比較例2で作製される蓄電デバイスセルの主な構造は、図1に示すものと同様である。なお、比較例2で作製された蓄電デバイスセルについて充放電サイクル試験を実施し、他の実施例及び比較例で作製された蓄電デバイスと性能の比較を行った結果を図4に示す。
[Comparative Example 2]
Below, the manufacturing method of the electrical storage device cell which concerns on the comparative example 2 is demonstrated. The main structure of the electricity storage device cell manufactured in Comparative Example 2 is the same as that shown in FIG. In addition, the charge / discharge cycle test was implemented about the electrical storage device cell produced by the comparative example 2, and the result of having compared performance with the electrical storage device produced by the other Example and the comparative example is shown in FIG.

(負極集電箔作製工程)
負極集電箔の貫通孔に充填される樹脂を含む粒子として、低密度ポリエチレンの代わりに平均粒子径6μmのアルミナ粒子を用いた。以降の共通負極作製工程から貫通孔閉塞工程までは上記実施例1と同様に行った。
(Negative electrode current collector foil production process)
As particles containing the resin filled in the through holes of the negative electrode current collector foil, alumina particles having an average particle diameter of 6 μm were used instead of low density polyethylene. The subsequent steps from the common negative electrode preparation step to the through hole closing step were performed in the same manner as in Example 1 above.

(充放電サイクル試験結果)
上記工程によって作製された試験用セルについて、60mAで4VまでCC充電、60mAで2VまでCC放電の条件でサイクル試験を行った。この試験において5000サイクル後の容量維持率は63%であり、上記実施例1〜実施例3に比べて低かった。本比較例2では、負極集電箔の貫通孔に無機物粒子であるアルミナ粒子を充填したので、リチウムイオンドープ工程後の加熱処理によって粒子が溶融せず、貫通孔は完全には閉塞されていない。このため、充放電時に貫通孔内部をリチウムイオンが移動し、負極内における電極反応分布が生じ、電極劣化が促進されたと考えられる。
(Charge / discharge cycle test results)
About the test cell produced by the said process, the cycle test was done on the conditions of CC charge to 4V at 60 mA and CC discharge to 2V at 60 mA. In this test, the capacity retention rate after 5000 cycles was 63%, which was lower than those in Examples 1 to 3. In Comparative Example 2, since the alumina particles as inorganic particles were filled in the through holes of the negative electrode current collector foil, the particles were not melted by the heat treatment after the lithium ion doping step, and the through holes were not completely blocked. . For this reason, it is considered that lithium ions moved inside the through-hole during charge / discharge, an electrode reaction distribution was generated in the negative electrode, and electrode deterioration was promoted.

〔比較例3〕
以下に、比較例3に係る蓄電デバイスセルの製造方法について説明する。この比較例3で作製される蓄電デバイスセルの主な構造は、図1に示すものと同様である。
[Comparative Example 3]
Below, the manufacturing method of the electrical storage device cell which concerns on the comparative example 3 is demonstrated. The main structure of the electricity storage device cell manufactured in Comparative Example 3 is the same as that shown in FIG.

(負極集電箔作製工程)
負極集電箔の貫通孔に充填される樹脂を含む粒子としての平均粒子径6μmの低密度ポリエチレン、第一の溶媒としてのn−メチルピロリドンからなる樹脂溶液を混合調整し、第一のバインダは混合しなかった。幅200mm、厚さ15μmの銅箔に孔径100μmの貫通孔が形成された開口率10%の集電箔を離型フィルム上に固定し、その上に上記樹脂溶液を所定量滴下し、ゴムヘラで表面の溶液を掻き落とし、70℃の乾燥機中で乾燥した。しかし、乾燥後、離型フィルムから集電箔を剥がす際に粒子が貫通孔から落ちてしまい、貫通孔に粒子を充填することができなかった。
(Negative electrode current collector foil production process)
A first binder is prepared by mixing and adjusting a resin solution composed of low-density polyethylene having an average particle diameter of 6 μm as particles containing resin filled in the through holes of the negative electrode current collector foil and n-methylpyrrolidone as the first solvent. Did not mix. A current-collecting foil having a 10% aperture ratio in which a through hole having a hole diameter of 100 μm was formed on a copper foil having a width of 200 mm and a thickness of 15 μm was fixed on a release film, and a predetermined amount of the resin solution was dropped on the release film, and a rubber spatula The surface solution was scraped off and dried in a dryer at 70 ° C. However, after drying, when the current collector foil was peeled from the release film, the particles dropped from the through holes, and the through holes could not be filled with the particles.

