JP2016130717A - Spherical surface inspection device - Google Patents

Spherical surface inspection device Download PDF

Info

Publication number
JP2016130717A
JP2016130717A JP2015014745A JP2015014745A JP2016130717A JP 2016130717 A JP2016130717 A JP 2016130717A JP 2015014745 A JP2015014745 A JP 2015014745A JP 2015014745 A JP2015014745 A JP 2015014745A JP 2016130717 A JP2016130717 A JP 2016130717A
Authority
JP
Japan
Prior art keywords
lens
image
illumination
objective lens
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014745A
Other languages
Japanese (ja)
Other versions
JP6024056B2 (en
Inventor
新一 土坂
Shinichi Tsuchisaka
新一 土坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015014745A priority Critical patent/JP6024056B2/en
Priority to TW104118450A priority patent/TWI589858B/en
Publication of JP2016130717A publication Critical patent/JP2016130717A/en
Application granted granted Critical
Publication of JP6024056B2 publication Critical patent/JP6024056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide vertical illumination or transmitted illumination spherical surface inspection device that implements an appearance inspection of an entire surface or part of an inspected surface of an inspected member including a surface with a spherical or aspherical surface with a wide field of view and high accuracy.SOLUTION: A vertical illumination spherical surface inspection device has: an image observation unit 90c that includes an objective lens 3 creating a primary image of an inspected surface 1b of an inspected member 1 as a telecentric real image or virtual image, an objective lens support base 90b, a set having an image relay lens 4 and image formation lens 5 relaying the primary image to be created by the objective lens, and creating a secondary image, and an image pick-up element 6 attached at a secondary image formation position and moves along an inspection optical axis; and a vertical illumination projection unit 90d that, due to an arrangement of a light splitting deflection mirror 7, allows a light flux from a circular light source 11 arranged on a projection light optical axis 21 to be formed at a focus position of the objective lens as a circular light source image. A size of the circular light source or a numerical aperture illuminating the inspected member, that is, an illumination NA is variable.SELECTED DRAWING: Figure 1

Description

本発明は、少なくとも一部の表面に球面または非球面を含む被検面を有する被検部材の被検面の全体または一部を広い視野で高精度に外観検査でき、観察可能な被検面の曲率半径の範囲が広く、かつ被検面曲率中心から被検面の外径をみる円錐角が大きい球面をほぼ平面像として観察できる落射または透過照明球面検査装置に関する。  The present invention is capable of observing and observing the whole or part of the test surface of a test member having a test surface including a spherical surface or an aspherical surface on at least a part of the surface with a wide field of view with high accuracy. The present invention relates to an epi-illumination or transmission illumination spherical surface inspection apparatus capable of observing a spherical surface having a wide range of curvature radius and having a large cone angle when viewing the outer diameter of the surface to be measured from the center of curvature of the surface to be measured as a substantially planar image.

光学ガラスや樹脂で作られたレンズあるいは金属で作られるモールドレンズ用金型や鋼球等の検査では、被検部材の球面部表面の傷や汚れ、ボツと呼ばれる小さな表面の欠落、あるいは加工不良による金型球面上のうねり、刃物痕などを高精度で広い範囲を一括して検査できる手段や装置が求められている。  In the inspection of mold lenses and steel balls made of lenses or metal lenses made of optical glass or resin, scratches and dirt on the surface of the spherical surface of the member to be tested, small surface defects called craters, or processing defects Therefore, there is a need for means and devices that can inspect a large range of undulations, blade traces, and the like on a mold spherical surface with high accuracy.

従来、球面の外観検査は球面部表面に様々なタイプの照明光を照射し、球面部を搖動させながら裸眼やルーペを用いて目視観察している。しかし、熟練した技術が必要であり誰もが簡単にできるものではなかった。さらに、目視検査では欠陥の存在は認識できても欠陥の大きさが測定できない不具合があった。また、顕微鏡を用いる球面検査は球体の頂点と周辺とではピント位置が異なるため観察範囲が狭く球面表面を一括検査できない上に照明法によっては観察できる欠陥種が限定されるなどの不具合があった。  Conventionally, spherical surface inspection involves irradiating various types of illumination light on the surface of the spherical surface and visually observing it using the naked eye or a loupe while moving the spherical surface. However, skillful skills were necessary, and it was not easy for everyone. Furthermore, there is a defect that the size of the defect cannot be measured even though the presence of the defect can be recognized by visual inspection. In addition, spherical inspection using a microscope has problems such as the focus range is different between the apex and the periphery of the sphere, so that the observation range is narrow and the spherical surface cannot be inspected collectively, and depending on the illumination method, the types of defects that can be observed are limited. .

このような問題を解決するため、球面表面を検査する装置として特許文献1や特許文献2及び特許文献3に開示される球面検査装置がある。
特許文献1に開示される球面検査装置は、透過型顕微鏡を基本光学系として用い、小さな散乱円形光源(以下円形光源)を被検レンズの焦点位置に投影し、円形光源像からの照明光束で被検レンズ両面の球面全面を照明する。被検レンズを透過した照明光はアフォーカルな光束となって物体側にも結像側にも略テレセントリックな結像光学系に入射し、結像光学系の結像位置に置いたカメラの撮像面に被検面像を作る透過照明球面検査装置である。球面検査装置は被検面の頂点と周辺に高さの違いがあっても球面を平面像に近く表現することができる。かつ被検レンズ毎に異なる焦点距離や中心厚及び被検面の曲率半径や外径等の違いに対して、被検レンズの焦点に小さな円形光源を投影する焦点距離や開口数の異なる投光レンズを用意することによって幅広く対応できた。しかし、被検レンズに透過照明を行う必要から素材が金属であるレンズモールド型や鋼球には使用できなかった。特許文献1は球面表面を平面に近い精細な画像として表現する基本光学技術や被検球面の曲率半径の違いに広範囲で対応する技術を説明している参考文献である。
In order to solve such problems, there are spherical surface inspection devices disclosed in Patent Literature 1, Patent Literature 2, and Patent Literature 3 as devices for inspecting a spherical surface.
The spherical inspection apparatus disclosed in Patent Document 1 uses a transmission microscope as a basic optical system, projects a small scattered circular light source (hereinafter referred to as a circular light source) on the focal position of a lens to be examined, and uses an illumination light beam from a circular light source image. Illuminate the entire spherical surface of both sides of the test lens. The illumination light that has passed through the lens to be examined becomes an afocal beam and enters the imaging optical system that is approximately telecentric on both the object side and the imaging side, and is imaged by the camera placed at the imaging position of the imaging optical system. This is a transmitted illumination spherical surface inspection device that creates a test surface image on a surface. The spherical inspection apparatus can represent a spherical surface close to a planar image even if there is a difference in height between the vertex and the periphery of the surface to be examined. In addition, projections with different focal lengths and numerical apertures project a small circular light source at the focal point of the lens to be tested for differences in focal length, center thickness, curvature radius, outer diameter, etc. We were able to cope with a wide range by preparing lenses. However, since it was necessary to illuminate the lens to be examined, it could not be used for a lens mold mold or a steel ball whose material is a metal. Patent Document 1 is a reference that describes a basic optical technique for expressing a spherical surface as a fine image close to a flat surface and a technique for dealing with a wide range of differences in the radius of curvature of a spherical surface to be examined.

特許文献2に開示される落射照明球面検査装置は、小さな円形光源を対物レンズの焦点に円形光源像として投影し、円形光源像に被検球面の曲率中心を合致させて被検球面を照明し、被検球面表面からの反射光を対物レンズと結像レンズで画像センサー上に写しだす落射照明球面検査装置である。詳しい説明は、特許文献3が特許文献2の基礎となる先行技術であることとその他の異なる落射照明球面検査装置の先行技術も併記されていることから特許文献3の説明後に行う。  The epi-illumination spherical surface inspection device disclosed in Patent Document 2 projects a small circular light source as a circular light source image on the focal point of an objective lens, and illuminates the spherical surface by matching the center of curvature of the spherical surface with the circular light source image. This is an epi-illumination spherical surface inspection device that projects the reflected light from the surface of the spherical surface to be imaged onto the image sensor with an objective lens and an imaging lens. Detailed description will be made after the description of Patent Document 3, since Patent Document 3 is a prior art that is the basis of Patent Document 2 and other prior art of an epi-illumination spherical inspection apparatus.

特許文献3は大きな曲率半径を持つ球面の落射照明球面検査装置として開示され、以下の3つの技術が記載されている。
特許文献3の請求項の具体的構成を表す図1及び図2に記載する技術と、請求項の対物レンズと結像レンズの位置関係を対物レンズの像側焦点と結像レンズの物体側焦点とを合致させた構成(以下テレセントリックな構成と称するが、この構成では必ずしもテレセントリックな像を結像するものではない)とした図3に記載する技術と、被検球面を設置する光学位置が図3と異なるその他の実施例の図4及び図5に記載の技術との3つの技術からなっている。
Patent Document 3 is disclosed as a spherical epi-illumination spherical surface inspection device having a large radius of curvature, and describes the following three techniques.
1 and 2 showing a specific configuration of the claims of Patent Document 3, and the positional relationship between the objective lens and the imaging lens of the claims, the image side focal point of the objective lens and the object side focal point of the imaging lens. And the optical position where the test sphere is installed is shown in FIG. 3 and a configuration in which the test spherical surface is installed (hereinafter referred to as a telecentric configuration, but this configuration does not necessarily form a telecentric image). The third embodiment is composed of three techniques, which are different from the third embodiment and described in FIGS. 4 and 5.

特許文献3の図1と図2の構成(以下請求項の構成)は、ランプで照明された拡散板上に円形スリットを配置した円形光源を投光レンズも兼ねる対物レンズで対物レンズの光軸上の任意の位置に投影し被検球面の曲率中心を円形光源像と合致させさせたうえで円形光源像からの光束で被検球面を照明する。被検球面からの反射光は、照明光と同じ光路をたどり対物レンズを通過し円形光源方向に戻るが、円形光源と対物レンズ間に配置した光分割偏向ミラーで対物レンズ光軸と直交方向に偏向される。偏向された光軸には結像レンズが配置されており、結像レンズと対物レンズとの合成によって被検球面の像をセンサー上に作る落射照明球面検査装置が開示されている。
図3の構成(以下実施例1)は照明系を図1に記載の構成のまま、前記対物レンズと結像レンズの構成例として前記対物レンズと結像レンズをテレセントリックな構成としたうえで被検球面を対物レンズの焦点位置に置き、被検球面の曲率中心に円形光源像を投影し円形光源像からの光束で被検球面を検査する。
1 and FIG. 2 of Patent Document 3 (hereinafter, the configuration of the claims) is an objective lens that also serves as a projection lens as a circular light source in which a circular slit is arranged on a diffusion plate illuminated by a lamp, and the optical axis of the objective lens. The projected spherical surface is illuminated with a light beam from the circular light source image after being projected to an arbitrary position on the top and matching the center of curvature of the spherical surface with the circular light source image. The reflected light from the subject spherical surface follows the same optical path as the illumination light, passes through the objective lens, and returns to the circular light source direction, but in a direction perpendicular to the optical axis of the objective lens by a light splitting deflection mirror disposed between the circular light source and the objective lens. Deflected. An imaging lens is disposed on the deflected optical axis, and an epi-illumination spherical surface inspection device is disclosed in which an image of a spherical surface to be examined is formed on a sensor by combining the imaging lens and an objective lens.
The configuration of FIG. 3 (hereinafter referred to as Example 1) is the same as the configuration of the objective lens and the imaging lens with the illumination system as shown in FIG. The test sphere is placed at the focal position of the objective lens, a circular light source image is projected on the center of curvature of the test sphere, and the test sphere is inspected with the light beam from the circular light source image.

図4と図5の構成(以下実施例2)は同じく構成例として対物レンズと結像レンズのテレセントリックな光学構成は図3をそのままに、新たに付加した集光(投光)レンズの焦点位置に円形光源を配置しアフォーカルな光束を対物レンズに入射させものである。実施例2では対物レンズの焦点位置にできる円形光源像に被検球面の曲率中心を合致させて球面検査をする。この場合、被検球面の曲率中心に向かった光は被検球面で反射した後入射した光路をそのままたどり、対物レンズを通過した後も入射時と同じく対物レンズの光軸に平行に進む。そして、ハーフミラーによって偏向された後、結像レンズに入射し対物レンズと結像レンズの合成で被検球面の像を作るものである。  4 and 5 (hereinafter referred to as Example 2) is also a structural example, and the focal position of a newly added condensing (projecting) lens with the telecentric optical configuration of the objective lens and the imaging lens as in FIG. A circular light source is disposed on the objective lens so that an afocal light beam is incident on the objective lens. In Example 2, spherical inspection is performed by matching the center of curvature of a spherical surface to be tested with a circular light source image formed at the focal position of the objective lens. In this case, the light directed toward the center of curvature of the test spherical surface follows the incident optical path after being reflected by the test spherical surface, and proceeds in parallel to the optical axis of the objective lens after passing through the objective lens, as in the case of incidence. Then, after being deflected by the half mirror, it enters the imaging lens and forms an image of the test spherical surface by combining the objective lens and the imaging lens.

特許文献3に記載の3つの構成を分類すると請求項の構成は対物レンズ光軸の任意の位置に投影した円形光源像に被検球面の曲率中心を合わせるもの、実施例1の構成は対物レンズの焦点に被検球面を置き、その曲率中心に円形光源像を投影するもの、実施例2の構成は対物レンズの焦点すなわち円形光源像に被検球面の曲率中心を合致させるものである。つまり被検球面が対物レンズの焦点にある実施例1と、被検球面が対物レンズの焦点にない請求項の構成と実施例2の構成では違いはあるものの、被検球面の曲率中心に光源像を投影する点は同じである。  When the three configurations described in Patent Document 3 are classified, the configuration of the claims is to align the center of curvature of the test spherical surface with the circular light source image projected on an arbitrary position of the optical axis of the objective lens, and the configuration of Example 1 is the objective lens. The test spherical surface is placed at the focal point and a circular light source image is projected at the center of curvature. The configuration of the second embodiment matches the focal point of the objective lens, that is, the circular light source image, with the center of curvature of the test spherical surface. In other words, although there is a difference between the configuration of the first embodiment in which the test spherical surface is at the focal point of the objective lens and the configuration of the second embodiment in which the test spherical surface is not at the focus of the objective lens, the light source is centered on the curvature of the test spherical surface. The point at which the image is projected is the same.

特許文献2は記載されている図1、図3を視るかぎり、特許文献3の実施例2の変形である。特許文献3の請求項の提案光学系には被検球面の光学的な位置が記載されていないが、図からは特許文献2は対物レンズの焦点位置に被検球面の曲率中心を合致させるとの意図であるとわかる。特許文献2の構成は特許文献3の実施例2の構成から対物レンズと結像レンズをテレセントリックな配置に固定しないことによって対物レンズと結像レンズの間隔に自由度を持たせ、かつ結像レンズの焦点に置いたアパーチャーストップによって結像光束のNA、即ち開口数を絞り被検球面像のコントラストと焦点深度を高め検査可能な被検球面曲率半径の幅を広げていると言える。また、特許文献3では光源を可視光の点光源にしてあることは円形光源像の大きさを規定しており重要な記載事項である。  Patent Document 2 is a modification of Example 2 of Patent Document 3 as far as FIG. 1 and FIG. Although the optical position of the test sphere is not described in the proposed optical system in the claims of Patent Document 3, from the figure, Patent Document 2 shows that the center of curvature of the test sphere matches the focal position of the objective lens. It is understood that this is the intention. The configuration of Patent Document 2 provides a degree of freedom in the distance between the objective lens and the imaging lens by not fixing the objective lens and the imaging lens in a telecentric arrangement from the configuration of Example 2 of Patent Document 3, and the imaging lens. It can be said that the aperture stop placed at the focal point of the aperture reduces the NA of the imaging light beam, that is, the numerical aperture, thereby increasing the contrast and depth of focus of the test spherical image, thereby widening the width of the test spherical curvature radius. In Patent Document 3, the fact that the light source is a point light source for visible light defines the size of the circular light source image and is an important description.

しかしながら、これら特許文献の落射照明球面検査装置には以下に述べるような問題があった。
まず、これら特許文献に共通な問題である光源の大きさについて説明する。特許文献2では点光源と記載され、特許文献3では円形スリット(光源)とのみ記載されているが、どのような大きさかは記載されていない。他方、特許文献1では円形光源像から被検球面の一点を照明する照明NA(本願の図4に示す)を規定している。点光源を用いて作る像は高コントラストだが解像力は低く、一方、照明NAが大きいと解像力が上がると一般的に言われる。しかし、照明NAは大きければよいというものでない。この理由は、解像力もコントラストも装置の目的ごとにある値の照明NAを持つことが重要だからである。特許文献2及び3の装置では、照明NAが大きすぎると被検球面から反射した光は大きな光束のまま対物レンズと結像レンズを通過するので結像光学系設計の収差補正に負担が生じたり、使用するレンズの口径を大きくしないと像の周辺光量不足や視野のケラレを発生させることになる。よって、照明光を照射して画像を得る検査装置では照明NAを規定することは重要である。この問題は、照明NAは円形光源の大きさと被検球面の曲率半径に依存することから、小さな曲率半径で大きな球面角(本願の図4参照)を持つ球面検査の場合顕著に現れる。なお、観察可能な被検球面の外径と曲率半径が作る円錐角の1/2を視野角と称する。また、本願において被検球面との外径と曲率半径が作る円錐角の1/2を球面角とする。
However, the epi-illumination spherical surface inspection devices of these patent documents have the following problems.
First, the size of the light source, which is a problem common to these patent documents, will be described. Patent Document 2 describes a point light source, and Patent Document 3 describes only a circular slit (light source), but does not describe what size it is. On the other hand, Patent Document 1 defines an illumination NA (shown in FIG. 4 of the present application) for illuminating one point of a test spherical surface from a circular light source image. An image made using a point light source is generally said to have high contrast but low resolving power. On the other hand, if the illumination NA is large, the resolving power increases. However, the illumination NA is not necessarily large. This is because it is important to have a certain value of illumination NA for each purpose of the device, both resolution and contrast. In the devices of Patent Documents 2 and 3, if the illumination NA is too large, the light reflected from the test spherical surface passes through the objective lens and the imaging lens as a large luminous flux, which causes a burden on the aberration correction of the imaging optical system design. If the diameter of the lens to be used is not increased, the amount of light around the image will be insufficient and vignetting will occur. Therefore, it is important to define the illumination NA in an inspection apparatus that obtains an image by irradiating illumination light. This problem is conspicuous in the case of spherical inspection with a small curvature radius and a large spherical angle (see FIG. 4 of the present application) because the illumination NA depends on the size of the circular light source and the curvature radius of the test spherical surface. Note that ½ of the cone angle formed by the outer diameter and the radius of curvature of the observable spherical surface is referred to as a viewing angle. Further, in this application, a half of the cone angle formed by the outer diameter and the radius of curvature with the test spherical surface is defined as the spherical angle.

次に装置毎の不具合を説明する。特許文献1に記載の透過照明球面検査装置では、被検球体が金属等不透明な素材から作られていた場合には被検球面の検査はできない。
特許文献2に記載の落射照明球面検査装置は、被検球面が対物レンズの焦点にない特許文献3の実施例2の構成と同じことから像形成の説明は特許文献3の説明の後に記述する。
特許文献3の落射照明球面検査装置不具合について説明する。特許文献3は前述したように3つの技術が開示されており、以下それぞれの装置について説明するが、大きくまとめると光源の投影光学系に関わる検査可能な被検球面の曲率半径の範囲に関する不具合と得られる被検球面像の質に関する不具合がある。
Next, the malfunction for each apparatus will be described. In the transmitted illumination spherical surface inspection device described in Patent Document 1, when the inspection sphere is made of an opaque material such as metal, the inspection sphere cannot be inspected.
The epi-illumination spherical surface inspection apparatus described in Patent Document 2 has the same configuration as that of Example 2 of Patent Document 3 in which the subject spherical surface is not at the focal point of the objective lens. .
The defect of the epi-illumination spherical surface inspection device of Patent Document 3 will be described. Patent Document 3 discloses three techniques as described above, and each apparatus will be described below. However, in summary, there are problems relating to the range of the curvature radius of the inspectable sphere to be inspected related to the projection optical system of the light source. There is a problem with the quality of the obtained spherical image.