以降の共通負極作製工程から貫通孔閉塞工程までは上記実施例1と同様に行った。本比較例3において作成されたセルについて、上記比較例2と同様の充放電サイクル試験を行った結果、上記実施例1〜実施例3に比べて容量維持率が低かった。   The subsequent steps from the common negative electrode preparation step to the through hole closing step were performed in the same manner as in Example 1 above. As a result of performing a charge / discharge cycle test similar to that of Comparative Example 2 on the cell created in Comparative Example 3, the capacity retention rate was lower than that of Examples 1 to 3.

〔比較例4〕
以下に、比較例4に係る蓄電デバイスセルの製造方法について説明する。この比較例4で作製される蓄電デバイスセルの主な構造は、図1に示すものと同様である。
[Comparative Example 4]
Below, the manufacturing method of the electrical storage device cell which concerns on the comparative example 4 is demonstrated. The main structure of the electricity storage device cell manufactured in Comparative Example 4 is the same as that shown in FIG.

本比較例4では、リチウムイオンドープ工程までは上記実施例1と同様に作製したが、リチウムイオンドープ工程の後、貫通孔閉塞工程を行わなかった。すなわち、セルを加熱処理していないため、貫通孔内部の樹脂を含む粒子は溶融されておらず、貫通孔は閉塞されていない。本比較例4において作成されたセルについて、上記比較例2と同様の充放電サイクル試験を行った結果、上記実施例1〜実施例3に比べて容量維持率が低かった。   In this comparative example 4, it produced similarly to the said Example 1 until the lithium ion dope process, However, The through-hole obstruction | occlusion process was not performed after the lithium ion dope process. That is, since the cell is not heat-treated, the particles containing the resin inside the through hole are not melted and the through hole is not blocked. As a result of conducting a charge / discharge cycle test similar to that of Comparative Example 2 on the cell created in Comparative Example 4, the capacity retention rate was lower than those of Examples 1 to 3.

上記比較例3及び本比較例4では、負極集電箔の貫通孔に樹脂を含む粒子が充填されていない、あるいは貫通孔内部の樹脂を含む粒子が溶融されていないため、いずれも貫通孔は閉塞されていない。このため、充放電時に貫通孔内部をリチウムイオンが移動し、負極内における電極反応分布が生じ、電極劣化が促進されたと考えられる。   In Comparative Example 3 and Comparative Example 4, the through holes of the negative electrode current collector foil are not filled with particles containing resin, or the particles containing resin inside the through holes are not melted. Not blocked. For this reason, it is considered that lithium ions moved inside the through-hole during charge / discharge, an electrode reaction distribution was generated in the negative electrode, and electrode deterioration was promoted.

本発明は、携帯情報端末、携帯電子機器、家庭用小型蓄電装置及び電動工具、さらには電気自動車、ハイブリッド電気自動車等に用いられる蓄電デバイスとして利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a power storage device used in a portable information terminal, a portable electronic device, a small household power storage device and a power tool, an electric vehicle, a hybrid electric vehicle, and the like.

1 リチウムイオンキャパシタ正極、2 正極集電箔、2a キャパシタ正極集電箔、2b 電池正極集電箔、3 リチウムイオンキャパシタ正極電極層、
4 リチウム電池正極、5 リチウム電池正極電極層、6 共通負極、7 負極集電箔、8 リチウムイオンキャパシタ負極電極層、9 リチウム電池負極電極層、
10 貫通孔、11 セパレータ、11a 第一のセパレータ、
11b 第二のセパレータ、12 樹脂を含む粒子、13 バインダ、14 空隙、
15 共通正極、16 正極端子、17 負極端子、
20 リチウムイオンキャパシタ部、30 リチウム電池部。
1 lithium ion capacitor positive electrode, 2 positive electrode current collector foil, 2a capacitor positive electrode current collector foil, 2b battery positive electrode current collector foil, 3 lithium ion capacitor positive electrode layer,
4 lithium battery positive electrode, 5 lithium battery positive electrode layer, 6 common negative electrode, 7 negative electrode current collector foil, 8 lithium ion capacitor negative electrode layer, 9 lithium battery negative electrode layer,
10 through hole, 11 separator, 11a first separator,
11b Second separator, 12 particles containing resin, 13 binder, 14 voids,
15 common positive electrode, 16 positive terminal, 17 negative terminal,
20 Lithium ion capacitor part, 30 Lithium battery part.