特許文献3の実施例1の構成では、被検球面を対物レンズの焦点位置に置き被検球面の曲率中心に円形光源像を投影し、円形光源像からの光束で被検球面上の全ての点を照明する。この時の被検球面の結像について本願の図8で説明する。なお、図をわかりやすくするために対物レンズと結像レンズの焦点距離と被検球面の曲率半径は同じとし、結像レンズは光軸上を移動可能な構成としている。また、同じ意図から、特許文献3記載の図を本願の図では光源の位置を対物レンズの光軸からハーフミラーで偏向された第2のレンズ(結像レンズ)の光軸に、第2のレンズ(結像レンズ)は対物レンズ光軸に光学上等価の位置に移動させてある。なお、図8の実線と点線は文献3の実施例1の説明、破線は文献3の請求項の構成の説明である。  In the configuration of Example 1 of Patent Document 3, the test spherical surface is placed at the focal position of the objective lens, and a circular light source image is projected on the center of curvature of the test spherical surface. Illuminate the point. The imaging of the test spherical surface at this time will be described with reference to FIG. For easy understanding, the focal length of the objective lens and the imaging lens and the radius of curvature of the test spherical surface are the same, and the imaging lens is configured to be movable on the optical axis. Further, for the same purpose, in the drawing of Patent Document 3, the position of the light source is shifted from the optical axis of the objective lens to the optical axis of the second lens (imaging lens) by the second mirror. The lens (imaging lens) is moved to an optically equivalent position on the optical axis of the objective lens. The solid and dotted lines in FIG. 8 are descriptions of the first embodiment of Document 3, and the broken lines are descriptions of the structure of claims of Document 3.

対物レンズL1から射出され、円形光源像cを作る光線束のうち被検球面d1上の1点e1を照明するある値の照明NAを持った光束は点e1で反射した後、照明光と同様な経路を対物レンズL1へ進み、対物レンズL1で平行光束となり、光源の位置と共役な位置に瞳hを作る。この瞳に結像レンズL2の物体側焦点を一致させると結像レンズL2は像側焦点に被検球面像e1’を作る。この像は瞳を満たしているので明るく周辺光量の低下もないテレセントリックな像であり、ピントがずれても像が流れない良好な像である。しかし、結像レンズL2をL2’の位置に移動するとe1’は点線の光路で示すe11’に移動する。この像は大きさの変化はないが、結像レンズが前後に移動する量によって像のテレセントリックさがなくなってしまうし、周辺光量不足や像のケラレも現れる。よって、この光学系でテレセントリックな像を得るには結像レンズL2を被検球面の曲率半径によって円形光源の位置を移動することになるが、これに応じて瞳位置も移動することから結像レンズL2も移動しなければならない。
以上の説明から、対物レンズL1と結像レンズL2とがテレセントリックな構成であることは必ずしも必要としないことがわかる。
また、特許文献3の実施例1の構成の利点としては、結像レンズL2と被検球面像e1’間距離は変わらないので結像レンズL2とカメラを一体化できることやピント合わせ作業は被検球面の移動だけで行えることがある。
また、装置の大きさについての観点からは、被検球面の位置が固定されるために被検球面を光軸に沿って移動する必要はなく小型の装置を作ることができる利点もある。
Of the light beam emitted from the objective lens L1 and forming the circular light source image c, a light beam having a certain illumination NA that illuminates one point e1 on the test spherical surface d1 is reflected at the point e1 and then the illumination light. This path is advanced to the objective lens L1, and the objective lens L1 becomes a parallel light beam, and a pupil h is formed at a position conjugate with the position of the light source. When the object side focal point of the imaging lens L2 coincides with this pupil, the imaging lens L2 creates a test spherical image e1 ′ at the image side focal point. Since this image fills the pupil, it is a bright and telecentric image with no decrease in the amount of peripheral light, and it is a good image that does not flow even when the focus is shifted. However, when the imaging lens L2 is moved to the position L2 ′, e1 ′ moves to e11 ′ indicated by the dotted optical path. Although the size of the image does not change, the telecentricity of the image is lost depending on the amount of movement of the imaging lens back and forth, and insufficient peripheral light amount and vignetting of the image also appear. Therefore, in order to obtain a telecentric image by this optical system, the position of the circular light source is moved by the imaging lens L2 according to the radius of curvature of the test spherical surface. The lens L2 must also move.
From the above description, it can be seen that it is not always necessary that the objective lens L1 and the imaging lens L2 have a telecentric configuration.
Further, as an advantage of the configuration of Example 1 of Patent Document 3, since the distance between the imaging lens L2 and the spherical image e1 ′ to be tested does not change, the imaging lens L2 and the camera can be integrated, and the focusing operation is not subject to testing. Sometimes it can be done just by moving the sphere.
Further, from the viewpoint of the size of the apparatus, since the position of the test sphere is fixed, it is not necessary to move the test sphere along the optical axis, and there is an advantage that a small apparatus can be made.

曲率半径が小さくかつ球面角が大きい球面の検査においては、まず小曲率半径球面では前述したとおり被検球面の1点からの反射光束のNAは光源像の半径を被検球面の曲率半径で除すことから照明NAは大きくなり前記したように被検球面の結像性能(解像度や像のケラレ等)に支障をきたすことになる。球面角が大きい球面では被検球面全面から反射する光束(一点からの反射光の集合光束)は球面角の増大と共に大きくなり対物レンズがこの光束を捉えられなくなり、像のケラレや周辺光量不足を発生させる。また、対物レンズ自体も高度な収差補正がされていなければならない。
なお、対物レンズL1と結像レンズL2をテレセントリックな構成にしたままで被検球面の曲率半径が変化したとしても常にテレセントリックな像が得られる条件は被検球面からの反射光がテレセントリックなるとき、すなわち、本願の図9の実線図に示すように円形光源像cを曲率半径の略1/2、つまり被検球面の焦点に投影した時である。この時、対物レンズL1と結像レンズL2とカメラ間の間距離の調整も光学系全体の移動もなく常にテレセントリックな像を得ることができる。しかし、視野径は曲率中心に円形光源を投影した時より対物レンズ(投光レンズ)と被検面の距離と被検球面の曲率半径に由来する割合で小さくなる不具合を持つ。図9の破線図は被検球面の曲率中心に光源像を投影した時の光線図である。
In the inspection of a spherical surface having a small curvature radius and a large spherical angle, first, as described above, in the small curvature radius spherical surface, the NA of the reflected light beam from one point of the test spherical surface is obtained by dividing the radius of the light source image by the curvature radius of the test spherical surface. Therefore, the illumination NA becomes large, and as described above, the imaging performance (resolution, vignetting of the image, etc.) of the subject spherical surface is hindered. In a spherical surface with a large spherical angle, the light beam reflected from the entire surface of the test spherical surface (collective light beam of reflected light from a single point) increases as the spherical angle increases, and the objective lens cannot capture this light beam. generate. Also, the objective lens itself must be subjected to advanced aberration correction.
In addition, even if the radius of curvature of the test spherical surface is changed while the objective lens L1 and the imaging lens L2 are in a telecentric configuration, the condition for always obtaining a telecentric image is that the reflected light from the test spherical surface becomes telecentric. That is, as shown in the solid line diagram of FIG. 9 of the present application, the circular light source image c is projected onto approximately half the radius of curvature, that is, the focal point of the test spherical surface. At this time, a telecentric image can always be obtained without adjusting the distances between the objective lens L1, the imaging lens L2, and the camera and without moving the entire optical system. However, there is a problem that the field diameter becomes smaller at a ratio derived from the distance between the objective lens (projecting lens) and the test surface and the radius of curvature of the test sphere than when a circular light source is projected at the center of curvature. The broken line diagram in FIG. 9 is a ray diagram when a light source image is projected on the center of curvature of the test spherical surface.

特許文献3の実施例1で検査可能な曲率半径の範囲について図8で説明する。特許文献3の実施例1の構成では被検球面が対物レンズの焦点位置にあるため、凹被検球面検査においては円形光源像を被検球面の対物レンズ側に投影しなければならない。しかし、投影光学系は対物レンズ一枚しかないので、対物レンズの焦点距離内にすなわち被検球面と対物レンズ間に対物レンズは円形光源像を作ることができない。よって、凹面被検球面検査の場合対物レンズの焦点距離より小さい曲率半径の凹被検球面の検査はできないことになる。この範囲外の凹凸被検球面検査では、光源をハーフミラーに干渉しない範囲で対物レンズの像側焦点位置の前後で移動すれば光源像を対物レンズの物体側(実像)と像側(虚像)を作ることができるので球面の検査は可能となる。
曲率半径が小さい凹凸球面は、前述したとおり光源像から被検球面全体の1点を照明する反射光束の照明NAは大きくなり被検球面の観察に支障をきたすことになる。
The range of the radius of curvature that can be inspected in Example 1 of Patent Document 3 will be described with reference to FIG. In the configuration of Example 1 of Patent Document 3, since the test spherical surface is at the focal position of the objective lens, a circular light source image must be projected on the objective lens side of the test spherical surface in the concave test spherical test. However, since the projection optical system has only one objective lens, the objective lens cannot form a circular light source image within the focal length of the objective lens, that is, between the test spherical surface and the objective lens. Therefore, in the case of the concave test spherical surface inspection, the concave test spherical surface having a radius of curvature smaller than the focal length of the objective lens cannot be inspected. In the spherical surface inspection for irregularities outside this range, if the light source is moved before and after the focal position on the image side of the objective lens without interfering with the half mirror, the light source image is moved to the object side (real image) and image side (virtual image) of the objective lens. The spherical surface can be inspected.
As described above, the concave and convex spherical surface having a small radius of curvature has a large illumination NA of a reflected light beam that illuminates one point of the entire test spherical surface from the light source image, which hinders observation of the test spherical surface.

次に実施例2の説明を図10で行う。図10もわかりやすくするため、光源や結像レンズの位置は特許文献3の図と等価の位置に変更してある。実施例2の構成では、対物レンズL1には投光レンズL3からのアフォーカルな光束が対物レンズL1の焦点に円形光源像cを作るので、この円形光源像cに被検球面d1の曲率中心を合致させる。被検球面は焦点位置にないことから円形光源像から被検球面を照明した光は被検球面で反射し、入射光と同じ経路をたどり再び対物レンズL1の物体側焦点を通り対物レンズL1によって被検球面の曲率半径の大きさに係らず同径のテレセントリックな一次像e1’を実像または虚像で作る。結像レンズL2はこの一次像e1’の二次実像e1”を撮像素子上に作らないと被検球面の像を得ることはできない。二次像e1”が実像として結像するもっとも好ましい条件は、一次像に光軸上を移動可能な結像レンズL2のピント位置を合致させることである。この時できる像はテレセントリックな像ではないが、結像レンズL2と二次像e1”間距離は固定でき、結像レンズL2とカメラを一体化して移動すれば二次像が得られる。
対物レンズL1と結像レンズL2をテレセントリックに構成した場合を含め、対物レンズL1と結像レンズL2間を固定した場合、例えば、図10に示す配置で対物レンズL1と結像レンズL2を固定したうえで被検球面d1の曲率半径より小さな凹面被検球面d2の検査をする場合、一次像e2’は破線で示すように結像レンズL2の物体側焦点から結像レンズL2の間にできることになるが、この時、結像レンズL2はカメラ側に実像を作ることができなくなる。よって、凹面被検球面は曲率半径によっては検査ができなくなる範囲がある。
この現象は対物レンズと結像レンズがテレセントリックな構成である場合にも発生する。そもそも、対物レンズL1と結像レンズL2をテレセントリックな構成にした場合の光学的効果は、被検物からのテレセントリックな光線を対物レンズL1が平行光束としてその焦点位置に瞳を作り結像レンズL2がこの光束をテレセントリックな像として結像させるときに発揮されるものであり、これに近い実施例1では効果があるものの本実施例2では全く光線の形態が異なることから対物レンズL1と結像レンズL2をテレセントリックな構成にしても光学的な効果はない。
Next, the second embodiment will be described with reference to FIG. In order to make FIG. 10 easier to understand, the positions of the light source and the imaging lens are changed to positions equivalent to those in FIG. In the configuration of the second embodiment, since the afocal light beam from the light projecting lens L3 forms a circular light source image c at the focal point of the objective lens L1, the center of curvature of the test spherical surface d1 is formed on the circular light source image c. Match. Since the test spherical surface is not in the focal position, the light that illuminates the test spherical surface from the circular light source image is reflected by the test spherical surface, follows the same path as the incident light, passes again through the object side focal point of the objective lens L1, and is reflected by the objective lens L1. Regardless of the radius of curvature of the subject spherical surface, a telecentric primary image e1 ′ having the same diameter is formed as a real image or a virtual image. The imaging lens L2 cannot obtain an image of the test spherical surface unless the secondary real image e1 ″ of the primary image e1 ′ is formed on the image sensor. The most preferable condition for forming the secondary image e1 ″ as a real image is the most preferable condition. The focus position of the imaging lens L2 that can move on the optical axis matches the primary image. The image formed at this time is not a telecentric image, but the distance between the imaging lens L2 and the secondary image e1 ″ can be fixed, and a secondary image can be obtained by moving the imaging lens L2 and the camera together.
When the distance between the objective lens L1 and the imaging lens L2 is fixed, including the case where the objective lens L1 and the imaging lens L2 are telecentric, for example, the objective lens L1 and the imaging lens L2 are fixed in the arrangement shown in FIG. In addition, when inspecting the concave test spherical surface d2 smaller than the radius of curvature of the test spherical surface d1, the primary image e2 ′ can be formed between the object side focal point of the imaging lens L2 and the imaging lens L2, as indicated by a broken line. However, at this time, the imaging lens L2 cannot make a real image on the camera side. Therefore, there is a range where the concave test spherical surface cannot be inspected depending on the radius of curvature.
This phenomenon also occurs when the objective lens and the imaging lens have a telecentric configuration. In the first place, the optical effect when the objective lens L1 and the imaging lens L2 have a telecentric configuration is that the objective lens L1 converts the telecentric light beam from the test object into a parallel light beam and forms a pupil at the focal position thereof. Is exhibited when this light beam is imaged as a telecentric image. Although the effect is obtained in the first embodiment close thereto, the form of the light beam is completely different in the second embodiment, so that the image is formed with the objective lens L1. Even if the lens L2 has a telecentric configuration, there is no optical effect.

特許文献3の実施例2で検査可能な曲率半径の範囲について説明する。特許文献3の実施例2の構成では円形光源像のできる位置は対物レンズに入射する光束がアフォーカルなため対物レンズの焦点位置に固定される。被検球面は曲率中心を円形光源に合致させて置かれるので、凹面で被検球面の場合は、円形光源から曲率半径分対物レンズから遠ざかる方向に置かれ、凸面の被検球面は円形光源から曲率半径分対物レンズ側に置かれる。この場合、凹面被検球面の一次像は結像レンズの物体側焦点と結像レンズ間内にできることが曲率半径の広い範囲で発生することや、超大曲率半径の検査では被検部材載置台を対物レンズから遠く離れておくことになるので被検面の検査ができなくなる。凸面非球面の場合は対物レンズと被検球面が干渉してしまうために検査可能な曲率半径は円形光源と対物レンズ間の距離すなわち対物レンズのほぼ焦点距離内となる。また、小さい曲率半径の検査は凹凸共に実施例1と同様な検査できない不具合を持つ。  The range of the radius of curvature that can be inspected in Example 2 of Patent Document 3 will be described. In the configuration of Example 2 of Patent Document 3, the position where the circular light source image can be formed is fixed at the focal position of the objective lens because the light beam incident on the objective lens is afocal. Since the test sphere is placed with the center of curvature matched to the circular light source, if the test sphere is concave, it is placed away from the objective lens by the radius of curvature from the circular light source, and the convex test sphere is It is placed on the objective lens side by the radius of curvature. In this case, the primary image of the concave test spherical surface can be formed between the object side focal point of the imaging lens and the imaging lens in a wide range of curvature radii. Since the object lens is far away from the objective lens, the inspection surface cannot be inspected. In the case of a convex aspherical surface, the objective lens and the subject spherical surface interfere with each other, so that the radius of curvature that can be inspected is within the distance between the circular light source and the objective lens, that is, approximately within the focal length of the objective lens. In addition, the inspection with a small radius of curvature has the same inconveniences as the first embodiment in terms of both unevenness.

特許文献3の請求項の構成での像形成の説明を図8の破線図を用いて行う。円形光源aは対物レンズL1によって焦点位置とは異なる任意の位置(分かりやすくするために実施例1の図を借用し対物レンズL1から2Rの位置(ここでRは被検球面の曲率半径)に円形光源像cを作り、円形光源像に凹被検球面d2の曲率中心が合致させられている。この時、光源像と被検球面間をわかりやすくR(=f)程度とすると、対物レンズL1は被検球面の一次像e2’を、対物レンズL1の焦点と結像レンズL2との間に被検球面d2の曲率半径に由来した大きさで作る。よって、一次像に等倍設定の結像レンズL2のピントを合わせて二次像e2”を作る場合、二次像は被検球面d2の曲率半径が変わるごとに像の大きさの異なるテレセントリックでない被検球面の像を作ることになる。また、対物レンズと結像レンズを固定すると、特許文献3の実施例2と同じく一次像が結像レンズの物体側焦点距離内にできると像ができない曲率半径の範囲が発生する。  The image formation with the structure of the claims of Patent Document 3 will be described with reference to the broken line diagram of FIG. The circular light source a is moved to an arbitrary position different from the focal position by the objective lens L1 (for the sake of clarity, the drawing of the first embodiment is used to position the objective lenses L1 to 2R (where R is the radius of curvature of the test spherical surface)). A circular light source image c is created, and the center of curvature of the concave test spherical surface d2 is matched with the circular light source image, and when the distance between the light source image and the test spherical surface is approximately R (= f), the objective lens L1 creates a primary image e2 ′ of the test spherical surface with a size derived from the radius of curvature of the test spherical surface d2 between the focal point of the objective lens L1 and the imaging lens L2. When the secondary image e2 ″ is created by focusing the imaging lens L2, the secondary image creates an image of the non-telecentric test sphere having a different image size each time the radius of curvature of the test sphere d2 changes. Also, objective lens and imaging lens Fixing Example 2 Like the radius of curvature in a range that can not image the possible primary image on the object side focal the length of the imaging lens of Patent Document 3 occurs.

特許文献3の請求項の構成で検査可能な曲率半径の範囲について説明する。本構成では、円形光源像を任意の位置に投影できるので凹凸面ともに検査可能な曲率半径の範囲は単純な光学計算からは広い。
しかし、一次像の位置と倍率は被検球面の曲率半径の変化によって都度大きく変化し、結像レンズの移動によるピント合わせができなくなったり、像が大きくなりすぎたり小さくなりすぎて検査できなくなってしまう。
また、対物レンズと結像レンズ間を固定すると特許文献3の実施例2で説明したことと同じ現象が発生する。
小さい曲率半径に対する不具合も特許文献3では同様に持っていることから実際の使用では凹凸球面共に検査する曲率半径を適当な範囲に設定して使用しているものと思われる。
The range of the radius of curvature that can be inspected with the configuration of the claims of Patent Document 3 will be described. In this configuration, since the circular light source image can be projected at an arbitrary position, the range of the radius of curvature that can be inspected on both the concave and convex surfaces is wide from simple optical calculation.
However, the position and magnification of the primary image change greatly each time due to the change in the radius of curvature of the test sphere, making it impossible to focus due to the movement of the imaging lens, and the image becomes too large or too small to be inspected. End up.
Further, when the distance between the objective lens and the imaging lens is fixed, the same phenomenon as described in the second embodiment of Patent Document 3 occurs.
Since Patent Document 3 also has a defect with respect to a small curvature radius, it seems that the curvature radius to be inspected for both the concave and convex spherical surfaces is set to an appropriate range in actual use.