Claims (11)

負極集電箔と、前記負極集電箔の少なくとも一方の面に設けられた負極活物質層を備え、前記負極集電箔は、その一方の面から他方の面に貫通する複数の貫通孔を有し、前記貫通孔の内部に樹脂を含む粒子が充填されていることを特徴とする蓄電デバイス用負極。   A negative electrode current collector foil; and a negative electrode active material layer provided on at least one surface of the negative electrode current collector foil, wherein the negative electrode current collector foil has a plurality of through holes penetrating from one surface to the other surface. And a negative electrode for an electricity storage device, wherein the through hole is filled with particles containing a resin. 請求項1に記載の蓄電デバイス用負極であって、前記粒子は、バインダにより互いに結着されていることを特徴とする蓄電デバイス用負極。   The negative electrode for an electricity storage device according to claim 1, wherein the particles are bound to each other by a binder. 請求項1に記載の蓄電デバイス用負極であって、前記粒子は、結晶性樹脂からなることを特徴とする蓄電デバイス用負極。   2. The negative electrode for an electricity storage device according to claim 1, wherein the particles are made of a crystalline resin. 請求項3に記載の蓄電デバイス用負極であって、前記粒子として、低密度ポリエチレン粒子、エチレンアクリル酸共重合体粒子、低融点ポリエステル粒子、及びこれらの複合粒子のいずれかを用いたことを特徴とする蓄電デバイス用負極。   It is the negative electrode for electrical storage devices of Claim 3, Comprising: The low-density polyethylene particle, the ethylene acrylic acid copolymer particle, the low melting-point polyester particle, and these composite particles were used as the said particle | grains. A negative electrode for an electricity storage device. 複数の貫通孔を有する負極集電箔と、前記負極集電箔の少なくとも一方の面に設けられた負極活物質層を備えた蓄電デバイス用負極の製造方法であって、
樹脂を含む粒子、第一のバインダ、及び第一の溶媒からなる樹脂溶液を混合調製し、この樹脂溶液を前記負極集電箔の前記貫通孔に充填する負極集電箔作製工程、
前記負極集電箔作製工程の後、前記負極活物質層材料、第二のバインダ、及び第二の溶媒からなる電極ペーストを混合調製し、この電極ペーストを前記負極集電箔の少なくとも一方の面に塗布して前記負極活物質層を形成する負極作製工程を含むことを特徴とする蓄電デバイス用負極の製造方法。
A negative electrode current collector foil having a plurality of through holes, and a method for producing a negative electrode for an electricity storage device comprising a negative electrode active material layer provided on at least one surface of the negative electrode current collector foil,
A negative electrode current collector foil preparation step of mixing and preparing a resin solution comprising particles containing a resin, a first binder, and a first solvent, and filling the resin solution into the through holes of the negative electrode current collector foil,
After the negative electrode current collector foil preparation step, an electrode paste comprising the negative electrode active material layer material, the second binder, and the second solvent is mixed and prepared, and this electrode paste is prepared on at least one surface of the negative electrode current collector foil. A method for producing a negative electrode for an electricity storage device, comprising: a negative electrode preparation step in which the negative electrode active material layer is formed by coating on a negative electrode.
キャパシタ正極集電箔の一方の面にキャパシタ正極電極層が設けられたリチウムイオンキャパシタ正極と、
負極集電箔の両面に負極電極層が設けられた共通負極と、
電池正極集電箔の一方の面にリチウム金属化合物を含む電池正極電極層が設けられたリチウム電池正極と、
前記キャパシタ正極電極層と前記共通負極の一方の前記負極電極層との間に配置された第一のセパレータと、
前記電池正極電極層と前記共通負極の他方の前記負極電極層との間に配置された第二のセパレータを備え、
前記負極集電箔は、その一方の面から他方の面に貫通する複数の貫通孔を有し、前記貫通孔の内部に樹脂を含む粒子が充填されていることを特徴とする蓄電デバイス。
A lithium ion capacitor positive electrode provided with a capacitor positive electrode layer on one surface of the capacitor positive electrode current collector foil;
A common negative electrode provided with negative electrode layers on both sides of the negative electrode current collector foil;
A lithium battery positive electrode provided with a battery positive electrode layer containing a lithium metal compound on one surface of the battery positive electrode current collector foil;
A first separator disposed between the capacitor positive electrode layer and one negative electrode layer of the common negative electrode;
A second separator disposed between the battery positive electrode layer and the other negative electrode layer of the common negative electrode;