特許文献2では、光学構成を対物レンズの焦点位置にできる光源像に被検球面の曲率中心を一致させて被検球面を観察する構成としている。特許文献2は特許文献3の実施例2の構成の簡易型であり、結像レンズの焦点位置に適当な大きさの開口を設けて結像側のNAを絞り像の鮮明度を上げ、かつ、撮像素子を移動させ被検球面を撮像している。この光学構成は点光源レーザー用いたフィゾー型の干渉計に使用される被検面の観察視野径を撮像するときなどに用いられるもので、解像力を重視する装置には使われない。よって、ごみキズ等の外観検査機として使うには解像力が足りない。
また、基本的な光学構成が文献3の実施例2と同じことから像の結像の可否やテレセントリックな像でないことなど同様な不具合を持つ。また、小さな曲率半径の球面に対しては、点光源像を投影できるのであるが、点光源であるがゆえに観察可能なすべての球面に対して撮像できる像は高コントラストであっても解像力は低く球面の外観検査機としての解像力不足があった。
In Patent Document 2, the optical configuration is configured to observe the test spherical surface by matching the center of curvature of the test spherical surface with the light source image that can be the focal position of the objective lens. Patent Document 2 is a simplified type of the configuration of Embodiment 2 of Patent Document 3, and an aperture of an appropriate size is provided at the focal position of the imaging lens to increase the NA on the imaging side to increase the sharpness of the aperture image, and The imaging device is moved to image the test spherical surface. This optical configuration is used when, for example, imaging the observation field diameter of a surface to be used used in a Fizeau interferometer using a point light source laser, and is not used in an apparatus that places importance on resolving power. Therefore, the resolution is insufficient for use as an appearance inspection machine for garbage scratches and the like.
In addition, since the basic optical configuration is the same as that of Embodiment 2 of Document 3, there are similar inconveniences such as whether an image can be formed or not a telecentric image. In addition, a point light source image can be projected onto a spherical surface with a small radius of curvature, but because it is a point light source, the image that can be imaged on all observable spherical surfaces has low resolution even if it has high contrast. There was insufficient resolution as a spherical appearance inspection machine.

特許文献2と3に共通している不具合は、照明NAが大きすぎるか小さすぎるかによる小さい曲率半径の検査において像がケラレたり像の鮮明度がないなどで被検球面の観察ができない照明NAに関する不具合、光学構成上像が得られない曲率半径の範囲がある不具合、得られる像の大きさや結像位置が変わる不具合、及び像がテレセントリックでない等の像の質に関する不具合等である。また、検査光学系を簡単に変更することによって透過照明観察が可能なシステムを構築することができなかった。  The problem common to Patent Documents 2 and 3 is that the illumination NA cannot be observed due to vignetting or lack of image sharpness in the inspection of a small radius of curvature depending on whether the illumination NA is too large or too small. And the like, a defect having a radius of curvature in which an image cannot be obtained due to an optical configuration, a problem in which the size and image formation position of the obtained image are changed, and a problem in image quality such that the image is not telecentric. In addition, a system capable of observing transmitted illumination cannot be constructed by simply changing the inspection optical system.

特開2010−156558号公報JP 2010-156558 A 特開2011−107092号公報JP 2011-107092 A 特開昭56−157841号公報JP-A-56-157841

本発明は、以上のような従来の欠点に鑑み、少なくとも一部に表面に球面または非球面を含む被検面を有する被検部材の被検面の全体または一部を広い視野でかつ高精度に外観検査でき、かつ観察可能な被検面の曲率半径の範囲が広く被検面曲率中心から被検面の外径を見る円錐角が大きい被検部材を検査する落射または透過照明球面検査装置を提供することを目的としている。  In view of the above-described conventional drawbacks, the present invention provides a wide field of view and high accuracy for a whole or part of a test surface having a test surface including a spherical surface or an aspheric surface on at least a part of the surface. An epi-illumination or transmission illumination spherical inspection device that inspects a test member having a large cone angle for viewing the outer diameter of the test surface from the center of the test surface curvature with a wide radius range of the test surface that can be visually inspected and observed. The purpose is to provide.

上記の課題を解決するために、請求項1に記載の発明は、表面の少なくとも一部に球面または非球面を含む被検面を有する被検部材の落射照明球面検査装置であって、
前記被検面の一次像を略1倍のテレセントリックな実像または虚像として作る焦点距離または開口数の異なる対物レンズ群と、
前記対物レンズ群から選択された第1の対物レンズが他の対物レンズと同軸に着脱互換可能で取り付けられる対物レンズ支持台と、
前記被検部材を載置し、前記被検部材を前記対物レンズの光軸、即ち検査光軸に沿って移動させる被検部材載置移動台と、
前記第1の対物レンズが作る一次像をリレーして二次像を作り、物体側、即ち一次像側にも二次結像側にも略テレセントリックな関係にある像リレーレンズと結像レンズとを有する組と、前記結像レンズの二次結像位置に取り付けた撮像素子と、前記撮像素子からの信号を画像として表示するモニターとを含む、前記検査光軸に沿って移動する像観察ユニットと、
前記第1の対物レンズと前記像リレーレンズとの間、または前記像リレーレンズと前記結像レンズとの間に光分割偏向ミラーを配置することによってできる前記検査光軸と直交する光軸、即ち投光軸上に配置した円形光源と第1の投光レンズユニットと前記光分割偏向ミラーとを有し、前記第1の投光レンズユニットが作る光束を前記光分割偏向ミラーを介して前記第1の対物レンズに送り前記第1の対物レンズの焦点位置に円形光源像を結像させる第1の落射投光ユニットとを有し、前記円形光源の大きさ、又は前記被検部材を照明する開口数即ち照明NAは可変であることを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is an epi-illumination spherical surface inspection device for a test member having a test surface including a spherical surface or an aspherical surface on at least a part of a surface thereof.
An objective lens group having different focal lengths or numerical apertures for creating a primary image of the test surface as a telecentric real image or virtual image of approximately 1 time;
An objective lens supporting base on which a first objective lens selected from the objective lens group is attached so as to be detachably interchangeable with other objective lenses;
A test member placement moving table for mounting the test member and moving the test member along an optical axis of the objective lens, that is, an inspection optical axis;
An image relay lens and an imaging lens that are substantially telecentric on the object side, i.e., the primary image side and the secondary imaging side, by relaying a primary image created by the first objective lens; An image observation unit that moves along the inspection optical axis, and a monitor that displays a signal from the image sensor as an image. When,
An optical axis orthogonal to the inspection optical axis, which can be formed by disposing a light splitting deflection mirror between the first objective lens and the image relay lens or between the image relay lens and the imaging lens, A circular light source disposed on the light projecting axis, a first light projecting lens unit, and the light splitting deflecting mirror; and a light beam formed by the first light projecting lens unit via the light splitting deflecting mirror. A first incident light projecting unit that sends a circular light source image to a focal position of the first objective lens and illuminates the size of the circular light source or the member to be examined. The numerical aperture, that is, the illumination NA is variable.

請求項2に記載の発明は、請求項1に記載の落射照明球面検査装置において、前記第1の落射投光ユニットが前記像リレーレンズと前記対物レンズ間にある場合、前記第1の落射投光ユニットの前記第1の投光レンズユニットは、前記円形光源に焦点を合わせたコリメートレンズを含む第2の投光レンズユニットとを有し、前記第2の投光レンズユニットが作るアフォーカルな光束を光分割偏向ミラーを介して前記第1の対物レンズに送ることを特徴とする。  According to a second aspect of the present invention, in the epi-illumination spherical surface inspection apparatus according to the first aspect, when the first epi-illumination projection unit is located between the image relay lens and the objective lens, the first epi-illumination projection is performed. The first light projecting lens unit of the light unit includes a second light projecting lens unit including a collimating lens focused on the circular light source, and the afocal lens formed by the second light projecting lens unit. The light beam is sent to the first objective lens through a light splitting deflection mirror.

請求項3に記載の発明は、請求項1に記載の落射照明球面検査装置において、前記第1の落射投光ユニットが前記像リレーレンズと前記結像レンズ間にある場合、前記第1の落射投光ユニットの前記第1の投光レンズユニットは、前記円形光源に焦点を置いた前記コリメートレンズと、円形光源像を作る投光レンズを有する第3の投光レンズユニットであり、前記第3の投光レンズユニットが作る前記円形光源像を前記像リレーレンズの焦点と共役な位置に投影し、前記光分割偏向ミラーと前記像リレーレンズを介してアフォーカルな光束を前記第1の対物レンズに送ることを特徴とする。  According to a third aspect of the present invention, in the epi-illumination spherical surface inspection apparatus according to the first aspect, when the first epi-illumination projection unit is located between the image relay lens and the imaging lens, the first epi-illumination unit is provided. The first light projecting lens unit of the light projecting unit is a third light projecting lens unit having the collimating lens focused on the circular light source and a light projecting lens for creating a circular light source image. The circular light source image formed by the projection lens unit is projected to a position conjugate with the focal point of the image relay lens, and an afocal light beam is transmitted through the light splitting deflection mirror and the image relay lens to the first objective lens. It is characterized by sending to.

これらの発明によれば、落射球面検査装置は小さな円形面光源を備え、対物レンズが物体側焦点に作る円形光源像の中心に被検面の曲率中心を一致させて被検面を置き、被検面の検査領域の全域を小さな照明NAで照明する。この時、被検面は対物レンズの焦点距離と略等しい曲率半径を持つように選択されているので、被検面が凹面の場合、被検面からの反射光は照明光と同じ経路で対物レンズを通過し、対物レンズの像側焦点距離の略2倍の位置に略1倍の一次実像をテレセントリックに作る。被検面が凸面であれば、同様に対物レンズの像側主点位置に略1倍の一次虚像をテレセントリックに作る。  According to these inventions, the epi-spherical surface inspection apparatus includes a small circular surface light source, and places the test surface so that the center of curvature of the test surface coincides with the center of the circular light source image formed by the objective lens at the object side focal point. The entire inspection area of the inspection surface is illuminated with a small illumination NA. At this time, since the test surface is selected so as to have a radius of curvature substantially equal to the focal length of the objective lens, when the test surface is a concave surface, the reflected light from the test surface passes along the same path as the illumination light. The lens passes through the lens, and a primary real image of about 1 time is made telecentric at a position of about twice the image side focal length of the objective lens. If the test surface is a convex surface, a primary virtual image of about 1 time is similarly made telecentric at the image side principal point position of the objective lens.

よって、テレセントリックに結像されている像を少なくても物体側にテレセントリックな結像光学系を用いて一次像を観察すると被写界深度の深い像を得ることができ、また、物体側と結像側の両側にテレセントリックな結像光学系を用いれば、さらに焦点深度の深いピントが欠陥からずれても欠陥像が流れるように動くことがなく、観察に適正なNAでの照明と相まって従来の検査方法よりコントラストの高い良好な球面の像を略平面として観察できる。特に曲率半径が小さく球面角の大きい球面の検査に好適である。
ここで、第1の投光レンズユニットは第2の投光レンズユニットと第3の投光レンズユニットとその他の形態の投光レンズユニットを含むものと定義する。
Therefore, an image with a deep depth of field can be obtained by observing the primary image using a telecentric imaging optical system on the object side, even if there are at least images that are telecentricly imaged. If a telecentric imaging optical system is used on both sides of the image side, it will not move so that the defect image will flow even if the focus with a deeper depth of focus is deviated from the defect. A good spherical image having a higher contrast than the inspection method can be observed as a substantially flat surface. In particular, it is suitable for inspection of a spherical surface having a small curvature radius and a large spherical angle.
Here, the first light projecting lens unit is defined as including a second light projecting lens unit, a third light projecting lens unit, and other types of light projecting lens units.

請求項4に記載の発明は、請求項1ないし3のいずれか一つに記載の落射照明球面検査装置において、前記円形光源の大きさは、前記第1の対物レンズが作る前記円形光源像から前記被検面を照明する照明NAが0.005〜0.05の範囲内であることを特徴とする。  According to a fourth aspect of the present invention, in the epi-illumination spherical surface inspection device according to any one of the first to third aspects, the size of the circular light source is determined from the circular light source image formed by the first objective lens. The illumination NA for illuminating the surface to be examined is in the range of 0.005 to 0.05.

この発明によれば、照明NAが0.005〜0.05の範囲の小さな照明NAで被検面全域の点を照明することから焦点深度が深く、コントラストも解像度も良い装置の目的に適した像を作ることができる。  According to the present invention, since the illumination NA illuminates points on the entire test surface with a small illumination NA in the range of 0.005 to 0.05, it is suitable for the purpose of an apparatus having a deep depth of focus, good contrast and resolution. You can make a statue.

請求項5に記載の発明は、請求項1ないし4のいずれか一つに記載の落射照明球面検査装置において、前記対物レンズ群に含まれるそれぞれの前記対物レンズが作る前記円形光源の結像位置、即ち前記対物レンズの焦点位置が略同一位置であることを特徴とする。  According to a fifth aspect of the present invention, in the epi-illumination spherical surface inspection device according to any one of the first to fourth aspects, an imaging position of the circular light source formed by each of the objective lenses included in the objective lens group That is, the focal position of the objective lens is substantially the same position.

この発明によれば、前記被検部材支持台に被検部材の被検面を前記対物レンズに向けて置く場合に、対物レンズ群からどのレンズを選択しても対物レンズの略焦点位置に被検面を置くことができる。よって、対物レンズの焦点位置に被検面を合致させ易くなる。  According to the present invention, when the test surface of the test member is placed on the test member support base with the objective lens facing the objective lens, no matter which lens is selected from the objective lens group, the test subject is positioned substantially at the focal position of the objective lens. You can set the inspection. Therefore, it becomes easy to match the test surface with the focal position of the objective lens.

請求項6に記載の発明は、請求項1ないし4のいずれか一つに記載の落射照明球面検査装置において、前記対物レンズ群に含まれるそれぞれの前記対物レンズが作る前記被検面の一次像位置が略同一位置であることを特徴とする。  According to a sixth aspect of the present invention, in the epi-illumination spherical surface inspection apparatus according to any one of the first to fourth aspects, a primary image of the test surface created by each of the objective lenses included in the objective lens group. The position is substantially the same position.

この発明によれば、対物レンズ群からどの対物レンズを選択しても像リレーレンズの一次像のピント合わせが容易となる。  According to the present invention, the primary image of the image relay lens can be easily focused regardless of which objective lens is selected from the objective lens group.

請求項7に記載の発明は、請求項1ないし4のいずれか一つに記載の落射照明球面検査装置において、前記対物レンズ支持台を前記検査光軸に合致させて着脱できることを特徴とする。  According to a seventh aspect of the present invention, in the epi-illumination spherical surface inspection apparatus according to any one of the first to fourth aspects, the objective lens support base can be attached to and detached from the inspection optical axis.

この発明によれば、対物レンズが不要である場合、対物レンズ支持台を取り外すことができ、また、対物レンズ支持台が必要なときには取り付けることができる。  According to the present invention, when the objective lens is unnecessary, the objective lens support base can be removed, and when the objective lens support base is necessary, it can be attached.

請求項8に記載の発明は、請求項7に記載の落射照明球面検査装置において、第2の落射投光ユニットは前記第1の落射投光ユニットと交換取付け可能であって、
前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーと第2の対物レンズとを含み、
前記第2の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第2の落射投光ユニットは、前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーとが同軸に対物板に取付けられ、かつ前記第2の対物レンズは前記検査光軸と同軸に取付けられていることを特徴とする。
The invention according to claim 8 is the epi-illumination spherical surface inspection device according to claim 7, wherein the second epi-illumination projection unit is replaceable with the first epi-illumination projection unit,
Including the circular light source, the second light projection lens unit, the light splitting deflection mirror, and a second objective lens;
When the second incident light projection unit is provided between the image relay lens and the test member,
In the second incident light projection unit, the circular light source, the second light projection lens unit, and the light splitting deflection mirror are coaxially attached to an objective plate, and the second objective lens is the inspection optical axis. It is characterized by being mounted on the same axis.

請求項9に記載の発明は、請求項8に記載の落射照明球面検査装置において、前記第2の落射投光ユニットは前記投光軸に沿って移動可能な一軸ステージに取付けられ前記検査光軸と略合致して挿脱可能なことを特徴とする。  According to a ninth aspect of the present invention, in the epi-illumination spherical surface inspection device according to the eighth aspect, the second epi-illumination projection unit is attached to a uniaxial stage movable along the projection axis and the inspection optical axis. It is characterized by being able to be inserted / removed substantially in line with

これらの発明によれば、第2の落射投光ユニットは円形光源と第2の投光レンズユニットと光分割ミラーと対物レンズとが対物板に固定され一体となっていることから対物レンズを使用する小曲率半径高球面角を持つ球面の検査時は第2の落射投光ユニットは検査光軸に略合致して挿入され、透過照明検査時には第2の落射投光ユニットは検査光軸から離脱される。よって、1軸ステージを移動する操作だけで落射検査と透過検査が切替え可能となる。  According to these inventions, the second incident light projection unit uses the objective lens because the circular light source, the second projection lens unit, the light splitting mirror, and the objective lens are fixed and integrated with the objective plate. When inspecting a spherical surface with a small curvature radius and a high spherical angle, the second incident light projection unit is inserted so as to substantially match the inspection optical axis, and during the transmitted illumination inspection, the second incident light projection unit is detached from the inspection optical axis. Is done. Therefore, it is possible to switch between the epi-illumination inspection and the transmission inspection only by the operation of moving the single axis stage.

請求項10に記載の発明は、請求項7に記載の落射照明球面検査装置において、
前記第3の落射投光ユニットは第1の落射投光ユニットと交換取付け可能であって、
前記第3の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第3の落射投光ユニットは、前記投光軸上に配置された前記円形光源と、
前記円形光源に焦点を略合致させたコリメートレンズとコリメートレンズが作るアフォーカルな光束中に配置され、着脱互換可能な開口数または焦点距離の異なる交換投光レンズ群から選択された交換投光レンズとを有する第4の投光レンズユニットとが一体の組となっており、
前記第3の落射投光ユニットは、前記円形光源と前記第4の投光レンズユニットの組が投光軸上を移動できる案内部をもった移動ガイドと前記光分割偏向ミラーとが同軸に対物板に取付けられ、
前記第3の落射投光ユニットは、前記円形光源と第4の投光レンズユニットの組が前記光分割偏向ミラーに対して投光軸上を前記移動ガイドの案内部に沿って移動し前記交換投光レンズが作る前記円形光源像を前記光分割偏向ミラーを介して前記検査光軸に送り、前記円形光源像を前記検査光軸上で移動させることを特徴とする。
The invention according to claim 10 is the epi-illumination spherical surface inspection device according to claim 7,
The third incident light projection unit can be replaced with the first incident light projection unit,
When the third incident light projection unit is provided between the image relay lens and the test member,
The third incident light projection unit includes the circular light source disposed on the light projection axis,
An exchange projection lens selected from a group of exchange projection lenses having different numerical apertures or focal lengths, which are arranged in an afocal light beam produced by a collimator lens and a collimator lens substantially in focus with the circular light source. And a fourth projector lens unit having
In the third epi-illumination projection unit, the circular light source and the fourth projection lens unit pair having a guide that can move on the projection axis and the light splitting deflection mirror are coaxially objective. Mounted on the board,
In the third incident light projection unit, the pair of the circular light source and the fourth light projection lens unit moves on the light projection axis with respect to the light splitting deflection mirror along the guide portion of the moving guide, and is exchanged. The circular light source image formed by the light projecting lens is sent to the inspection optical axis through the light splitting deflection mirror, and the circular light source image is moved on the inspection optical axis.

請求項11に記載の発明は、請求項10に記載の落射照明球面検査装置において、前記第3の落射投光ユニットは前記投光軸に沿って移動可能な一軸ステージに取付けられ、前記検査光軸と略合致して挿脱可能なことを特徴とする。  According to an eleventh aspect of the present invention, in the epi-illumination spherical surface inspection device according to the tenth aspect, the third epi-illumination projection unit is attached to a uniaxial stage movable along the projection axis, and the inspection light It is characterized by being able to be inserted / removed substantially in line with the shaft.

これらの発明によれば、第3の落射投光ユニットは対物板に固定され一体となっていることから対物レンズを使用しない大曲率半径小球面角を持つ球面の検査と透過照明検査を切り替える場合、第3の落射投光ユニットは検査光軸に略合致して挿入され、透過照明検査時には第3の落射投光ユニットは検査光軸から離脱される。よって、1軸ステージを移動する操作だけで落射検査と透過検査が切替え可能となる。  According to these inventions, since the third epi-illumination projection unit is fixed to and integrated with the objective plate, switching between inspection of a spherical surface having a large curvature radius and a small spherical angle without using an objective lens and transmitted illumination inspection is performed. The third incident light projection unit is inserted so as to substantially coincide with the inspection optical axis, and the third incident light projection unit is detached from the inspection optical axis at the time of transmitted illumination inspection. Therefore, it is possible to switch between the epi-illumination inspection and the transmission inspection only by the operation of moving the single axis stage.

また、これらの発明によれば、被検面への円形光源を投影する際に投影光学系が対物レンズや像リレーレンズなど結像に係るレンズを利用しない独立した光学系であるために円形光源を検査軸上の任意の位置に投影することができるので、特許文献3の実施例1の不具合、すなわち凹被検球面では曲率半径が対物レンズの焦点距離より短い場合に球面の検査ができない不具合等を解消できる。  In addition, according to these inventions, since the projection optical system is an independent optical system that does not use an imaging lens such as an objective lens or an image relay lens when projecting the circular light source onto the test surface, the circular light source Can be projected to any position on the inspection axis, so that the defect of Example 1 of Patent Document 3, that is, the concave spherical surface cannot be inspected when the radius of curvature is shorter than the focal length of the objective lens. Etc. can be eliminated.

また、これらの発明によれば、被検面の視野径は視野角で決まるので投光ユニットが被検面を照明する投光レンズからの円形光源像を作る光束の開口角(視野角)は可能なかぎり大きくし、そして大きな開口角のまま光源像を被検面の所定に位置に投影する。この時、光束の開口角を変化させずに所定の位置に光源像を投影するには円形光源と投光ユニット全体がそのまま移動できればよい。  Further, according to these inventions, since the field diameter of the test surface is determined by the viewing angle, the aperture angle (viewing angle) of the light beam that forms a circular light source image from the light projecting lens with which the light projecting unit illuminates the test surface is The light source image is projected to a predetermined position on the surface to be examined while keeping it as large as possible and keeping a large aperture angle. At this time, in order to project the light source image at a predetermined position without changing the aperture angle of the light beam, it is sufficient that the circular light source and the whole light projecting unit can be moved as they are.

また、これらの発明によれば、曲率半径が中〜大で球面角の小〜中の被検面の落射照明検査時に被検面の曲率中心、または曲率半径の略1/2の位置、つまり前記被検面の焦点位置に円形光源像を投影する場合と、透過照明球面検査を切り替えて行う場合に有用である。Further, according to these aspects of the invention, the center of curvature of the test surface at incident illumination inspection of the test surface of the small to medium spherical angle medium to large radius of curvature, or a position of substantially 1/2 of the radius of curvature, That is, it is useful when a circular light source image is projected on the focal position of the surface to be examined and when the transmitted illumination spherical inspection is switched.

請求項12に記載の発明は、請求項1ないし11のいずれか一つに記載の落射照明球面検査装置において、前記像観察ユニットは前記像リレーレンズと前記結像レンズ間にズーム光学系を含み、前記像リレーレンズは焦点距離または開口数の異なる像リレーレンズが、または、前記結像レンズは焦点距離または開口数の異なる結像レンズが着脱可能であることを特徴とする。  The invention according to claim 12 is the epi-illumination spherical surface inspection apparatus according to any one of claims 1 to 11, wherein the image observation unit includes a zoom optical system between the image relay lens and the imaging lens. The image relay lens is detachable from an image relay lens having a different focal length or numerical aperture, or the imaging lens is detachable from an imaging lens having a different focal length or numerical aperture.

この発明によれば、被検面の外径が小さいものから大きいものまで検査が可能になる。請求項1に使用する像リレーレンズは観察可能なレンズ径の範囲を広げる意味や開口数が小さくて良いことから0.5倍から2倍の低倍レンズが用いられる。よって、小さな径の被検面の検査には拡大した像を、大きな径の被検面の検査には縮小した像を撮像素子上に映し出せる。  According to the present invention, inspection can be performed from a small outer diameter to a large test surface. The image relay lens used in claim 1 is a low-magnification lens of 0.5 to 2 times because the range of the observable lens diameter is widened and the numerical aperture may be small. Therefore, an enlarged image can be displayed on the image sensor for inspection of a small-diameter test surface, and a reduced image can be displayed for inspection of a large-diameter test surface.

請求項13に記載の発明では、請求項1ないし12のいずれか一つに記載の落射照明球面検査装置を含む透過落射照明球面検査装置において、前記被検部材を挟んで前記第1から第3の落射投光ユニットのいずれか一つの反対側に透過投光レンズを含む透過投光ユニットを前記第1から第3の落射投光ユニットのいずれか一つを配置し、前記被検面の透過照明球面検査と落射照明球面検査とが選択的に可能な透過落射照明球面検査装置であることを特徴とする。  According to a thirteenth aspect of the present invention, in the transmitted epi-illumination spherical surface inspection device including the epi-illumination spherical surface inspection device according to any one of the first to twelfth aspects, the first to third members are sandwiched by the test member. Any one of the first to third incident light projection units is arranged on the opposite side of any one of the incident light projection units, and includes a transmission light projection lens. It is a transmission epi-illumination spherical inspection device capable of selectively performing illumination spherical inspection and epi-illumination spherical inspection.

この発明によれば、第1の落射投光ユニットを用いる落射照明球面検査装置では前記対物レンズ支持台を取り除き、落射照明球面検査装置の被検部材載置位置の反対側に透過投光ユニットを取付けることによって透過被検部材の透過照明検査が可能となる。  According to this invention, in the epi-illumination spherical surface inspection apparatus using the first epi-illumination projection unit, the objective lens support is removed, and the transmission light projection unit is disposed on the opposite side to the test member placement position of the epi-illumination spherical inspection apparatus. By attaching it, the transmitted illumination inspection of the transmission object can be performed.

また、第2と第3の落射投光ユニットを用いる落射照明球面検査装置では被検部材載置移動台に落射照明球面検査装置の被検部材載置位置の反対側に透過投光ユニットを取付けることによって透過被検部材の透過照明検査が可能となる。  Further, in the epi-illumination spherical surface inspection apparatus using the second and third epi-illumination projection units, the transmission light projection unit is attached to the opposite side of the test member mounting position of the epi-illumination spherical inspection apparatus on the test member mounting moving table. Thus, the transmitted illumination inspection of the transmitted object to be inspected becomes possible.

本発明は、球面の落射検査において、曲率半径が小さく球面角の大きい被検面に対して請求項1ないし9の構成を適宜用いて検査を行い、曲率半径が大きく球面角の小さい被検面に対しては対物レンズを用いない請求項10および請求項11の構成を用いて検査を行う。被検面の透過検査は請求項13構成を用いて行う。
落射照明検査と透過照明検査に共通に用いる請求項12は結像光学系の倍率と使用する撮像素子の大きさに係る項である。
According to the present invention, a surface to be measured having a small curvature radius and a large spherical angle is inspected by using the structure of claims 1 to 9 as appropriate in the incident surface inspection of a spherical surface, and the surface to be measured has a large curvature radius and a small spherical angle. Are inspected using the configuration of claim 10 and claim 11 in which no objective lens is used. The transmission inspection of the test surface is performed using the structure of claim 13.
A twelfth aspect of the present invention commonly used for the epi-illumination inspection and the transmission illumination inspection relates to the magnification of the imaging optical system and the size of the image sensor used.

透過照明検査では特許文献1に記載の装置を利用する。文献1に記載の内容から大きな曲率半径から小さい曲率半径の球面検査が可能である。落射の大曲率半径の球面は特許文献3に記載の実施例1をそのまま使うか、被検面設置位置を対物レンズの焦点位置としたうえで、円形光源の投影位置を被検球面の焦点位置(曲率半径の1/2)に変更する。焦点位置に円形光源を投影した場合は、結果として特許文献1の透過照明検査の被検レンズの焦点に光源像を投影したことと同じ検査原理となる。  In the transmitted illumination inspection, the apparatus described in Patent Document 1 is used. From the contents described in Document 1, a spherical inspection with a large radius of curvature and a small radius of curvature is possible. For the spherical surface with a large curvature radius of the epi-illumination, use Example 1 described in Patent Document 3 as it is, or set the test surface installation position as the focus position of the objective lens, and set the projection position of the circular light source as the focus position of the test spherical surface. Change to (1/2 of the radius of curvature). When a circular light source is projected at the focal position, the inspection principle is the same as that in which the light source image is projected at the focal point of the lens to be tested in the transmission illumination inspection of Patent Document 1.

本発明は、曲率半径が小さく球面角の大きい球面の検査に適した技術を提供すると共に過去の先行技術を簡単に組込みでき、様々な形状の被検面の検査可能な範囲を広くしたものである。  The present invention provides a technique suitable for inspection of a spherical surface having a small curvature radius and a large spherical angle, and can easily incorporate the prior art of the past, and widens the inspection range of various shapes of the inspection surface. is there.

詳述すると、小さい曲率半径で大きい球面角を持つ球面の落射照明検査を可能にしたうえで、様々な形状、つまり外径、曲率半径、球面角の組合せ等を持つ球面または非球面の落射照明検査可能範囲を先行技術に較べて大きく広げたものである。その上で透過照明の検査装置との組合せも可能にし、略すべてのレンズやレンズ成形型の検査ができる。さらに、非球面レンズについても非球面度が小さければ可能であることを実験で確認した。  More specifically, it enables the epi-illumination inspection of a spherical surface with a small curvature radius and a large spherical angle, and also makes a spherical or aspherical epi-illumination with various shapes, that is, combinations of outer diameter, curvature radius, spherical angle, etc. The inspection range is greatly expanded compared to the prior art. In addition, it can be combined with an inspection device for transmitted illumination, so that almost all lenses and lens molds can be inspected. Furthermore, it was confirmed by experiments that an aspheric lens is possible if the asphericity is small.

なお、テレセントリックな像を作るとの意味は、球面をあたかも平面像として表示するための工夫であり、コントラストが高くて焦点深度が深いピントがずれても像の大きさが変化しない像を得ることにあり、ほとんど欠陥のない研磨面中の欠陥を高コントラストで表示し欠陥の計測を可能としたものである。また、本装置が作るテレセントリックな像は一つの対物を選択すれば、視野角が決まるので、曲率半径が異なっても被検面の像の大きさは一定となり、CCD等で撮像する場合に好適である。  The meaning of creating a telecentric image is a device for displaying a spherical surface as if it were a planar image, and obtaining an image that does not change its size even when the focus is high and the depth of focus is high. Therefore, defects on the polished surface with almost no defects are displayed with high contrast, and the defects can be measured. In addition, the telecentric image created by this device is determined by selecting a single objective, so the viewing angle is determined. Therefore, the size of the image on the surface to be inspected remains constant even when the radius of curvature is different, and is suitable for imaging with a CCD or the like. It is.

また、従来できなかった大きい球面角を持つ球面表面全体を一画像の中に略平面像として容易に一括表現できる上に画像の質も高く5μm以下の球面上の欠陥を検出できた。また、本発明の装置は、特に精密な部品や製品を使うことなく、簡単な構成で操作性が良く、検査に要する時間が短縮できた。  In addition, the entire spherical surface having a large spherical angle, which could not be conventionally achieved, can be easily expressed as a substantially planar image in one image, and the image quality is high, and defects on the spherical surface of 5 μm or less can be detected. Further, the apparatus of the present invention has good operability with a simple configuration without using particularly precise parts and products, and the time required for inspection can be shortened.

図1本発明の第1の実施形態に係わる落射照明球面検査装置の概略全体構成を示す模式図である。1 is a schematic diagram showing a schematic overall configuration of an epi-illumination spherical surface inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係わる落射照明装置の円形光源装置の模式的な断面図である。It is typical sectional drawing of the circular light source device of the epi-illumination apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係わる落射照明装置が位置を変更して像観察ユニット内に配置された場合の該略構成を示す模式図である。It is a schematic diagram which shows this schematic structure when the epi-illumination apparatus concerning the 1st Embodiment of this invention changes a position and is arrange | positioned in an image observation unit. 本発明で用いる球面角、視野角、照明NAに関する図である。It is a figure regarding the spherical angle used by this invention, a viewing angle, and illumination NA. 本発明の第1の実施形態に係わる照明法と結像に関する光学的な概念図である。It is an optical conceptual diagram regarding the illumination method and image formation concerning the 1st Embodiment of this invention. 本発明の第2の実施形態に係わる落射透過照明球面検査装置の概略全体構成を示す模式図である。光軸の右側は落射照明時、左は透過照明時の透過照明光学構成図である。It is a schematic diagram which shows the schematic whole structure of the epi-illumination transmission illumination spherical surface inspection apparatus concerning the 2nd Embodiment of this invention. The right side of the optical axis is a transmission illumination optical configuration diagram during epi-illumination and the left is during transmission illumination. 本発明の第3の実施形態に係わる被検面の位置と被検面からの反射光および透過光の光路図である。光軸の右側は落射照明時、左は透過照明時の透過照明光学構成図である。It is an optical path diagram of a position of a test surface concerning the 3rd embodiment of the present invention, reflected light from a test surface, and transmitted light. The right side of the optical axis is a transmission illumination optical configuration diagram during epi-illumination and the left is during transmission illumination. 特許文献3に係わる光学的な概念図である。It is an optical conceptual diagram concerning patent document 3. FIG. 特許文献3に係わる光学的な概念図である。It is an optical conceptual diagram concerning patent document 3. FIG. 特許文献3に係わる光学的な概念図である。It is an optical conceptual diagram concerning patent document 3. FIG. 本願の第1実施例の光学系の模式図である。It is a schematic diagram of the optical system of 1st Example of this application.

以下、本発明の実施形態について添付図面を参照して説明する。すべての図面において実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。また、第2の投光レンズユニットを用いる第1の落射投光ユニットを第1の落射投光ユニットA、第3の投光レンズユニットを用いる第1の落射投光ユニットを第1の落射投光ユニットBとして説明する。ただし、第1の投光レンズユニットは第2、第3の投光レンズユニットに限定されるものではない。  Embodiments of the present invention will be described below with reference to the accompanying drawings. Even if the embodiments are different in all the drawings, the same or corresponding members are denoted by the same reference numerals, and common description is omitted. Further, the first incident light projection unit using the second light projection lens unit is the first incident light projection unit A, and the first incident light projection unit using the third light projection lens unit is the first incident light projection unit. The optical unit B will be described. However, the first light projecting lens unit is not limited to the second and third light projecting lens units.

図1は本発明の第1の実施形態に係る落射照明球面検査装置90の概略構成を示す全体図であり、曲率半径が1〜30mm程度であり、図4に示す球面角が65度〜17度程度である被検面1bの検査に好適な構成である。なお、図1は第1の落射投光ユニットA90dを像観察ユニット90cと対物レンズ支持台90b間に配置した図である。
第1の落射投光ユニットA90dは、図2に示す円形光源装置11の円形光源9と円形光源9に焦点を合わせたコリメートレンズ8aを含む第2の投光レンズユニット91aaと光分割偏向ミラー7とで構成され、コリメートレンズ8aが作るアフォーカルな光束を光分割偏向ミラー7を介して対物レンズ3に送る。本実施形態の説明は主に凹面の被検面1bの検査を例として説明する。
FIG. 1 is an overall view showing a schematic configuration of an epi-illumination spherical surface inspection apparatus 90 according to the first embodiment of the present invention. The curvature radius is about 1 to 30 mm, and the spherical angle shown in FIG. This configuration is suitable for the inspection of the surface 1b to be measured. FIG. 1 is a diagram in which the first incident light projection unit A90d is disposed between the image observation unit 90c and the objective lens support 90b.
The first vertical illuminator unit A90d includes a circular light source 9 of the circular light source device 11 shown in FIG. 2, a second light projecting lens unit 91aa comprising collimating lens 8a focused in a circular light source 9, the light splitting deflection The afocal beam formed by the collimator lens 8 a is sent to the objective lens 3 through the light splitting deflection mirror 7. In the description of the present embodiment, the inspection of the concave test surface 1b will be mainly described as an example.

本実施形態の対物レンズ群90eから選択した各々の対物レンズ3は物体側焦点位置3bに円形光源装置11の小さな円形光源9の円形光源像3aを作る。対物レンズ3は被検部材1の被検面1bの曲率半径に近い焦点距離のものが選ばれ、被検部材1は凹被検面1bの曲率中心1aと円形光源像3aを合致させて配置される。よって、被検面1bは対物レンズ3の物体側焦点距離の略2倍の位置となる。この配置で円形光源像3aからの照明光で被検面1bを照明した場合、像側の焦点距離の略2倍の位置に凹被検面一次像3cを略1倍の実像で作る。また、対物レンズ物体側主点3hに凸被検面を置いた場合には像側主点3iに略1倍の凸被検面の一次虚像を作る。  Each objective lens 3 selected from the objective lens group 90e of the present embodiment creates a circular light source image 3a of the small circular light source 9 of the circular light source device 11 at the object side focal position 3b. The objective lens 3 is selected to have a focal length close to the radius of curvature of the test surface 1b of the test member 1, and the test member 1 is arranged so that the center of curvature 1a of the concave test surface 1b and the circular light source image 3a coincide. Is done. Therefore, the test surface 1b is at a position approximately twice the object-side focal length of the objective lens 3. When the test surface 1b is illuminated with illumination light from the circular light source image 3a in this arrangement, the concave test surface primary image 3c is formed as a real image that is approximately one time at a position that is approximately twice the focal length on the image side. Further, when a convex test surface is placed at the objective lens object-side principal point 3h, a primary virtual image of the convex test surface that is approximately 1 time is created at the image-side principal point 3i.

対物レンズはこのような条件で明瞭な像を作るために補正されていなければならないが、実験的ではあるが、顕微鏡用の無限遠補正の対物レンズ、即ち落射観察用長作動距離対物レンズが該当する。顕微鏡対物レンズ群は一般に100倍、50倍、20倍、10倍でラインアップされており、倍率に応じて焦点距離と開口数(NA)が数列的に設定され、本装置に好適である。  The objective lens must be corrected in order to produce a clear image under these conditions, but it is experimental, but is applicable to an infinitely corrected objective lens for microscopes, that is, a long working distance objective lens for epi-illumination observation. To do. The microscope objective lens group is generally lined up at 100 times, 50 times, 20 times, and 10 times, and the focal length and the numerical aperture (NA) are set in a series according to the magnification, which is suitable for this apparatus.

実験では、これらの対物レンズの検査可能な被検面1bの曲率半径は使用対物レンズの焦点距離のより好適には0.5倍から1.5倍であり、検査可能な球面角(視野角)は対物レンズの開口数(NA)と同等である。具体的には、顕微鏡用100倍対物レンズは焦点距離が例示的には2mmでNAは0.9程度であるので、検査可能被検面1bの曲率半径は1〜3mm、視野角≦65度(NA=0.9)、同様に50倍レンズでは曲率半径は2〜6mmで視野角≦45度(NA=0.7)、20倍レンズでは曲率半径は5〜15mmで視野角≦30度(NA=0.5)、10倍レンズでは曲率半径は10〜30mmで視野角≦17度(NA=0.3)程度あり、この範囲の球面の検査が可能となる。  In the experiment, the radius of curvature of the surface 1b to be inspected of these objective lenses is preferably 0.5 to 1.5 times the focal length of the objective lens used, and the inspectable spherical angle (viewing angle) ) Is equivalent to the numerical aperture (NA) of the objective lens. Specifically, since the 100 × objective lens for a microscope has a focal length of 2 mm and NA of about 0.9, the inspectable surface 1b has a radius of curvature of 1 to 3 mm and a viewing angle ≦ 65 degrees. (NA = 0.9), similarly, with a 50 × lens, the radius of curvature is 2-6 mm and the viewing angle ≦ 45 degrees (NA = 0.7), and with a 20 × lens, the radius of curvature is 5-15 mm and the viewing angle ≦ 30 °. (NA = 0.5) A 10 × lens has a radius of curvature of 10 to 30 mm and a viewing angle ≦ 17 degrees (NA = 0.3), and a spherical surface in this range can be inspected.