The negative electrode current collector foil has a plurality of through holes penetrating from one surface to the other surface, and the through holes are filled with particles containing a resin.
請求項6に記載の蓄電デバイスであって、前記粒子は、バインダにより互いに結着されていることを特徴とする蓄電デバイス。   The electricity storage device according to claim 6, wherein the particles are bound to each other by a binder. 請求項6に記載の蓄電デバイスであって、前記粒子は、結晶性樹脂からなることを特徴とする蓄電デバイス。   The power storage device according to claim 6, wherein the particles are made of a crystalline resin. 請求項8に記載の蓄電デバイスであって、前記粒子として、低密度ポリエチレン粒子、エチレンアクリル酸共重合体粒子、低融点ポリエステル粒子、及びこれらの複合粒子のいずれかを用いたことを特徴とする蓄電デバイス。   The power storage device according to claim 8, wherein the particles are low density polyethylene particles, ethylene acrylic acid copolymer particles, low melting point polyester particles, or composite particles thereof. Power storage device. 複数の貫通孔を有する負極集電箔を用意し、樹脂を含む粒子、第一のバインダ、及び第一の溶媒からなる樹脂溶液を前記貫通孔の内部に充填した後、前記負極集電箔の両面に負極電極層を順次形成し、共通負極を作製する共通負極作製工程、
キャパシタ正極集電箔の一方の面にキャパシタ正極電極層が設けられたリチウムイオンキャパシタ正極と、第一のセパレータと、前記共通負極と、第二のセパレータと、電池正極集電箔の一方の面にリチウム金属化合物を含む電池正極電極層が設けられたリチウム電池正極をこの順に積層した蓄電素子を容器内に収納し、電解液を注入して前記容器を封口するセル作製工程、
前記セル作製工程の後、前記リチウム電池正極から前記共通負極へ電気化学的操作によりリチウムイオンをドープするリチウムイオンドープ工程、
前記リチウムイオンドープ工程の後、前記容器の外側から前記蓄電素子を加熱し、前記貫通孔内部の前記樹脂を含む粒子を溶融させる貫通孔閉塞工程を含むことを特徴とする蓄電デバイスの製造方法。
A negative electrode current collector foil having a plurality of through-holes is prepared, and after filling the inside of the through-holes with a resin solution comprising resin-containing particles, a first binder, and a first solvent, the negative electrode current collector foil A common negative electrode preparation step in which a negative electrode layer is sequentially formed on both sides to produce a common negative electrode;
Lithium ion capacitor positive electrode provided with a capacitor positive electrode layer on one surface of the capacitor positive electrode current collector foil, the first separator, the common negative electrode, the second separator, and one surface of the battery positive electrode current collector foil A cell manufacturing step of storing a storage element in which a lithium battery positive electrode provided with a battery positive electrode layer containing a lithium metal compound is stacked in this order in a container, and injecting an electrolyte solution to seal the container;
After the cell manufacturing step, a lithium ion doping step of doping lithium ions by electrochemical operation from the lithium battery positive electrode to the common negative electrode,
After the said lithium ion dope process, the said electrical storage element is heated from the outer side of the said container, The through-hole obstruction | occlusion process of melting the particle | grains containing the said resin inside the said through-hole is included, The manufacturing method of the electrical storage device characterized by the above-mentioned.
請求項10に記載の蓄電デバイスの製造方法であって、前記貫通孔閉塞工程において、前記共通負極に接続された負極端子部を加熱することにより、前記負極集電箔を選択的に加熱することを特徴とする蓄電デバイスの製造方法。
It is a manufacturing method of the electrical storage device of Claim 10, Comprising: In the said through-hole obstruction | occlusion process, heating the said negative electrode current collection foil by heating the negative electrode terminal part connected to the said common negative electrode. A method of manufacturing an electricity storage device characterized by the above.
JP2010198828A 2010-09-06 2010-09-06 Negative electrode for power storage device and power storage device, and method of manufacturing them Pending JP2012059396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198828A JP2012059396A (en) 2010-09-06 2010-09-06 Negative electrode for power storage device and power storage device, and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198828A JP2012059396A (en) 2010-09-06 2010-09-06 Negative electrode for power storage device and power storage device, and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2012059396A true JP2012059396A (en) 2012-03-22