凸被検面1bの検査では対物レンズ物体側主点3hが対物レンズのWD、即ちワーキングディスタンス内にあり、WDが対物レンズの焦点距離の1.5倍ほどあることが望ましく、ない場合は対物レンズ3と被検面1bが干渉して被検面1bの検査ができなくなる。  In the inspection of the convex test surface 1b, the objective lens object side principal point 3h is preferably within the WD of the objective lens, that is, within the working distance, and WD is preferably about 1.5 times the focal length of the objective lens. The lens 3 and the test surface 1b interfere with each other and the test surface 1b cannot be inspected.

なお、一つの対物レンズを使用して曲率半径が異なる被検面1bを観察する場合、視野角の等しい被検面1bの一次像は図5に示すように、対物レンズの瞳径と同径の像を作る。つまり像の大きさは変化しないが、像の倍率と結像位置は異なる。  When observing the test surface 1b having a different radius of curvature using one objective lens, the primary image of the test surface 1b having the same viewing angle is the same diameter as the pupil diameter of the objective lens as shown in FIG. Make a statue of. That is, the image size does not change, but the image magnification and the image formation position are different.

また、対物レンズ群90eの各々の対物レンズ3は対物レンズ支持台90bの対物レンズ枠3gに挿入されたときに各々の焦点位置が同一となるためにアダプター枠3fが設計され、一次像位置を同一位置にするために凹被検面1b用と凸被検面1b用のアダプター枠3fが一つの対物レンズに対して2種計3種が用意されている。この理由は、操作性の観点から対物群のどの対物レンズが選択されても、被検面の設置位置を同一位置として被検面表面を探しやすくでき、また一次像位置を略像リレーレンズのピント位置に設定しピント合わせが容易にできることである。  In addition, since each of the objective lenses 3 in the objective lens group 90e has the same focal position when inserted into the objective lens frame 3g of the objective lens support 90b, an adapter frame 3f is designed to set the primary image position. In order to obtain the same position, two types of adapter frames 3f for the concave test surface 1b and two for the convex test surface 1b are prepared for one objective lens. This is because, regardless of which objective lens in the objective group is selected from the viewpoint of operability, it is easy to find the surface of the test surface with the installation position of the test surface being the same position, and the primary image position is substantially the same as that of the image relay lens. The focus position can be set easily.

本実施例の被検部材載置移動台90aは被検部材1が光の透過、不透過にかかわらず被検部材1を載置し、図示しない芯出し装置で被検面1bの光軸を検査光軸20に合わせた後、検査光軸に沿って図示しない一軸移動ステージによって紙面上下に移動させる。被検面1b表面の中心1cを円形光源像3aに合致させることによって被検面1bの位置を検出できるので、この位置を基準に凹被検面1bを曲率半径分対物レンズから遠ざけると被検面1bの曲率中心1aを円形光源像3aと合致させることができる。この時、図示しないモニター上に被検面1bの二次像6aを得ることができる。
なお、被検面1bの位置の検出は、像観察ユニット90cを移動し像リレーレンズ4のピント位置を対物レンズのほぼ像側焦点3j付近に合わせ被検面1bを対物レンズに対して上下すると、図示しないモニター上の明るい円形部の径が変化する。この円形部の外径が最も大きくなった時が円形光源像3aと被検面1bの曲率中心が一致した時である。
The test member placement moving base 90a of this embodiment places the test member 1 regardless of whether the test member 1 transmits or does not transmit light, and the optical axis of the test surface 1b is adjusted by a centering device (not shown). After being aligned with the inspection optical axis 20, it is moved up and down on the paper surface by a uniaxial moving stage (not shown) along the inspection optical axis. Since the position of the test surface 1b can be detected by matching the center 1c of the surface 1b of the test surface with the circular light source image 3a, the test is performed when the concave test surface 1b is moved away from the objective lens by the radius of curvature based on this position. The center of curvature 1a of the surface 1b can be matched with the circular light source image 3a. At this time, a secondary image 6a of the test surface 1b can be obtained on a monitor (not shown).
The position of the test surface 1b is detected by moving the image observation unit 90c, adjusting the focus position of the image relay lens 4 to approximately the vicinity of the image side focal point 3j of the objective lens, and moving the test surface 1b up and down with respect to the objective lens. The diameter of the bright circular portion on the monitor (not shown) changes. The time when the outer diameter of the circular portion becomes the largest is when the center of curvature of the circular light source image 3a coincides with the surface 1b to be examined.

本実施例の対物レンズ支持台90bは、落射照明球面検査装置90のステージ板40に位置決めされて着脱できるステー部材3eに、対物レンズ3を検査光軸20に同軸で互換着脱することができる対物レンズ枠3gが取り付けられた対物レンズ取付板3dを含む構成であり、アダプター枠3fに取り付けられた顕微鏡対物レンズや他の対物レンズが検査光軸に位置決めされて落し込まれる。なお、対物レンズ支持台が着脱できる理由は、一般の顕微鏡検査に使うときや後述の大曲率半径を持つ球面の検査時及び透過照明検査において対物レンズと対物レンズ支持台が不要となるからである。  The objective lens support 90 b of this embodiment is an objective that can be mounted on and removed from the stage member 40 of the epi-illumination spherical surface inspection apparatus 90 and can be attached to and detached from the objective member 3 coaxially with the inspection optical axis 20. The objective lens mounting plate 3d to which the lens frame 3g is attached is included, and a microscope objective lens and other objective lenses attached to the adapter frame 3f are positioned on the inspection optical axis and dropped. The reason that the objective lens support can be attached and detached is that the objective lens and the objective lens support are not required when used for general microscopic inspection or when inspecting a spherical surface having a large radius of curvature, which will be described later, and in transmitted illumination inspection. .

本実施例の像観察ユニット90cは、対物レンズ3がテレセントリックに作る被検面一次像3cを捉えて結像レンズ5にリレーする像リレーレンズ4と、像リレーレンズ4と両側にテレセントリックな構成に配置された結像レンズ5が作る略テレセントリックな被検面1bの二次像6aを撮像する撮像素子6と、撮像素子からの信号を画像として表示する図示しない表示モニターを含む。また、撮像素子からの信号は図示しないコンピュータ等に転送され画像処理装置や計測装置等により欠陥抽出や欠陥分類等の分析や計測が行われる。  The image observation unit 90c of the present embodiment has an image relay lens 4 that captures and relays to the imaging lens 5 a primary image 3c to be detected that is telecentric by the objective lens 3, and a telecentric configuration on both sides of the image relay lens 4. It includes an image sensor 6 that captures a secondary image 6a of the substantially telecentric surface 1b that is formed by the imaging lens 5 that is disposed, and a display monitor (not shown) that displays a signal from the image sensor as an image. A signal from the image sensor is transferred to a computer or the like (not shown), and analysis and measurement such as defect extraction and defect classification are performed by an image processing device, a measurement device, or the like.

像リレーレンズはワーキングディスタンスWDと口径の大きい無限遠設計のレンズが選択されることが好ましい。
以後の説明においても像リレーレンズと結像レンズは無限遠設計のレンズとして説明する。
WDが大きい理由はスペースを確保して作業性を良くすることのほか、第1の落射投光ユニットA90dを像リレーレンズ4と対物レンズ3との間に配置する場合に設置が容易になるからである。口径の大きい理由はテレセントリックレンズの観察視野は口径により決まることから大きな径を持つ被検面1bの観察に対応するためである。また、一次像の結像NAが小さいことから像リレーレンズ4のNA(開口数)も小さくてよく、結果として口径の大きい低倍のレンズが好適である。
As the image relay lens, it is preferable to select a working distance WD and a lens having an infinity design with a large aperture.
In the following description, the image relay lens and the imaging lens will be described as lenses of infinity design.
The reason why the WD is large is that not only the space is secured and the workability is improved, but also the first incident light projection unit A90d is easily installed when it is disposed between the image relay lens 4 and the objective lens 3. It is. The reason for the large aperture is that the observation field of view of the telecentric lens is determined by the aperture, so that it corresponds to the observation of the test surface 1b having a large diameter. Further, since the image formation NA of the primary image is small, the NA (numerical aperture) of the image relay lens 4 may be small, and as a result, a low-magnification lens having a large aperture is suitable.

像観察ユニット90cの光学系は大きな視野を持ち、テレセントリックに像を形成し、焦点深度の深いコントラストの良い画像を得ることができる。また、装置の光学系は倍率が低いことから像リレーレンズ4と結像レンズ5との間にズームレンズ30を持ち、像リレーレンズ4、結像レンズ5ともに焦点距離と開口数が異なるレンズと交換可能なことが望ましい。  The optical system of the image observation unit 90c has a large field of view, forms an image in a telecentric manner, and can obtain an image with a deep depth of focus and a good contrast. Further, since the optical system of the apparatus has a low magnification, a zoom lens 30 is provided between the image relay lens 4 and the imaging lens 5, and both the image relay lens 4 and the imaging lens 5 have different focal lengths and numerical apertures. It should be replaceable.

落射投光ユニットの照明光束について説明する。本実施例の第1の落射投光ユニットA90dは落射投光ユニットが像リレーレンズ4と対物レンズ3間に設置されるもので対物レンズに向けてアフォーカルな光束を送るが、この時、図5に示すように、円形光源9から同方向に向かう光線はコリメートレンズ8aから射出された後にコリメートレンズ8aの焦点平面8af上で交わる、いわゆるテレセントリックな照明で焦点平面を照明している。焦点平面を対物レンズ3が作る一次像平面3cに合致させると、焦点平面の1点から出る光は対物レンズ3を経て対物レンズの焦点で瞳(円形光源像3a)を作り、その後、被検面1b表面の1点を照明し反射する。被検面1b表面で反射した光は往路と同じ経路をたどり焦点平面の射出点に戻る。この光路図は対物レンズ3の収差補正ができていれば、球面を平面像として作ることを意味している。被検面1bが凸面であった場合は、対物レンズ物体側主点3hに置いた被検面1bは対物レンズ像側主点3iに虚像を作るので、コリメートレンズ8aの焦点平面を対物レンズ像側主点3iに一致させればよい。つまり、対物レンズ3が作る一次像平面に像リレーレンズの焦点平面を一致させれば成立する。  The illumination light flux of the incident light projection unit will be described. The first incident light projection unit A90d of this embodiment is an incident light projection unit installed between the image relay lens 4 and the objective lens 3, and sends an afocal light beam toward the objective lens. As shown in FIG. 5, the light beam traveling in the same direction from the circular light source 9 is emitted from the collimating lens 8a and then intersects on the focal plane 8af of the collimating lens 8a to illuminate the focal plane with so-called telecentric illumination. When the focal plane is matched with the primary image plane 3c formed by the objective lens 3, the light emitted from one point on the focal plane forms a pupil (circular light source image 3a) at the focal point of the objective lens through the objective lens 3, and then the test object One point on the surface of the surface 1b is illuminated and reflected. The light reflected by the surface 1b to be examined follows the same path as the forward path and returns to the exit point of the focal plane. This optical path diagram means that if the aberration of the objective lens 3 is corrected, a spherical surface is created as a planar image. When the test surface 1b is a convex surface, the test surface 1b placed at the objective lens object side principal point 3h creates a virtual image at the objective lens image side principal point 3i, so that the focal plane of the collimating lens 8a is the objective lens image. What is necessary is just to make it correspond to the side principal point 3i. That is, it is established if the focal plane of the image relay lens coincides with the primary image plane formed by the objective lens 3.

上記の説明は、最も良好な照明条件に付いて述べており、実際の装置においてはコリメートレンズ8aの焦点平面と一次像位置の合致精度は低くても効果は落ちない。対物レンズ3が作る円形光源像3aは、上記のような調整をしなくても円形光源としての形態を損なわないので、円形光源像3aから被検面1bの全面の点を照明していると考えればよい。  In the above description, the best illumination conditions are described. In an actual apparatus, the effect does not drop even if the matching accuracy between the focal plane of the collimating lens 8a and the primary image position is low. Since the circular light source image 3a created by the objective lens 3 does not impair the form of the circular light source even if the above adjustment is not performed, the point on the entire surface 1b of the test surface 1b is illuminated from the circular light source image 3a. Think about it.

光分割偏向ミラー7が像リレーレンズ4と結像レンズ5との間にある場合は、第1の落射投光ユニットB90fは図3と図3の91abとに示すように円形光源装置11の円形開口9bに焦点を合わせたコリメートレンズ8aと投光レンズ8bとを含み、投光レンズ8bが作る円形光源像は像リレーレンズ4の像側焦点位置と共役な位置8cに合致させてある。よって、光分割偏向ミラー7を介して、像リレーレンズ4からはアフォーカルな光束が対物レンズ3に向けて射出される。
なお、光分割偏向ミラー7の厚さは収差の発生を抑えるために落射投光ユニットが図1の像リレーレンズ4と対物レンズ3の間にある場合や、図7の像リレーレンズ4と被検部材1との間にある場合は0.3mm以下にすることが好ましい。
When the light splitting deflection mirror 7 is between the image relay lens 4 and the imaging lens 5, the first incident light projection unit B90f has a circular shape of the circular light source device 11 as shown in FIGS. 3 and 91ab. The collimating lens 8a focused on the opening 9b and the light projecting lens 8b are included, and the circular light source image formed by the light projecting lens 8b is matched with the position 8c conjugate with the image side focal position of the image relay lens 4. Therefore, an afocal light beam is emitted from the image relay lens 4 toward the objective lens 3 through the light splitting deflection mirror 7.
It should be noted that the thickness of the light splitting deflection mirror 7 is set so that the incident light projection unit is located between the image relay lens 4 and the objective lens 3 in FIG. 1 or the image relay lens 4 in FIG. If it is between the test member 1, it is preferably 0.3 mm or less.

次に球面角と視野角及び照明NAについて図4で説明する。対物レンズ群の個々のレンズがもつ円形光源像3aを作る開口数(NA)は本装置における被検面1b全域を照明する開口角と等しく、検査可能な被検面1bの外径と被検面1bの曲率中心を頂点とした円錐角の1/2であるが、本願では視野角と称する。対物レンズ3のNAが大きいほど大きい視野角の観察ができるのでNAの大きい対物レンズが本装置には好適である。また、被検面1bの外径と曲率中心が作る円錐角の1/2を球面角と称する。また、円形光源像3aから被検面1bの1点を照明する円錐角の1/2を照明NAと称する。この照明NAは、円形光源像の直径をφd、被検面1b曲率半径をrとすれば、
照明NA=d/(2r)
で計算される。照明NAの適正な値は実験的ではあるが、0.005〜0.05が好適である。
なお、対物レンズが作る円形光源像の径φdは、
φd=円形光源の径×(対物レンズの焦点距離/コリメートレンズの焦点距離)
で計算される。
照明NAの変更は図2に示す円形光源11の開口径9bの異なる開口板9aを交換して用いればよい。光源は可視光を発するLEDが好適である。
Next, the spherical angle, viewing angle, and illumination NA will be described with reference to FIG. The numerical aperture (NA) that forms the circular light source image 3a of each lens of the objective lens group is equal to the aperture angle that illuminates the entire surface 1b of the apparatus, and the outer diameter of the surface 1b that can be inspected and the surface to be inspected. Although it is 1/2 of the cone angle with the center of curvature of the surface 1b as the apex, it is referred to as a viewing angle in the present application. A larger viewing angle can be observed as the NA of the objective lens 3 is larger, so an objective lens having a larger NA is suitable for this apparatus. Moreover, 1/2 of the cone angle formed by the outer diameter of the surface 1b to be measured and the center of curvature is referred to as a spherical angle. Further, ½ of the cone angle that illuminates one point on the surface 1b to be examined from the circular light source image 3a is referred to as illumination NA. The illumination NA is such that the diameter of the circular light source image is φd, and the radius of curvature of the test surface 1b is r.
Illumination NA = d / (2r)
Calculated by An appropriate value of the illumination NA is experimental, but 0.005 to 0.05 is preferable.
The diameter φd of the circular light source image created by the objective lens is
φd = diameter of circular light source × (focal length of objective lens / focal length of collimating lens)
Calculated by
The illumination NA may be changed by exchanging the aperture plates 9a having different aperture diameters 9b of the circular light source 11 shown in FIG. The light source is preferably an LED that emits visible light.

次に、本願の第1実施例の光学系と特許文献3の実施例2の光学系との違いについて述べる。図11は本願の第1実施例の光学系の模式図を示す。特許文献3の実施例2を示す図10と比較すると、本願の第1実施例の図11の構成では、対物レンズL1と結像レンズL2間に凸レンズである像リレーレンズL4を加え、像リレーレンズL4と結像レンズL2をテレセントリックな関係とし、対物レンズL1が作るテレセントリックな一次像を像リレーレンズL4がリレーし、結像レンズL2がテレセントリックな二次像を作るのに対して、図10の構成ではテレセントリックな像を作れない。
図11ではピント合わせが厳密でなくても像の大きさの変わらず像が流れないコントラストの高い像を得ることができ、また、被検面1bの曲率半径に応じて最適な焦点距離を持つ対物レンズ群90eを用意し、個々の対物レンズに光学的な負担をかけない配慮を行っている。
Next, the difference between the optical system of the first example of the present application and the optical system of Example 2 of Patent Document 3 will be described. FIG. 11 shows a schematic diagram of the optical system of the first embodiment of the present application. Compared with FIG. 10 showing Example 2 of Patent Document 3, in the configuration of FIG. 11 of the first example of the present application, an image relay lens L4 which is a convex lens is added between the objective lens L1 and the imaging lens L2, and the image relay is performed. While the lens L4 and the imaging lens L2 have a telecentric relationship, the telecentric primary image created by the objective lens L1 is relayed by the image relay lens L4, and the imaging lens L2 creates a telecentric secondary image, whereas FIG. With this configuration, you cannot make a telecentric image.
In FIG. 11, a high-contrast image in which the image size does not change and the image does not flow can be obtained even if the focus is not strict, and has an optimum focal length according to the radius of curvature of the test surface 1b. An objective lens group 90e is prepared and consideration is given so as not to place an optical burden on each objective lens.

以上、第1の実施形態の構成と検査原理について述べてきたが、本発明においては、被検面1bと対物レンズ3と像リレーレンズ4のどれかを基準にそれ以外の2つのユニットが独立して検査光軸に沿って移動すれば充分である。例えば、被検面1bを基準に対物レンズ3と像観察ユニット90cとが相互に移動できればよく3種類の構成が可能であり、これらも本発明に含まれる。  The configuration and the inspection principle of the first embodiment have been described above. In the present invention, the other two units are independent on the basis of any one of the test surface 1b, the objective lens 3, and the image relay lens 4. Thus, it is sufficient to move along the inspection optical axis. For example, three types of configurations are possible as long as the objective lens 3 and the image observation unit 90c can move relative to each other with respect to the test surface 1b, and these are also included in the present invention.

また、本実施形態で、曲率半径が小さく大きい球面角を持つ球面の検査に適すると述べているのは、曲率半径が大きくなると装置全体が大きくなりすぎることと適当な対物レンズが入手できないことが理由であり、大きい曲率半径の被検面1bであっても大きい曲率半径に対応する光学系を用いれば同等の効果は得られるので本発明は曲率半径に制限はない。  In addition, in this embodiment, it is stated that it is suitable for inspection of a spherical surface having a small curvature radius and a large spherical angle. If the curvature radius is increased, the entire apparatus becomes too large and a suitable objective lens cannot be obtained. For this reason, even if the test surface 1b has a large radius of curvature, the same effect can be obtained by using an optical system corresponding to the large radius of curvature, so the present invention has no limitation on the radius of curvature.

第2の実施例について説明する。図6は本発明の第2の実施形態に係る落射透過照明検査装置91であり、第1の実施例と同じく曲率半径が小さく球面角が大きい被検面1bの落射照明検査と可視光透過検査部材の透過照明検査を切り替えて行える検査装置である。
第1の実施形態からの変更は、対物レンズ支持台90bに代わる一軸ステージ41の取付と、第1の落射投光ユニットA90dまたは第1の落射投光ユニットB90fから第2の落射投光ユニット91dへの交換と、新たに被検面1bの芯出装置91bと透過投光ユニット91fを取付けたものである。
また、対物板43は一軸ステージ41にスペーサ47を介して固定され、第2の落射投光ユニット91dを、検査光軸20に光分割偏向ミラー7の光軸が略合致する位置と、透過照明観察時に偏向ミラー筐体42が透過検査時に透過検査光束を遮らない位置とに移動、位置決め可能となっている。
A second embodiment will be described. FIG. 6 shows an epi-illumination inspection apparatus 91 according to the second embodiment of the present invention. Similar to the first example, the epi-illumination inspection and the visible light transmission inspection of the test surface 1b having a small curvature radius and a large spherical angle. It is an inspection device that can perform a transmission illumination inspection of a member by switching.
The change from the first embodiment is that the uniaxial stage 41 instead of the objective lens support 90b is attached, and the first incident light projecting unit A 90d or the first incident light projecting unit B 90f to the second incident light projecting unit 91d. In addition, a centering device 91b and a transmission light projecting unit 91f for the test surface 1b are newly attached.
The objective plate 43 is fixed to the uniaxial stage 41 via the spacer 47, and the second incident light projection unit 91d is connected to the inspection optical axis 20 at a position where the optical axis of the light splitting deflection mirror 7 substantially matches the transmitted illumination. The deflection mirror housing 42 can be moved and positioned to a position that does not block the transmission inspection light beam during transmission inspection during observation.

第2の落射投光ユニット91dは、投光軸21中に配置された円形光源装置11と、円形光源装置11の円形光源9に焦点位置を置いたコリメートレンズ8a(91aa)と、光分割偏向ミラー7を格納する偏向ミラー筐体42と、対物レンズ3と、対物レンズ3を取付ける対物板43とで構成される。偏向ミラー筐体42は光分割偏向ミラー7の光軸を対物板43の対物レンズ取付け部、例えばネジや嵌合部等の軸と合致させられて対物板43に載置固定されている。
円形光源9からの光はコリメートレンズ8aでアフォーカルな光束となり、光分割偏向ミラー7を介して対物レンズ3に入射し、対物レンズ3の焦点3bに円形光源像3aを作りながら被検面1bを照明する。被検面1bからの反射光は入射時と同じ光路をたどり対物レンズ3を通過した後に被検面1bの略1倍の一次像3cを作る。この一次像に像観察ユニット90cの像リレーレンズ4のピントを合わせると図示しないモニターに被検面1bの二次像が表示される。
The second incident light projection unit 91d includes a circular light source device 11 disposed in the light projection axis 21, a collimator lens 8a (91aa) having a focal position on the circular light source 9 of the circular light source device 11, and light splitting deflection. It comprises a deflection mirror housing 42 that houses the mirror 7, an objective lens 3, and an objective plate 43 to which the objective lens 3 is attached. The deflection mirror housing 42 is placed and fixed on the objective plate 43 such that the optical axis of the light splitting deflection mirror 7 coincides with the objective lens mounting portion of the objective plate 43, for example, an axis such as a screw or a fitting portion.
The light from the circular light source 9 becomes an afocal light beam by the collimating lens 8a, is incident on the objective lens 3 through the light splitting deflection mirror 7, and forms the circular light source image 3a at the focal point 3b of the objective lens 3 while the test surface 1b. Illuminate. The reflected light from the test surface 1b follows the same optical path as that at the time of incidence and passes through the objective lens 3 to form a primary image 3c that is approximately one time the test surface 1b. When the primary image is focused on the image relay lens 4 of the image observation unit 90c, a secondary image of the test surface 1b is displayed on a monitor (not shown).

次に、図6に示す第2の実施形態に係る落射透過照明球面検査装置91で透過照明検査を行う場合を説明するが、それに先だって透過照明の概要について説明する。
透過照明検査に使用する透過投光ユニット91fは本願第1の実施形態における落射検査装置91dと基本的な構成は同じものであり、透過コリメートレンズ8dの焦点位置に小さな円形光源9を持つ円形光源装置11が取り付けられ、円形光源9からの光はアフォーカルな光束となり、偏向ミラー49で検査光軸20に一致させて折り曲げられる。その後、アフォーカルな光束は、焦点距離または開口数の異なる落射対物レンズ群90eと互換な図7に示す透過投光レンズ群92eから選択された透過投光レンズ44の焦点位置に円形光源像8gを作る。この円形光源像8gを一軸ステージ53を持つ落射被検部材載置移動台91cで、例えば光学レンズである透過被検部材12の焦点92gに合わせる。透過被検部材12から射出されるテレセントリックな光束は透過被検部材の被検面1bに像観察ユニット90cのピントを合わせることにより撮像素子上に透過被検部材12の表または裏の被検面像を形成する。
Next, a case where the transmitted illumination inspection is performed by the epi-illuminated transmitted illumination spherical surface inspection device 91 according to the second embodiment shown in FIG. 6 will be described, but an outline of the transmitted illumination will be described prior to that.
The transmission light projection unit 91f used for the transmission illumination inspection has the same basic configuration as the incident light inspection apparatus 91d in the first embodiment of the present application, and has a circular light source having a small circular light source 9 at the focal position of the transmission collimator lens 8d. The apparatus 11 is attached, and the light from the circular light source 9 becomes an afocal light beam and is bent by the deflection mirror 49 so as to coincide with the inspection optical axis 20. After that, the afocal light beam is circular light source image 8g at the focal position of the transmissive projection lens 44 selected from the transmissive projection lens group 92e shown in FIG. 7 compatible with the epi-illumination objective lens group 90e having a different focal length or numerical aperture. make. The circular light source image 8g is adjusted to the focal point 92g of the transmission target member 12 that is an optical lens, for example, by the epi-subject test member placement moving base 91c having the uniaxial stage 53. The telecentric light beam emitted from the transmission test member 12 is focused on the test surface 1b of the transmission test member by focusing the image observation unit 90c on the imaging element, so that the front or back test surface of the transmission test member 12 is placed on the imaging device. Form an image.

第2の実施形態に係る落射透過照明球面検査装置91で透過照明検査を行う場合、一軸ステージ41に固定された第2の落射投光ユニット91dを一軸ステージ41の回転ノブ46で光分割偏向ミラーの光軸を検査光軸20と略一致した位置から透過検査部材12から射出される透過検査光束を遮らない位置にを退避移動させる。その後、像観察ユニット90cを透過被検部材12に近づけて透過被検部材12の被検面1bにピントを合わせ、被検光学レンズの焦点92gに透過投光レンズが作る円形光源像8gを一軸ステージ53の回転ノブ54を用いて合致させる。これだけで特許文献1の透過照明検査装置と同様の透過照明検査が可能となる。図6の検査光軸左側の一部が透過照明検査の模式図である。  When the transmitted illumination inspection is performed by the reflected light transmitted illumination spherical surface inspection apparatus 91 according to the second embodiment, the second incident light projection unit 91 d fixed to the uniaxial stage 41 is moved by the light dividing deflection mirror with the rotary knob 46 of the uniaxial stage 41. Is moved to a position where the transmitted inspection light beam emitted from the transmission inspection member 12 is not blocked from a position where the optical axis is substantially coincident with the inspection optical axis 20. Thereafter, the image observation unit 90c is brought close to the transmission test member 12 to focus on the test surface 1b of the transmission test member 12, and the circular light source image 8g formed by the transmission light projection lens is uniaxially formed at the focal point 92g of the test optical lens. Matching is performed using the rotary knob 54 of the stage 53. With this alone, the transmitted illumination inspection similar to the transmitted illumination inspection apparatus of Patent Document 1 can be performed. A part of the left side of the inspection optical axis in FIG. 6 is a schematic diagram of the transmitted illumination inspection.

図7は本発明の第3の実施形態に係る落射透過照明球面検査装置92であり、第1と2の実施例に比較して曲率半径が大きく球面角が小さい被検面1bの落射照明検査と透過照明検査を切り替えて行える検査装置である。第2の実施形態からの変更は、対物レンズ3とスペーサ47の取り外しと、第2の落射投光ユニット91dから第3の落射投光ユニット92bへの交換である。
なお、図7では一部に透過照明による実施例を含んでいる。光軸の右側は落射照明時、左は透過照明時の透過照明光学構成図である。
FIG. 7 shows an epi-illumination illumination spherical surface inspection device 92 according to the third embodiment of the present invention. The epi-illumination inspection of the surface 1b to be inspected has a larger radius of curvature and a smaller spherical angle than the first and second examples. It is an inspection device that can perform the transmission illumination inspection. The changes from the second embodiment are the removal of the objective lens 3 and the spacer 47 and the replacement from the second incident light projection unit 91d to the third incident light projection unit 92b.
In addition, in FIG. 7, the Example by transmitted illumination is included in part. The right side of the optical axis is a transmission illumination optical configuration diagram during epi-illumination and the left is during transmission illumination.

第3の落射投光ユニット92bを用いた光源像を検査軸上で移動させる方法と透過照明検査への切換えについて説明する。
円形光源の移動は、円形光源装置11と第4の投光レンズユニット92aのコリメートレンズ8aと交換投光レンズ8eは共に移動ガイド50の内径に沿って移動できる外径部とお互いの枠を連結できるネジ部を持つ枠に収納され、ネジで一体化された組となっている。円形光源と第4の投光レンズユニットの組移動ガイド50の移動案内部であるに内径に挿入し光分割偏向ミラーに対し移動させることによって、交換投光レンズ8eが作る円形光源像3aを光分割偏向ミラーを介して検査光軸20上に投影し、移動させる。円形光源の位置が決まった場合は固定ネジa56aで円形光源と第4の投光レンズユニットの組を固定する。
透過照明検査への切換えは、対物板43は一軸ステージ41に固定されているので、第3の落射投光ユニット92bを光分割偏向ミラー7の光軸が検査光軸20と略合致する位置と透過照明観察時に光分割偏向ミラー筐体が透過検査光束を遮らない位置とに回転ノブ46によって位置決め移動すればよい。
A method of moving the light source image using the third incident light projection unit 92b on the inspection axis and switching to the transmitted illumination inspection will be described.
The circular light source is moved by connecting the circular light source device 11, the collimating lens 8a of the fourth light projecting lens unit 92a, and the replacement light projecting lens 8e together with an outer diameter portion that can move along the inner diameter of the moving guide 50 and the frame of each other. It is housed in a frame with a threaded part that can be integrated into a set with screws. A circular light source image 3a formed by the replacement light projecting lens 8e is obtained by inserting a pair of the circular light source and the fourth light projecting lens unit into the inner diameter of the moving guide 50 and moving it with respect to the light splitting deflection mirror. The light is projected onto the inspection optical axis 20 through the light splitting deflection mirror and moved. When the position of the circular light source is determined, the set of the circular light source and the fourth light projecting lens unit is fixed with the fixing screw a56a.
In the switching to the transmitted illumination inspection, since the objective plate 43 is fixed to the uniaxial stage 41, the third incident light projection unit 92b has a position where the optical axis of the light splitting deflection mirror 7 substantially coincides with the inspection optical axis 20. What is necessary is just to position and move by the rotary knob 46 to the position where a light division | segmentation deflection | deviation mirror housing | casing does not block a transmission inspection light beam at the time of transmission illumination observation.

本第3の実施形態での透過落射照明球面検査装置での落射照明検査について説明をする。被検部材1は図6に示す落射被検部材載置台39に載置される。芯出装置91bで被検面1bと検査光軸20を略一致させ、検査光軸20に沿って移動する像観察ユニット90cの像リレーレンズ4のピント位置に被検部材1を移動すると、被検部材1の外径端面などが観察される。次に、被検面1b上に紙片などを置き、円形光源と第4の投光レンズユニット92aの組を光分割偏向ミラー7に対して移動ガイド50の案内部に沿って前後に移動し紙片に円形光源像3aを作る。被検面1bが凹面であれば、円形光源像3aを像リレーレンズ4側に被検面の曲率半径の1/2の位置即ち被検面1bの焦点位置に合致させるために第4の投光レンズユニット92aを移動する。この時、円形光源像3aと被検面1bの焦点が一致してモニターに被検面1bの像が現れる。被検面1bが凸面であれば、凹面と逆方向に円形光源像を移動させればよい。  The epi-illumination inspection in the transmitted epi-illumination spherical surface inspection apparatus in the third embodiment will be described. The test member 1 is placed on the epi-illumination test member mounting table 39 shown in FIG. When the test member 1 is moved to the focus position of the image relay lens 4 of the image observation unit 90c that moves along the test optical axis 20 by causing the test surface 1b and the test optical axis 20 to substantially coincide with each other by the centering device 91b, The outer diameter end surface of the test member 1 is observed. Next, a piece of paper or the like is placed on the test surface 1b, and the set of the circular light source and the fourth light projection lens unit 92a is moved back and forth along the guide portion of the moving guide 50 with respect to the light splitting deflection mirror 7. A circular light source image 3a is created. If the test surface 1b is concave, the fourth light source image 3a is placed on the image relay lens 4 side in order to match the position of half the radius of curvature of the test surface, that is, the focal position of the test surface 1b. The optical lens unit 92a is moved. At this time, the circular light source image 3a and the focus of the test surface 1b coincide and the image of the test surface 1b appears on the monitor. If the test surface 1b is a convex surface, the circular light source image may be moved in the direction opposite to the concave surface.

本第3の実施形態での光学系について説明する。
像リレーレンズ4のピント位置に置いた被検面1bの焦点に光源像を投影すると被検面の1点を照明する光は検査光軸20に平行に反射して像観察ユニット90cに入り撮像素子6に像を作る。特許文献3の実施例1の構成は図9に破線で示すように対物レンズの焦点に被検球面を置き、円形光源像3aを被検球面の曲率中心c2に投影するものであるが、本発明は図9の実線で示すように光源像を被検面1bの焦点位置c1に投影するので反射光がテレセントリックな光束となることから、本発明の像リレーレンズ4と結像レンズ5を含む両側にテレセントリックな光学系はこの検査法に適している。
また、この光学系は特許文献1に記載の球面の透過照明観察法である被検レンズの焦点位置に円形面光源像を置いて被検レンズ表面を照明し、被検レンズ表面から射出されるテレセントリックな光線束を取り込み両側にテレセントリックなレンズで被検レンズ表面の像を結像させる構成と同じある。よって、特許文献1に記載の球面の透過観察法は本願第3実施例の透過照明検査装置としてそのまま用いることができる。
An optical system according to the third embodiment will be described.
When a light source image is projected onto the focal point of the test surface 1b placed at the focus position of the image relay lens 4, the light that illuminates one point on the test surface is reflected parallel to the inspection optical axis 20 and enters the image observation unit 90c. An image is formed on the element 6. The configuration of Example 1 of Patent Document 3 is such that a test sphere is placed at the focal point of the objective lens and a circular light source image 3a is projected onto the center of curvature c2 of the test sphere as shown by the broken line in FIG. The invention includes the image relay lens 4 and the imaging lens 5 of the present invention because the reflected light becomes a telecentric light beam because the light source image is projected onto the focal position c1 of the test surface 1b as shown by the solid line in FIG. A telecentric optical system on both sides is suitable for this inspection method.
Further, this optical system illuminates the surface of the test lens by placing a circular surface light source image at the focus position of the test lens, which is the spherical transmitted illumination observation method described in Patent Document 1, and is emitted from the test lens surface. This is the same as the configuration in which a telecentric light beam is taken in and an image of the surface of the lens to be examined is formed with a telecentric lens on both sides. Therefore, the spherical transmission observation method described in Patent Document 1 can be used as it is as the transmission illumination inspection apparatus of the third embodiment of the present application.

この場合の被検面の曲率半径と視野径について少し説明する。凸被検面1bの視野径は、円形光源を曲率中心に投影する特許文献3の実施例1の構成(図9参照)すなわち円形光源像を被検球面の曲率中心に投影する場合と比べると小さいのであるが、大きな曲率半径の被検面1bの場合には大きな視野径の差は生じない。何故なら、大きな曲率半径を持つ被検面1bの検査では、交換投光レンズ8eと被検面間距離は、投影される光源像と被検面間距離と比べて十分短いため、交換投光レンズ8eから円形光源像3aを作る光束は曲率中心に投影するときと焦点に投影するときの光束とではでは被検面の位置において光束の径が大きく変わらないからである。  In this case, the curvature radius and field diameter of the surface to be examined will be described briefly. The visual field diameter of the convex test surface 1b is compared with the configuration of Example 1 in which a circular light source is projected onto the center of curvature (see FIG. 9), that is, when a circular light source image is projected onto the center of curvature of the test spherical surface. Although it is small, a large difference in visual field diameter does not occur in the case of the test surface 1b having a large curvature radius. This is because in the inspection of the test surface 1b having a large radius of curvature, the distance between the replacement light projecting lens 8e and the test surface is sufficiently shorter than the distance between the projected light source image and the test surface. This is because the diameter of the light beam that forms the circular light source image 3a from the lens 8e does not change significantly at the position of the test surface between the case of projecting at the center of curvature and the case of projecting to the focal point.

しかし、30〜100mmの曲率半径を持つ凸被検面の観察では以下の問題がある。凸被検面1bの場合、円形光源像3aの投影位置は像リレーレンズ4のピント(焦点)位置にある被検面1bより遠方にとなるので、円形光源像3aを被検面1bの焦点位置に合わせるために第4の投光レンズユニット92aを検査光軸20に近づけると、光分割偏向ミラー7との干渉が生じ円形光源像を被検面の曲率中心に投影できなくなることが生じる。交換投光レンズ8eに焦点距離の長いレンズを用いれば円形光源像を被検レンズの曲率中心に投影できるが、視野角が小さくなり、結果として視野が小さくなる不具合が発生する。
この問題に対して、特許文献3の実施例1は対物レンズと結像レンズをテレセントリックな構成にして被検球面を対物レンズの焦点位置に置き、被検球面の曲率中心に円形光源を投影するものなので、特許文献3の実施例1を利用して円形光源像を被検球面の焦点c1ではなく曲率中心c2に形成すると、像観察ユニット90cの作る像にテレセントリック性はなくなるが、像の観察は可能となる。
なお、第3の落射投光ユニット92bは、図7に示すように光源枠59の内径を案内に調整枠60をわずかにずらし、円形光源装置11をコリメートレンズ8bに対してわずかに移動できるようにしてもよい。この場合は、交換投光レンズ8eが作る円形光源像3aの位置を交換投光レンズ8eの焦点位置からわずかにずらすことができる。この操作によって、交換レンズ群の個々のレンズの焦点距離が間欠的に選択されていることに対して、焦点距離があたかも連続的に準備されているようになる。ただし、円形光源像3aは若干ぼけた像になり視野角も変化するが、実質的には問題ではない。
However, observation of a convex test surface having a radius of curvature of 30 to 100 mm has the following problems. In the case of the convex test surface 1b, the projection position of the circular light source image 3a is farther from the test surface 1b at the focus (focus) position of the image relay lens 4, so that the circular light source image 3a is focused on the test surface 1b. If the fourth light projection lens unit 92a is brought close to the inspection optical axis 20 in order to match the position, interference with the light splitting deflection mirror 7 occurs and the circular light source image cannot be projected on the center of curvature of the surface to be examined. If a lens having a long focal length is used as the interchangeable projection lens 8e, a circular light source image can be projected on the center of curvature of the lens to be examined. However, the viewing angle is reduced, resulting in a problem that the field of view is reduced.
To solve this problem, Example 1 of Patent Document 3 has a telecentric configuration of the objective lens and the imaging lens, places the test sphere at the focal position of the objective lens, and projects a circular light source at the center of curvature of the test sphere. Therefore, when the circular light source image is formed at the center of curvature c2 instead of the focal point c1 of the test spherical surface using Example 1 of Patent Document 3, the image formed by the image observation unit 90c is not telecentric, but the image is observed. Is possible.
As shown in FIG. 7, the third incident light projection unit 92b can slightly move the circular light source device 11 with respect to the collimating lens 8b by slightly shifting the adjustment frame 60 with the inner diameter of the light source frame 59 as a guide. It may be. In this case, the position of the circular light source image 3a created by the interchangeable projection lens 8e can be slightly shifted from the focal position of the interchangeable projection lens 8e. By this operation, the focal lengths of the individual lenses of the interchangeable lens group are intermittently selected, whereas the focal lengths are prepared continuously. However, the circular light source image 3a is a slightly blurred image and the viewing angle changes, but this is not a problem in practice.