Family

ID=46056297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198828A Pending JP2012059396A (en) 2010-09-06 2010-09-06 Negative electrode for power storage device and power storage device, and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2012059396A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760887A (en) * 2012-07-18 2012-10-31 北京好风光储能技术有限公司 Leakage-proof bipolar current collector, high-voltage battery and preparation methods thereof
KR20130135101A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Collector, electrode and secondary battery having the same
JP5614567B2 (en) * 2011-10-31 2014-10-29 株式会社村田製作所 Lithium ion secondary battery
WO2014210491A3 (en) * 2013-06-28 2015-02-26 Johnson Controls Technology Company Battery powered rear view mirror display and integrated trainable transceiver unit
CN107578925A (en) * 2016-07-04 2018-01-12 太阳诱电株式会社 Electrochemical device electrode and its manufacture method, electrochemical device
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
KR20190044482A (en) * 2017-10-20 2019-04-30 삼성전자주식회사 Stretchable electrode, electrochemical device including the same, and method of manufacturing the stretchable electrode
JP2019106520A (en) * 2017-12-12 2019-06-27 コリア・ジェイシーシー・カンパニー・リミテッド Electric double layer capacitor
KR20190107503A (en) * 2018-03-12 2019-09-20 에스케이이노베이션 주식회사 Lithium ion secondary cell having multiple substrates
JP2022117960A (en) * 2021-02-01 2022-08-12 本田技研工業株式会社 Electrode and power storage device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614567B2 (en) * 2011-10-31 2014-10-29 株式会社村田製作所 Lithium ion secondary battery
JPWO2013065575A1 (en) * 2011-10-31 2015-04-02 株式会社村田製作所 Lithium ion secondary battery
KR20130135101A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Collector, electrode and secondary battery having the same
KR101606958B1 (en) * 2012-05-31 2016-03-28 주식회사 엘지화학 Collector, electrode and secondary battery having the same
CN102760887A (en) * 2012-07-18 2012-10-31 北京好风光储能技术有限公司 Leakage-proof bipolar current collector, high-voltage battery and preparation methods thereof
WO2014210491A3 (en) * 2013-06-28 2015-02-26 Johnson Controls Technology Company Battery powered rear view mirror display and integrated trainable transceiver unit
CN107578925B (en) * 2016-07-04 2019-06-28 太阳诱电株式会社 Electrochemical device electrode and its manufacturing method, electrochemical device
CN107578925A (en) * 2016-07-04 2018-01-12 太阳诱电株式会社 Electrochemical device electrode and its manufacture method, electrochemical device
US10305112B2 (en) 2016-07-04 2019-05-28 Taiyo Yuden Co., Ltd. Electrochemical device electrode, electrochemical device, and method for manufacturing electrochemical device electrode
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
US11081762B2 (en) 2017-06-27 2021-08-03 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
KR20190044482A (en) * 2017-10-20 2019-04-30 삼성전자주식회사 Stretchable electrode, electrochemical device including the same, and method of manufacturing the stretchable electrode
KR102650655B1 (en) 2017-10-20 2024-03-25 삼성전자주식회사 Stretchable electrode, electrochemical device including the same, and method of manufacturing the stretchable electrode
JP2019106520A (en) * 2017-12-12 2019-06-27 コリア・ジェイシーシー・カンパニー・リミテッド Electric double layer capacitor
KR20190107503A (en) * 2018-03-12 2019-09-20 에스케이이노베이션 주식회사 Lithium ion secondary cell having multiple substrates
KR102560559B1 (en) 2018-03-12 2023-07-28 에스케이온 주식회사 Lithium ion secondary cell having multiple substrates
JP2022117960A (en) * 2021-02-01 2022-08-12 本田技研工業株式会社 Electrode and power storage device
JP7220313B2 (en) 2021-02-01 2023-02-09 本田技研工業株式会社 Electrodes and storage devices

Similar Documents

Publication Publication Date Title
US8288032B2 (en) Energy storage device cell and control method thereof
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
US8785047B2 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
CN110556611A (en) Pre-lithiation of negative electrodes for high performance capacitor-assisted batteries
JP5096851B2 (en) Method for manufacturing power storage device
JP5397711B2 (en) Method for manufacturing battery electrode
US9601737B2 (en) Lithium-ion secondary battery separator
JP4041044B2 (en) Method for manufacturing electrochemical device
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP5704405B2 (en) Secondary battery
JP5818078B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012169576A (en) Electrochemical device
JP2008300667A (en) Accumulation device
JP2001176482A (en) Nonaqueous electrolyte secondary battery
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP2005243455A (en) Electrochemical device
JP2012248556A (en) Electrochemical device and method for manufacturing the same
JP4245429B2 (en) Battery with spiral electrode group
KR101138477B1 (en) lithium ion capacitor and method of manufacturing the same
JP2009199962A (en) Separator-incorporated electrode, its manufacturing method, and power storage device using the same
JP2009076249A (en) Power storage device
JP2011165930A (en) Power storage device, and method of manufacturing shared negative electrode of the same
JP2000133316A (en) Lithium secondary battery and fabricating method for electrode plate