次に、第3の実施形態に係る落射透過照明球面検査装置92で透過照明検査に切り替える場合の説明を図7を用いて行う。第3の落射投光ユニット92bを一軸ステージ41の回転ノブ46で光分割偏向ミラー7の光軸を検査光軸20と略一致した位置から透過検査部材12から射出される透過検査光束を遮らない位置に第3の落射投光ユニット92bを退避移動させる。これだけで特許文献1の透過照明検査装置と同様の原理、すなわち、被検部材の焦点に円形光源像を合致させる透過照明検査が可能となる。図7の検査光軸20左側の一部が透過照明検査の模式図である。  Next, description will be made with reference to FIG. 7 when switching to the transmitted illumination inspection by the epi-illuminated transmitted illumination spherical surface inspection device 92 according to the third embodiment. The third incident light projection unit 92b is not obstructed by the rotary knob 46 of the uniaxial stage 41 from the transmission inspection light beam emitted from the transmission inspection member 12 from a position where the optical axis of the light splitting deflection mirror 7 substantially coincides with the inspection optical axis 20. The third incident light projection unit 92b is moved to the position. With this alone, the same principle as the transmission illumination inspection apparatus of Patent Document 1, that is, the transmission illumination inspection that matches the circular light source image with the focal point of the member to be detected can be performed. A part of the left side of the inspection optical axis 20 in FIG. 7 is a schematic diagram of the transmitted illumination inspection.

落射透過照明球面検査装置91と落射透過照明球面検査装置92の特徴と共通仕様部について説明する。
図6は本発明の第2の実施形態に係り、本発明の第1の実施形態と同じく小曲率半径大球面角を持つ被検面1bの落射透過照明球面検査装置91であって、落射投光装置に第2の落射投光ユニット91dを用いており、図7は本発明の第3の実施形態に係り、本発明の第3の落射投光ユニット92bを用いた大曲率半径小球面角を持つ被検面1bの落射透過照明球面検査装置92であって、共に図6記載の透過投光ユニット91fと芯出装置91bを加えて備えさせたものである。
The features and common specifications of the epi-illumination transmission illumination spherical inspection device 91 and the epi-illumination transmission illumination spherical inspection device 92 will be described.
FIG. 6 relates to a second embodiment of the present invention, and is an epi-illumination transmission illumination spherical surface inspection device 91 for the surface 1b to be measured having a small radius of curvature and a large spherical angle as in the first embodiment of the present invention. The second epi-illumination projection unit 91d is used in the optical device, and FIG. 7 relates to the third embodiment of the present invention. A large curvature radius small spherical angle using the third epi-illumination projection unit 92b of the present invention. The epi-illumination and transmission illumination spherical surface inspection device 92 for the surface 1b to be measured includes both a transmission / projection unit 91f and a centering device 91b shown in FIG.

落射照明検査の構成について説明する。第2の落射投光ユニット91dは対物レンズ3を用いるが、第3の落射投光ユニット92bは対物レンズを使用しない。2つの落射投光ユニットは同形状の対物板43に固定され交換取付可能となっている。双方の落射投光ユニットの切り替えは、双方の装置での検査時に被検部材1の載置位置がほぼ同じことから、対物レンズ3を使用する第2の落射投光ユニットはスペーサ47を使用し、対物レンズを使用しない第3の落射投光ユニット92bを使用する時はスペーサ47を取り除く。また、双方の落射投光ユニットの対物板43は一軸ステージ41に互換着脱ができる。  The configuration of the epi-illumination inspection will be described. The second incident light projection unit 91d uses the objective lens 3, but the third incident light projection unit 92b does not use the objective lens. The two incident light projection units are fixed to the objective plate 43 having the same shape and can be exchanged. Switching between the two epi-illumination projection units uses the spacer 47 in the second epi-illumination projection unit that uses the objective lens 3 because the mounting position of the member 1 to be tested is substantially the same during the inspection with both apparatuses. When the third incident light projection unit 92b that does not use the objective lens is used, the spacer 47 is removed. Moreover, the objective plate 43 of both incident light projection units can be attached to and detached from the uniaxial stage 41.

落射投光ユニットの検査光軸への挿脱について説明する。落射照明観察時は双方の落射投光ユニットの光分割偏向ミラー7が検査光軸20と一致する位置に移動する。透過観察時には対物レンズと落射投光ユニットが不要となるために、双方の落射投光ユニットは透過検査光束を遮らないかつ被検部材1にピントを合わせるために検査部材に近づく像観察ユニット90cに干渉しない位置に光軸から離脱させられる。  The insertion / removal of the incident light projection unit to / from the inspection optical axis will be described. At the time of epi-illumination observation, the light splitting deflection mirrors 7 of both epi-illumination light projecting units move to a position that coincides with the inspection optical axis 20. Since the objective lens and the epi-illumination projection unit are not required at the time of transmission observation, both the epi-illumination projection units do not block the transmission inspection light beam and are close to the image observation unit 90c close to the inspection member in order to focus on the member 1 to be examined. It can be separated from the optical axis at a position where it does not interfere.

透過落射照明球面検査装置92で落射照明検査から透過照明検査に切換えるときは、落射被検部材載置台39代わって透過照明装置の透過投光レンズ44を載置する透過投光レンズケース45が取り付けられる。透過投光レンズケース45は透過観察時に透過投光レンズ44として使用される落射対物レンズ群90eも簡単に着脱交換できるように設計されている。また、透過照明検査時の被検部材の載置位置も落射照明検査時とほぼ同じことから透過観察時の被検部材12の芯出しも落射観察時の被検部材1と同様、羽絞り31aの開口の内縁部で粗い芯出しが行われる。  When switching from the reflected illumination inspection to the transmitted illumination inspection by the transmitted incident illumination spherical surface inspection device 92, a transmitted light projection lens case 45 for mounting the transmitted illumination lens 44 of the transmitted illumination device is attached in place of the incident illumination member mounting table 39. It is done. The transmission / projection lens case 45 is designed so that the epi-illumination objective lens group 90e used as the transmission / projection lens 44 during transmission observation can be easily attached and detached. Further, since the mounting position of the test member during the transmission illumination inspection is almost the same as that during the epi-illumination inspection, the centering of the test member 12 during the transmission observation is the same as the test member 1 during the epi-illumination observation. Coarse centering is performed at the inner edge of the opening.

芯出装置91bは、検査光軸20に同心の絞り開閉レバー31cと固定ネジ31bを持つ羽絞り31a、被検部材1を回転させて観察するための回転枠33、回転枠33とネジで係合され、被検部材1の外径端面を羽絞りの位置に合致調整する。被検部材の高さを調整する高さ調整枠35、高さ調整枠35に落とし込まれ、被検部材を保持する内径が被検部材の外径よりわずかに小さい内径を持つ透過被検部材載置台38、偏心微調整用の偏心移動枠32、偏心移動枠32を微移動させて被検部材の光軸を検査光軸に微調整するボールプランジャー34、調整ツマミ36持つ偏心枠37を有する。被検部材は、羽絞り31aの開口内縁部で被検部材の芯の粗偏心調整がなされた後、調整ツマミ36で微調整される。なお、回転機能は、画像に現れる欠陥と欠陥に似た光学系のゴーストを判別するためである。  The centering device 91b is connected by a wing diaphragm 31a having a concentric aperture opening / closing lever 31c and a fixing screw 31b on the inspection optical axis 20, a rotating frame 33 for rotating and observing the member 1 to be examined, and the rotating frame 33 and screws. The outer diameter end face of the test member 1 is adjusted to match the position of the wing diaphragm. A height adjustment frame 35 for adjusting the height of the test member, a transmission test member that is dropped into the height adjustment frame 35 and has an inner diameter that holds the test member slightly smaller than the outer diameter of the test member A mounting table 38, an eccentric moving frame 32 for fine adjustment of eccentricity, a ball plunger 34 for finely moving the eccentric moving frame 32 to finely adjust the optical axis of the member to be inspected, and an eccentric frame 37 having an adjusting knob 36 are provided. Have. The test member is finely adjusted by the adjustment knob 36 after the coarse eccentricity adjustment of the core of the test member is made at the inner edge of the opening of the wing diaphragm 31a. The rotation function is for discriminating between a defect appearing in the image and a ghost of the optical system similar to the defect.

本発明の装置は、広範囲の曲率半径や球面角、口径の球面または非球面レンズ、モールドレンズ用の金型、鋼球など表面に球面をもつ部材の表面のキズ、汚れ、うねりなどの球面検査において、被検部材の透過照明検査および落射照明検査に好適である。  The apparatus of the present invention is used to inspect spherical surfaces such as scratches, dirt, and undulations on the surface of a member having a spherical surface such as a wide range of curvature radius, spherical angle, aperture spherical or aspherical lens, mold for mold lens, and steel ball. Are suitable for transmission illumination inspection and epi-illumination inspection of a member to be examined.

1 被検部材
1a 被検面曲率中心
1b 被検面
1c 被検面中心
3 対物レンズ
3a 円形光源像
3b 対物レンズ物体側焦点
3c 一次像または一次像面
3d 対物レンズ取付板
3e ステー部材
3f アダプター枠
3g 対物レンズ枠
3h 対物レンズ物体側主点
3i 対物レンズ像側主点
3j 対物レンズ像側焦点
4 像リレーレンズ
5 結像レンズ
6 撮像素子
6a 二次像
7 光分割偏向ミラー
8a コリメートレンズ
8af コリメートレンズの焦点平面
8b 投光レンズ
8c 像リレーレンズの焦点
8d 透過コリメートレンズ
8e 交換投光レンズ
8f 交換投光レンズの焦点
8g 透過照明円形光源像
9 円形光源
9a 開口板
9b 開口
9c 散乱板
10 トメ枠
11 円形光源装置
11a LED光源
11b LED発光面
12 透過被検部材
20 検査光軸
21 投光軸
30 ズームレンズ
31a 羽絞り
31b 固定ネジ
31c 開閉レバー
32 偏心移動枠
33 回転枠
34 プランジャー
35 高さ調整枠
36 調心ツマミ
37 偏心枠
38 透過被検部材載置台
39 落射被検部材載置台
40 ステージ板
41 一軸ステージ
42 偏向ミラー筐体
43 対物板
44 透過投光レンズ
45 透過投光レンズケース
46 回転ノブ
47 スペーサ
48 ベース板
49 偏向ミラー
50 移動ガイド
51 防塵ガラス
52 偏向ミラー台
53 一軸ステージ
54 回転ノブ
55 像観察ユニット支柱
56a 固定ネジa
56b 固定ネジb
57a 枠a
58b 枠b
59 光源枠
60 調整枠
90 落射照明球面検査装置
90a 被検部材載置移動台
90b 対物レンズ支持台
90c 像観察ユニット
90d 第1の落射投光ユニットA
90e 対物レンズ群
90f 第1の落射投光ユニットB
91 落射透過照明球面検査装置
91aa 第2の投光レンズユニット
91ab 第3の投光レンズユニット
91b 芯出装置
91c 透過投光レンズ落射被検部材載置移動台
91d 第2の落射投光ユニット
91e 透過投光レンズユニット
91f 透過投光ユニット
92 落射透過照明球面検査装置
92a 第4の投光レンズユニット
92b 第3の落射投光ユニット
92e 透過投光レンズ群
92g 透過被検部材の焦点
a 円形光源
b 光分割偏向ミラー
c 円形光源像
d 被検面
d1 被検面
d2 被検面
e 被検面上の点
e′ eの一次像
e″ eの二次像
e1 被検面上の点
e1′ e1の一次像
e11′e1の仮想レンズ位置での一次像
e2 被検面上の点
e2′ e2の一次像
e2″ e2の二次像
l 同焦距離
f 対物レンズ焦点距離
f1 対物レンズ焦点距離
f2 結像レンズ焦点距離
h 瞳
i 被検面曲率中心
k テレセントリック構成
m 焦点間隔
L1 対物レンズ
L2 結像レンズ
L2′ 仮想レンズ位置
L3 投光レンズ
L4 像リレーレンズ
R0 被検面曲率半径
R1 被検面曲率半径
WD ワーキングディスタンス
DESCRIPTION OF SYMBOLS 1 Test member 1a Test surface curvature center 1b Test surface 1c Test surface center 3 Objective lens 3a Circular light source image 3b Objective lens Object side focal point 3c Primary image or primary image surface 3d Objective lens mounting plate 3e Stay member 3f Adapter frame 3g Objective lens frame 3h Objective lens object side principal point 3i Objective lens image side principal point 3j Objective lens image side focal point 4 Image relay lens 5 Imaging lens 6 Imaging element 6a Secondary image 7 Light splitting deflection mirror 8a Collimating lens 8af Collimating lens Focal plane 8b projection lens 8c image relay lens focal point 8d transmission collimating lens 8e interchange projection lens 8f interchange projection lens focal point 8g transmitted illumination circular light source image 9 circular light source 9a aperture plate 9b aperture 9c scattering plate 10 frame 11 Circular light source device 11a LED light source 11b LED light emitting surface 12 Transmission member 20 Inspection optical axis 21 Light projection axis 0 Zoom lens 31a Feather diaphragm 31b Fixing screw 31c Opening / closing lever 32 Eccentric moving frame 33 Rotating frame 34 Plunger 35 Height adjusting frame 36 Alignment knob 37 Eccentric frame 38 Transmitting test member mounting table 39 Incident test member mounting table 40 Stage Plate 41 Uniaxial stage 42 Deflection mirror housing 43 Objective plate 44 Transmission projection lens 45 Transmission projection lens case 46 Rotation knob 47 Spacer 48 Base plate 49 Deflection mirror 50 Movement guide 51 Dustproof glass 52 Deflection mirror base 53 Uniaxial stage 54 Rotation knob 55 Image observation unit column 56a Fixing screw a
56b Fixing screw b
57a Frame a
58b Frame b
59 Light source frame 60 Adjustment frame 90 Epi-illumination spherical surface inspection device 90a Test object placement moving base 90b Objective lens support base 90c Image observation unit 90d First epi-illumination projection unit A
90e Objective lens group 90f First incident light projection unit B
91 Epi-illumination illuminating spherical surface inspection device 91aa Second projection lens unit 91ab Third projection lens unit 91b Centering device 91c Transmission projection lens epi-illumination member mounting moving table 91d Second epi-illumination projection unit 91e Transmission Projection lens unit 91f Transmission projection unit 92 Epi-illumination illuminating spherical surface inspection device 92a Fourth projection lens unit 92b Third epi-projection unit 92e Transmission projection lens group 92g Focus of transmitted member a Circular light source b Light Split deflection mirror c Circular light source image d Test surface d1 Test surface d2 Test surface e Primary image e ″ e Secondary image e ″ e Secondary image e1 of test surface e1 Point e1 ′ e1 of test surface Primary image e2 at the virtual lens position of primary image e11'e1 Secondary image l of primary image e2 "e2 of point e2 'e2 on test surface Confocal distance f Objective lens focal distance f1 Objective lens focal distance f Imaging lens focal length h Pupil i Test surface curvature center k Telecentric configuration m Focal interval L1 Objective lens L2 Imaging lens L2 'Virtual lens position L3 Projection lens L4 Image relay lens R0 Test surface curvature radius R1 Test surface curvature Radius WD Working distance

請求項8に記載の発明は、請求項7に記載の落射照明球面検査装置において、第2の落射投光ユニットは前記第1の落射投光ユニットおよび第1の対物レンズと交換取付け可能であって、
前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーと第2の対物レンズとを含み、
前記第2の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第2の落射投光ユニットは、前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーとが同軸に対物板に取付けられ、かつ前記第2の対物レンズは前記検査光軸と同軸に取付けられていることを特徴とする。
According to an eighth aspect of the present invention, in the epi-illumination spherical surface inspection device according to the seventh aspect, the second epi-illumination projection unit is replaceable with the first epi-illumination projection unit and the first objective lens. And
Including the circular light source, the second light projection lens unit, the light splitting deflection mirror, and a second objective lens;
When the second incident light projection unit is provided between the image relay lens and the test member,
In the second incident light projection unit, the circular light source, the second light projection lens unit, and the light splitting deflection mirror are coaxially attached to an objective plate, and the second objective lens is the inspection optical axis. It is characterized by being mounted on the same axis.

請求項10に記載の発明は、請求項7に記載の落射照明球面検査装置において、
3の落射投光ユニットは第1の落射投光ユニットと交換取付け可能であって、
前記第3の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第3の落射投光ユニットは、
前記投光軸上に配置された前記円形光源と、
前記円形光源に焦点を略合致させたコリメートレンズと前記コリメートレンズが作るアフォーカルな光束中に配置され、着脱互換可能な開口数または焦点距離の異なる交換投光レンズ群から選択された交換投光レンズとを有する第4の投光レンズユニットと、
案内部をもった移動ガイドと、
光分割偏向ミラーと、を有し、
前記第3の落射投光ユニットは、前記円形光源と前記第4の投光レンズユニットとが一体となった組と前記光分割偏向ミラーと前記投光軸と同軸に対物板に取付けられ、
前記第3の落射投光ユニットは、前記一体となった組が前記光分割偏向ミラーに対して前記投光軸上を前記移動ガイドの前記案内部に沿って移動し前記交換投光レンズが作る前記円形光源像を前記光分割偏向ミラーを介して前記検査光軸に送り、前記円形光源像を前記検査光軸上で移動させることを特徴とする。
The invention according to claim 10 is the epi-illumination spherical surface inspection device according to claim 7,
The third epi-illumination projection unit is replaceable with the first epi-illumination projection unit,
When the third incident light projection unit is provided between the image relay lens and the test member,
The third incident light projection unit is
The circular light source disposed on the projection axis;
An exchange projection selected from a group of exchange projection lenses having different numerical apertures or focal lengths that are arranged in an afocal light beam produced by the collimator lens and the collimator lens substantially in focus with the circular light source. A fourth light projection lens unit having a lens ;
A movement guide with a guide,
A light splitting deflection mirror,
The third incident light projection unit includes a set of the circular light source and the fourth light projection lens unit integrated with the light splitting deflection mirror attached to the objective plate coaxially with the light projection axis .
Said third vertical illuminator unit, the replacement light projecting lens moves make along on the light projection axis in the guide portion of the moving guide relative to the set that integrates said light splitting deflection mirror The circular light source image is sent to the inspection optical axis via the light splitting deflection mirror, and the circular light source image is moved on the inspection optical axis.

次に球面角と視野角及び照明NAについて図4で説明する。対物レンズ群の個々のレンズがもつ円形光源像3aを作る開口数(NA)は本装置における被検面1b全域を照明する開口角と等しく、検査可能な被検面1bの外径と被検面1bの曲率中心を頂点とした円錐角の1/2であるが、本願では視野角と称する。対物レンズ3のNAが大きいほど大きい視野角の観察ができるのでNAの大きい対物レンズが本装置には好適である。また、被検面1bの外径と曲率中心が作る円錐角の1/2を球面角と称する。また、円形光源像3aから被検面1bの1点を照明する円錐角の1/2を照明NAと称する。この照明NAは、円形光源像の直径をφd、被検面1b曲率半径をrとすれば、
照明NA=d/(2r)
で計算される。照明NAの適正な値は実験的ではあるが、0.005〜0.05が好適である。
なお、対物レンズが作る円形光源像の径φdは、
φd=円形光源の径×(対物レンズの焦点距離/コリメートレンズの焦点距離)
で計算される。
照明NAの変更は図2に示す円形光源装置11の散乱板9cに接して置かれる開口径9bの異なる開口板9aを交換して用いればよい。光源は可視光を発するLEDが好適である。
Next, the spherical angle, viewing angle, and illumination NA will be described with reference to FIG. The numerical aperture (NA) that forms the circular light source image 3a of each lens of the objective lens group is equal to the aperture angle that illuminates the entire surface 1b of the apparatus, and the outer diameter of the surface 1b that can be inspected and the surface to be inspected. Although it is 1/2 of the cone angle with the center of curvature of the surface 1b as the apex, it is referred to as a viewing angle in the present application. A larger viewing angle can be observed as the NA of the objective lens 3 is larger, so an objective lens having a larger NA is suitable for this apparatus. Moreover, 1/2 of the cone angle formed by the outer diameter of the surface 1b to be measured and the center of curvature is referred to as a spherical angle. Further, ½ of the cone angle that illuminates one point on the surface 1b to be examined from the circular light source image 3a is referred to as illumination NA. The illumination NA is such that the diameter of the circular light source image is φd, and the radius of curvature of the test surface 1b is r.
Illumination NA = d / (2r)
Calculated by An appropriate value of the illumination NA is experimental, but 0.005 to 0.05 is preferable.
The diameter φd of the circular light source image created by the objective lens is
φd = diameter of circular light source × (focal length of objective lens / focal length of collimating lens)
Calculated by
The illumination NA may be changed by replacing the aperture plates 9a having different aperture diameters 9b placed in contact with the scattering plate 9c of the circular light source device 11 shown in FIG. The light source is preferably an LED that emits visible light.

第2の実施例について説明する。図6は本発明の第2の実施形態に係る落射透過照明検査装置91であり、第1の実施例と同じく曲率半径が小さく球面角が大きい被検面1bの落射照明検査と可視光透過検査部材の透過照明検査を切り替えて行える検査装置である。
第1の実施形態からの変更は、対物レンズ支持台90bに代わる一軸ステージ41の取付と、第1の落射投光ユニットA90dまたは第1の落射投光ユニットB90fから第2の落射投光ユニット91dへの交換と、新たに被検面1bの芯出装置91bと透過投光ユニット91fを取付けたものである。図6に示すように、第1の実施形態における第1の対物レンズ3は、対物レンズ枠3gに取り付けられず、第2の落射投光ユニット91dの内に第2の対物レンズ3として含まれている。
また、対物板43は一軸ステージ41にスペーサ47を介して固定され、第2の落射投光ユニット91dを、検査光軸20に光分割偏向ミラー7の光軸が略合致する位置と、透過照明観察時に偏向ミラー筐体42が透過検査時に透過検査光束を遮らない位置とに移動、位置決め可能となっている。
A second embodiment will be described. FIG. 6 shows an epi-illumination inspection apparatus 91 according to the second embodiment of the present invention. Similar to the first example, the epi-illumination inspection and the visible light transmission inspection of the test surface 1b having a small curvature radius and a large spherical angle. It is an inspection device that can perform a transmission illumination inspection of a member by switching.
The change from the first embodiment is that the uniaxial stage 41 instead of the objective lens support 90b is attached, and the first incident light projecting unit A 90d or the first incident light projecting unit B 90f to the second incident light projecting unit 91d. In addition, a centering device 91b and a transmission light projecting unit 91f for the test surface 1b are newly attached. As shown in FIG. 6, the first objective lens 3 in the first embodiment is not attached to the objective lens frame 3g, and is included as the second objective lens 3 in the second incident light projection unit 91d. ing.
The objective plate 43 is fixed to the uniaxial stage 41 via the spacer 47, and the second incident light projection unit 91d is connected to the inspection optical axis 20 at a position where the optical axis of the light splitting deflection mirror 7 substantially matches the transmitted illumination. The deflection mirror housing 42 can be moved and positioned to a position that does not block the transmission inspection light beam during transmission inspection during observation.

Claims (13)

表面の少なくとも一部に球面または非球面を含む被検面を有する被検部材の落射照明球面検査装置であって、
前記被検面の一次像を略1倍のテレセントリックな実像または虚像として作る焦点距離または開口数の異なる対物レンズ群と、
前記対物レンズ群から選択された第1の対物レンズが他の対物レンズと同軸に着脱互換可能で取り付けられる対物レンズ支持台と、
前記被検部材を載置し、前記被検部材を前記対物レンズの光軸、即ち検査光軸に沿って移動させる被検部材載置移動台と、
前記第1の対物レンズが作る一次像をリレーして二次像を作り、物体側、即ち一次像側にも二次結像側にも略テレセントリックな関係にある像リレーレンズと結像レンズとを有する組と、前記結像レンズの二次結像位置に取り付けた撮像素子と、前記撮像素子からの信号を画像として表示するモニターとを含む、前記検査光軸に沿って移動する像観察ユニットと、
前記第1の対物レンズと前記像リレーレンズとの間、または前記像リレーレンズと前記結像レンズとの間に光分割偏向ミラーを配置することによってできる前記検査光軸と直交する光軸、即ち投光軸上に配置した円形光源と第1の投光レンズユニットと前記光分割偏向ミラーとを有し、前記第1の投光レンズユニットが作る光束を前記光分割偏向ミラーを介して前記第1の対物レンズに送り前記第1の対物レンズの焦点位置に円形光源像を結像させる第1の落射投光ユニットとを有し、前記円形光源の大きさ、又は前記被検部材を照明する開口数即ち照明NAは可変であることを特徴とする落射照明球面検査装置。
An epi-illumination spherical surface inspection device for a test member having a test surface including a spherical surface or an aspherical surface on at least a part of the surface,
An objective lens group having different focal lengths or numerical apertures for creating a primary image of the test surface as a telecentric real image or virtual image of approximately 1 time;
An objective lens supporting base on which a first objective lens selected from the objective lens group is attached so as to be detachably interchangeable with other objective lenses;
A test member placement moving table for mounting the test member and moving the test member along an optical axis of the objective lens, that is, an inspection optical axis;
An image relay lens and an imaging lens that are substantially telecentric on the object side, i.e., the primary image side and the secondary imaging side, by relaying a primary image created by the first objective lens; An image observation unit that moves along the inspection optical axis, and a monitor that displays a signal from the image sensor as an image. When,
An optical axis orthogonal to the inspection optical axis, which can be formed by disposing a light splitting deflection mirror between the first objective lens and the image relay lens or between the image relay lens and the imaging lens, A circular light source disposed on the light projecting axis, a first light projecting lens unit, and the light splitting deflecting mirror; and a light beam formed by the first light projecting lens unit via the light splitting deflecting mirror. A first incident light projecting unit that sends a circular light source image to a focal position of the first objective lens and illuminates the size of the circular light source or the member to be examined. An epi-illumination spherical surface inspection apparatus characterized in that the numerical aperture, that is, the illumination NA is variable.
前記第1の落射投光ユニットが前記像リレーレンズと前記対物レンズ間にある場合、前記第1の落射投光ユニットの前記第1の投光レンズユニットは、前記円形光源に焦点を合わせたコリメートレンズを含む第2の投光レンズユニットとを有し、前記第2の投光レンズユニットが作るアフォーカルな光束を光分割偏向ミラーを介して前記第1の対物レンズに送ることを特徴とする請求項1に記載の落射照明球面検査装置。  When the first incident light projection unit is between the image relay lens and the objective lens, the first incident lens unit of the first incident light projection unit is a collimator focused on the circular light source. A second light projecting lens unit including a lens, and sending an afocal light beam produced by the second light projecting lens unit to the first objective lens via a light splitting deflection mirror. The epi-illumination spherical surface inspection device according to claim 1. 前記第1の落射投光ユニットが前記像リレーレンズと前記結像レンズ間にある場合、前記第1の落射投光ユニットの前記第1の投光レンズユニットは、前記円形光源に焦点を置いた前記コリメートレンズと、円形光源像を作る投光レンズを有する第3の投光レンズユニットであり、前記第3の投光レンズユニットが作る前記円形光源像を前記像リレーレンズの焦点と共役な位置に投影し、前記光分割偏向ミラーと前記像リレーレンズを介してアフォーカルな光束を前記第1の対物レンズに送ることを特徴とする請求項1に記載の落射照明球面検査装置。  When the first incident light projection unit is between the image relay lens and the imaging lens, the first incident lens unit of the first incident light projection unit is focused on the circular light source. A third projection lens unit having a collimating lens and a projection lens for producing a circular light source image, wherein the circular light source image produced by the third projection lens unit is conjugated with a focal point of the image relay lens; 2. The epi-illumination spherical surface inspection apparatus according to claim 1, wherein an afocal light beam is sent to the first objective lens via the light splitting deflection mirror and the image relay lens. 前記円形光源の大きさは、前記第1の対物レンズが作る前記円形光源像から前記被検面を照明する照明NAが0.005〜0.05の範囲内であることを特徴とする請求項1ないし3のいずれか一つに記載の落射照明球面検査装置。  The size of the circular light source is such that an illumination NA for illuminating the test surface from the circular light source image created by the first objective lens is within a range of 0.005 to 0.05. The epi-illumination spherical surface inspection device according to any one of 1 to 3. 前記対物レンズ群に含まれるそれぞれの前記対物レンズが作る前記円形光源の結像位置、即ち前記対物レンズの焦点位置が略同一位置であることを特徴とする請求項1ないし4のいずれか一つに記載の落射照明球面検査装置。  5. The imaging position of the circular light source created by each objective lens included in the objective lens group, that is, the focal position of the objective lens, is substantially the same position. Epi-illumination spherical surface inspection device as described in 1. 前記対物レンズ群に含まれるそれぞれの前記対物レンズが作る前記被検面の一次像位置が略同一位置であることを特徴とする請求項1ないし4のいずれか一つに記載の落射照明球面検査装置。  5. The epi-illumination spherical inspection according to claim 1, wherein a primary image position of the test surface created by each of the objective lenses included in the objective lens group is substantially the same position. 6. apparatus. 前記対物レンズ支持台を前記検査光軸に合致させて着脱できることを特徴とする請求項1ないし4のいずれか一つに記載の落射照明球面検査装置。  5. The epi-illumination spherical surface inspection apparatus according to claim 1, wherein the objective lens support base is detachable so as to match the inspection optical axis. 第2の落射投光ユニットは前記第1の落射投光ユニットと交換取付け可能であって、
前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーと第2の対物レンズとを含み、
前記第2の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第2の落射投光ユニットは、前記円形光源と前記第2の投光レンズユニットと前記光分割偏向ミラーとが同軸に対物板に取付けられ、かつ前記第2の対物レンズは前記検査光軸と同軸に取付けられていることを特徴とする請求項7に記載の落射照明球面検査装置。
The second epi-illumination projection unit is replaceable with the first epi-illumination projection unit,
Including the circular light source, the second light projection lens unit, the light splitting deflection mirror, and a second objective lens;
When the second incident light projection unit is provided between the image relay lens and the test member,
In the second incident light projection unit, the circular light source, the second light projection lens unit, and the light splitting deflection mirror are coaxially attached to an objective plate, and the second objective lens is the inspection optical axis. The epi-illumination spherical surface inspection device according to claim 7, wherein the epi-illumination spherical surface inspection device is attached to the same axis.
前記第2の落射投光ユニットは前記投光軸に沿って移動可能な一軸ステージに取付けられ前記検査光軸と略合致して挿脱可能なことを特徴とする請求項8に記載の落射照明球面検査装置。  9. The epi-illumination according to claim 8, wherein the second epi-illumination light projecting unit is attached to a uniaxial stage movable along the light projection axis and can be inserted / removed substantially in alignment with the inspection optical axis. Spherical inspection device. 前記第3の落射投光ユニットは第1の落射投光ユニットと交換取付け可能であって、
前記第3の落射投光ユニットが前記像リレーレンズと被検部材との間に設けられる場合に、
前記第3の落射投光ユニットは、前記投光軸上に配置された前記円形光源と、
前記円形光源に焦点を略合致させたコリメートレンズとコリメートレンズが作るアフォーカルな光束中に配置され、着脱互換可能な開口数または焦点距離の異なる交換投光レンズ群から選択された交換投光レンズとを有する第4の投光レンズユニットとが一体の組となっており、
前記第3の落射投光ユニットは、前記円形光源と前記第4の投光レンズユニットの組が投光軸上を移動できる案内部をもった移動ガイドと前記光分割偏向ミラーとが同軸に対物板に取付けられ、
前記第3の落射投光ユニットは、前記円形光源と第4の投光レンズユニットの組が前記光分割偏向ミラーに対して投光軸上を前記移動ガイドの案内部に沿って移動し前記交換投光レンズが作る前記円形光源像を前記光分割偏向ミラーを介して前記検査光軸に送り、前記円形光源像を前記検査光軸上で移動させることを特徴とする請求項7に記載の落射照明球面検査装置。
The third incident light projection unit can be replaced with the first incident light projection unit,
When the third incident light projection unit is provided between the image relay lens and the test member,
The third incident light projection unit includes the circular light source disposed on the light projection axis,
An exchange projection lens selected from a group of exchange projection lenses having different numerical apertures or focal lengths, which are arranged in an afocal light beam produced by a collimator lens and a collimator lens substantially in focus with the circular light source. And a fourth projector lens unit having
In the third epi-illumination projection unit, the circular light source and the fourth projection lens unit pair having a guide that can move on the projection axis and the light splitting deflection mirror are coaxially objective. Mounted on the board,
In the third incident light projection unit, the pair of the circular light source and the fourth light projection lens unit moves on the light projection axis with respect to the light splitting deflection mirror along the guide portion of the moving guide, and is exchanged. 8. The epi-illumination according to claim 7, wherein the circular light source image formed by the light projecting lens is sent to the inspection optical axis via the light splitting deflection mirror, and the circular light source image is moved on the inspection optical axis. Lighting spherical inspection device.
前記第3の落射投光ユニットは前記投光軸に沿って移動可能な一軸ステージに取付けられ、前記検査光軸と略合致して挿脱可能なことを特徴とする請求項10に記載の落射照明球面検査装置。  11. The epi-illumination according to claim 10, wherein the third epi-illumination projection unit is attached to a uniaxial stage movable along the projection axis, and can be inserted / removed substantially in alignment with the inspection optical axis. Illumination spherical surface inspection device. 前記像観察ユニットは前記像リレーレンズと前記結像レンズ間にズーム光学系を含み、前記像リレーレンズは焦点距離または開口数の異なる像リレーレンズが、または、前記結像レンズは焦点距離または開口数の異なる結像レンズが着脱可能であることを特徴とする請求項1ないし11のいずれか一つに記載の落射照明球面検査装置。  The image observation unit includes a zoom optical system between the image relay lens and the imaging lens, the image relay lens is an image relay lens having a different focal length or numerical aperture, or the imaging lens is a focal length or aperture. 12. The epi-illumination spherical surface inspection apparatus according to claim 1, wherein a plurality of imaging lenses having different numbers can be attached and detached. 前記被検部材を挟んで前記第1から第3の落射投光ユニットのいずれか一つの反対側に透過投光レンズを含む透過投光ユニットを前記第1から第3の落射投光ユニットのいずれか一つを配置し、前記被検面の透過照明球面検査と落射照明球面検査とが選択的に可能な透過落射照明球面検査装置であることを特徴とする請求項1ないし12のいずれか一つに記載の落射照明球面検査装置を含む透過落射照明球面検査装置。Any of the first to third incident light projection units includes a transmission light projection unit including a transmission light projection lens on the opposite side of any one of the first to third incident light projection units with the test member interposed therebetween. 13. A transmission epi-illumination spherical surface inspection apparatus capable of selectively performing a transmission illumination spherical surface inspection and an epi-illumination spherical surface inspection of the test surface. Transmitting epi-illumination spherical inspection device including the epi-illumination spherical inspection device described in 1.
JP2015014745A 2015-01-13 2015-01-13 Spherical inspection device Expired - Fee Related JP6024056B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015014745A JP6024056B2 (en) 2015-01-13 2015-01-13 Spherical inspection device
TW104118450A TWI589858B (en) 2015-01-13 2015-06-08 Sphere surface inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014745A JP6024056B2 (en) 2015-01-13 2015-01-13 Spherical inspection device

Publications (2)

Publication Number Publication Date
JP2016130717A true JP2016130717A (en) 2016-07-21
JP6024056B2 JP6024056B2 (en) 2016-11-09

Family

ID=56415309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014745A Expired - Fee Related JP6024056B2 (en) 2015-01-13 2015-01-13 Spherical inspection device

Country Status (2)

Country Link
JP (1) JP6024056B2 (en)
TW (1) TWI589858B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054575A (en) * 2016-09-30 2018-04-05 東海光学株式会社 Lens appearance inspection device
CN108789362A (en) * 2017-04-27 2018-11-13 精工爱普生株式会社 robot and printer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003486B (en) * 2023-07-10 2024-02-09 泰安佳成机电科技有限公司 Beam-splitting glass fiber drawing machine and application method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325036A (en) * 1994-05-31 1995-12-12 New Kurieishiyon:Kk Optical system for inspection, and inspection apparatus
JPH09145626A (en) * 1995-04-19 1997-06-06 Nikon Corp Device for detecting defect of mask
US20020191178A1 (en) * 2000-09-12 2002-12-19 Cory Watkins Confocal 3D inspection system and process
JP2007107895A (en) * 2005-10-11 2007-04-26 Yokogawa Electric Corp Light source device
JP2009168793A (en) * 2007-12-17 2009-07-30 Olympus Corp Profile irregularity measuring and surface defect observing apparatus, profile irregularity measuring and surface defect observing method, and profile irregularity and surface defect inspecting method
JP2011033473A (en) * 2009-07-31 2011-02-17 Sharp Corp Eccentricity measuring device, method of measuring eccentricity, optical element, optical element array and optical element unit
JP2011516844A (en) * 2008-04-04 2011-05-26 ナンダ テヒノロギーズ ゲーエムベーハー Optical inspection system and method
JP2012108125A (en) * 2010-11-18 2012-06-07 Quality Vision Internatl Inc Through-the-lens illuminator for optical comparator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325036A (en) * 1994-05-31 1995-12-12 New Kurieishiyon:Kk Optical system for inspection, and inspection apparatus
JPH09145626A (en) * 1995-04-19 1997-06-06 Nikon Corp Device for detecting defect of mask
US20020191178A1 (en) * 2000-09-12 2002-12-19 Cory Watkins Confocal 3D inspection system and process
JP2007107895A (en) * 2005-10-11 2007-04-26 Yokogawa Electric Corp Light source device
JP2009168793A (en) * 2007-12-17 2009-07-30 Olympus Corp Profile irregularity measuring and surface defect observing apparatus, profile irregularity measuring and surface defect observing method, and profile irregularity and surface defect inspecting method
JP2011516844A (en) * 2008-04-04 2011-05-26 ナンダ テヒノロギーズ ゲーエムベーハー Optical inspection system and method
JP2011033473A (en) * 2009-07-31 2011-02-17 Sharp Corp Eccentricity measuring device, method of measuring eccentricity, optical element, optical element array and optical element unit
JP2012108125A (en) * 2010-11-18 2012-06-07 Quality Vision Internatl Inc Through-the-lens illuminator for optical comparator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054575A (en) * 2016-09-30 2018-04-05 東海光学株式会社 Lens appearance inspection device
CN108789362A (en) * 2017-04-27 2018-11-13 精工爱普生株式会社 robot and printer
JP2018185251A (en) * 2017-04-27 2018-11-22 セイコーエプソン株式会社 Robot and printer
CN108789362B (en) * 2017-04-27 2023-03-14 精工爱普生株式会社 Robot and printer

Also Published As

Publication number Publication date
TW201625932A (en) 2016-07-16
JP6024056B2 (en) 2016-11-09
TWI589858B (en) 2017-07-01

Similar Documents

Publication Publication Date Title
JP5610844B2 (en) Glass sheet inspection system
JPH10221607A (en) Confocal microscope
JP6024056B2 (en) Spherical inspection device
JP3206984B2 (en) Lens inspection machine
JP5084327B2 (en) Eccentricity inspection device and eccentricity adjustment device
JP2010156558A (en) Transmission lighting system, inspection system and transmission lighting method
US20090109526A1 (en) Illumination Device For A Light Microscope And Light Microscope With Such An Illumination Device
US20210102887A1 (en) Observation device
US10459209B2 (en) Method and microscope for examining a sample
US20090195788A1 (en) Apparatus for profile irregularity measurement and surface imperfection observation; method of profile irregularity measurement and surface imperfection observation; and inspection method of profile irregularity and surface imperfection
TWI738808B (en) Method and system for measuring geometric parameters of through holes
JP7309225B2 (en) Contact lens defect analysis and tracking system
JP6710814B1 (en) Lens mount and lens checker
JP5325481B2 (en) Measuring method of optical element and manufacturing method of optical element
TW202232074A (en) Messvorrichtung und verfahren zum vermessen einer modulationstransferfunktion eines afokalen optischen systems
JP6564153B1 (en) Test lens mounting table and lens checker
JP6633599B2 (en) Lens checker
KR20100091694A (en) A optical apparatus
JP2009168793A (en) Profile irregularity measuring and surface defect observing apparatus, profile irregularity measuring and surface defect observing method, and profile irregularity and surface defect inspecting method
JP2007316133A (en) Observing device
JP2020012652A (en) Lens checker
JP2006153575A (en) Three-dimensional measuring instrument
JP2006250675A (en) Mach-zehnder interferometer
SU49374A1 (en) Method of centering lens glass
JP5009135B2 (en) Optical measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6024056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees